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INTRODUCTION

CIT 445 — Principles and Techniques of Complierss a three (3)
credit unit course of 17 units. With the increasidiyersity and
complexity of computers and their applications, tlevelopment of
efficient, reliable software has become increagind¢pendent on
automatic support from compilers and other progranamalysis and
translation tools. This course covers principaidspn understanding
and transforming programmes at the code block, tiomc
programme, and behaviour levels. Specific techridoe imperative
languages include data flow, dependence, intergqoo@l, and
profiling analyses, resource allocation, and mgiieiined parallelism
on both CPUs and GPUs

It is a course for B. Sc. Computer science majadestits, and is
normally taken in a student's fourth year. It sdoaphpeal to anyone
who is interested in the design and implementadibprogramming

languages. Anyone who does a substantial amouptagiramming

should find the material valuable.

This course is divided into four modules. The firstdule deals with
the review of grammars, languages and automategdunttion to
compiler.

The second module treats, extensively, lexicalyamal Under which
such concepts as the scanner, lexical analyserrajere were
discussed.

The third module deals with syntax analysis andudises context-
free grammars, LL (k), LR (k), operator-precedegcammars, etc.
Also, implementation of various parsing techniques discussed.

The fourth module which is the concluding moduletioé course
discusses code generation issues such as symbed, tatiermediate
representation, code optimisation techniques add generation.

This Course Guide gives you a brief overview of ¢barse contents,
course duration, and course materials.

WHAT YOU WILL LEARN IN THIS COURSE

The main purpose of this course is to acquaintesttgdwith software
tools and techniques which are applicable bothotomilers and the
implementation of system utility routines, commaimderpreters,
etc.Thus; we intend to achieve this through th¥ahg
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COURSE AIMS

First, students will learn the key techniques inderm compiler
construction, getting prepared for industry demafas compiler
engineers.

Second, students will understand the rationaleaoious programme
analysis and optimisation techniques, able to iwgrotheir
programming skills accordingly.

The third goal is to build the foundation for stoteto pursue the
research in the areas of compiler, programme aisalgsogramme
modelling, and operating systems

COURSE OBJECTIVES

Certain objectives have been set out to ensure tthatcourse

achieves its aims. Apart from the course objectiegsry unit of this

course has set objectives. In the course of theysiyou will need to

confirm, at the end of each unit, if you have niet dbjectives set at
the beginning of each unit. Upon completing thisirse you should
be able to:

. recognise various classes of grammars, languaged, a
automata, and employ these to solve common software
problems

o explain the major steps involved in compiling ahlgvel
programming language down to a low-level target mvae
language

. construct and use the major components of a mantenpiler;

. work together effectively in teams on a substardizftware

implementation project.

Related Courses
Prerequisites: CIT 342; Computer Science studariis o

WORKING THROUGH THIS COURSE

In order to have a thorough understanding of th&rsm units, you
will need to read and understand the contents,tipeathe steps by
designing a compiler of your own for a known langeiaand be
committed to learning and implementing your knowled

This course is designed to cover approximately rseen weeks, and
it will require your devoted attention. You should the exercises in
the Tutor-Marked Assignments and submit to yousrtut



CIT 445 COURSE GUIDE

COURSE MATERIALS
These include:

Course Guide

Study Units

Recommended Texts

A file for your assignments and for recordsntonitor your
progress.

oM

STUDY UNITS
There are 17 study units in this course:

Module 1  Introduction to Compilers

Unit 1 Review of Grammars, Languages and Automata
Unit 2 What is a Compiler?
Unit 3 The Structure of a Compiler

Module 2  Lexical Analysis

Unit 1 The Scanner

Unit 2 Hand Implementation of Lexical Analyser
Unit 3 Automatic Generation of Lexical Analyser
Unit 4 Implementing a Lexical Analyser

Module 3  Syntax Analysis

Unit 1 Context-Free Grammars

Unit 2 Bottom-Up Parsing Techniques
Unit 3 Precedence Parsing

Unit 4 Top-Down Parsing Techniques
Unit 5 LR Parsers

Module 4 Code Generation

Unit 1 Error Handling

Unit 2 Symbol Tables

Unit 3 Intermediate Code Generation
Unit 4 Code Generation

Unit 5 Code Optimisation

Make use of the course materials, do the exert¢senhance your
learning.

Vi
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Weinberg, G.M.The Psychology of Computer Programming: Slver
Anniversary Edition ISBN 0932633420Interesting insights
and anecdotes.
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Wirth, Niklaus Compiler Construction ISBN 020140353d&rom the
inventor of Pascal, Modula-2 and Oberon-2, exampies
Oberon.

