

NATIONAL OPEN UNIVERISITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE: CIT 132

COURSE TITLE: PROGRAMMING IN BASIC

CIT 132

PROGRAMMING IN BASIC

Course Team Course Writer Prof. R. O. Ayeni

Programme Leader

Course Coordinator

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

 National Open University of Nigeria

 Headquarters

 14/16 Ahmadu Bello Way

 Victoria Island, Lagos

 Abuja Office

 5 Dar es Salaam Street

 Off Aminu Kano Crescent

 Wuse II, Abuja

 e-mail: centralinfo@nou.edu.ng

 URL: www.nou.edu.ng

 Published by

 National Open University of Nigeria

 Printed 2014

 ISBN: 978-058-906-6

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CONTENT PAGES

Introduction ……………………………………………… iv

What you will Learn in this Course ……………………… iv

Working through this Course …………………………….. iv

Assessment ……………………………………………….. iv

Course Overview …………………………………………. iv

How to get most from this Course ……………………….. v

Summary …………………………………………………. vi

INTRODUCTION

CST - Programming in BASIC is an introductory course in programming in BASIC. The

second part will cover all other essential topics. The BASIC language was originally

designed as a simplified version of FORTRAN for use in teaching programming. From

the simple beginnings, the language has grown to become a very popular multi-purpose

language available on a wide variety of machines.

WHAT YOU LEARN IN THIS COURSE

An electronic computer may be called an electronic “brain” but its functions and

problem-solving ability depend on the intelligence of a human being who directs and

controls the machine. This person is called a programmer and is responsible for giving

the computer a set of instructions consisting of the necessary steps required to derive a

solution to a given problem. The set of instructions that control the computer is called a

program. The purpose of this course is to teach you how to program in BASIC.

The course will:

i. Introduce you to basic hardware and software.

ii. Teach you how to program in BASIC to a certain level.

iii. Teach you how to use computer to process information.

WORKING THROUGH THIS COURSE

The major components of the course are:

1. Course Guide

2. Modules

3. Study Units

4. Further Reading (which is recommended)

ASSESSMENT

There are two aspects to the assessment of the course: continuous assessment and final

examination. The tutor-marked assignments will form the continuous assessment. So you

must do all and submit all to your tutor for grading. The date and place of final

examination will be communicated to you by NOU.

COURSE OVERVIEW

Module 1

Unit 1 Computers: Hardware and Software

Unit 2 Computing: Arithmetic and Logical Operation

Unit 3 Basic Statements

Unit 4 Basic Statements (Continued)

Unit 5 Listing and Debugging Programmes

Module 2

Unit 1 Flowcharting and Basic Statements

Unit 2 The Decision Statement

Unit 3 The “IF” Statement; the ‘REM’

Unit 4 Logical Expressions and the AND/OR Logical Operators

Unit 5 The Counting Process and Basic Statements

Module 3

Unit 1 The Accumulation Process and Statement FOR/NEXT

Unit 2 The Accumulation Process

Unit 3 Nested Loops

Unit 4 Application of Nested Loops in Statistics

Unit 5 Project

Module 4

Unit 1 One – dimensional Arrays

Unit 2 Use of Arrays

Unit 3 DIM Statement

Unit 4 Array Manipulation

Unit 5 End – of – File Conditions

HOW TO GET MOST FROM THIS COURSE

In distance learning study units replace the University lecture. This is one of the great

advantages of distance learning; you can read and work through specially designed study

materials at your own pace, and at a time and place that suit you best. Think of it as

reading the lecture instead of listening to the lecture. Just as a lecturer might give you in-

class exercise, your study units provide exercises for you to do at appropriate points.

The following hints are useful:

1. Read this course guide schedule

2. Organize a study schedule

3. Once you have created you own study schedule, do everything you can to stick to

it. The major reason that students fail is that they get behind their course work.

4. Turn to a unit and read the introduction and the objectives of the unit.

5. Use the order of the units.

6. Practice the exercises on a computer.

7. Debug your programs

8. Review the objectives for each unit at the end of the unit.

9. Do the Tutor-Marked Assignments

10. Start the next unit

SUMMARY

CST - is the first two semester course in BASIC programming. At the end of the first

course you will be able to use the computer to do some exercises in the course and hope

that you will find the course interesting and useful.

CONTENT PAGES

Module 1 …………………………………………………. 1

Unit 1 Computers: Hardware and Software …………. 1

Unit 2 Computing: Arithmetic and Logical Operation.. 4

Unit 3 Basic Statements ………………………………. 7

Unit 4 Basic Statements (Continued) …………………. 12

Unit 5 Listing and Debugging Programmes ………….. 18

Module 2 …………………………………………………. 22

Unit 1 Flowcharting and Basic Statements…………… 22

Unit 2 The Decision Statement………………………... 31

Unit 3 The “IF” Statement; the ‘REM’……………….. 36

Unit 4 Logical Expressions and the AND/OR

 Logical Operators ……………………………… 39

Unit 5 The Counting Process and Basic Statements…… 41

Module 3 …………………………………………………. 46

Unit 1 The Accumulation Process and Statement

 FOR/NEXT …………………………………… 46

Unit 2 The Accumulation Process ……………………. 49

Unit 3 Nested Loops ………………………………….. 54

Unit 4 Application of Nested Loops in Statistics …….. 55

Unit 5 Project …………………………………………. 57

Module 4 …………………………………………………. 58

Unit 1 One – dimensional Arrays …………………….. 58

Unit 2 Use of Arrays ………………………………….. 62

Unit 3 DIM Statement ………………………………… 65

Unit 4 Array Manipulation ……………………………. 67

Unit 5 End – of – File Conditions ……………………. 72

MAIN

COURSE

MODULE 1 PROGRAMMING IN BASIC

Unit 1 Computers: Hardware and Software

Unit 2 Computing: Arithmetic and Logical Operation

Unit 3 Basic Statements

Unit 4 Basic Statements (Continued)

Unit 5 Listing and Debugging Programmes

INTRODUCTION

Basic was created in 1964 by J.G. Kemeny and T.E. Kurtz at Dartmonth College USA.

The language was originally designed as a simplified version of FORTRAN for use in

Teaching programming. From the simple beginnings, the language has grown to become

a very popular multi-purpose language available on a wide variety of machines, in

particular microcomputers and minicomputers. This course is therefore devoted to BASIS

because of its usefulness

UNIT 1 COMPUTERS HARDWARE AND SOFTWARE

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Computers, what are they?

3.1.1 Organization of a computer (Hardware)

3.1.1 Computer Program (Software)

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Reading

1.0 INTRODUCTION

In this unit you will be introduced to the components of a computer and

their function. You will also learn what a program is.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 define a computer

 define a program

3.0 MAIN CONTENT

3.1 Computers, what are they?

Computers are automatic machines that can accept data, store vast amounts of

information and perform arithmetic at high speeds to solve complex machines

3.1.1 Organization of a Computer

The computer may be thought of as a system composed of five components. The

components and their functions are as follows:

1. The Input Unit: This unit feeds information from the outside world to the

computer. Input units are capable of reading information recorded on such

different mediums as punched cards or magnetic tape or from terminals. The

information read from these devices is placed into appropriate memory locations.

2. The Memory Unit: The memory unit stores information. It holds the sequence of

instructions necessary to solve particular problem and any additional data

required. The memory is divided into locations that each have an address (are

addressable). Instructions are stored in these cells.

3. The Control Unit: The control unit fetches the instructions and data from

memory and executes the instructions one at a time with logical unit. All of the

other components operate as directed by the control unit.

4. The Arithmetic/Logical Unit: The arithmetic/ logical unit consists of the

electronic circuitry that performs arithmetic operations such as comparison of

numbers.

5. The Output Unit: The output unit transfers or copies the contents of certain

memory locations onto some external medium such as punched cards, punched

paper tape, magnetic tape, a printed page produced by a teletype or line printer, or

a cathode ray tube (CRT) screen for visual display.

The memory, control and arithmetic/ logical units are collectively called the

central processing unit (CPU).

3.1.2 Computers Programs

The set of instructors that control the computer is called a program. A program can be

executed by the computer only when it is stored in the computer’s memory and is in

machine language code. Machine language is the only language the computer can

understand. It is a language in which arithmetic / logical operations are represented by

machine – recognizable numeric codes and in which memory locations containing data

and program instructions are represented by numeric addresses.

Machine language vary from one computer manufacturer to another and as such they are

machine – dependent other types of languages, called high – level languages, have been

developed to allow the user to formulate problems in a much more convenient and

efficient manner. High-level languages are machine-independent; programs written in

such languages can be processed on any type of computer. However, high-level

languages must be ultimately translated into machine language before they can be

executed by the computer. Special programs called language translators or compilers

have, therefore, been developed to provide this translation service. BASIC (Beginner’s

All – purpose Symbolic Instruction Code) is an example of a high – level language.

SELF-ASSESSMENT EXERCISE

i. What is the name of the computer you will be using?

ii. What procedure is needed to begin programming in BASIC?

4.0 CONCLUSION

A computer is a problem solving machine.

5.0 SUMMARY

A computer is composed of five components. The CPU may be thought of as the seat of

intelligence of the entire system. The input and output functions may be performed by

devices located at some distance from CPU.

6.0 TUTOR-MARKED ASSIGNMENT

1. List the five components of a computer system and explain the functions of each.

2. define the following:

(i) CPU

(ii) CRT

(iii) Program

(iv) Data.

7.0 REFERENCES/FURTHER READING

M. Boillot and L.W. Horn, BASIC Third Edition, West Publishing Company, New York.

UNIT 2 COMPUTING

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Arithmetic Operations

3.2 Types of Instructions

3.3 Sample Program

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 Reference/Further Reading

1.0 INTRODUCTION

In this unit, you will learn how arithmetic operations are written. You will also be

exposed to some basic instructions

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 determine the symbols of arithmetic operations in BASIC

 explain how a computer carries out some simple instructions.

