

SERIES 4 EXAMS

Kenya Certificate of Secondary Education CHEMISTRY PAPER 3

MARKING SCHEME

1.

Titration	I	II	III
Final burette reading (cm ³)	30.1	30.1	30.1
Initial burette reading (cm ³)	0.0	0.0	0.0
Volume of solution C1 used (cm ³)	30.1	30.1	30.1

CT - 1 D - 1 A - 1 AV - 1 FA - 1

05

- (a) Complete table 1 mark
 - Consistent use of decimal 1 mark
 - Penalise fully for mixed decimal
 - Accuracy

If
$$\pm 0.1 \text{ SV}$$
 1 mark $\pm 0.2 \text{ SV}$ ½ mark

- Principles of averaging

$$30.1 + 30.1 + 30.1 \sqrt{\frac{1}{2}} \text{ mark} = 30.1 \text{ cm}^3 \sqrt{\frac{1}{2}}$$

- Final answer 1 mark

Rounded to atleast 2 dp

Penalise fully if rounded to less than 2 dp

- If average titre within ± 0.1 of S.V 1 mark
- (b) Number of moles of the acid, C_1 that reacted

Moles of NaOH reacting

If
$$1000 \text{cm}^3$$
 0.2 moles 25cm^3 ? $\sqrt{\frac{1}{2}}$ mark

=
$$25 \times 0.2 \sqrt{\frac{1}{2}} \text{ mark}$$

1000

$$= 0.005 \text{ moles}$$

- Since the acid is dibasic, mole ratio of acid: base

is 1 : 2 i.e
$$H_2C_2O_4$$
. XH_2O : NaOH
1 : 2 $\sqrt{\frac{1}{2}}$ mark

cher co.k

```
Thus 2 moles of NaOH react with one mole of acid
2 moles of NaOH
1 mole of acid √½ mark
```

0.005 moles

0.005 x 1
$$\sqrt{\frac{1}{2}}$$
 mark

= 0.0025 moles $\sqrt{\frac{1}{2}}$ mark

(c) Concentration of the acid

If 30.1cm³

0.0025 moles

 1000cm^3 $\sqrt{\frac{1}{2}} \text{ mark}$

=
$$1000 \times 0.0025 \sqrt{1} \text{ mark}$$

30.1

=0.0831 moles / litre $\sqrt{\frac{1}{2}}$ mark

(d) RMM of acid

Molarity = g/litre

RMM

g/litre

 $500 \text{cm}^3 \text{ contain } 5.04\text{g} \sqrt{\frac{1}{2}} \text{ mark}$

100<mark>0cm³</mark>

$$= \frac{1000 \times 5.04 \sqrt{1 \text{ mark}}}{500}$$

 $= 10.08g \sqrt{\frac{1}{2}}$

Thus RMM =
$$10.08 \sqrt{\frac{1}{2}}$$
 mark 0.0831
=121.3 $\sqrt{\frac{1}{2}}$ mark = 121

(d) Value of X

$$H_2C_2O_4$$
. $XH_2O = 121 \sqrt{\frac{1}{2}}$ mark

$$90 + 18x = 121$$

$$18x = 121 - 90 \sqrt{1} \text{ mark}$$

$$x = 1.7$$

$$x = 2 \sqrt{\frac{1}{2}}$$
 mark

2. (a)