ASSIGNMENTS FILE

These are of two types: the self-assessment egsraisd the Tutor-
Marked Assignments. The self-assessment exercidesnable you

monitor your performance by yourself, while the dmnMarked

Assignment is a supervised assignment. The assmsntake a
certain percentage of your total score in this seurThe Tutor-
Marked Assignments will be assessed by your tutthrinva specified
period. The examination at the end of this coursk arm at

determining the level of mastery of the subjectteratThis course
includes twelve Tutor-Marked Assignments and eacistnbe done
and submitted accordingly. Your best scores howewvall be

recorded for you. Be sure to send these assignmengsur tutor
before the deadline to avoid loss of marks.

PRESENTATION SCHEDULE

The Presentation Schedule included in your couratemals gives
you the important dates for the completion of tutorarked
assignments and attending tutorials. Remember,ayeuequired to
submit all your assignments by the due date. Yloulsl guard
against lagging behind in your work.

ASSESSMENT

There are two aspects to the assessment of theecotirst are the
tutor marked assignments; second, is a written exatran.

In tackling the assignments, you are expected fyapformation
and knowledge acquired during this course. Thegaasnts must be
submitted to your tutor for formal assessment icoatance with the
deadlines stated in the Assignment File. The wark submit to your
tutor for assessment will count for 30% of youatatourse mark.

At the end of the course, you will need to sit &final three-hour
examination. This will also count for 70% of yootdl course mark.

viii
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TUTOR MARKED ASSIGNMENTS (TMAS)

There are twenty-two tutor marked assignments is ¢burse. You
need to submit all the assignments. The total minkthe best three
(3) assignments will be 30% of your total coursekna

Assignment questions for the units in this courgecantained in the
Assignment File. You should be able to completeryamssignments
from the information and materials contained inryeat textbooks,
reading and study units. However, you may wishuse other
references to broaden your viewpoint and providedeeper
understanding of the subject.

When you have completed each assignment, sendyether with

form to your tutor. Make sure that each assignmieathes your
tutor on or before the deadline given. If, howevgou cannot

complete your work on time, contact your tutor befthe assignment
is done to discuss the possibility of an extension.

EXAMINATION AND GRADING

The final examination for the course will carry 7@#rcentage of the
total marks available for this course. The exanmmatwill cover
every aspect of the course, so you are advisec\uiser all your
corrected assignments before the examination.

This course endows you with the status of a teaaherthat of a
learner. This means that you teach yourself antl yba learn, as
your learning capabilities would allow. It also meahat you are in a
better position to determine and to ascertain thatwthe how, and
the when of your language learning. No teacher sepany method
of learning on you.

The course units are similarly designed with theromuction
following the contents, then a set of objectived #ren the dialogue
and so on.

The objectives guide you as you go through thesututascertain
your knowledge of the required terms and expression
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COURSE MARKING SCHEME

COURSE GUIDE

This table shows how the actual course markingakdn down.

Assessment

Marks

Assignment 1- 4

Four assignments, best three nudridse
four count at 30% of course marks

Final Examination

70% of overall ¢

ourse marks

Total

100% of course marks

COURSE OVERVIEW

Unit | Title of Work Weeks Assessment
Activity (End of Unit)
Course Guide Week 1
Module 1 Introduction to Compilers
1 Unit 1 Review of GrammarsWeek 1 Assignment 1
Languages and Automata
2 Unit 2 What is a Compiler? Week 2 Assignment 2
3 Unit 3 The Structure of a Compiler Week 2 Assigmir3
Module 2 Lexical Analysis
1 Unit 1 The Scanner Week 3 Assignment| 5
2 Unit 2 Hand Implementation ofWeek 3 Assignment 6
Lexical Analyser
3 Unit 3 Automatic Generation o0fWeek 4 Assignment 7
Lexical Analyser
4 Unit 4 Implementing a LexicalWeek 4
Analyser
Module 3 Syntax Analysis
1 Unit 1 Context-Free Grammars Week 5 Assignment 8
2 Unit 2 Bottom-Up Parsing Techniques Week 6 Assignt 9
3 Unit 3 Precedence Parsing Week 7 -8 Assignn@nt 1
4 Unit 4 Top-Down Parsing Techniques Week 8 -9 igksment 11
5 Unit 5 LR Parsers Week 10| Assignment 12
11
Module 4 Code Generation
1 Unit 1 Error Handling Week 12 Assignment 13
2 Unit 2 Symbol Tables Week 13 Assignment|14
3 Unit 3 Intermediate Code Generatior Week 14 Asagnt 15
4 Unit 4 Code Generation Week 15 Assignment 16
5 Unit 5 Code Optimisation Week 16 Assignment 17
Revision Week 16
Examination Week 17
Total 17 weeks
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HOW TO GET THE BEST FROM THIS COURSE