3.0 MAIN CONTENTS

3.1 Arithmetic Operations

In BASIC programs, arithmetic operations are indicated by the symbols:

+ addition

- subtraction

x multiplication

** or ↑exponentiation

3.2 Types of Instruction

We consider a simple model computer that operates conceptually as its real-life counter-

parts. The input is a terminal where numbers have been entered. (typed). The memory

unit consists of a group of sequentially numbered “pigeonholes”. Locations can be

referred to either by name or by address. The arithmetic/logical unit is represented by a

desk calculator capable of performing arithmetic and logical operations. The role of the

control unit played by a human operator who can fetch instructions from the memory one

at a time and execute them. The type of instructions the operator is capable of executing

includes:

1. Input: Read a value from the input medium and store that value in a specified

memory location e.g. INPUT F will cause one value on the input medium to be

read and stored in a memory location called F.

2. Conditional branding: Perform a comparison test between two values using the

logical unit and brands to a specified memory location if the test condition is met.

If the condition is not met, no transfer occurs, and the following instruction is

taken from the next memory location. For example, the instruction, IF F < 50

 Go To 20

Cause the control to fist fetch F from memory and then request the logical unit to

compare the value with 50. If the logical unit reports that the value F is less than

50, the control unit fetched the next instruction is taken from the next sequentially

numbered location. If F is not less than 50, it processes the next instruction.

3. Calculations: Perform calculations using the arithmetic unit and place results in

desired memory location. For example, the instruction Let M = 5 * F will cause

the control unit to fetch the value contained in the memory location F and activate

the arithmetic unit to multiply that value by 5. The final result is then stored in

memory location P (product).

4. Unconditional branding: Take the next instruction from a specified memory

location. For example, the instruction, Go to 700 cause the control units to fetch

the next instruction from location 70 rather than from the next sequentially

numbered location. Unconditional branding, then simply means transfer directly to

a particular instruction in memory.

5. Output: Copy a value fro a memory location onto the output medium. For

example, the instruction PRINT F, P will cause the contents of F and P to be

written out on the output pad.

6. Termination: Cease execution of instructions for this program and wait for a new

program to be loaded into memory. For example, the instruction, END causes the

program to terminate. No more instructions in this program are executed.

3.3 Sample Program

Here we wish to calculate and write out an amount of pay owed an employee who is paid

=N=50 per hour with time and =N=100 for all hours in excess of 40.

1. INPUT F

2. IF F > 40 GO TO 5

3. Let P = 50 * F

4. GO TO 6

5. LET P = 2000 + 100 * (F – 40)

6. PRINT P , F

7. END

4.0 CONCLUSION

Here you have been introduced to the workings of a computer

5.0 SUMMARY

The term software is generally used to describe the set of programs that causes the

computer hardware to function.

6.0 TUTOR-MARKED ASSIGNMENT

How would the execution of the example 2.5, be affected by replacing the statement in

location 7 by GO To 1? What would be the advantages and disadvantages of doing this?

7.0 REFERENCES/FURTHER READING

Boillot and Horn, BASIC, 3
rd

 Edition

UNIT 3 BASIC STATEMENTS

LET, PRINT, TERMINATION, SYSTEM COMMANDS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Elements of BASIC Language

3.2 Constants

 3.2.1 Numeric Constants

3.2.2 Alphanumeric Constants
3.3 Variables

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading

1.0 INTRODUCTION

Here, you will learn some elements of BASIC, the character set and constants.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 use some key words LET, PRINT, END

 use characters which are used to define create BASIC instructions.

 define constants.

3.0 MAIN CONTENTS

3.1 Elements of BASIC Language

BASIC is a set of instructions telling the computer what actions (operations) to carry out

to solve a particular problem. There are three types of BASIC operations that the

computer can carry out. These are:

1. Arithmetic operations (add, subtract, multiply, divide, raise to the

 power)

2. Input/Output operations (entering data and printing results).

3. Comparison (determining whether one value is less than, equal

 to, or greater than another value).

BASIC instruction is made up of different elements (BASIC keywords, constants,

variables, expressions, arithmetic operators, relational operators etc) which, when

combined together under a proper grammatical structure, yielded a valid BASIC

instruction.

We consider the following problem; the investment T is given by the formula

T = P (1 + T)
N

Where I is the interest rate, N is the number of years, and P is the Principal. Mr. Ojo

wants to deposit =N=1,500 at a savings institution. He considers a bank and a credit

union. The credit union requires a non-refundable membership fee of =N=15. Deposits

earn 12.25 percent at the credit union and 11.75 percent in the bank. Mr. Ojo will need

the money in 2
1
/2 years. We wish to determine which institution that Mr. Ojo should use.

The program is as follows:

10 LET p = 1500

15 LET T1 = .1225

20 LET T2 = .11 75

25 LET N = 2.5

30 LET T1 = P * (1 + T1) 1N – 15

35 LET T2 = p * (1 + T2) 1 N

40 PRINT “CREDIT AMOUNT”, T1

50 PRINT “BANK AMOUNT”, T2

55 END

The output

CREDIT AMOUNT 1987.43

BANK AMOUNT 1980.20

So Mr. Ojo will be advised to use credit union

3.2 Constants

A constant is a quantity whose value is fixed and explicitly stated constants may either be

numeric or alphanumeric.

3.2.1 Numeric Constants

Numeric constants are positive or negative numbers; they can be added, subtracted,

multiplied, divided and raised to a pointer by a computer. A constant is made up of any of

the digits through a and may be preceded by the + or – symbol.

Examples of valid constants

300 - 2.31 62504. + 0.3 -14

Imbedded blanks (blanks between first and last digit) do not affect the value of the

constant.

Example 6 32 = 632 = 6 3 2

Examples of invalid constant

1, 634, 123 No comma is allowed

 23.24. Only one decimal point is allowed

 $40.42 Character $ is invalid

 127 – 423 Character – is invalid

3.2.2 Alphanumeric Constants

Alphanumeric constants are generally words, messages, captions, column headings titles,

names, addresses etc. that are endorsed within quotation marks.

Examples of valid alphanumeric constants

 “1425 ADEYI ST”

 “1425 ADEYI ST”

 “IT IS HER’S”

Note: The maximum number of characters allowed in an alphanumeric string varies from

one system to another.

Constants may be used in BASIC as follows:

 LET T1 = P + (1 + T1) ↑ N – 15

 PRINT -10.36, + 4.6 + 5.93, .005

 LET N$ = “CHARLES”

 PRINT “$”, A

3.3 Variables

Unlike a constant, a variable may assume different values. They are two types of

variable.

1. Variables that contain numeric data can be processed arithmetically (added,

subtracted etc)

2. Variables that contain alphanumeric data cannot be processed arithmetically.

The specifications for standard BASIC variable names are as follows:

Numeric Variables

A single letter of the alphabet such as A, B, Z, P or a single letter followed by one digit (0

– 9) such as B4, Z2, D0.

Alphanumeric Variables

Same as numeric variables except that a $ is appended to the variable name,

Example: A$, B$, Z5$

The following are invalid variables as indicated I the notes

2B Does not start with letter

KRB Too many letters

B% Invalid character %

C + 2 Invalid character +

BA$ B2$ would be valid

“HELLO” Is a constant

SELF-ASSESSMENT EXERCISE

Which of the following are invalid variable names?

1. A34 2. $B 3. “B4” 4. $

4.0 CONCLUSION

A BASIC instruction is made up of different elements (constants, variables etc).

5.0 SUMMARY

Here you learn some BASIC statements: LET, PRINT and what a BASIC instruction is

made up of.

6.0 TUTOR-MARKED ASSIGNMENT

1. Specify which of the following are valid numeric constants, if invalid, specify the

reasons;

a. 42 . 93.

b. + 45 .

c. + 45 . 25 CR

d. 124 . 000

e. 7 – 3

f. 27 %

2. Which of the following are invalid variable names? Why?

i. B43

ii. $C

iii. B1 %

iv. “B4”

v. $

vi. “M1$”

7.0 REFERENCES/FURTHER READING

Boillot and Horn, BASIC 3
rd

 Edition

UNIT 4 BASIC STATEMENTS (Continued)

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Expressions

3.1.1 Precedence in Expressions

3.2 The Replacement statement LET

3.3 Line Numbers

3.4 The PRINT statement

3.5 The termination statements STOP and END

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading

1.0 INTRODUCTION

In this unit, we introduce to BASIC expressions. We shall also discover further Basic

statements: LET, PRINT, STOP, END.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 work with BASIC expressions

 use BASIC statements: LET, PRINT, STOP and END.

3.0 MAIN CONTENTS

3.1 Expressions

An expression may be a constant, a variable or any combination of constants and/or

variables linked by the five arithmetic operators shown below. Note that no two

arithmetic operators may be typed side by side. Parenthesis may be included to denote the

order of computations. The allowable arithmetic operators are:

+ Addition

- Subtraction

* Multiplication

/ Division

↑ or ** or ^ Exponentiation (raising to a power)

 Valid Expressions

Algebraic Expressions BASIC Expressions

+ 3.5 3.5

- c - c

a.b -30 A*B -30
a
/b .c (A/B) * c

Ax2 + bx + c A * X ↑ 2 + B * x + c

(a.b)
2
 (A*B) ↑ 2

(-c + 1.4)d (-c + 1.4) * D

 __

√x

X ↑ .5

4
√(a-b)

3

((A –B) ↑ 3) ^ .25

Cost – salvage

 Years

(c – s) / Y

Bonus + hours x rate B + H * R

1/r1 + 1/r2 + 1/r3 1/R1 + 1/R2 + 1/R3

3.1.1 Precedence in Expressions

Operations within expression are performed according to the following rules of

precedence.

Operation Precedence

 () high precedence

 ↑ or **

* or /

+ or - low precedence

Operations with high precedence are performed before operations with lower precedence.

The operations addition/subtraction, multiplication/division are performed in order from

left to right according to the rule of precedence. Exponentiation is performed in order

from right to left. If parenthesis is nested, the operation in the innermost set of

parenthesis is performed first.

 Consider the expression

 3 + (2 * 2 ↑ 3 / 4 + 1) – 2 / 3

 8

 16

 4

 5 .6666 …

 8

 7.3333…

1. A – B + C B is subtracted from A, and the result is added to C

3 – 2 + 5 (3-2) + 5 = 1 + 5 = 6

2. A + B * C Since multiplication has priority, B * C is

computed; the result is then added to A giving A

= (B * C).

