

CHEMISTRY 233/3 MARKING SCHEME

Q1. Table 1

	I	II	III
Final burette reading cm ³	15.6	31.2	15.6
Initial burette reading cm ³	0.0	15.6	0.0
Volume of solution B used cm ³	15.6	15.6	12.5

The marks are to be distributed as follows.	
a) Complete table	1 mk
(i) Complete table with 3 titration's done award	1 mk
(ii) Incomplete table with 2 titration's done award	1/2 mk
(iii) Incomplete table with 1 titration done award	0 mk
Penalties	
- Wrong arithmetic	
- Inverted table	
- Burette readings above 50 unless explained	
- Unrealistic titre values i.e. values in hundreds or below 1.0cm ³	
Penalise ½ mark for each to a maximum of ½ mark i.e penalise ½ mark of	nce.
b) Use of decimals	(1 mk)
(i) Accept only 1 or 2 decimal places used consistently otherwise penalise	
(ii) If the two decimal places are used the 2 nd decimal place must be either '	'0" or "5" otherwise penalise
fully.	
c) Accuracy	(1 mk)
Compare the candidates titre values with the teachers value.	` '
Conditions	
(i) If at least one of the titre values is within ± 0.1 cm ³ of the teachers	value
award	(1 mk)
(ii) If no value is within ±0.1 of teachers value but atleast one is within award	n ± 0.2 of teachers value
d) Principle of averaging	(1 mk)
values to be averaged must be shown and must be within ± 0.2 of each oth	er.
Conditions	
(i) If 3 consistent titrations are done and averaged award	(1 mk)
(ii) If 3 titrations are done and ONLY two are consistent and averaged award	(1 mk)
(iii) If only two titration's are done are consistent and averaged award	(1 mk)
(vi) If three titres are possible but only two are averaged award	(0 mk)
(v) If 3 inconsistent titres are averaged award	(0 mk)

(vi) If only 2 titration's are done are inconsistent and averaged award	(0 mk)
(vii) If only 1 titration is done award	(0 mk)

e\) Final answer.
$$(1 \text{ mk})$$

Compare the candidate's correct average titre with the teacher's value.

(ii) If not within
$$\pm 0.1$$
 of teacher's value but within ± 0.2 award (1/2 mk)

	I	II	III
Final burette reading cm ³	17.9	35.8	17.9
Initial burette reading cm ³	0.0	17.9	0.0
Volume of solution D used cm ³	17.9	17.9	17.9

CALCULATIONS

a)
$$15.6+15.6+15.6$$
 $\sqrt{\frac{1}{2}} = 15.6 \text{cm}^3 \sqrt{\frac{1}{2}}$

b) In
$$1000cm^3$$
 of B = 0.2 moles

in 15.6cm³ of b =
$$\frac{15.6 \text{ (ans (a) above) x } 0.2}{1000}$$
 $\sqrt{\frac{1}{2}}$

$$=$$
 ans $\sqrt{\frac{1}{2}}$

Concentration of solution C used =
$$\frac{\text{ans in (b)}}{2}$$
 $X 1000\sqrt{1}$

$$=$$
 ans. $\sqrt{1}$

d) i)
$$17.9+17.9+17.9 \checkmark \frac{1}{2} = 17.9 \text{ cm}^3 \checkmark \frac{1}{2}$$

= Answer
$$\sqrt{1}$$

$$\frac{\text{(iii) ans(d(ii))} X 100}{\text{ans(d(i)}} \quad \sqrt{1}$$

= Answer
$$\sqrt{}$$
 1

(iv)
$$\frac{100 \times 0.2}{1000} \sqrt{\frac{1}{2}} = \text{ans} \sqrt{\frac{1}{2}}$$

(vi) Mole ratio: $CO_3^{2-}: H^+ \sqrt{1}$ 1
1 : 1

$$Ans(v)x \ 1 \div 1 = ans \ \sqrt{ }$$

e)i) $\frac{1 \times \text{ans d } (\text{vi})}{0.5} \sqrt{1 = \text{ans}} \sqrt{1}$

ii)
$$(ans (e(i) - 60) \div 2\sqrt{\frac{1}{2}} = ans\sqrt{\frac{1}{2}}$$

CONDITIONS

- (i) Penalise ½ mk in answer if wrong units are given otherwise ignore when units are omitted.
- (ii) Penalise ½ mk for wrong transfer of average titre in (iv) above otherwise penalise FULLY for a strange figure.
- (iii) Answer in (iii) above should be at least to 4 decimal places unless it works out exactly to less than 4 decimal places, otherwise penalise ½ mk on the answer.