In distance learning the study units replace theeusity lecturer.
This is one of the great advantages of distanaaileg you can read
and work through specially designed study materadls/our own
pace, and at a time and place that suit you bsnk of it as reading
the lecture instead of listening to a lecturer.tHa same way that a
lecturer might set you some reading to do, theysuits tell you
when to read your set books or other material. dsist lecturer might
give you an in-class exercise, your study unitsiole® exercises for
you to do at appropriate points.

Each of the study units follows a common formate Tirst item is
an introduction to the subject matter of the unid &ow a particular
unit is integrated with the other units and thersewas a whole. Next
is a set of learning objectives. These objectivesbe you know
what you should be able to do by the time you hevmpleted the
unit. You should use these objectives to guide goudy. When you
have finished the units you must go back and clndether you have
achieved the objectives. If you make a habit oihdadiis you will
significantly improve your chances of passing tberse.

Remember that your tutor’s job is to assist youheWyou need help,
don't hesitate to call and ask your tutor to previd

1. Read this Course Guide thoroughly.

2. Organise a study schedule. Refer to the ‘Coursen@ew’
for more details. Note the time you are expectedpend on
each unit and how the assignments relate to thés.uni
Whatever method you chose to use, you should demidi
and write in your own dates for working on eacht.uni

3. Once you have created your own study schedule, do
everything you can to stick to it. The major readbat
students fail is that they lag behind in their ceuwork.

4. Turn to Unit 1 and read the introduction and thgctives for
the unit.

5. Assemble the study materials. Information abouttwyou
need for a unit is given in the ‘Overview’ at theginning of
each unit. You will almost always need both thedgtunit
you are working on and one of your set of bookyaumr desk
at the same time.

6. Work through the unit. The content of the unieitdhas been
arranged to provide a sequence for you to folloAs you
work through the unit you will be instructed to ade sections
from your set books or other articles. Use the tmiguide
your reading.

Xi
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7. Review the objectives for each study unit to canfthat you
have achieved them. If you feel unsure about anythef
objectives, review the study material or consulirytor.

8. When you are confident that you have achieved d'suni
objectives, you can then start on the next unic@ed unit by
unit through the course and try to pace your stmyhat you
keep yourself on schedule.

9. When you have submitted an assignment to your tidor
marking, do not wait for its return before startioig the next
unit. Keep to your schedule. When the assignment
returned, pay particular attention to your tutoc@mments,
both on the tutor-marked assignment form and alstterr on
the assignment. Consult your tutor as soon aslpess you
have any questions or problems.

10. After completing the last unit, review the coursel prepare
yourself for the final examination. Check that ybave
achieved the unit objectives (listed at the begignof each
unit) and the course objectives (listed in this GeuGuide).

TUTORS AND TUTORIALS

There are 12 hours of tutorials provided in supmdrthis course.
You will be notified of the dates, times and looatof these tutorials,
together with the name and phone number of yowr tats soon as
you are allocated a tutorial group.

Your tutor will mark and comment on your assignnselkeep a close
watch on your progress and on any difficulties yoight encounter
and provide assistance to you during the courseu Must mail or
submit your tutor-marked assignments to your tutetl before the
due date (at least two working days are requirddley will be
marked by your tutor and returned to you as soqguoasible.

Do not hesitate to contact your tutor by telephaee-mail if you
need help. The following might be circumstanceswinich you
would find help necessary. Contact your tutor if:

o you do not understand any part of the study unitshe
assigned readings

o you have difficulty with the self-tests or exer@se

o you have a question or problem with an assignnveitt, your
tutor's comments on an assignment or with the giaadif an
assignment.

You should try your best to attend the tutorialShis is the only
chance to have face to face contact with your t@od to ask

Xii
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guestions which are answered instantly. You caserany problem
encountered in the course of your study. To gam mhaximum
benefit from course tutorials, prepare a questisinblefore attending
them. You will learn a lot from participating insgiussions actively.

SUMMARY

Principles and Techniques of Compilers introduceu yio the
concepts associated with programming, programmanguages and
the compilation process. The content of the coursgerial was
planned and written to ensure that you acquireptbeer knowledge
and skills for the appropriate situations. Rea-Bftuations have been
created to enable you identify with and create somgur own. The
essence is to help you in acquiring the necessaowledge and
competence by equipping you with the necessarg timodccomplish
this.