 3 + 2 * 3 3 + (2 * 3) = 3 + 6 = 9

3. A/B * C Since multiplication and division have the same

 priority B is first divided into (A/B), and the result

 of the division is multiplied by C

 9./ 4. * 2 (9./ 4.) * 2 = 2.25 * 2 = 4.50

4. A/B/C First A/B is performed, and the result is then

 divided by C 8/4/2 8/4 ÷ 2 = 2 ÷ 2 = 1

5. (A + B) / C * D = ((A + B) / C) * D

 So (3 + 6) / 3 * 6 = ((3 + 6) / 3) * 6 = 3 * 6 = 18

6. A + B * C ↑ 2 = A + (B * (C ↑ 2))

3 + 3 * 2 ↑ 2 = 3 + (3 * 2
2
) = 3 + (3 * 4) = 3 + 12 = 15

7. A ↑ B ↑ C = (A ↑ B) ↑ C 3 ↑ 2 ↑ 3 = (3 ↑ 2) ↑ 3 = (3
2
)

3
 = 9

3
 = 729

SELF-ASSESSMENT EXERCISE

Evaluate the following expressions for X = 8, Y = -4, Z = 5

1. X / Y + 2

2. X + 2 * Y / Z + 1

3. 1 + (X 12 ↑ 2 -1)

4. X / Y / Z * 2

3.2 The Replacement Statement LET

A replacement statement evaluates an expression and stores the value of the expression in

a memory location identified by a variable name. The general form of a replacement

statement is

In most BASIC systems, the key word LET is optional and need not be specified by the

user. When the particular statement is carried out (RUN) the value of the expression is

first computed and the result is placed (stored) in the variable (memory location0

specified on the left – hand side of the equal sign. When we write 10 X = 2 * X + 1

We are looking at the expression and saying “find out what is in X, multiply it by 2, add

1, and store the result in memory location X. the equal sign must be understood as a

replacement sign. Thus, if the memory location contains 4, then 2 * X + 1 = 9 and the

value 9 is stored in X. i.e. the value X is replaced by 9.

Examples of valid replacement statements are:

10 LET X = -0.07 Store value - .07 in X

12 X1= A + B / C -1 Evaluate the expression and store the

 result in X1

14 LET C$ = “GROSS PROFIT” Store the string “GROSS PROFIT” in C$

15 I = I + 1 Computer I + 1 and store result in I

3.3 Line Numbers

Each BASIC line must be numbered. Line numbers must be unsigned integers not

exceeding five digits. In most systems, statements or lines may be entered in any desired

order; the system will sort the statements in order when the program is list or executed.

Statements will be processed by the computer in ascending order under a decision

statement (IF) or unconditional transfer (Go To) is encountered.

Example

10 LET X = 3

20 PRINT X, Y

15 LET Y = X ↑ 3

BASIC would store these statements in its memory in the following orders

10 LET X = 3

15 LET Y = X ↑ 3

20 PRINT X, Y

3.4 The Print Statement

The general form of the PRINT statement is

Where the expression list can be, alternatively,

A constant PRINT 7.6

A variable PRINT X

An expression PRINT (H – 50) * R * 2.5 + H * R

A character string PRINT “PAY HOURS RATE”

A combination of the above separated by commas or semi-colons

PRINT “PAY = “; P; “HOURS*= “; H

3.5 The Termination Statements STOP and END

The last BASIC statement in a BASIC program should always be the END statement. For

this reason, the END statement should always have the highest line number in your

program. If you type BASIC statements after the END statement, these will not be

processed by BASIC.

The STOP statement tells BASIC where in your program you want to stop processing

instructions. The general form of termination statements are;

Any program can be written without a STOP statement.

4.0 CONCLUSION

It is important to follow BASIC instruction correctly.

5.0 SUMMARY

Here you learn what expressions are and the order of precedence. You are now in a

position to use BASIC statements: LET, PRINT, STOP and END correctly.

Line number PRINT expression List

Line number STOP

Line number END

6.0 TUTOR-MARKED ASSIGNMENT

Write a program to compute and print the area and perimeter of each of the following:

12cm

 6cm

a. 6cm b. c.

 4cm

 9cm

7.0 REFERENCES/FURTHER READING

Boillot and Horn, BASIC, 3
rd

 Edition

5cm

UNIT 5 LISTING AND DEBUGGING PROGRAMS

NUMBER REPRESENTATION AND PROGRAMMING EXAMPLES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Bugs

3.2 Listing and Debugging Programs

3.3 Number Representative

3.4 Programming Example

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 Reference/Further Reading

1.0 INTRODUCTION

By now you may have realized how easily one can make errors on a computer. Errors

commonly called bugs, come in essentially four varieties: typographical, syntactical,

logical, and system related.

2.0 OBJECTIVE

3.0 MAIN CONTENTS

3.1 Bugs

1. Typographical Errors:

These errors are due to mistypes and they are interpreted by the computer as

syntax errors. E.g. letter O is typed instead of digit 0.

2. Sy-ntactical Errors:

Syntax error reflects the programmer’s inability to observe correctly the

grammatical rules of the BASIC language.

Examples

10 LET P + 1 Typographical error + should be =

20 LET X = A (B + C)

20 LET X = A * (B + C)

30 PRINT “HELLO” S1 S2 Punctuation missing between items

40 LET Z = (3 + X * (4 + T) Missing right parenthesis

3. Logical Error:

Logical errors are the most difficult errors to detect because they are very well

camouflaged.

Example:

LET Y = T /N

Although, it is a perfect instruction. Yet it could be a time bomb during the

execution if N = O.

Also a programmer may wish to print the result stored in memory location R, but

instead write the instruction PRINTS.

4. System Errors:

Systems errors relate t the computer system itself, for example, a printer may not

be turned on when the CPU needs it, thereby causing a special error message to

appear.

3.2 Listing and Debugging Programs

To debug a program means to take the bugs out of a program i.e. to correct it consider the

following program

10 LET H = 40 The user types letter O instead of zero.

15 LEM R = 5.50 LEM is typed instead of LET

20 LET P = H + R Also there is an error due to the omission

 of PRINT instruction.

25 END

RUN

3.3 Number Representation

Constants in BASIC can be expressed in two different notations

1. Decimal notation, with or without decimak points.

Examples: 45.67, -12.3, 11240, -48216.

3. Exponent notation, where the character E is used to represent the decimal base 10,

followed by a two digit (with or without sign) to represent the exponent (power).

Examples:

10 LET X = 3.456 E + 2 where 3.456 E + 2 = 3.456x10
2

12 LET Y = -3. E -3where -3.E-3 = -3 x 10-3 = -.003

14 LET Z = 1.23 EO where 1.23 EO = 1.23 x 10
0
 = 1.23

On output, as a result of the PRINT statement the BASIC will use E notation to represent

a constant if the value of the constant is outside a certain range. The range will vary from

one computer to another.

Example:

3.4 Programming Example

Income Calculation

Mr. V is a widower with three children aged 12, 10 and 19. His monthly salary is

$1,523.36. His monthly contribution to a retirement plan is 6.6 percent of his first 9

month’s salary; retirement deductions are spread over a 12 month period for each child

support for social security. His monthly social security deduction is 6.7 percent of his

monthly income, and his federal income tax is 15.6 percent of his yearly gross (deducted

on monthly basis). Monthly payments for life insurance equal 9.6 percent of his monthly

salary after social security and federal tax deductions. Write a program to compute his

monthly spendable income.

10 LET X = 123456

20 LET Y = 123456 789012345

30 LET T = . 0003245

35 LET Z = 22.1 E 3

45 LET V = -.001

48 LET W = .01

49 PRINT X; Y; T; Z; V; W

 RUN

 123456 1.2345679E + 14 3.245 E - 4 22100 -1E-03 .01

10 LET C = 119.25 Support per child

15 LET I = 1523.36 Monthly salary

20 LET R = (9*J. *. 066)/12 Monthly retirement plan deduction

25 LET S = .067 * I Monthly social security deduction

30 LET F = .156 * I Monthly federal income tax

35 LET T = I – (R + S + F) Net after deductions

40 LET L = .096 * (I – F – S) Monthly life insurance payments

45 LET T1 = T – L Net minus life insurance payments

50 LET T1 = T1 + 2 * C Plus child support (2 less than 18 years)

55 PRINT “SPENDABLE INCOME IS”; T1

60 END

 SPENDABLE INCOME IS 1233.11

4.0 CONCLUSION

Errors are called bugs. Debugging means correcting errors

5.0 SUMMARY

They are four varieties of errors and you learn here how to correct them. The program

example i.e useful and should be studied in detail.

6.0 TUTOR MARKED ASSIGNMENT

Write a program to produce report on cost of operating electrical devices.

COST ANALYSIS

WATTS HOURS COST/W COST

60 6 .087 -

100 6 .08 -

The formula is

 C = W. T. K

 100

Where:

W = number of watts

T = line in hours

K = Cost in watts per kilo watt hour

7.0 REFERENCE/FURTHER READING

Boillot and Horn, BASIC, 3
rd

 Edition

MODULE 2

Unit 1 Flowcharting and Basic Statements

Unit 2 The Decision Statement

Unit 3 The “IF” Statement; the ‘REM’

Unit 4 Logical Expressions and the AND/OR Logical Operators

Unit 5 The Counting Process and Basic Statements

UNIT 1 FLOWCHARTING AND BASIC STATEMENTS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Input statement

3.2 The unconditional transfer statement go to

3.3 Flowcharting

4.0 Conclusion

5.0 Summary

6.0 Further reading

7.0 Tutor marked assignment

1.0 INTRODUCTION

Flowchart is a set of symbols linked by directed lines which represent a sequence of

operations for flowchart is essentially a pictorials representation (as sort of visual

outline) of the sequence of steps that must be taken in order to solve a particular problem.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 use input statement

 go to statement

 draw a flowchart of simple programs

3.0 MAIN CONTENTS

3.1 Input Statement

Below is the program to compute each employee of a company’s gross pay.