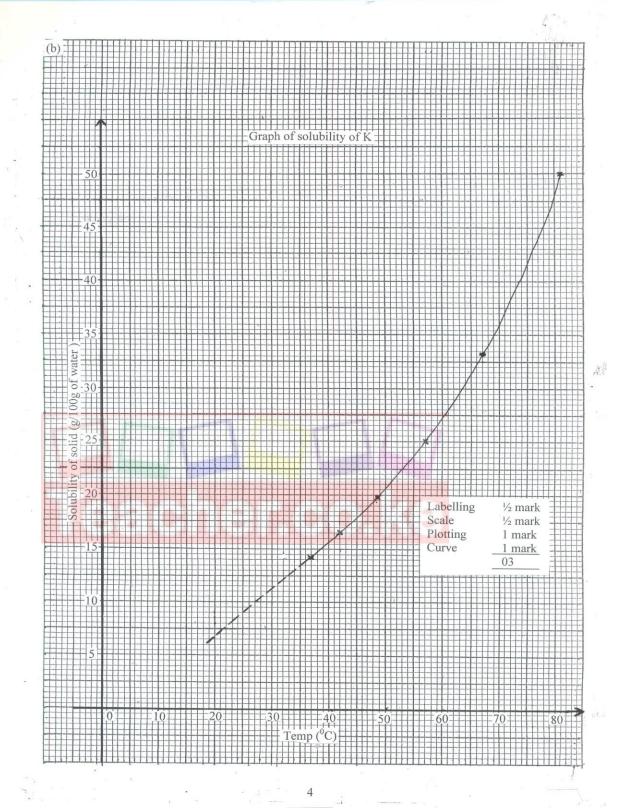
Total volume of water added to 5g of solid K (cm ³)	10	15	20	25	30	35
Temperature at which crystals appear (⁰ C)	86	67	57	48.5	42	39
Solubility of K in g/100g of water	50	33.3	25	20	16.7	14.3

2

(i)	Complete table (column I)	2 marks
	Incomplete table with 5 readings	2 marks
	Incomplete table with 4 readings	1 mark
	3 and below readings	0 mark

(ii) Use of decimals 1 mark Whole numbers or 1dp (applies to column I)

(iii) Accuracy $\frac{1}{2}$ mark ± 2.0 of S.V $\frac{1}{2}$ mark If otherwise 0 mark


(iv) Trend ½ mark

½ mark for continuous drop in temperature readings in column I, otherwise penalize fully.

Column II

2 marks

- ½ mark for each value of solubility correctly calculated

Download this and other FREE materials from https://teacher.co.ke/notes

- (c) (i) Solubility at 25^{0} C 1 mark (Shown in graph) Penalise ½ mark for wrong units From extrapolated graph = 8.5g / 100g pf $H_{2}O$
 - (ii) Temperature when solution will contain 22g Penalise ½ mark for wrong units.
- (d) Mass of solid K (1 mark At 52^{0} C = 21.5 g/100g of H₂O At 37^{0} C = 14.0 g/100g of H₂O 21.5 14.0 = 7.5g

3.