We hope that by the end of this course you woulcehacquired the
required knowledge to view compilers, programmiaggduages and
programming environments in a new way.

We wish you success with the course and hope thatwll find it
both interesting and useful.

Xiii
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MODULE 1 INTRODUCTION TO COMPILERS

Unit 1 Review of Grammars, Languages and Automata
Unit 2 What is a Compiler?

Unit 3 The Structure of a Compiler

UNIT 1 REVIEW OF GRAMMARS, LANGUAGES AND
AUTOMATA

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Formal Grammar
3.1.1 The Syntax of Grammars
3.1.2 The Semantic of Grammars
3.2 Types of Grammar and Automata
3.2.1 Type-0: Unrestricted Grammars
3.2.2 Type-1: Context-Sensitive Grammars
3.2.3 Type-2: Context-Free Grammars
3.2.4 Type-3: Regular Grammars
3.2.5 Analytic Grammars
3.3  Chomsky Hierarchy
3.3.1 The Hierarchy
3.4 Formal Languages
3.4.1 Words over an Alphabet
3.4.2 Language-Specification Formalisms
3.4.3 Operations on Languages
3.4.4 Uses of Formal Languages
3.5 Programming Languages
3.5.1 Formal Theories, Systems and Proofs
3.5.2 Interpretations and Models
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

As you learnt in CIT 342: Formal Languages and Adta Theory, in
the field of Computer Science, there are diffetgpes of grammars on
which different languages are defined. For eachthekse grammars,
there is a class of automata that can parse/resogtiings form from



CIT 445 PRINCIPLES AND TECHNIQUES OF COMPILERS

the grammar. The set of all strings that can beeg#aed from the
grammar constitutes the language of the grammar.

In this unit, you will be taken through some of ttiengs you learnt
previously on formal grammar, formal language anb@mata.

Now let us go through your study objectives fos thinit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define formal grammar

. define alphabet, words and strings

o state the types of formal grammars we have in ib&l fof
Computer Science

o describe the class of automata that can recognisegs
generated by each grammar

) identify strings that are generated by a particglammar

. describe the Chomsky hierarchy

o explain the relevance of formal grammar and languag

computer programming.
3.0 MAIN CONTENT
3.1 Formal Grammar

A formal grammar (sometimes called grammar) is a set of rules of a
specific kind, for forming strings in a formal lamgge. The rules
describe how to form strings from the languagg$abet that are valid
according to the language's syntax. A grammar decionly the form
of the strings and not the meaning or what caddme with them in any
context.

A formal grammar is a set of rules for rewritingirggs, along with a
"start symbol" from which rewriting must start. Teéore, a grammar is
usually thought of as a language generator. Howeklecan also

sometimes be used as the basis for a "recogniRatogniser is a
function in computing that determines whether agisgtring belongs to
the language or is grammatically incorrect. To désc such

recognisers, formal language theory uses separatelisms, known as
Automata Theory.

The process of recognising an utterance (a stnngatural languages)
by breaking it down to a set of symbols and anatysach one against
the grammar of the language is referred tdassing. Most languages

2
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have the meanings of their utterances structuresbrdmg to their
syntax — a practice known as compositional semanfis a result, the
first step to describing the meaning of an uttegamc language is to
break it down into parts and look at its analysednf (known as its
parse tree in Computer Science).

A grammar mainly consists of a set of rules fonsfarming strings. (If

it consists of these rules only, it would be a s&mie system). To
generate a string in the language, one beginsantining consisting of a
singlestart symbol. Theproduction rules are then applied in any order,
until a string that contains neither the start sghtior designatedon-
terminal symbols is produced. The language formed by the grammar
consists of all distinct strings that can be geteeian this manner. Any
particular sequence of production rules on thet sgmbol yields a
distinct string in the language. If there are nplétiways of generating
the same single string, the grammar is said tantd@guous.

Example 3.1

Assuming the alphabet consistsaodndb, the start symbol iS and we
have the following production rules:

1. S — aSh
2. S — ba

then we start witl§ and can choose a rule to apply to it. If we cleoos
rule 1, we obtain the strirgSh. If we choose rule 1 again, we replé&e
with aSb and obtain the stringaSbb. If we now choose rule 2, we
replaceS with ba and obtain the stringababb, and are done. We can
write this series of choices more briefly, using méyls:

S = aSh = aaSbb = aababb. The language of the grammar is then
the infinite
sefl@” bab™|n > 0} = {ba, abab, aababb, aaababbb, ...} \where a*

is a repeated times (and in particular represents the number of times
production rule 1 has been applied).