05 REM PAYROLL PROGRAM

10 PRINT “ENTER NAME”

20 PRINT “ENTER HOURS”

25 INPUT H

30 PRINT “ENTER RATE’

35 INPUT R

40 REM

45 IF H> 40 GO TO 65

50 LET P = H * R

55 GO TO 95

60 REM

65 LET P1 = 40 * R

70 LET V = H – 40 The transfer to line 65 is made

only if the condition H> at line 45 is true

75 LET P2 = V * R * 1.5

80 LET P = P1 + P2 P1 is the first 40 hours at regular rate

85 PRINT “OVERTIME HOURS = ”; V V is the overtime pay

90 PRINT ‘OVERTIME PAY = ” ; P2 D is the final pay

95 PRINT “PAY TO”, N $; P Line 90 or as

a result of line 55

98 GO TO 10

The REM instruction is to document the

program when the program is Ron, the

INPUT instruction line 15 will cause the

computer to stop and display a question

mark (?) on the screen. The user enters a

name and presses the RETURN key This

causes the name entered on the screen to

be stored in memory location N $

If condition is true, transfer to 65 to

compute overtime, otherwise (H < 40)

the computer automatically goes to the

next instruction 50

When the input instruction is executed (run), the following happens

1. The computer types a question mark on the terminal

2. The computer stops the user at this pint should enter a value for each of the

variables specified by the INPUT statement. These values are then stored in the

computer memory in the specified memory locations when the ENTER /

RETURN key is pressed.

10 PRINT “ENTER AGE PLEASE” Note that when the input Instruction is typed

and the user presses ENTER key to get to the next instruction (20), the computer

does not display a? and it does not stop. This only happens when RUN is typed

15 INPUT X

20 PRINT “YOU FIBBER, YOUR ARE NOT”

25 PRINT X; “YEARS OLD” RUN

ENTER AGE PLEASE

? 41 (entered by user) Output produced by instruction above

 You FIBBER, YOU ARE NOT 41 YEARS OLD

Remark: Note the GO TO 10 statements at the line program repeatedly. The process

of repeating a sequence of instructions is called a Loop. In this case the loop is infinite

and the only way the user can escape from it is by pressing a special key on the keyboard

(see your user’s manual

The unconditional Transfer Statement GO TO

The General form of the Go to Statement is

 line number Go TO transfer line number

A BASIC program consists of a sequence of BASIC STATEMENTS. Basic will process

these statements one after another in sequential order. When BASIC encounters a GO TO

statement it will transfer control to the statement specified, that is, processing will

continue at the transfer number. It also allows the program to branch back to repeat

(reprocess) certain instructions or certain procedures; this is called looping

Examples 1

 GOT TO 50

 20 - This code is by passed

 50 LET Y = 3 * Z

Example 2

20 INPUT H, R, B

 This block of code is processed repeatedly.

50 GO TO 20 variables) is used. The contents (value) of each location are to be printed

on some output device. For example, the Block

Indicates that values in locations P and H are to be displayed

(written) on some device.

a. The Processing Block

A rectangular symbol is used for processing instructions. The most

common form for expressing these instructions is the replacement statement. A

replacement statement specifies the arithmetic operations to be performed on constants /

or variables and the location (variable) into which the value computed is to be placed. For

example, the block specifies that the contents (value) of H is to be

multiplied by 2 and the result is to be placed into P.

b. The Decision Block

The diamond – shaped symbol is used to denote decisions. A common means

of expressing a decision is in terms of a 46 question that can be answered Yes or No. The

question must involve only mathematical relations such as equality (=) , less than (<)

Flowchart is on the logic required for solving a problem rather than on the mechanics or

specifics of a programming language.

c. The Terminal Block

An oval – shaped symbol is used to mark the point at which execution of

instructions is to begin and end. The instruction START may be used to mark the

beginning point; the instruction END or STOP may be used to mark the ending point. A

PRINT P, H

P = 2 * H

flowchart may have only one starting point (entry point) but may have many ending

points.

d. The Input / Output Block

A parallelogram – shaped symbol is used for input and output operation, the

instruction (command) READ OR INPUT, followed by a list of names (variables)

separated by commas, is used. These names or variables can be thought of as symbolic

names given to memory locations in which the data read is to be stored.

Variables names should be chosen to covey the nature of the data to be processed

For an output operation, the instruction 47 PRINT, followed by a list of memory

locations

Enter the name into memory cell

N $

Enter the hours into memory

location H

Enter the rate into R If the number

of hours > 40 Do the following:

Computer pay for first 40 hours

compute over time hours compute

overtime pay compute final pay

Print overtime hours

Print overtime pay otherwide do

the following: compute regular

pay and Print the name and pay in

either case. And then go back to

process another record

This is for REM PAYROLL PROGRAM.

FLOWCHARTING

A flowchart is essentually a pictorial (a sort of visual outline) of the sequence of steps

that must be taken in order to sove a particular problem

a. Flowchart Definition

Because of the requirement for logical organization and requring of program instructions,

it is usually difficulty to write a computer program without first expressing the program

in some preliminary form. For a complex problem the tool is the flowchart although for a

simple problem a verbal outline of steps required may suffice. A flowchart is a pictorial

representation of the logic (method) used to solve a particular problem.

INPUT N$,

H, R

START

INPUT N$

INPUT R

INPUT H

P1 = 40 * R

V = H – 40

P2 = V * R * 1

P = PI + P2

PRINT P2

PRINT V

P = H * R

PRINT N$, P

H > 40

STOP

A flowchart is particularly useful for visualizing paths through the logic of a program

b. Flowchart symbols

In program flowcharts, the symbols shown in the figure below is normally used. Each

symbol or block represents a different type of operation written within the blocks are

instructions to indicate (in general terms) what operation is to be prformed. It is not

necessary to express the instructions used in a flowchart block in any particular computer

language. The emphasis in the less than or equal to (≤), greater than (>), greater than or

equal to (≥) or nhot equal to (>). The decision blow is the only block from which two

different logical paths may be selected follows indicate the path to be taken depending on

the decision block.

 Yes

 No

If the value of H is greater than 40, the path marked YES is taken, other wise the NO path

is taken.

IS

H > 40

c. Flowlines

The sequence of instructions to be executed in a flowcharted algorithm is denoted

by straight lines with an arrowhead such as

or . The direction of flow is always in the direction pointed by the arrowhead.

d. Connector Blocks

When it is convenient to draw flowlines to connect one area of the flowchart to

another, connectors are often used. Conncetors serve two pupose:

1. To identify a block by a label for refence purposes

2. To indicate transfer to another labeled block.

The symbol used for a connector is a circle .

A label is placed in the connector block when the flow line points away from the

connector, such as , the connector is being used to denote an entry point, that

is, a block to which transfer will be made from some point in the flowchat when the flow-

line points toward the connectorl as in , the connector is being used to

indicate a transfer

If the value of X is greater than or equal to 4, the block X = 4 is executed and transfer is

made to the entry point labeled ‘B” if X is not greater than or equal to 4, the block Y = x

+ z is executed and transfer is made 15 the entry point ‘25” which contains the PRINT

instruction.

4.0 CONCLUSION

In a flowchart it is possible to have many connectors

5.0 SUMMARY

IS

x ≥40

X= 4

Y = x + 2

13

13

25

25

PRINT X, Y

EN

Here you are introduced to BASIC statements INPUT and GO TO. You also learn how to

write flowcharts.

6.0 TUTOR-MARKED ASSIGNMENT

Determine the output produced by each of the following flowcharts

1. 2.

START

X = 2

Y = 3 + 4 x

Y = 3

PRINT X Y

STOP

START

J = 1

J = -1

PRINT

3. 4.

 Input data

 ? 140

 ? 253

 ? 341

 ? 2

 ? 9

YES

NO

7.0 REFERENCE/FURTHER READING

Boilot and Horn, BASIC, 3
rd

 Edition

START

K =5

I = 1

PRINT I, K

STOP

IS

 I< K

K = k – 0.5

I = k + 2

READS

PRINT X, Y

START

K =0

IS

X≥Y

X = X + K

READ X, Y

K = K + 1
20

20

UNIT 2 BASIC STATEMENTS: THE DECISION

 STATEMENT

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 If / then

4.0 Conclusion

5.0 Summary

6.0 Further reading

7.0 Tutor marked assignment

1.0 INTRODUCTION

The central processing unit (CPO) has a logical unit which allows the computer to

compare one number with another as well as one alphanumeric string with another. This

decision-making capability is available to BASIC through the If statement which allows

the computer to transfer to a nonsequentral instruction.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 use IF / THEN statement

3.0 MAIN CONTENTS

3.1 If / Then

Then general form of the If statement is

Where the condition consists of two arithmetic expressions or character string variables

linked together by one of the relational operations shown in figure 1 below:

line number if condition {GO TO THEN} transfer line number

BASIC Relational

Operators

Mathematical symbol Meaning

=

<

< = or = <

>

> = or =>

< > or > <

=

<

≤

>

≥

≠

Equal to

Less than

Less than or

Equal to

Greater than

Nor equal to

 Figure 1

 BASIC relational Operators

 The If statement can be flowcharted as follows

If condition GO TO 200

 What to do if FALSE Skip Code

 What to do if TRUE

Condition

60 –

70 –

80 –

200 –

210 –

220 –

Example 1

Write the code to input an age and print the message “OLD” if the age > 50, and print

“YOUNG” otherwise, then stop

10 INPUT A

 NO 20 IF A > 50 GO TO 80

 30 PRINT “YOUNG”

 40 GO TO GO

 80 PRINT “OLD”

 90 END

Note the importance of statement 40. IF line 40 had been omitted, than if the age were

less than or equal to 50 not only would the message YOUNG be printed, but also the

message OLD.

Example 2

Write the code to input a persons name and a corresponding pay. If the name read

happens to be LUCKY, add $ 100 to the pay. In any event, print the persons name and

the pay.

10 INPUT N$, P

NO 20 IF N$ < > “LUNCKY” GO TO 40

 30 P = P + 100

 40 PRINT N$, P

Transfer to statement 80

if the age is > 50

otherwise print YOUNG

than go to go is stop if

age > 50 skip over lines

30 – 40 and print OLD

If the name is not

LUCKY, go and print

name and pay,

otherwise, if its

LUCKY, add 100 to pay

and print results

Example 3

Write the code to input a code with value either 1 or 2. If the code equals 1, compute the

circumference of a circle of radius 1 – 34, if the code has value 2, compute the area of a

circle of radius 3.2. Print results.

10 INPUT K

NO 20 IF K = 1 GO TO 50

 25 A = 3.14, 3.212 Line 25 is executed if K

 is not

 equal to 1

 30 PRINT “AREA =”; A

 40 GO TO GO YES If K = 1, computer circumference

 of circle.