OBSERVATIONS INFERENCES				
b) (i) White ppt $\sqrt{\frac{1}{2}}$ soluble in excess $\sqrt{\frac{1}{2}}$ $\frac{Zn^{2+}, Pb^{2+}, Al^{3+} present}{All 3 mentioned 1 mark}$ $2 mentioned - \frac{1}{2} mark}{Only one - 0 mark}$ (ii) White ppt formed $\sqrt{\frac{1}{2}}$ soluble in excess $\sqrt{\frac{1}{2}}$		OBSERVATIONS	INFERENCES	
All 3 mentioned 1 mark 2 mentioned $-\frac{1}{2}$ mark Only one -0 mark $-\frac{1}{2}$ white ppt formed $-\frac{1}{2}$ soluble in excess $-\frac{1}{2}$ white ppt formed $-\frac{1}{2}$ soluble in excess $-\frac{1}{2}$ insoluble on warming $-\frac{1}{2}$ and $-\frac{1}{2}$ insoluble on adding HCl (iv) White ppt formed $-\frac{1}{2}$ insoluble on adding HCl (iv) White ppt formed $-\frac{1}{2}$ insoluble on adding HCl (iv) Effervescence / bubbles formed $-\frac{1}{2}$ insoluble on adding HCl (ii) Burns with a yellow sooty flame $-\frac{1}{2}$ (HCO3 $-\frac{1}{2}$ SO3 $-\frac{1}{2}$ present $-\frac{1}{2}$ (HCO3 $-\frac{1}{2}$ SO3 $-\frac{1}{2}$ present $-\frac{1}{2}$ (HCO3 $-\frac{1}{2}$ SO3 $-\frac{1}{2}$ present $-\frac{1}{2}$ Acidic substance $-\frac{1}{2}$ Accept H $-\frac{1}{2}$ H3O $-\frac{1}{2}$ present $-\frac{1}{2}$ R - COOH present $-\frac{1}{2}$ Named 3 $-\frac{1}{2}$ mark Named 2 $-\frac{1}{2}$ mark	(a)	Blue green flame $\sqrt{\frac{1}{2}}$	Cu^{2+} present $\sqrt{\frac{1}{2}}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b) (i)	White ppt $\sqrt{\frac{1}{2}}$ soluble in excess $\sqrt{\frac{1}{2}}$	Zn ²⁺ , Pb ²⁺ , Al ³⁺ present	
			All 3 mentioned 1 mark	
(ii) White ppt formed $\sqrt{1/2}$ soluble in excess $\sqrt{1/2}$ SO ₄ $^{2-}$ present $\sqrt{1/2}$ SO ₄ $^{2-}$ present $\sqrt{1/2}$ Insoluble on warming $\sqrt{1/2}$ SO ₄ $^{2-}$ present $\sqrt{1/2}$ SO ₅ $^{2-}$ present $\sqrt{1/2}$ Solution $\sqrt{1/2}$ Substance $\sqrt{1/2}$ Acidic substance $\sqrt{1/2}$ Accept $\sqrt{1/2}$ Accept $\sqrt{1/2}$ Accept $\sqrt{1/2}$ Accept $\sqrt{1/2}$ Accept $\sqrt{1/2}$ Substance $\sqrt{1/2}$ Accept $\sqrt{1/2}$ Substance $\sqrt{1/2}$ Substanc			2 mentioned - ½ mark	
(iii) White ppt formed $\sqrt{1/2}$			Only one – 0 mark	
Insoluble on warming $\sqrt{\frac{1}{2}}$ (iv) White ppt formed $\sqrt{\frac{1}{2}}$ insoluble on adding HCl SO ₄ 2 - present $\sqrt{\frac{1}{2}}$ CO 2 -3 present $\sqrt{\frac{1}{2}}$ (HCO ₃ $^-$, SO ₃ 2 - present d) (i) Burns with a yellow sooty flame $\sqrt{\frac{1}{2}}$ -C = C -, -C C - present $\sqrt{\frac{1}{2}}$ Acidic substance $\sqrt{\frac{1}{2}}$ Accept H ⁺ / H ₃ O ⁺ present / RCOOH present RCOOH present RCOOH present RCOOH present C = C , -C , -C , R-OH Present $\sqrt{\frac{1}{2}}$ C = C , -C , R-OH Present $\sqrt{\frac{1}{2}}$ Named 3 - 1 mark Named 2 - $\frac{1}{2}$ mark	(ii)		Zn^{2+} present $\sqrt{1/2}$	
Insoluble on warming $\sqrt{\frac{1}{2}}$ (iv) White ppt formed $\sqrt{\frac{1}{2}}$ insoluble on adding HCl SO ₄ 2 - present $\sqrt{\frac{1}{2}}$ CO 2 -3 present $\sqrt{\frac{1}{2}}$ (HCO ₃ $^-$, SO ₃ 2 - present d) (i) Burns with a yellow sooty flame $\sqrt{\frac{1}{2}}$ -C = C -, -C C - present $\sqrt{\frac{1}{2}}$ Acidic substance $\sqrt{\frac{1}{2}}$ Accept H ⁺ / H ₃ O ⁺ present / RCOOH present RCOOH present RCOOH present RCOOH present C = C , -C , -C , R-OH Present $\sqrt{\frac{1}{2}}$ C = C , -C , R-OH Present $\sqrt{\frac{1}{2}}$ Named 3 - 1 mark Named 2 - $\frac{1}{2}$ mark	(iii)	White ppt formed $\sqrt{\frac{1}{2}}$	SO_4 ²⁻ present $\sqrt{1/2}$	