3.1.1 The Syntax of Grammars
In the classic formalisation of generative grammianst proposed by

Noam Chomsky in the 1950s, a gramn@iconsists of the following
components:

) a finite setN of non-terminal symbols, none of which appear in
strings formed fron®.
o a finite sex of terminal symbols that is disjoint from\.

) a finite setP of production rules, each rule of the form
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(SUN)*N(ZUN)* = (SUN)*

) where” is the Kleene star operator anddenotes set union. That
Is, each production rule maps from one string ahisgis to
another, where the first string (the "head") camdaat least one
non-terminal symbol. In the case that the secomithgst(the
"body") consists solely of the empty string — itecontains no
symbols at all, it may be denoted with a speciginan (oftenA,
eoreg) in order to avoid confusion.

A distinguished symbe¢S € N that is, thestart symbol.

A grammar is formally defined as the tuph, &, P, S). Such a formal
grammar is often called eewriting system or a phrase structure
grammar in the literature.

3.1.2 The Semantics of Grammars

The operation of a grammar can be defined in teomeelations on
strings:

. given a grammaG = (N, X, P, S, the binary relatior=a
(pronounced as "G derives in one step") on strings
(XU N)’is defined by:
r=gyiff v, pge(EUN) z=uppNy=uguAp—q€P

. the relation=>'f;*(pronounced a& derivesin zero or more steps)
is defined as the reflexive transitive closure&«
T ¥ . .
. asentential formis a member O(E UnN ) that can be derived in

a finite number of steps from the start symi®lthat is, a

T * *
sentential form is a member { € (EUN)" | S=g"w} A
sentential form that contains no non-terminal syisl{oe. is a
member o ) is called asentence.

) the language of G, denoted EL(G), iIs defined as all those
sentences that can be derived in a finite numbstegfs from the

* v *
start symbok, that is, the sd @ € £" | S=¢"w},

Note that the grammaB = (N, X, P, S is effectively the semi-Thue

system(N Ux, P ) rewriting strings in exactly the same way; théyon
difference is that, we distinguish specifion-terminal symbols which

must be rewritten in rewrite rules, and are onkgiiested in rewritings
from the designated start symb8lto strings without non-terminal
symbols.
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Example 3.2

Note that for these examples, formal languages are specified using set-
builder notation.

Consider the gramméas wherdV = {5, B},E = {a,b, C}, S is the
start symbol, an@ consists of the following production rules:

1. S — aBSe
2. S — abe
3. Ba — aB
4, Bb — bb

This grammar defines the Iangua&ég) ={a"0"c"|n = Lwhere

a" denotes a string af consecutivea's. Thus, the language is the set of
strings that consist of one or mas, followed by the same number of
b's, and then by the same numbec'sf

Some examples of the derivation of string& () are:

5 =, abe

S =,aBSec =, aBabece = aaBbee =4 aabbee

S =, aBSc =, aBaBScc =, aBaBabece =5 aaB Babece =4 aaBaBbece
=1 aaa B Bbcce =4 aaaBbbece =4 aaabbbeee

(Note on notationt” =i Qreads "StringP generates strinQ by means
of productioni”, and the generated part is each time indicateldoid

type.)
3.2 Types of Grammars and Automata

In the field of Computer Science, there are fousidatypes of
grammars:

a. Type-0 grammars (unrestricted grammars) include famal
grammars.

b. Type-1 grammars (context-sensitive grammars) gémethe
context-sensitive languages.

C. Type-2 grammars (context-free grammars) generaeomtext-
free languages.

d. Type-3 grammars (regular grammars) generate thailaeg
languages.
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The difference between these types is that they nasreasingly strict
production rules and can express fewer formal laggs. Two
important types arecontext-free grammars (Type 2) andregular
grammars (Type 3). The languages that can be described suth a
grammar are calleccontext-free languages and regular languages,
respectively. Although much less powerful than strieted grammars
(Type 0), which can in fact express any language ¢an be accepted
by a Turing machine, these two restricted typegrainmars are most
often used because parsers for them can be efficiemplemented

Recently, there have been other types of classditaf grammars such
as analytical grammars identified.

3.2.1 Type-0: Unrestricted Grammars

These grammars generate exactly all languagesc#mbe recognised
by a Turing machine. These languages are also knawnthe
Recursively Enumerable Languages. Note that this is different from the
recursive languages which can deeided by an always-halting Turing
machine.

