Name	Index No
School	Candidate's Signature
	Date

233/3 CHEMISTRY PAPER 3 (PRACTICAL)

INSTRUCTIONS:

- Write your name and index number in the spaces provided above.
- Answer ALL questions in the spaces provided.
- You are **NOT** allowed to start working with the apparatus for the first 15minutes of the $2^{\frac{1}{4}}$ hours allowed for this paper. This time will enable you read through the question paper and make sure you have all the chemicals and apparatus required.
- Mathematical tables and electronic calculators may be used.
- All working **must be** clearly shown where necessary.

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score	
1	22		Th
2	10		pap const
3	8		of of print
TOTAL SCORE	40		pag Cand
			es sho

check to ensure that all pages are printed as indicated and no questions are missing.

- 1. You are provided with:-
 - 2.2g of solid A, A dibasic acid with the formula H₂X.
 - Solution B, 0.5M aqueous H_2X .
 - Sodium hydroxide, solution C.
 - Solution E, Acidified Potassium Manganate (VII).

You are required to determine;

a) i) The molar heat of solution of solid A.

ii) The heat of reaction of one mole of H₂Xsolution B with Sodium hydroxide solution C.

- b) The heat of reaction of solid A, H₂X with Sodium hydroxide solution C.
- c) How the rate of reaction of the dibasic acid, H₂X and acidified Potassium Manganate (vii) solution A varies with temperature.

Procedure I

Step I

Place 35cm³ of distilled water into a 100ml plastic beaker. Measure the initial temperature of the water and record in table 1 below. Add all of solid A at once. Stir the mixture carefully with the thermometer until all the solid dissolves. Measure the final temperature reached. Record it in table 1. (Retain the solution in this step for use in procedure II).

Table I

Final temp ^O C	
Initial temp ^O C	

a) Determine the change in temperature, ΔT. (1mark)
b) Calculate the;
i) Heat change when the solid H₂X dissolves in water. (Assume the heat capacity of solution is 4.2jg⁻¹⁰C⁻¹ and density = g/cm³) (1mark)

.....

(2marks)

ii) Number of moles of the acid that were used given that the relative formula mass of H₂X is 126. (1mark)
iii) Molar heat of solution of acid H₂X, ΔH₁ (1mark)

Step 2

Place 35cm^3 of aqueous acid, solution B into a 100cm^3 clean plastic beaker. Measure the initial temperature and record it in table II below. Measure 35cm^3 of sodium hydroxide solution C. Add all of the 35cm^3 of solution C at once to solution B in the beaker. Stir the mixture with the thermometer. Measure the final temperature reached and record in table II.

Table II

	Final temp ^O C				
	Initial temp ^O C				
		I	l		(2marks)
c)]	Determine the change ir	n temperature ΔT	2.		(1mark)
d) [Determine the;				
i	Heat change of react	tion (Assume the	heat capacity of	of solution is 4.2jg ⁻ 1	0 C ⁻¹ and density is 1g/cm ³).
					(1mark)

ii) Number of moles of the acid H ₂ X, used.	(1mark)
iii) Molar heat of reaction, ΔH_2 of the aqueous acid H_2X , with sodium hydroxide.	(1mark)
e) Calculate the molar heat of reaction, ΔH_3 of the solid dibasic acid H_2X , with aqueous solution	dium

 $H_2X_{(S)} + 2OH^{-}_{(aq)}$ $2H_2O_{(1)} + X^{2-}_{(aq)}$

 $H_2X_{(s)}$

H₂X (aq)