(iv) White ppt formed $\sqrt{\frac{1}{2}}$ insoluble on adding HCl c) Effervescence / bubbles formed $\sqrt{\frac{1}{2}}$ CO ²⁻³ present $\sqrt{\frac{1}{2}}$ (HCO ₃ -, SO ₃ ²⁻ present d) (i) Burns with a yellow sooty flame $\sqrt{\frac{1}{2}}$ - C = C -, - C C - present $\sqrt{\frac{1}{2}}$ (ii) I) Effervescence of a colourless gas $\sqrt{\frac{1}{2}}$ Acidic substance $\sqrt{\frac{1}{2}}$ Accept H ⁺ / H ₃ O + present / RCOOH present II) Sweet fruity smell $\sqrt{\frac{1}{2}}$ R - COOH present $\sqrt{\frac{1}{2}}$ Purple colour of KMnO ₄ turns colourless $\sqrt{\frac{1}{2}}$ C = C , - C C - , R - OH present $\sqrt{\frac{1}{2}}$ Named 3 - 1 mark Named 2 - $\sqrt{\frac{1}{2}}$ mark				
d) (i) Burns with a yellow sooty flame $\sqrt{\frac{1}{2}}$ $-C = C - , -C = C - $ present $\sqrt{\frac{1}{2}}$ (ii) I) Effervescence of a colourless gas $\sqrt{\frac{1}{2}}$ Acidic substance $\sqrt{\frac{1}{2}}$ Accept H^+/H_3O^+ present $/$ RCOOH present II) Sweet fruity smell $\sqrt{\frac{1}{2}}$ R $-$ COOH present $\sqrt{\frac{1}{2}}$ III) Purple colour of KMnO4 turns colourless $\sqrt{1}$ $C = C - C - C - C - C - C - C - C - C - $	(iv)		SO_4 ²⁻ present $\sqrt{1/2}$	
d) (i) Burns with a yellow sooty flame $\sqrt{\frac{1}{2}}$ $-C = C - , -C = C - $ present $\sqrt{\frac{1}{2}}$ (ii) I) Effervescence of a colourless gas $\sqrt{\frac{1}{2}}$ Acidic substance $\sqrt{\frac{1}{2}}$ Accept H^+/H_3O^+ present $/$ RCOOH present II) Sweet fruity smell $\sqrt{\frac{1}{2}}$ R $-$ COOH present $\sqrt{\frac{1}{2}}$ III) Purple colour of KMnO4 turns colourless $\sqrt{1}$ $C = C - C - C - C - C - C - C - C - C - $	c)	Effervescence / bubbles formed $\sqrt{\frac{1}{2}}$	CO^{2} present $\sqrt{\frac{1}{2}}$	
d) (i) Burns with a yellow sooty flame $\sqrt{\frac{1}{2}}$ $-C = C - , -C - C - c$ present $\sqrt{\frac{1}{2}}$ (ii) I) Effervescence of a colourless gas $\sqrt{\frac{1}{2}}$ Acidic substance $\sqrt{\frac{1}{2}}$ Accept H^+ / H_3O^+ present $/ RCOOH$ present II) Sweet fruity smell $\sqrt{\frac{1}{2}}$ $R - COOH$ present $\sqrt{\frac{1}{2}}$ III) Purple colour of KMnO4 turns colourless $\sqrt{1}$ $C = C - , -C - C - , R - OH$ present $\sqrt{1}$ Named $3 - 1$ mark Named $2 - \frac{1}{2}$ mark		Toologo		
(ii) I) Effervescence of a colourless gas $\sqrt{\frac{1}{2}}$ Acidic substance $\sqrt{\frac{1}{2}}$ Accept H^+/H_3O^+ present / RCOOH present II) Sweet fruity smell $\sqrt{\frac{1}{2}}$ R - COOH present $\sqrt{\frac{1}{2}}$ III) Purple colour of KMnO ₄ turns colourless $\sqrt{1}$ $C = C$, $-C$, $C - R - OH$ present $\sqrt{1}$ Named $3 - 1$ mark Named $2 - \frac{1}{2}$ mark	d) (i)	Burns with a yellow sooty flame √½		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			present $\sqrt{1/2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii) I)	Effervescence of a colourless gas $\sqrt{\frac{1}{2}}$	Acidic substance √½	
$ \begin{array}{ c c c c c c }\hline II) & Sweet \ fruity \ smell \ \sqrt[4]{2} & R-COOH \ present \ \sqrt[4]{2} \\\hline III) & Purple \ colour \ of \ KMnO_4 \ turns \ colourless \\ & \sqrt{1} & C=C \ , \ -C \ C- \ , \ R-OH \\ & present \ \sqrt{1} \\ & Named \ 3-1 \ mark \\ & Named \ 2-\frac{1}{2} \ mark \\ \end{array} $		C	Accept H ⁺ / H ₃ O ⁺ present /	
III) Purple colour of KMnO4 turns colourless $ \begin{array}{c} C = C , -C C - , R - OH \\ present \; \sqrt{1} \\ Named \; 3 - 1 \; mark \\ Named \; 2 - \frac{1}{2} \; mark \end{array} $			RCOOH present	
$\begin{array}{c} \sqrt{1} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	II)	Sweet fruity smell $\sqrt{\frac{1}{2}}$	R – COOH present $\sqrt{\frac{1}{2}}$	
present $\sqrt{1}$ Named $3 - 1$ mark Named $2 - \frac{1}{2}$ mark	III)	Purple colour of KMnO ₄ turns colourless		
Named 3 – 1 mark Named 2 – ½ mark		$\sqrt{1}$	C = C , $-C$ C - , R – OH	
Named 2 – ½ mark			present $\sqrt{1}$	
			Named 3 – 1 mark	
D . 1 CD OIL 1			Named 2 – ½ mark	
But no mark if R – OH only			But no mark if R – OH only	