3.2.2 Type-1: Context-Sensitive Grammars

These grammars have rules of the faAB — ayBwith A being a
non-terminal and, f andy strings of terminals and non-terminals. The
stringsa and B may be empty, buy must be non-empty. The rule
S — €is allowed ifS does not appear on the right side of any rule. The
languages described by these grammars are exdkcthnguages that
can be recognied by a linear bounded automatoroadaterministic
Turing machine whose tape is bounded by a constaas the length of
the input.)

3.2.3 Type2: Context-Free Grammars

A context-free grammar is a grammar in which the left-hand side of
each production rule consists of only a single tesminal symbol. This
restriction is non-trivial; not all languages caa drenerated by context-
free grammars. Those that can are cattadext-free languages.

The language defined above is not a context-freguage, and this can
be strictly proven using the pummng lemma for eatffree languages,
but for example the Ianguadﬂ' b"|n > 1}(at least 1a followed by
the same number df's) is context-free, as it can be defined by the
grammarG, withV = {S} ¥ ={a, '5}, S the start symbol, and the
following production rules:
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1. S5 — aSh
2. S — ab

A context-free language can be recognise@(im) time by an algorithm
such as Earley's algorithm. That is, for every ernfree language, a
machine can be built that takes a string as inpdtdetermines i® (n°)
time whether the string is a member of the languageeren is the
length of the string. Further, some important stgseé the context-free
languages can be recognised in linear time usiner atlgorithms.

These are exactly all languages that can be resedgnby a non-
deterministic pushdown automaton. Context-free Uaggs are the
theoretical basis for the syntax of most prograng@mguages.

3.2.4 Type-3: Regular Grammars

In regular grammars, the left hand side is agaily @nsingle non-
terminal symbol, but now the right-hand side i®atlsstricted. The right
side may be the empty string, or a single termgyahbol, or a single
terminal symbol followed by a non-terminal symbblt nothing else.
(Sometimes a broader definition is used: one clamvdbnger strings of
terminals or single non-terminals without anythiregise, making
languages easier to denote while still defining #d@me class of
languages.)

The language defined above is not regular, but keguage

{a"0" [m,n > 1}(at least 1a followed by at least b, where the
numbers may be different) is, as it can be defingdhe grammais;

withV = {5.--4.-3}, = {a, '5}, S the start symbol, and the
following production rules:

S5 —aAd
A— aAd
A—bB
B — bB
B — ¢

All languages generated by a regular grammar camebegnised in
linear time by a finite state machine. Although, practice, regular
grammars are commonly expressed using regular €pres, some
forms of regular expression used in practice dostrittly generate the
regular languages and do not show linear recogpaitiperformance due
to those deviations. Regular languages are commasidy to define
search patterns and the lexical structure of progrmg languages.
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3.2.5 Analytic Grammars

Though there is a tremendous body of literaturgarsing algorithms,

most of these algorithms assume that the languagket parsed is
initially described by means of generative formal grammar, and that

the goal is to transform this generative grammay anworking parser.

Strictly speaking, a generative grammar does nanyway correspond
to the algorithm used to parse a language, andusmlgorithms have
different restrictions on the form of productioriesithat are considered
well-formed.

An alternative approach is to formalise the languag terms of an
analytic grammar in the first place, which moreedtty corresponds to
the structure and semantics of a parser for thguiage. Examples of
analytic grammar formalisms include the following:

. the Language Machine directly implements unrestticnalytic
grammars. Substitution rules are used to transfanmnput to
produce outputs and behaviour. The system canpatstuce the
Im-diagram which shows what happens when the rules of an
unrestricted analytic grammar are being applied.

) top-down parsing language (TDPL): a highly minireafnalytic
grammar formalism developed in the early 1970sttmlys the
behaviour of top-down parsers.

) link grammars: a form of analytic grammar designfet
linguistics, which derives syntactic structure byamining the
positional relationships between pairs of words.

o parsing expression grammars (PEGs): a more recent
generalisation of TDPL designed around the pralctica
expressiveness needs of programming language amgbileo
writers.

SELF ASSESSMENT TEST |

I In the context of Computer Science, what do youeustdnd by
the word ‘grammar’?
. Enumerate the components that make up the syntgeaofmars
iii. According to this course, list and describe theegypf grammars
Iv. Given the grammaB with following production rules, S» a | aS
| bS, determine whether the following strings cargbnerated by
the grammar
0] babaab (i) aaabbbab (iii) bbaaba
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3.3 Chomsky Hierarchy

The Chomsky hierarchy (occasionally referred to a€homsky—
Schitzenberger hierarchy is a containment hierarchy of classes of
formal grammars.

This hierarchy of grammars was described by Noamn@ky in 1956.

It is also named after Marcel-Paul Schitzenberder played a crucial
role in the development of the theory of formalgaages.

