Name:	Index No
Date:	Candidate's Sign.

233/3 CHEMISTRY Paper 3 (Practical) Time: 2 ¹/₄ Hours

Kenya Certificate of Secondary Education (K.C.S.E.)

233/3

CHEMISTRY

Paper 3

Time: 2 ¹/₄ Hours

INSTRUCTIONS TO THE CANDIDATES:

- (a) Answer ALL questions in the spaces provided in this question paper.
- (b) You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemical and apparatus that you may need.
- (c) All working **MUST** be clearly shown where necessary.
- (d) Mathematical tables and electrical calculators may be used.

For Examiners' Use Only

QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
1a	11	
1b	17	
2	12	
Total	40	

This paper consists of 5 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. (a) You are provided with the following:-

- (i) 0.5M NaOH, solution Y
- (ii) Solution of sulphuric (VI) acid **Q**

You are expected to determine the concentration of sulphuric (VI) acid in moles per litre.

Proceed as follows:

Pipette 25cm^3 of solution **Y** and transfer into the conical flask. Put 1-2 drops of phenolphthalein indicator and titrate with solution **Q** from the burette and complete the table.

TABLE 1

Titre		Ι	II	III
Final b	purette reading (cm ³)			
Initial	burette reading (cm ³)			
Volum	the of solution Q used (cm^3)			
				(4mks)
(i)	Determine the average volume	me of solution Q used.	Show your working	g (1mk)
(ii)	Calculate the number of mo	les of sodium hydroxide	e used.	(2mks)
(iii)	Calculate the number of mo	les of sulphuric (VI) aci	id used	(2mks)

- (iv) Hence determine the concentration of sulphuric (VI) acid in moles per litre. (2mks)
- (b) In this experiment you are expected to determine the molar heat of neutralization of sulphuric (VI) acid with 2M sodium hydroxide. Measure 20cm³ of sulphuric (VI) acid, solution W and transfer into 100ml beaker provided. Measure its temperature and record in the table below under 1st column. Take 5cm³ of solution N and add to this solution, stir with the thermometer and record the final steady temperature. Continue to add 5cm³ of N to the same solution and record the final steady temperature until 40cm³ of N has been added.

Volume of H_2SO_4 , W used (cm ³)	20	20	20	20	20	20	20	20	20
Volume of 2M NaOH _(aq) N, added (cm ³)	0	5	10	15	20	25	30	35	40
Highest temperature reached (°C)									

(i) Plot a graph of highest temperature reached (vertical axis) against volume of 2M NaOH_(aq) added (4mks)

- (ii) From your graph determine the following:-
- (i) Change in temperature (ΔT)
- (ii) Volume of 2M NaOH (aq) needed to neutralize completely 20cm³ of sulphuric (VI) acid. (1mk)

(1mk)

- (iii) Determine the number of moles of sulphuric (VI) acid used given that the solution contains 1 mole per litre of the acid. (2mks)
- (iv) Calculate the amount of heat evolved in the above reaction. (Take specific heat capacity of the solution to be 4.2J/gK and density of the solution to be 1g/cm³) (2mks)

- (v) Hence determine the molar heat of neutralization of sulphuric (VI) acid (2mks)
- 2. You are provided with solution **M**. Carry out the tests below. Write your observations and inferences fully.
 - (a) Take about 2cm^3 of solution **M** in a test tube and add 2M NH_3 (aq) dropwise till in excess.

Observation	Inferences
(1 1)	
(1mk)	(2mks)

(b) Take about $2cm^3$ of solution **M** in a test tube and add 2-3 drops of barium nitrate solution.

Observation	Inferences
(1mk)	(2mks)

(c) To about $2cm^3$ of **M** add about equal volume of chlorine water.

Observation	Inferences
(1mk)	(1mk)

(d) To about $2cm^3$ of solution **M**, add 6-10 drops of bromine water

Observation	Inferences
(1mk)	(1mk)

(e) To about $2cm^3$ of solution **M**, add 2-3 drops of lead (II) nitrate

Observation	Inferences
(1mk)	(1mk)