Kenya Certificate of Secondary Education CHEMISTRY PAPER 3

CONFIDENTIAL

Requirements for candidates.

In addition to the fittings and apparatus that are commonly in a chemistry laboratory, each candidate requires:

- 1. 50ml burette.
- 2. 25 ml pipette.
- 3. 2 conical flasks.
- 4. Solution C_1 about 100cm^3 .
- 5. Solution C_2 about 100cm^3 .
- 6. White tile.
- 7. Stand and clamp.
- 8. Solid K 5g exactly.
- 9. 10ml measuring cylinder.
- 10. One 250 ml glass beaker.
- 11. 2 boiling tubes.
- 12. Thermometer.
- 13. Means of heating.
- 14. Distilled water in a wash bottle.
- 15. Solid F About 3g.
- 16. Solid P about 3g
- 17. Metallic spatula.
- 18. Filter paper.
- 19. Filter funnel.
- 20. Stirring rod.
- 21. 6 test tubes.
- 22. About 1g sodium hydrogen carbonate.
- 23. Test tube holder.

ACCESS TO:

• 2M NaOH

• 2M NH₄OH

• 0.25M Pb (NO₃)₂

• 0.25M BaCl₂

• 2M HCl

• Phenolphthalein indicator.

Access to conc. H₂SO₄

• Access to acidified KMnO₄.

Access to ethanol

All supplied with droppers

PREPARATION OF SOLUTIONS / SOLIDS

- Solid K
- Solid K Potassium chlorate (V).
- Solution C₁ is prepared by dissolving 10.08g of oxalic acid in about 500cm³ and making to one litre.
- Solution C₂ is prepared by dissolving 8g of NaOH pellets in about 500cm³ of distilled water and making to 1 litre of solution.
- Solid F is a mixture of CuCO₃ and ZnSO₄ in the ratio 4: 3 by mass respectively
- Solid P is oxalic acid.