3.3.1 The Hierarchy

The Chomsky hierarchy consists of the levels ofrgnars as presented
in Section 3.2.1 through 3.2.4 above

Recursively enumerable

Context-sensitive

Context-free

Regular

Fig. 1: Set Inclusions Described by the Chomsky Hrarchy

Note that the set of grammars corresponding torsaai languages is
not a member of this hierarchy.

Every regular language is context-free, every cdrftee language, not
containing the empty string, is context-sensitivel a&every context-
sensitive language is recursive and every recursamguage is
recursively enumerable. These are all proper immhss meaning that
there exist recursively enumerable languages whieh not context-
sensitive, context-sensitive languages which are context-free and
context-free languages which are not regular.

The following table summarises each of Chomsky'sr ftypes of
grammars, the class of language it generatesypeedf automaton that
recognises it, and the form its rules must have.
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Table 1: Summary of the Languages, Automata and Pduction
Rules of Chomsky’s Four Types of Grammars

Production rules

Grammar Languages Automaton .

(constraints)
i a— 3
Type-0 Recursively Turing machine P(no
enumerable restrictions)
Linear-bounded
Context- non- A .

Type-1 sensitive deterministic aAf — o3
Turing machine
Non-

Type-2 Context-free | Geterministic 1 ,
pushdown '
automaton

A d—> a
Finite state an
Type-3 Regular automaton 1 aB

However, there are further categories of formaglaages that you can
read more about in the further reading.

3.4 Formal Language

A formal language is a set ofwords, i.e. finite strings ofletters,
symbols, or tokens. The set from which these letters are taken ikedal
the alphabet over which the language is defined. A formal |aagg! is
often defined by means of a formal grammar (aldedats formation
rules); accordingly, words that belong to a formahguage are
sometimes calledell-formed words (or well-formed formulas). Formal
languages are studied in computer science andisiticg) the field of
formal language theory studies the purely syntactical aspects of such
languages (that is, their internal structural patg

3.4.1 Words over an Alphabet

An alphabet, in the context of formal languages can be any set
although it often makes sense to use an alphaltle¢ insual sense of the
word, or more generally a character set such asliA&{phabets can
also be infinite; e.g. first-order logic is ofterpeessed using an alphabet
which, besides symbols such as -, V and parentheses, contains
infinitely many elements,, x;, X, ... that play the role of variables. The
elements of an alphabet are calledeatters.

10
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A word over an alphabet can be any finite sequenceriogsbf letters.
The set of all words over an alphabeis usually denoted by (using
the Kleene star). For any alphabet there is ong/ward of length 0, the
empty word, which is often denoted by e,or A. By concatenation one
can combine two words to form a new word, whosegtlems the sum of
the lengths of the original words. The result ohcatenating a word
with the empty word is the original word.

In some applications, especially in logic, the alpét is also known as
the vocabulary and words are known aermulas or sentences; this
breaks the letter/word metaphor and replaces itabyord/sentence
metaphor.

Therefore, dormal languageL over an alphabét is just a subset &,
that is, a set of words over that alphabet.

In computer science and mathematics, which do soally deal with
natural languages, the adjective "formal” is ofbemtted as redundant.
While formal language theory usually concerns ftsglth formal
languages that are described by some syntactidak, riahe actual
definition of the concept "formal language" is oaky above: a (possibly
infinite) set of finite-length strings, no more ness. In practice, there
are many languages that can be described by rslety as regular
languages or context-free languages. The notioa fdrmal grammar
may be closer to the intuitive concept of a "largpiaone described by
syntactic rules. By an abuse of the definition, atipular formal
language is often thought of as being equipped witbrmal grammar
that describes it.

Examples 3.3

a. The following rules describe a formal languabeover the
alphabet ={0, 1,2, 3,4,5,6,7,8,9, +, =}

b. Every nonempty string that does not contaior = and does not
start withO is inL.
The string0is inL.

C. A string containing= is inL if and only if there is exactly ore,
and it separates two valid stringsLin

d. A string containingt but not= is in L if and only if every+ in
the string separates two valid string4.in

e. No string is inL other than those implied by the previous rules.

