

SERIES 4 EXAMS Kenya Certificate of Secondary Education CHEMISTRY PAPER 3

MARKING SCHEME

(a)

1.

Ι	II	III
30.1	30.1	30.1
0.0	0.0	0.0
30.1	30.1	30.1
	0.0	

- 1 05

- Consistent	use of decimal	1 mark		
- Penalise fully for mixed decimal				
- Accuracy				
If	$\pm 0.1 \text{ SV}$	1 mark		
	$\pm 0.2 \text{ SV}$	¹∕₂ mark		
- Principles of averaging				

- Complete table 1 mark

 $30.1 + 30.1 + 30.1 \sqrt{\frac{1}{2}}$ mark = $30.1 \text{ cm}^3 \sqrt{\frac{1}{2}}$ 3

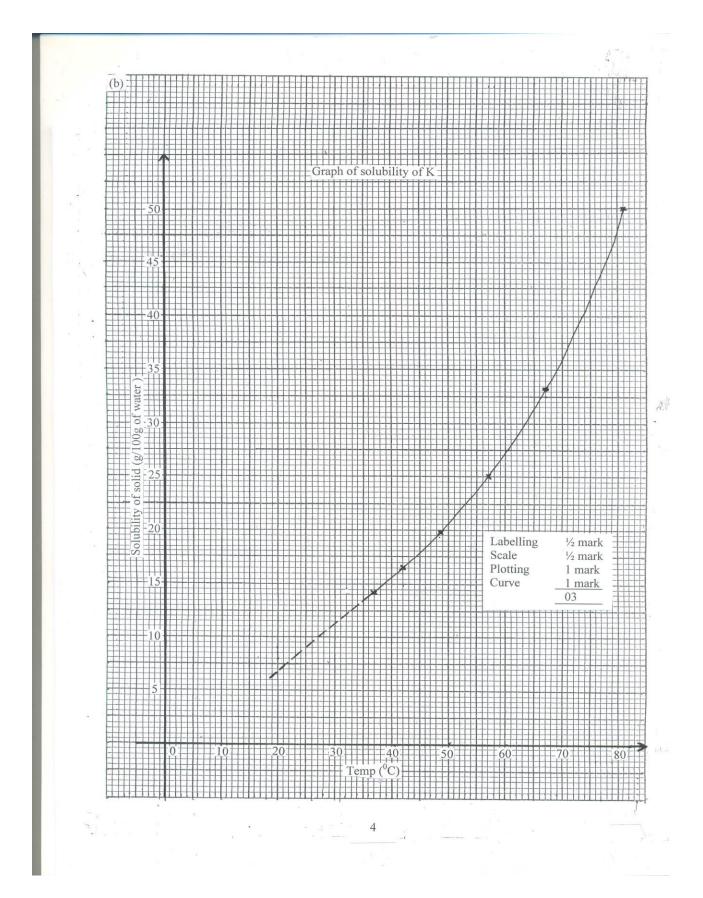
- Final answer 1 mark Rounded to atleast 2 dp Penalise fully if rounded to less than 2 dp - If average titre within ± 0.1 of S.V 1 mark

(b) Number of moles of the acid, C_1 that reacted

Moles of NaOH reacting If 1000cm³ 0.2 moles ? $\sqrt{\frac{1}{2}}$ mark 25cm^3 25 x 0.2 $\sqrt{\frac{1}{2}}$ mark = 1000 = 0.005 moles - Since the acid is dibasic, mole ratio of acid : base is 1 : 2 i.e H₂C₂O₄. XH₂O : NaOH 1 : 2 $\sqrt{\frac{1}{2}}$ mark

Thus 2 moles of NaOH react with one mole of acid 1 mole of acid $\sqrt{\frac{1}{2}}$ mark 2 moles of NaOH 0.005 moles ? 0.005 x 1 $\sqrt{\frac{1}{2}}$ mark = 2 = 0.0025 moles $\sqrt{\frac{1}{2}}$ mark Concentration of the acid (c) If 30.1cm³ 0.0025 moles 1000cm³ $\sqrt{\frac{1}{2}}$ mark 1000 x 0.0025 $\sqrt{1}$ mark = 30.1 =0.0831 moles / litre $\sqrt{\frac{1}{2}}$ mark (d) RMM of acid Molarity = g/litre RMM RMM = g/litre Molarity g/litre 500cm³ contain 5.04g $\sqrt{\frac{1}{2}}$ mark 1000cm³ ? 1000 x 5.04 $\sqrt{1}$ mark = 500 $= 10.08 \text{g} \sqrt{\frac{1}{2}}$ 10.08 $\sqrt{\frac{1}{2}}$ mark Thus RMM =0.0831 $=121.3 \sqrt{\frac{1}{2}}$ mark = 121 Value of X (d) $H_2C_2O_4$. $XH_2O = 121 \sqrt{\frac{1}{2}}$ mark 90 + 18x = 121 $18x = 121 - 90 \sqrt{1}$ mark x = 1.7 $x = 2 \sqrt{\frac{1}{2}}$ mark

2. (a)


Total volume of water added to 5g of solid K (cm ³)	10	15	20	25	30	35
Temperature at which crystals appear (⁰ C)	86	67	57	48.5	42	39
Solubility of K in g/100g of water	50	33.3	25	20	16.7	14.3