 $Na_2X_{(aq)} + H_2O_{(l)}$

••	•••	•••	•••	••	•••	••	•••	••	••	••	 •••	 •••	•••	•••	••	•••	•••	•••	••	••	•	••	•••	•••	••	••	••	•	•••	••	••	••	•	••	••	••	••	•	•••	••	••	••	••	••	••	•••	•••	•••	•		•••	•••	••	••	••	••	••	•••	•••
	•••	• • •		•••		•••	•••	•••	••	•••	 •••	 •••	•••	•••	••	•••	•••	••	••	•••	•	•••	•••	•••	••	•••	•••	•	•••	••	••		•	••	••	••	•••	•	•••	•••	••	••	••	••	••		•••	•••	•		•••	•••	•••	••	•••	••	••	•••	•••
	•••			•••	•••			•••	•••		 	 			•••	•••	•••	•••			•							•					•			•••		•		•••							•••	•••	•			•••		•••				•••	
••				••		••		••	••	•••	 	 •••	•••	•••	••	•••	••	••	••	••	•••	••	••	• •	••	••	••	•••	••	••	••	••	•	••	••	••	••	•••	••	••	••	••	••	••	••	• •	••	•••	•••	•••	•••	•••	••	••	••	••	••	••	• • •

Procedure II

Transfer the solution obtained in step I of procedure I into a clean 250ml volumetric flask. Add distilled water to make upto the mark label this as solution D. Place solution E in the burette. Run 10.0cm³ portions of solution E from the burette into four clean test tubes. Place 10.0cm³ of solution D into a clean boiling tube using a clean 10ml measuring cylinder. Place the boiling tube in a water bath provided and allow its content attain a temperature of 45^oC. Remove the boiling tube from the water bath and add the first portion of solution E and at the same time start a stopwatch. Record the time taken for the purple

colour of the solution to decolorise in table III. Repeat the procedure using the same volumes of solution D and E at temperatures of $55^{\circ}C,65^{\circ}C$ and $75^{\circ}C$ to complete table III.

a) Table III

Temperature of solution D ^O C	45	55	65	75
Time taken for decolorisation (seconds)				
Reciprocal of time, $1/t$ (sec ⁻¹)				

(3 marks)

b) On the grid provided plot a graph of reciprocal of time 1/t (sec⁻¹) on the y-axis against the temperature of solution D. (3marks)

t-t-
+

- c) i) From the graph, determine the time taken for decolourisation of the mixture if the temperature of solution D is 60°C. (1mark)
 ii) How does the rate of reaction of Potassium Manganate(VII) with the dibasic acid H₂X solution vary with the temperature? (1mark)
- 2. You are provided with solid H. Carry out the tests below. Record your observation and inferences in the spaces provided.

Put all solid H in a boiling tube. Add about 15cm³ of distilled water and shake thoroughly.

i) To about 2cm³ of solution H, add sodium hydroxide drop wise until in excess.

Observation	Inferences
(1mark)	(1mark)

ii) To about 2cm³ of solution H, add 5cm³ of Sodium Sulphate solution.

Observation	Inferences
(1mark)	(1mark)

iii) Dip clean end of glass rod into solution H and place it on the non-luminous flame.

Observation	Inferences
(1mark)	(1mark)

iv) To about 2cm³ of solution H, add 1cm³ of hydrochloric acid followed by 3 drops of Barium Chloride solution.

Observation	Inferences
(1mark)	(1mark)

v) To about 2cm³ of solution H, add 3 drops of acidified Potassium dichromate (VI) solution.

Observation	Inferences
(1mark)	(1mark)

- 3. You are provided with solid M. Carry out the tests below. Write your observations and inferences in the spaces provided.
 - a) Put a half of solid M provided in a clean dry test tube, heat gently then strongly.

Observation	Inferences
(1mark)	(1mark)

b) Put the remaining solid into a boiling tube and add about 10cm³ of distilled water, shake thoroughly

Observation	Inferences
(1mark)	(1mark)

i) To about $2cm^3$ of the solution M, add 3drops of bromine water.

ii) To about 2cm³ of solution M, add 3 drops of acidified potassium dichromate (VI), then warmgently.

Observation	Inf	erences	
	(1mark)		(1mark)

iii) To about 2cm³ of solution M, add two drops of the universal indicator.

Observation	Inferences
(1mark)	(1mark)