 50 C = 2 * 3.13 * 1.344

 55 PRINT “CIRC =”,; C

 90 END

Write the BASIC code for the following flowcharts

1. 2.

 Yes

 Yes

No No

PRINT X

x> K

PRINT √ b
2
 – 4ac

a
2
 x b x + e = 0

Answers

 1. 10 If x > 0 GO TO 99

 20 PRINT X

 99 END

 2. 10 IF a * X 12 + b * X + C = 0 THEN 99

 20 PRINT (B12 – 4 * A * C) . 5

 99 END

4.0 CONCLUSION

If the condition specified is true, control will be transferred to a block code that does not

immediately follow the if statement.

5.0 SUMMARY

The line number specified by the GO TO statement in the If instruction need not

physically follow the If statement.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain what would happen in example 3 above if at line 20 we had If K = 1

THEN 25

2. Write the BASIC code for the following flowcharts

YES

 NO

7.0 REFERENCE/FURTHER READING

PRINT X x Y

XxY ≥0

X = 1

Y = 2

Boillot and Horn, BASIC, 3
RD

 Edition

UNIT 3 THE IF STATEMENT REVISITED; THE REM STATEMENT

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 If Statement Revisited

3.2 The Rem Statement

4.0 Conclusion

5.0 Summary

6.0 Further reading

7.0 Tutor marked assignment

1.0 INTRODUCTION

In many BASIC systems the If statement is some what more powerful than has been

previously shown as gen will learn here.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 use IF statement further

 use REM statement

3.0 MAIN CONTENTS

3.1 The If Statement Revisited

Another form of the If statement is

Where the statement can be an input / output instruction, a replacement statement or a

STOP. If the condition is met, the statement (and only one) is executed and the control is

transferred to the condition is not met control is transferred to the statement following the

If. This If statement can be visualized as follows

line number if condition THEN statement

 NO

1 0 IF condition THEN

 statement

15 next statement

Example 1

10 If A < B THEN K = K + 1

15 If A = 4 GO TO 67

Example 2

10 If C < > 0 THEN PRINT A

15 STOP

Since only one statement is permissible after the THEN keyword the following code

would be needed to account for the following flowchart

3.2 The REM Statement

The general form of REM statement is

Next statement

Condition

true Statement

15

If A > B the statement K = K + 1

will executed after which statement

15 will be executed. If A ≥ B 15

will be processed next.

IF C ≠ 0 print the value

A and stop otherwise (C

≠ 0) stop

line number REM literal characters

10 IF A > = B GO TO 25

15 C = C + 1

20 PRINT A

25 K = 5

K = 5

A > B C = C + 1 PRINT A

Where REM (remark) is a key word, and the literal characters are supplied by the

programmer. Although the REM statement requires a line number, it is not an executable

statement.

4.0 CONCLUSION

REM statement help understand the overall program structure

5.0 SUMMARY

The If statement should be used with care.

6.0 TUTOR MARKED ASSIGNMENT

1. Write a program to determine the roots of the quadratic equation ax
2
 + b x + c = 0

if there are no real roots, print the message “NO REAL ROOTS”

2. If the roots are unequal, print message “ROOT 1 = xx, ROOT 2 = xx”

7.0 REFERENCE/FURTHER READING

Boillot and Hon, BASIC, 3
rd

 Editor

UNIT 4 LOGICAL EXPRESSIONS AND THE AND / OR

LOGICAL OPERATORS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 And

3.2 On / Go To Statement

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading

1.0 INTRODUCTION

A logical expression can be thought of as a proposition. A proposition is a statement that

is either true or false.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 use AND / OR

3.0 MAIN CONTENTS

3.1 And

Examples

1. To determine whether A lies between 7 and 14, the following statement could be

used:

If A > > AND A < 14 THEIR PRINT “YES” Note that the statement If A > >

ABD < 14 is invalided. No logical operator may be side by side with a relational

operator.

2. Parentheses may be used to devote the order in which the expressions are to be

evaluated

If (S = 1 AND M 1 < > 0) OR (S = 3 AND M1 > 4) THEN PRINT S, M1

3.2 On / Go To Statement

The ON/GO TO statement is a useful and convenient statement that allows transfer to

many different points in a program

Line number ON expression GO TO line number line

Another form of the If statement is

The rule is the following

If the value of the expression is 1 control is transferred to line number 1

If the value of the expression is 2, control is transferred to the line number 2

Examples

20 ON N GO TO 3, 57, 100, 4. IF N = 3 control is transferred to 100

15 ON J – 2 * K GO TO 30, 10 IF J – 2 * K = 1 go to statement 30

30 ON Y 1 GO TO 10, 20, 60 IF Y I = 1, 2, 3, go to 10, 20 and 60 respectively.

4.0 CONCLUSION

A complete program is useful in understanding how to use ON / GO TO as we shall show

later

5.0 SUMMARY

Here you learn how to use AND / OR Logical operators and ON / GO TO.

6.0 TUTOR-MARKED ASSIGNMENT

Final grades in a course are determined by adding scores obtained on there tests Ti, T2

and T3 students get a PASS grade if the sum of the three scores is above 186 and a FAIL

otherwise write a program to enter three scores, and determine the grade. Print the input

scores, the average, and the final letter grade.

7.0 REFERENCE/ FURTHER READING

Boillot and Horn, BASIC, 3
rd

 Editor

line number on expression GO TO line number 1, - - line number n

UNIT 5 THE COUNTING PROCESS AND BASIC

STATEMENTS READ / DATA, REST 0 RE, PRINT USING

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Read Statement

3.2 Data Statement

4.0 Conclusion

5.0 Summary

6.0 Tutor marked assignment

7.0 Reference/Further Reading

1.0 INTRODUCTION

This unit introduces a new programming concept, counting, which is of great importance

in writing programs.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 use the programming concept counting

THE COUNTING PROCESS AND BASIC STATEMENTS

10 REM THE RESPONSES ARE

11 REM RECORDED ON THE

12 REM DATA STATEMENTS

15 LET I = 0

20 READ C

25 IF C = 9 THEN 50

30 PRINT C

35 IF C < > 2 THEN 20

40 LET I = I + 1

45 GO TO 20

47 DATA 0, 1, 1, 0, 2, 0, 0, 1

48 DATA 2, 2, 0, 0, 0, 1, 2, 9

50 PRINT “ISOLATION ISTS =”; I

99 END

 is used to count number of isolationist

students

 Read Code

 YES Is it the last ON?

Yes; go and write out total of

isolationists

 NO No; print code

YES Is it an isolationist response

NO No; go read another code Yes; count it

and read more codes

 Print total of isolationists students

START

I = 0

READ CODE

PRINT CODE

STOP

CODE

9

R = I = 1

PRINT I

CODE

≠ 2

SELF-ASSESSMENT EXERCISE

1. Modify the program to determine the number of students

 . for isolationism

 . neutral

 . against isolationism

2. Modify the program to determine the percentage of students in each category.

3.0 MAIN CONTENTS

3.1 Data Statement

The general form of the DATA Statement is

Where DAT is the keyword. The constant – list consists of numeric or character

constants. Items in the list must be separated by commas.

DATA is a non executable statement, unlike all other BASIC statements, except REM –

encountered so far.

The DATA statement inform the BASIC system that the numbers specified in its constant

– list are to be stored in memory until the user decides to process these numbers during

program execution.

Example

1 DATA 1, 3.1

5 READ X, Y, Z, W$

10 PRINT X, Y, Z, W$

15 DATA 3, HI

20 END

RUN

1 3.1 3 HI

1 3.1 3 HI

line number DATA constant - list

 Data Block

 Memory

Example 2

1 DATA 1, 3.1, 3, HI

5 READ X

10 READ Y

15 READ Z, W$

20 PRINT X, Y, Z W$

25 END

RUN

1 3.1 3 HI

Example 3

1 DATA 1

5 DATA 3.1

10 READ X, Y, Z, W$

15 DATA 3, HI

20 PRINT X, Y, Z, W$

25 END

RUN

1 3.1 3 HI

2. Parentheses may be used to devote the order in which the expressions are to be

evaluated

If (S = 1 AND M 1 < > 0) OR (S = 3 AND M1 > 4) THEN PRINT S,

M1

3.2 Read Statement

The general form of the READ statement is

Where READ is a key word. The variable list consists of variables separated from one

another by commas

The READ statement causes as many values to be fetched from the DATA block as there

are variables in the READ list.

Line number READ variable list

1

3

WE Data block

4

5 READ X, Y

10 DATA 1, 3

15 READ 2$

20 DATA WE. 4. 6

25 READ W

4.0 CONCLUSION

The assignment of values to variables is made in order in which variables appear in the

READ list.

50 SUMMARY

Counting is an essential technique in programming

6.0 TUTOR-MARKED ASSIGNMENT

1. What will be the values assigned to each variable in the following program?

 10 READ Q, R

 20 READ S$, T$

 30 DATA 25, -6, T, S

40 END

2. What output will be produced by the following program?

 10 DATA 6, 9

 20 DATA -1, 0, 13

30 READ X

40 PRINT X

50 IF X < > 0 THEN 10

60 END

7.0 REFERENCE/FURTHER READING

Boillot and Horn BASIC 3
rd

 Edition

MODULE 3 ACCUMULATION PROCESS

STATEMENTS FOR/NEXT

Unit 1 The Accumulation Process and Statement FOR/NEXT

Unit 2 The Accumulation Process

Unit 3 Nested Loops

Unit 4 Application of Nested Loops in Statistics

Unit 5 Project

UNIT 1 THE ACCUMULATION PROCESS AND STATEMENT

FOR/NEXT

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 For/Next Statements

3.1.1 The General form of Next Statement

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading

1.0 INTRODUCTION

The statement FOR/NEXT represent no new programming concept that have not been

already been discussed. The purpose of these two statements is strictly one of

convenience to the parameter.