		2
(i)	Complete table (column I)	2 marks
	Incomplete table with 5 readings	2 marks
	Incomplete table with 4 readings	1 mark
	3 and below readings	0 mark
(ii)	Use of decimals	1 mark
	Whole numbers or 1dp (applies to cold	umn I)
(iii)	Accuracy	¹∕₂ mark
	± 2.0 of S.V	¹∕₂ mark
	If otherwise	0 mark

(iv) Trend ¹/₂ mark

¹/₂ mark for continuous drop in temperature readings in column I, otherwise penalize fully.
Column II 2 marks
-¹/₂ mark for each value of solubility correctly calculated

- (c) (i) Solubility at 25^{0} C 1 mark (Shown in graph) Penalise $\frac{1}{2}$ mark for wrong units - From extrapolated graph = 8.5g / 100g pf H₂O
 - (ii) Temperature when solution will contain 22g
 Penalise ¹/₂ mark for wrong units.
- $\begin{array}{ll} \mbox{(d)} & \mbox{Mass of solid K} & \mbox{(1 mark} \\ & \mbox{At } 52^0\mbox{C} = 21.5 \mbox{ g}/100\mbox{g of } H_2\mbox{O} \\ & \mbox{At } 37^0\mbox{C} = 14.0 \mbox{ g}/100\mbox{g of } H_2\mbox{O} \\ & \mbox{21.5} 14.0 = 7.5\mbox{g} \end{array}$

3.

	OBSERVATIONS	INFERENCES	
(a)	Blue green flame $\sqrt{\frac{1}{2}}$	Cu^{2+} present $\sqrt{1/2}$	
b) (i)	White ppt $\sqrt{\frac{1}{2}}$ soluble in excess $\sqrt{\frac{1}{2}}$	Zn^{2+} , Pb^{2+} , Al^{3+} present	
		All 3 mentioned 1 mark	
		2 mentioned - ¹ / ₂ mark	
		Only one – 0 mark	
(ii)	White ppt formed $\sqrt{\frac{1}{2}}$ soluble in excess	Zn^{2+} present $\sqrt{\frac{1}{2}}$	
	$\sqrt{\frac{1}{2}}$	-	
(iii)	White ppt formed $\sqrt{\frac{1}{2}}$	SO_4 ²⁻ present $\sqrt{\frac{1}{2}}$	
	Insoluble on warming $\sqrt{\frac{1}{2}}$	1	
(iv)	White ppt formed $\sqrt{\frac{1}{2}}$ insoluble on	SO ₄ ²⁻ present $\sqrt{1/2}$	
	adding HCl	I I I I I I I I I I I I I I I I I I I	
c)	Effervescence / bubbles formed $\sqrt{\frac{1}{2}}$	$\rm CO^{2-}_{3}$ present $\sqrt{1/2}$	
,		(HCO_3^{-}, SO_3^{-2}) present	
d) (i)	Burns with a yellow sooty flame $\sqrt{\frac{1}{2}}$	$(HCO_3^{-1}, SO_3^{-2} \text{ present})$ - C = C - , - C C -	
, , , ,	5		
		present $\sqrt{\frac{1}{2}}$	
(ii) I)	Effervescence of a colourless gas $\sqrt{\frac{1}{2}}$	Acidic substance $\sqrt{\frac{1}{2}}$	
		Accept H ⁺ / H ₃ O ⁺ present /	
		RCOOH present	
II)	Sweet fruity smell $\sqrt{\frac{1}{2}}$	$R - COOH$ present $\sqrt{\frac{1}{2}}$	
III)	Purple colour of KMnO ₄ turns colourless		
	$\sqrt{1}$	C = C , $-C$ $C -$, $R - OH$	
		present $\sqrt{1}$	
		Named 3 – 1 mark	
		Named $2 - \frac{1}{2}$ mark	
		But no mark if R – OH only	

Kenya Certificate of Secondary Education CHEMISTRY PAPER 3

CONFIDENTIAL

Requirements for candidates.

In addition to the fittings and apparatus that are commonly in a chemistry laboratory, each candidate requires:

- 1. 50ml burette.
- 2. 25 ml pipette.
- 3. 2 conical flasks.
- 4. Solution C_1 about 100cm³.
- 5. Solution C_2 about 100cm³.
- 6. White tile.
- 7. Stand and clamp.
- 8. Solid K 5g exactly.
- 9. 10ml measuring cylinder.
- 10. One 250 ml glass beaker.
- 11. 2 boiling tubes.
- 12. Thermometer.
- 13. Means of heating.
- 14. Distilled water in a wash bottle.
- 15. Solid F About 3g.
- 16. Solid P about 3g
- 17. Metallic spatula.
- 18. Filter paper.
- 19. Filter funnel.
- 20. Stirring rod.
- 21. 6 test tubes.
- 22. About 1g sodium hydrogen carbonate.
- 23. Test tube holder.

ACCESS TO:

- 2M NaOH
- 2M NH₄OH
- 0.25M Pb (NO₃)₂
- 0.25M BaCl₂
- 2M HCl
- Phenolphthalein indicator.
- Access to conc. H₂SO₄
- Access to acidified KMnO₄.
- Access to ethanol

All supplied with droppers

PREPARATION OF SOLUTIONS / SOLIDS

- Solid K
- Solid K Potassium chlorate (V).
- Solution C₁ is prepared by dissolving 10.08g of oxalic acid in about 500cm³ and making to one litre.
- Solution C₂ is prepared by dissolving 8g of NaOH pellets in about 500cm³ of distilled water and making to 1 litre of solution.
- Solid F is a mixture of CuCO₃ and ZnSO₄ in the ratio 4 : 3 by mass respectively
- Solid P is oxalic acid.