Table 2 Conditions to apply as in table 1.

CALCULATIONS

(ii) No. of moles of NaoH used = $\frac{25 \times 1}{1000}$

= 0.025 moles
$$\sqrt{\frac{1}{2}}$$

Mole ration NaoH: H₂SO₄

2 : 1
$$\sqrt{\frac{1}{2}}$$

.

No of moles of solution K used = $\frac{0.025}{2}$ $\sqrt{\frac{1}{2}}$

= 0.0125 moles
$$\sqrt{}$$

 $\frac{1}{2}$

(iii) No of moles H_2SO_4 in 100×0.0125 100cm³ of the solution = average titre

= Answer
$$\sqrt{\frac{1}{2}}$$

(iv) No. of moles of H_2SO_4 that = Answer a (iv) – Answer b(iii) of reacted Na_2CO_3 with 0.5g = Answer $\sqrt{\frac{1}{2}}$

(v) Mole ratio X₂CO₃: H₂SO₄

√ 1/₂

No of moles of X_2CO_3 in 0.5g = Answer (iv) above.

0.5g of $X_2CO_3 \equiv Answer$ (iv) above

. . .
$$\equiv$$
 1 mole
Relative formular mass of $x_2co_3 = \frac{1 \times 0.5}{Answer} \sqrt{\frac{1}{2}}$
Answer (iv)
 $=$ Answer $\sqrt{\frac{1}{2}}$
(vi) 1 moles of $x_2co_3 \equiv$ Answer (v) above

$$x = \underbrace{\text{Answer } (v) - 60}_{2} \sqrt{\frac{1}{2}}$$

$$= \text{Answer } \sqrt{\frac{1}{2}}$$

CONDITIONS

- (i) The average titre in \((iii)\) should be transferred intact otherwise penalise fully.
- (ii) Answer a (iv) and answer b(iii) in (iv) above should be transferred intact otherwise penalise FULLY.
- (iii) Penalise fully for any working beyond the expected answer.

2(a) Observation	Inference
Droplets of colourless √1 liquid formed on cooler parts of	Hydrated √½ salt
the test tube (penalize fully if water mentioned)	Water of crystallization present.
Blue litmus remains blue while red litmus turns to blue $\sqrt{1}$	NH_4^+ present $\sqrt{\frac{1}{2}}$
(penalize fully if only one litmus paper mentioned)	(Reject NH ₃)
(b) Observation	Inference
<u>Dissolves</u> $\sqrt{\frac{1}{2}}$ to form a <u>colourless solution/green solution</u>	Soluble salt present
$\sqrt{\frac{1}{2}}$	Fe ²⁺ present (answer attached to green solution)
(c) Observation	Inference
White precipitate insoluble on addition of dilute HNO ₃ (aq)	Fe ²⁺ present $\sqrt{1}$
$\sqrt{1}$	
(d) Observation	Inference
White precipitate insoluble on addition of dilute HNO _{3(aq)} $\sqrt{1}$	SO_4^{2-} present $\sqrt{1}$
3. (a) Observation	
-melts√ ½	Inference
-burns with a yellow sooty √ ½ /smocky/luminous flame	Inference $C=C$, $-C\equiv C$
-leaving no residue $\sqrt{\frac{1}{2}}$	
	(penalize fully if one is left out)
(b) (i) Observations	Inference
Purple acidified KMnO4 is decolourised/purple solution	$C = C_3 - C = C - \sqrt{\frac{1}{2}}$
changes to colourless. (penalize fully if initial colour of	
KMnO ₄ is not mentioned)	
(ii) Observation	Inference
Orange acidified K ₂ Cr ₂ O ₇ changes to green.	$C = C, -C = C - \sqrt{\frac{1}{2}}$
	I.