2.0 OBJECTIVES

At the end of this unit, you would be able to use:

 FOR/NEXT Statements for loop control

3.0 MAIN CONTENTS

3.1 For/Next Statements

Any BASIC program can be written without FOR/NEXT statements because the two

represent no new programming concepts. They are used primarily for loop control. The

usual procedure for loop control is to initialize a counter to a certain value, then

increment that counter by a constant and finally compare the counter to the terminal value

for loop exiting. Using the FOR/NEXT statements the user specifies in the FOR

statement the initial incremental, and terminal value of the counter (index) and identifies

the range of the loop by making the NEXT statement the last statement of the procedure

to be repeated. The general form of the FOR statement is

Line number FOR index = e, Toe, [STEP e,]

The FOR statement must always be used in conjunction with

1. The NEXT statement

WITHOUT FOR/NEXT WITH FOR/NEXT

05 DATA , 60, 70,80 05 DATA, 60, 70, 80

06 DATA 20, 100 06 DAPO 20, 100

10 LET S = O 10 LET S = 0

15 LET I = 1 20 FOR 1 = 1 TO 5

20 If 1>5 then 45 25 READ G

25 Reading 30 LET S = S + G

30 LET S = STG 40 NEXT

35 LET 1 =1+1 45 LET A = S/5

40 GO TO 20

45 LET A = S/5

50 PRINT A 50 PRINT A

55 STOP 55 STOP

99 END 99 END

S is used as an accumulation to add to all grades. It is set to zero initially.

Process the next two statements 5 times (as I ranges from 1 to 5) is initially 1. As long as

it does not exceed 5 read a grack and add to it to 5 (thereby forming a running sum of

grades)s added to 1 automatically and the loop is repeated until 1 >5 at which time the

average is computed and printed.

SELF-ASSESSMENT EXERCISE

i. How would you modify the program to compute the average of 10 grades

ii. Answer Change line 20 to 20 If 1>10 then 45 or 20 FOR 1=1 TO 10 Change line

45 to 45 LET A = 5/10

3.1.1 The General Form of NEXT Statement

Where NEXT is the key word and index is a variable name that must be the same name

as the variable specified for the index in the corresponding FOR statement. It is used to

indicate the physical end of a loop initiated by a FOR statement.

10 FOR 1 == E1 TO E2 STEP E3

90 NEXT 1

To make your program more readable, it is a good idea to indent all statements between

the FOR and NEXT statements.

4.0 CONCLUSION

Any BASIC program can be written without the FOR/NEXT statement. The purpose of

these two statements is one convenience to the programmer.

5.0 SUMMARY

For/next are used primarily for loop control.

6.0 TUTOR MARKED ASSIGNMENT

What is the expected output of each of the following program? Tabulate the Program

10 DATA 20, 40, 70, 90

15 LET A = 0

20 FOR 1 = 1 TO 4

30 READ X

40 LET A = A-X

50 NEX 1

60 PRINT A

70 END

Line number NEXT index

7.0 REFERENCE/FURTHER READING

M. Boillot and L.W. Horn, BASIC, Third Edition, West publishing company New York.

UNIT 2 THE ACCUMULATION PROCESS

CONTENT

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 The accumulation Process

3.2 Accumulation and FOR/NEXT

3.3 The FOR/NEXT Revisited

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Reading

1.0 INTRODUCTION

The main different between counting and accumulating is that, instead of repeat adding a

constant (example 1) to a counter, a variable is added repeatedly to an accumulator.

2.0 OBJECTIVE

At the end of the unit you would be able to:

 perform an accumulation process

3.0 MAIN CONTENTS

3.1 The Accumulation Process

You now know how counting in BASIC is made possible by repeated execution of such

statements as 1 = 1 +1, Where 1 is initial set a beginning value. Each line 1 = 1 +1 is

executed. The value 1 is added is added to the counter 1 which then takes a successive

value 1, 2, 3, 4 and so on, if it is initially set to zero.

START

START

C = 0

C = C + 1

S = 0

READ G

S = S + G

Counting Accumulating

DATA 60, 70, 80,

 20, 100

Each time, 1 is added to the

previous count (C).

 Each time a new Grade (G)

is added to the current sum (S)

We consider an example on accumulation process and statements for/next.

10 LET S = 0 Initialize sum to 0.8 um is as an accumulator to accumulate all grades

20 FOR 1 =1 TO 5 Process statements 25 to 30 five times

25 READ G Read a grade (G)

30 LET S = STG The new sum is equal to the old sum plus the grade just read. The

first time around the loop sum plus grade = 0 + 60 hence new sum = 60. The second time

around, sum plus grade = 60 + 70 = 130. Each time through the loop, we are adding the

grade just read to form a running or partial sum of grades. When five grades have been

read, the sum of five grades will have been computed.

40 NEXT 1 Go back to statement 25, until the loop has been processed five times

45 LET A = S/5 Now that all the grades have been read, that is, the loop has gone

through the full cycle.

50 PRINT A We can compute the average and print it out

55 DATA 20, 100

90 END

The above shows accumulating process

SELF-ASSESSMENT EXERCISE

What is the expected output of each of the following program?

10 DATA 1, 5, 17, -2

15 LET P =1

20 FOR 1 =1 TO 4

30 READ X

40 LET P = P * X

50 NEXT 1

60 PRINT P

70 END.

Answer

Expected output -170

3.2 The For/Next Revisited

The FOR/NEXT statement can be quite convenient when it is desired to execute one or

more statements at a specific number of times.

5 FOR Index J = Initial value 1 to terminal 303 STEP 1 increment for index.

10 READ X

15 PRINT X

20 NEXT J

25 LET K = 5

2.4 Here you learn the difference between counting and accumulating

4.0 CONCLUSION

5.0 SUMMARY

FOR/NEXT is very useful when you wish to execute one or more statements specific

number of times.

6.0 TUTOR-MARKED ASSIGNMENT

Examine the following program, how many times will the loop be repeated?

5 FOR 1 = -2 TO 2.5 STEP ..5

37 EXT 1

7.0 REFERENCE/FURTHER READING

M. Boillot and L. W. Horn, BASIC, Third Edition West publishing Company New York.

TMA

Solution

5 FOR 1 = -2 to 2.3 STEP 5

 37 NEXT 1

The values assumed by the index 1 are -2, -1.5, -1, -0.5, 0, 0.5, 1.0, 1.5, 2.3

It will be executed 9 times.

UNIT 3 NESTED LOOPS

CONTENT

10 Introduction

2.0 Objectives

3.0 Main Contents

 3.1 Nested loops

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Reading

1.0 INTRODUCTION

2.0 OBJECTIVE

2.0 MAIN CONTENTS

4.0 CONCLUSION

Repeating a loop for a certain number of times is an example of a loop within a loop.

5.0 SUMMARY

In nested loops, a complete loop is part of the body of another loop. In such cases, each

pass in the outer loop causes the inner loop to run through its complete cycle.

Exercise (see below another sheet)

6.0 TUTOR MARKED ASSIGNMENT

A DATA statement contains an unknown number of grades (0 – 100) with a maximum of

100 entries in the DATA statement including the trip record. Write a program to

determine the percentage of passing grades. Passing grades are grades above 73

7.0 REFERENCE/FURTHER READING

M. Boillot and L. W. Horn, BASIC, Third Edition West publishing Company New York.

UNIT 4 APPLICATION OF NESTED LOOPS IN STATIATICS

CONTENT

1.0 Introduction

2.0 Objectives

3.0 Main Contents

 3.1 Standard Deviation

4.0 Conclusion

5.0 Summary

6.0 Tutor marked Assignment

7.0 Reference/Further Reading

1.0 NTRODUCTION

Here you will solve the standard deviation problem using rested loops

2.0 OBJECTIVE

At the end of the loop you would be able to:

 write a program to compute the standard deviation of M grades

3.0 MAIN CONTENTS

3.1 Standard Deviation

The general formula to compute the standard for n grades x1, - - - , Xn is

SD = n(X1
2
 + X.2 + - - + Xn

2
) –(X1 + -- +Xn)

2

 n(n-1)

SELF-ASSESSMENT EXERCISE 1

Write a program to input N grades and compute the grade average and the standard

deviation – a negative grade indicates the end of grades

To compute the standard deviation it is necessary to

1. Accumulate the sum of grades A 1+ X2 -- + Xn

2. Accumulate the sum of the square of each grade

X1
2
+X2

2
+ - + Xn

2

Based on the above we can use the program below

1. LET N = 0 N counts grades

5 LET Q = 0 set variable to accumulate the sum of the square of each grade to 0

10 LET S = 0 set variable to accumulate sum of grades to 0

20 INPUTE G Read one grade each lime through the loop

24 IF G < 0 GO TO 40

25 LET S = S+G Accumulate sum of grades

30 LET Q = Q=Q+G *G Accumulate the sum of the square of each grade

34 LET N = N+1 Count each grade

35 GO TO 20 Go and accept next grade

37 REM CUMPUTE THE STANDARD DEVIATION D

40 LET D = (N*Q-S*S)/(N*(N-1))) 1.5

45 PRINT “STANDARD DEVIATION” = “; D

50 PRINT “AVERAGE GRADE =” S/N

60 END

SELF-ASSESSMENT EXERCISE

1. To what depth or level can loops be rested?

4.0 CONCLUSION

Nested loops are useful in solving standard deviation

5.0 SUMMARY

A good report is one which is self- explanatory, self contained and organized in a way

that allows the reader to capture the essence of the report as well as the detail.

6.0 TUTOR MARKED ASSIGNMENT

Using the previous problem, calculate

i mean

ii standard deviation of the following data

7.0

 REFERENCE/FURTHER READING

X Marks 21 42 53 60 73 81

Frequency 2 4 5 5 3 1

Boillot and L.W. Horn, BASIC 3
rd

 Edition

UNIT 5 PROJECT

CONTENT

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Projects

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignments

7.0 Reference/Further Reading

1.0 INTRODUCTION

Here you will use your knowledge of programmes to solve the following problems

2.0 OBJECTIVES

At the end of this Unit, you would be able to:

 give a report of the assigned projects

3.0 MAIN CONTENT

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR MARKED ASSIGNMENTS

Write a program to compute the area under a curve

 Y = f(x)

 X1 X2

Your program should approximate the area under the curve y= e –X
2
/2

2 Write a program to compute the following sequence of sums;

 S1 = 1

 S2 = 1 +1/2

 S3 = 1 +1/2 +1/3

 S4 = 1+1/2+1/3+1/4

How many different sums would you have to compute before the sum exceed 3.9

 For X between I and 2 for three values of

 h = 0.1, h= 0.01, h=0.001

7.0 REFERENCE/FURTHER READING

M. Boillot and L.W. Horn, BASIC 3
rd

 Edition

MODULE 4

Unit 1 One – dimensional Arrays

Unit 2 Use of Arrays

Unit 3 DIM Statement

Unit 4 Array Manipulation

Unit 5 End – of – File Conditions

UNIT 1 ONE-DIMENSIONAL ARRAYS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 One-Dimensional Arrays

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Readings

1.0 INTRODUCTION

You will learn here how to calculate the average of five grades read on a DATA

statement and the difference of each grade and the average. Up till now, it has been

possible to compute an average of grades imply by reading one grade at a time into a

variable using the statement READ G and accumulating the grades as they are read. This

procedure cannot be used in this case, however, since each new grade destroys the

previous grade stored in G, thereby making it impossible to compare each grade with

average once the average has been computed.

