

SERIES 30 EXAMS

CHEMISTRY 233/3 PRACTICAL MARKING SCHEME

(a) Table I – 5mks

Complete table – 2mks

Penalties / conditions

Incomplete tale with at least 8 readings 1mk Incomplete table with 5 readings $\frac{1}{2}$ mk Less than 5 readings zero Trend -1mk

Significant figures and decimals – 1mk Accuracy – 1mk 05

(b) (a) Labelling $-\frac{1}{2}$ mk

Penalties

- (i) Penalize fully if the axes are inverted
- Penalize fully if wrong units are given otherwise ignore units if not given (ii)
- (iii) Penalize fully if only one axes is labeled
- (b) Scale ½mk
 - (i) Area covered by the plots should be more than ½ the page Scale intervals mus be consistent Scale chosen should be able to accommodate all the points
 - (c) Plotting 2mks
 - (i) At least 4 pts correctly 1mk

3 correctly – 1mk

Les than 3 - zero

- (ii) Accept plots given if axes are inverted
 - (d) –shape (1mk)

Straight line

With +ve or -ve gradient

Reject curve – zero

- (c) (i) Accept correct reading with or without showing from the graph1mk
 - (ii) If it s is hown on the graph correctly and the reading is absent or wrong, award ½mk for showing
 - (iii) Penalize ½mk for wrong units used otherwise ignore if units are not used or shown or given
 - (iv) Reject readings and showing from a wrong graph
 - (v) Accept reading if correct even if axes are inverted.
- (d) Decrease in concentration decreases rate of reaction due to dilution
- 2. Table :II Treat temperature value initial temperature of 40°C and 10°C as unrealistic
 - (a) (i) Enthalpy change = mass x S.H.C x ΔT = ans. (2mks)

Mass = mass of water used 50.0g

 $\Delta T = \text{from table (II)}$

$$= 50 \times 4.2 \times \Delta T = ans (2mks)$$

(ii) CT -4mks)

Penalties

- (i) Wrong arithmetic tied to 1st, 2nd and 3rd rows only
- (ii) Inverted table
- (iii) Penalize ½mk once for each for a maximum of 2mks

Accuracy - 1mk

Upto ± 0.1 (1mk); ± 0.2 (½mk) with or compared to school mk

(b)Moles of R = 1 x average volume from table III = ans.(1)

1000

(iv) Equation $-2HCl_{(aq)} + Na_2CO_{3(aq)}$ $2NaCl_{(aq)} + CO_{2(g)} + H_2O_{(1)}$

Mole ratio

 $\begin{array}{ccc} Q & : & R \\ 1 & : & 2 \\ \underline{ans(1)} & ans(1) \end{array}$

: Moles of Q which reacted with solution $R = \underline{ans(1)} = ans(2)$ in $25cm^3$ of solution

(d) Moles of Q in procedure 1

$$\frac{\text{Mass of Q}}{\text{R.M.M}} = \frac{2.65}{102} = 0.025$$

(e) Actual mole sof Q which reacted

0.025 - ans (2) in d = ans (3) $\sqrt{1}mk$

Ans (3) moles produce heat in (a) $\sqrt{1}$ mk

1 mole of Q will produce <u>heat in a x 1</u>KJ/mole $\sqrt{1}$ mk

Ans. (3) moles

3. (a)

Observation	Inferences
(a) Solid <u>dissolves completely</u> forming a	Na ⁺ , K ⁺ , NH ₄ ⁺ , Ca ²⁺ , Mg ²⁺ , Zn ²⁺ , Al ³⁺ and Pb ²⁺ ions
<u>colourless</u> solution√ 1mk	present. $(\sqrt{1}mk)$ (penalize if a contradiction is given)
(i) White ppt. $\sqrt{1}$ mk, soluble($\sqrt{1}$ mk) in excess	Al^{3+} , Zn^{2+} and Pb^{2+} present $(\sqrt{1}mk)$
NaOH solution	
(ii) white ppt($\sqrt{1}$ mk). soluble ($\sqrt{1}$ mk) in excess	Zn^{2+} ions confirmed $(\sqrt{1}mk)$
ammonia	
(iii) White ppt. ($\sqrt{1}$ mk) insoluble ($\sqrt{\frac{1}{2}}$ mk) in dilute	SO_4^{2-} present $(\sqrt{1}mk)$
hydrochloric acid	
(iv) Purple colour of Potassium permanganate is not	SO_3^{2-} and S^{2-} ($\sqrt{1}$ mk)absent. Absence of reducing
decolorized <u>(</u> √1mk)	agent

Observation	Inferences
(i) Colour changes to red/pink pH of (5-6) $(\sqrt{1/2}mk)$	Weak acid present (√1mk)
(ii) Effervescence $(\sqrt[4]{2}mk)$	H ⁺ , H ₃ O ⁺ , COOH (√1mk) present (any correct one
(iii) Changes from <u>orange</u> to <u>green (</u> √1mk)	COOH⁻ (√1mk)present
	C = C
	C = C

(iv) Colour changes from red/brown to green $(\sqrt{1}mk)$ | Fe²⁺ ions present $(\sqrt{1}mk)$

(b)