2.0 OBJECTIVES

At the end of this unit, you would be able to print the difference between each grade and

the average.

3.0 MAIN CONTENTS

3.1 One-Dimensional Array

Each grade must be preserved, and for that reason five distinct memory locations

(variables) are needed as shown in the figure below.

 G1 G2 G3

G4

 56 89

45 78

G5
 80

Figure I: Five Memory Locations

1.0 REM DEVIATION OF FIVE GRADES IWTHOUT AN

ARRAY

15 READ G, G2, G3, G4, G5

20 LET A = (G1 + G2 + G3 + G4 + G5)/5

30 PRINT G1, G1 – 1

35 PRINT G3, G3 – A

40 PRINT G5, G5 – A

50 PRINT G5, G5 – A

60 DATA 56, 78, 89, 45, 80

99 END

Figure 2

One method for solving the problem is shown in Figure 2. We shall consider another

method in the next unit.

4.0 CONCLUSION

To compare grades with the average of the grades, each grade must be preserved.

5.0 SUMMARY

Distinct memory locations (variables) are needed to preserve grades.

6.0 TUTOR-MARKED ASSIGNMENT

Compute the average of 50, 72, 74, 81, 87

Input / Output of Arrays

Arrays can be read and printed out by indexing the arrays with the index of a FOR /

NEXT Loop.

Example I

To read 10 data from a DATA statement, the following code might be used.

10 DIM (10)

15 FOR I = 1 to 10

20 READ A(I)

25 READ A (I)

30 DATA 3, 5, 9, ……… 15

Array A

 3 A (1)

 5 A (2)

 9 A (3)

DATA 3, 5, 9 …… 15 .

 .

 .

 15 A (10)

The first time through the loop I is 1, and A (I) is read from the DATA statement.

The second time through the loop, I is 2 and the next data item is read into A (10).

7.0 REFERENCE/FURTHER READING

Boillot, M. and Horn, L. W. BASIC, 3
RD

 Edition, West Publishing

Company, New York.

UNIT 2 USE OF ARRAYS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Use of Arrays to Store the Grades

3.1.1 Definition

3.1.2 An Array Storage

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Readings

1.0 INTRODUCTION

Here you will learn another method that is not as cumbersome as the first.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 compute average of grades and compare each grade with the average.

3.0 MAIN CONTENTS

3.1.1 Use of Arrays to Store the Grades

3.1.1 Definition

An array is a sequence of consecutive memory locations in which data elements are

stored.

56 79 89 45 80

 G(1) G(2) G(3) G(4) (G5)

Figure 1

3.1.2 An Array Storage

G1 G5

 56 78 89 45 80

 DATA 56 78 89 45 80

All grades (G(1) ……………… G(5)) are stored into the array one at a time staring with

G (1) through the statement READ (G(1) as I varies from 1 to 5

Figure 2

10 REM DEVIATION FOR FIVE GRADES USING ARRAYS

15 DIM G(5) Reserve 5 memory locations

 For array G.

20 LET S = 0 S will accumulate grades

25 FOR I = 1 TO 5 When I is 1 read 1
st
 grade in

G (1)

30 READ G (I) When I is 2 read 2
nd

 grade in

 G (2)

35 LET S = s + G (I) Add grades, one at a time, to

 the accumulator

40 NEXT I

45 LET A = S/5 Compute the average

50 FOR I = 1 TO 5

55 PRINT G (I), G(I) – A Print each grade and the

 difference between each grade

 and average

 60 NEXT I When I is 1, (I) and G(I) – A is

 printed

 65 STOP

 70 DATA 56, 78, 89, 45, 80 When I is 5, G(5) and G (5) –

 A is printed.

 99 END

Figure 3

Through the use of indexing, accumulation logic can be used to calculate the sum of the

grades. The statement LET S = S + G(I) (Figure 3) accomplishes the accumulation

process. The suit line through the loop I = 1 and S = S + G(I) = 0 + g(I) = 56

The first grade in the array is added to the sum, which is initially zero. The second time

through the loop I = 2 and S = S + G(I) = 56 + G (2) = 56 + 78 = 134. Finally, when I =

5, the fifth grade in the array is added to the sum of the four previous grades. Output can

be handled in a loop by using a variable subscript on the array G, in much the same way

as the input.

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

Modify Figure 3 to handle 10, 100 grades

7.0 REFERENCE/FURTHER READING

Boillot, M. and Horn, L. W. BASIC, 3
RD

 Edition, West Publishing

 Company, New York.

UNIT 3 DIM STATEMENT

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 DIM Statement

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Readings

1.0 INTRODUCTION

Here you will be introduced the DIM statement

2.0 OBJECTIVES

At the end of this unit you would be able to:

 use the DIM Statement.

3.0 MAIN CONTENTS

3.1 DIM Statement

The general from of the DIM statement is

 Line number DIM variable1 (limit1,)/, variable2 / limit2)/ ……..

Where DIM is a BASIC keyword, variable1, variable 2, …. Are names of the various

arrays (any valid variable name), and limit 1, limit 2, …. Are unsigned integer constants

representing the desired number of memory locations reserved for each array. This does

not mean that the reserved locations must be used when processing the array. Array

subscripts may vary from 1 to the limit declared in the DIM statement and may not

exceed that limit. Any array used in a program must first be declared in a DIM

statement. Any number of arrays may be declared in a DIM list.

For example DIM X (10), Z 1 (20), J (107) declares X and 21 and J as arrays. In this case

the array X may contain up to 10 elements, the array Z1 up to 20 elements, and the array

J up to 107) values one might visualize the elements of X, Z and J as follows

Array X

 X(1) X(2) X(3) X(4) X(5) X(6)

Array Z

 Z(1) Z(2) Z(19) Z(20)

Array J

 J(1) J(2) J(107)

4.0 CONCLUSION

Here you learn how to use the DIM Statement.

5.0 SUMMARY

Subscripts are used with array names to locate specific elements of an array.

6.0 TUTOR MARKED ASSIGNMENT

What will be the content of each of element of the array Y after each of the following:

1. 10 DIM Y (10)

20 FOR I = I TO 10

30 LET Y (I) = I

40 NEXT I

2. 10 DIM Y (10)

20 FOR I = I TO 10

30 LET Y (I) = 11 - I

40 NEXT I

7.0 REFERENCE/FURTHER READING

Boillot, M. and Horn, L. W. BASIC, 3
RD

 Edition, West Publishing

Company, New York.

UNIT 4 ARRAY MANIPULATION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 DIM Statement

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Readings

1.0 INTRODUCTION

Here you will be introduced to manipulation of arrays

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 manipulate arrays.

3.0 MAIN CONTENTS

3.1 Arrays Manipulation

When working with arrays, it is often necessary to initialize arrays to certain values to

create duplicate arrays, to inter-change elements within arrays, to merge two or more

arrays into one to search or to accumulate array entries, to sort arrays etc. In this section,

you will be introduced to certain commonly used array manipulation techniques.

Array Initialization and Duplication

The following code sets all elements of array A to zeros, sets each element of array B

equal to the variable X, and the duplicates array D into array S:

10 DIM A(100), B(100), S(100), D(100)

12 LET X = 5

15 INPUT N (Read a value for N. This value must

not exceed the size of the arrays declared in the DIM statement).

20 FOR I = 1 TO N

25 LET A (I) = 0 A (I), A(2), ….., A (N) are set to O one

at a time as I ranges from 1 to N.

30 LET B (I) = X Similarly, B (1), B(2), …… B (N) are

set to the value in X.

Finally S (I) = D (I)

40 NEXT I S (2) = D (2), ………. S(N) = D (N)

Sometimes it might be necessary to set an array C equal to the sum of two other arrays A

and B in such a way that C (I) = A (1) + B (1), C(1) = A(2) + B(2) ……………….., C

(100) = A (100) + B (100). The following code might be used:

10 DIM A (100), B (100), C(100)

15 FOR J = 1 T0 100

20 LET C (J) = A (J) + B(J)

25 NEXT J

A (1) 3 -1 B (1) 2 C(1)

A (2) -2 -2 B (2) -4 C(2)

 .

 . + =

 .

A (100) 4 5 B 100 4.5 C(100)

Suppose it is desired to initialize two arrays A and B as follows:

A (1) = B (10) = 1 10 DIM A 910), B (10)

A (2) = B (9) = 2 15 FOR I = 1 TO 10

A (3) = B (8) = 3 20 LET A (I) = I

. 25 LET K = 10 – I + 1

. The code on the right could 30 LET B (K) = I

 be used

. 35 NEXT I

A (10) = B (1) = 10

The variable K generates the numbers 10, 9, 8 ………1 as I ranges from 1 to 10. If I

ranged from 1 to N, the formula K = N – I +1 would generate the numbers N, N – 1, N –

2, …., 3, 2, 1.

Reversing Arrays

Suppose A is an array of size N where N has been previously defined and it is desired to

interchange (A1) with A(N), A (2) with A(N -1), A(3) with A(N – 2), etc. The following

code could be sued:

10 DIM A (100) Since each interchange step

 involves a pair of array elements

15 INPUT N (A1, AN), (A2, AN-1), etc., the

 interchange process needs be

20 FOR I = 1 TO N/2 repeated only N/2 times. If N is

 odd, the median element

25 LET T = A(I) remains unchanged. K.

generates the number N, N-1,

30 LET K = N – I +1 …, N/2 +1. T is a temporary

 location needed to save A (1)

35 LET A (I) = A (K) before A (1) = A (N) is

 executed, otherwise, A (1)

40 LET A (K) = T would be destroyed

45 NEXT I

If we used N instead of N/@ in statement 20, the array would “reverse” itself and end up

as if nothing had changed.

Accumulation of Array Elements

To compute the product of the elements of the array A

= 10 20 30 40 50

The following code could be used:

10 LET S = 1 S initially set to 1 before the

loop is entered.

15 FOR K = 1 TO 5 The first time through the loop,

 S = S*A (1) = 1*10 = 10

20 LET S = S* A (k) The second time through the

loop, S = S* A (1)

25 NEXT K

To compute the sum of two arrays S = A (1) + B (1) + A (2) + B (2) + …. A (50) + B

(50), we could use

10 LET S = 0

15 FOR K = 1 TO 50

20 LET S = S + A (K) + B (K)

25 NEXT K

Array Merge

Suppose A and B are two arrays of size 10 and we want the array C to contain the data

A1, B1, A2, B2, ……………, A10, B10 arranged in that order. Any of the following codes

could be used.

10 LET K = 1 10 LET K = 1

15 FOR I = 1 TO 10 15 FOR I = 1 TO 20 STEP 2

20 LET C (K) = A (I) 20 LET C (I) = A (K)

25 LET K = K + 1 25 LET C (I + 1) = B (K)

30 LET C (K) = B (I) 30 LET K = K + I

35 LET K = K + 1 35 NEXT I

40 NEXT I

10 FOR I = 1 TO 10 2*I – 1 generates the odd entries of C

15 LET C (2*I – 1) = A (I) 2*I generates the even entries of C

20 LET C (2*i) = b(i)

25 NEXT I

Array Search

Assume array A contains 10 grades, and we want to know the number of grades over 60.

The following code could be used:

10 LET K = 0 K is used to count grades over 60.

15 FOR I = 1 TO 100

20 IF A (I) ≤ 60 THEN 30 If A (I) ≤ 60, skip the counting

of grades over 60, but stay in the

25 LET K = K + 1 loop by connecting to the NEXT

I statement.

30 NEXT I

4.0 CONCLUSION

Here you are introduced to array manipulation.

5.0 SUMMARY

Arrays could be manipulated in several ways.

6.0 TUTOR-MARKED ASSIGNMENT

What will be the content of each element of the array Y after the following:

10 DIM Y (10)

20 LET Y (1) = 1

30 LET Y (2) = 2

40 FOR I = 3 TO 10

50 LET Y (I) = Y (I – 1) + Y (I – 2)

60 NEXT I

7.0 REFERENCE/FURTHER READING

Boillot, M. and Horn, L. W. BASIC, 3
RD

 Edition, West Publishing

Company, New York.

UNIT 5 END-OF-FILE CONDITIONS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 End-of-File Conditions

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference/Further Readings

1.0 INTRODUCTION

Sometimes data may have to be read into arrays from an unknown number of records.

Here you will learn how to handle such cases.

2.0 OBJECTIVES

At the end of this unit, you would be able to:

 read data into array from unknown courses.

3.0 MAIN CONTENTS

3.1 End-of-File Conditions

Sometimes data may have to be read into arrays from an unknown number of records.

For example, someone may give you a large data file to read into an array A. since the

DIM statement must specify an integer constant for the size of the array, the programmer

must decide ahead of time what he thinks is the maximum number of locations he will

need for the array.

Consider the following problems. Each record of data file contains a student’s number

and two test scores. Read into an array N, the student’s number and store in array the

average of each student’s score. Print the number of records processed and the average

of all grades (not more than 100 students’ records are expected). A negative value for the

student’s number terminates the data file. A program to solve the problem is as follows:

10 DIM S (100), N (100) Array S is reserved for the scores,

15 REM N for student numbers

 SI is used to accumulate all

20 LET SI = 0 grades.

 I counts all students’ records,

25 LET I = 0 exclusive of the trip.

30 REM

35 READ N1, T1, T2 Read student number and two

 scores.

40 IF N1 < 0 THEN 70 If last record, compute average

 etc.

42 LET I = I + 1 Increase student counter by 1.

45 LET N (I) = n1 State student number in array N.

50 LET S (I) = (T1+T2)/2 Compute each student average

55 LET S1 = S1 + S(I) Accumulate sum of grades.

65 GO TO 35 Go back and read a new

student’s record.

70 LET A = S1/I Compute average

75 PRINT “AVERAGE=” ; A

80 PRINT “NO. SUTDENTS”: I

85 DATA III, 60, 50

90 DATA 222, 60, 40 Data file, student number and

 two grades

92 DATA -3, 0,0

95 END

4.0 CONCLUSION

Here you are introduced to End-of-File conditions and how to handle such cases.

5.0 SUMMARY

End-of-File Conditions could be handled as stated in the example above.

6.0 TUTOR MARKED ASSIGNMENT

Devise a code to search an array G to print the largest grade.

7.0 REFERENCE/FURTHER READING

Boillot, M. and Horn, L. W. BASIC, 3
RD

 Edition, West Publishing

Company, New York.

MODULE 1

UNIT 1

Exercise

How would the execution of the program be affected by replacing statement in location 7

by GO To 1?

Answer

After procession one record, the system will input another.

MODULE 2

UNIT 1

Exercise

What is a flow chart?

Answer: A flowchart is a pictorial representation of the logic used to solve a particular

problem

UNIT 3

Exercise

Predict the output of the suit six line of the following

10 I = 1

15 PRINT TAB (I); “*”

20 I = I +

25 GO TO 15

Answer

Unit 4

Exercise

Write the BASIC code for the following

Answer

10 if a > = B THEN 40

20 LET C -= C +

30 PRINT A

MODULE 3

UNITS 3

Exercise

 What output is expected from the following?

 10 FOR I = 2 TO 10 STEP 2

20 FOR J = 10 TO 1 STEP -1

30 FOR PRINT I, J

40 NEXT J

50 NEXT I

IS

A < B

C = C + 1

PRINT A

SOLUTION

I J

 2 10

 2 9

 . .

 . .

 .

 2 1

 4 10

 4 9

 . .

 . .

 4 1

 . .

 . .

 . .

 10 10

 10 9

 . .

 . .

 . .

 10 1

OUTER LOOP: Since 1 varies from 1 to 3 the loop will be processed three

times.

INNER LOOP: The inner loop will cause the PRINT statement to be processed 4

times. Since the outer loop is processed altogether 12 times

 10 FOR I = 1 TO 3

 20 NEXT I

12 FOR J = 1 TO 4

14 PRINT I, J

16 NEXT J

 The result produced by the above code

 I J

 1 1

 First time through the inner loop

 1 2 (outer loop index I = 4)

 1 3

 1 4

 2 1

 2 2 Second time through the inner loop

 2 3 (outer loop index I = 2)

 2 4

 3 1

 3 2 Third time through the inner loop

 3 3 (outer loop index I = 3)

 3 4

Exercise

State whether the following are valid or invalid FOR/NEXT loops and give

reasons if invalids.

 1 FOR I = 1 TO 10

 FOR I = 1 TO 6

 PRINT I

 NEXT I

Answer – Invalid, nested loops may not use the same variable

2 FOR L = 8 TO 1 STEP -1

 FOR K = 1 TO 3

 FOR L = L + 1

 NEXT K

 NEXT L

Answer – Invalid, synthax statement FOR L = L + - 1 is incorrect (L)

UNIT 4
Answer: It depends on the manufacturer’s BASIC. It is safe to assume that

 all BASIC systems will allow a depth of three rested loops.

2. What happens to the FOR/NEXT loop in the following cases?

a. FOR I = 5 TO 5

b. FPR J = 100 T0 1

c. FOR K = 2, 10, - 1

In most cases the following actions will be taken:

a. The loop is executed only once

b. The loop is not executed and the control is passed to the statement

following the NEXT statement

c. Same as b since value K is less than test value and the increment is

negative.

3. How can I determine whether an integer N is even or odd?

 Answer: W e use the integer function INI by computing the expression

 2 * INT (N/2) -N

 If N is even the result of the expression is always zero.

 If N is odd, the result of the expression is always negative

MODULE 4

UNIT 1

Exercise

Which of the following code segments will compute the average (A) of 10 grades?

a) Let S = 0

For I = 1 to 10

READ G

Let S = S + G

NEXT I

Let A = S/I

PRINT A

b) LET S = 0

For I = 1 to 10

READ G

LET S = S + G

NEXT I

PRINT A

 Answer (A) and (B)

Unit 2
Exercise

Modify statements 50 -60 of the programme Figure 3 to print the grades in reverse order,

i.e. G(5), G(4) ……….. G(1)

Solution

Charge the following statements:

15 DIM G (10) 15 DIM G(100)

25 FOR I = 1 TO 10 25 FOR I = 1 TO 100

45 LET A = S/10 45 LET A = S/100

50 FOR I = 1 TO 10 50 FOR I = 1 TO 100

UNIT 3
Linear Arrays

 Exercise

 Discuss the validity of the following DIM statements:

 DIM A (3, 2)

 DIM A (N)

 Answer

 Not valid - Invalid limit should be an integer constant

 Not valid - N is not a constant. N must be a positive

Integer

Solution

1 2 3 4 5 6 7 8 9 10

 Y(1) Y(2) Y(10)

1 2 3 4 5 6 7 8 9 10

 Y(1) Y(2) Y(3) Y(10)

Unit 4
Exercise

1. Write DIM statement (s) to create an array Q containing 10 elements and

an array R containing 25 elements.

2. Suppose an array X has the following content

Array

X
-2 2.3 0 3 -2 6 10

 X(1) X(2) X(3) X(4) X(5) X(6) X(7)

And suppose l = 3 and j = 2. Evaluate each of the following expressions:

a. X (3)

b. X (l + 4)

c. X (l) + X (4)

d. X (l)

e. X (l – j)

f. X (l) – X (j)

g. X (X(4)

Answers

1. 10 DIM Q (10), R (25) OR 10 DIM Q (10)

20 DIM R (25)

 2. a. 0

b. -2

c. -3 + 3

d. 0

e. -3

f. 0 – 2.3 = -2.3

g. X (3) = 0

Solution

1 1 2 3 5 8 13 21 34 55

Y (1) Y(2) Y (10)

UNIT 5

Trip Record

Exercise

Modify the code of the code above example to include a listing of each student’s number

and his / her initial test scores.

Answer

71 FOR J = 1 TO I

72 PRINT N(J), S(J)

73 NEXT J