Under these rules, the string3+4=555" is in L, but the string

"=234=+" is not. This formal language expresses natural

numbers, well-formed addition statements, and vVegled

addition equalities, but it expresses only whay tleek like (their

syntax), not what they mean (semantics). For imgtanowhere

—n

11
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in these rules is there any indication tlBatmeans the number
zero or thatr means addition.

g. For finite languages one can simply enumerate all-fermed
words. For example, we can describe a langulgas just
L ={"a", "b", "ab", "cba"}.
However, even over a finite (non-empty) alphabethsuas
¥ ={a, b} there are infinitely many words: "a", 'fabh "ababba”,
"aaababbbbaab”... Therefore formal languages arecdijpi
infinite, and describing an infinite formal lang@ags not as
simple as writingL = {"a", "b", "ab", "cba"}. Here are some
examples of formal languages:
L =%, the set ofll words over;
L = {a} = {a"}, wheren ranges over the natural numbers ahd a
means "a" repeatend times (this is the set of words consisting
only of the symbol "a");

h. the set of syntactically correct programmes in aemgi
programming language (the syntax of which is ugugdifined by
a context-free grammar);

I the set of inputs upon which a certain Turing maehalts; or

J. the set of maximal strings of alphanumeric ASClaretters on
this line, (i.e., the set {"the", "set", "of", "mawal”, "strings",
"alphanumeric”, "ASCII", "characters"”, "on", "this"line", "I"

I,
e,

3.4.2 Language-Specification Formalisms

Formal language theory rarely concerns itself wiginticular languages
(except as examples), but is mainly concerned thighstudy of various

types of formalisms to describe languages. Foants#, a language can
be given as:

) those strings generated by some formal grammar;

o those strings described or matched by a particoémular
expression;

. those strings accepted by some automaton, such Bsriag
machine or finite state automaton;

. those strings for which some decision procedure algorithm
that asks a sequence of related YES/NO questianglupes the
answer YES.

Typical questions asked about such formalisms delu
. What is their expressive power? (Can formalismiescribe every

language that formalisnY can describe? Can it describe other
languages?)

12



CIT 445 MODULE 1

. What is their recognisability? (How difficult is ito decide
whether a given word belongs to a language destribg
formalismX?)

) What is their comparability? (How difficult is itot decide
whether two languages, one described in formaksamd one in
formalismY, or inX again, are actually the same language?).

Surprisingly often, the answer to these decisiabl@ms is "it cannot be
done at all', or "it is extremely expensive" (wita precise

characterisation of how expensive exactly). Theeeféormal language
theory is a major application area of computabiltiyeory and

complexity theory. Formal languages may be classiin the Chomsky
hierarchy based on the expressive power of theleiggive grammar as
well as the complexity of their recognising autoomat Context-free

grammars and regular grammars provide a good caompeobetween
expressivity and ease of parsing, and are wideldus practical

applications.

3.4.3 Operations on Languages

Certain operations on languages are common. Tblgdas the standard
set operations, such as union, intersection, amdplment. Another
class of operation is the element-wise applicabibstring operations.

Example 3.4

a. Supposd.; andL, are languages over some common alphabet.

b. The concatenation L,L, consists of all strings of the formw
wherev is a string fronL; andw is a string fromi,.

(of Theintersection L, N L, of L; andL, consists of all strings which
are contained in both languages

d. The complement -L of a language with respect to a given
alphabet consists of all strings over the alphatiedt are not in
the language.

e. The Kleene star: the language consisting of alldsahat are
concatenations of O or more words in the originaguage;

Reversal:

f. Let e be the empty word, the¥ = e, and

g. for each non-empty wordv =x;...x, over some alphabet, let
WR = XX,

h.  then for a formal languade L® = {w" |w € L}.

String homomorphism

Such string operations are used to investigateuctoproperties of
classes of languages. A class of languages isctlosder a particular
operation when the operation, applied to languageke class, always
produces a language in the same class again. st@anaoe, the context-

13
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free languages are known to be closed under uommatenation, and
intersection with regular languages, but not closeder intersection or
complement.

3.4.4 Uses of Formal Languages

Formal languages are often used as the basis ¢berriconstructs
endowed with semantics. In computer science theyused, among
other things, for the precise definition of datanfiats and the syntax of
programming languages.

Formal languages play a crucial role in the devealept of compilers,

typically produced by means of a compiler, whichynize a single

programme or may be separated in tools like lexacalyser generators
(e.g. lex), and parser generators (e.g. yacc).eSfoemal languages
alone do not have semantics, other formal constraict needed for the
formal specification of programme semantics.

Formal languages are also used in logic and in dations of
mathematics to represent the syntax of formal theotogical systems
can be seen as a formal language with additionastoacts, like proof
calculi, which define a consequence relation "Tiégskefinition of
truth" in terms of a T-schema for first-order loggcan example diully
interpreted formal language; all its sentences have meaningsrhake
them either true or false.

SELF-ASSESSMENT EXERCISE Il

I Define formal languages.
. What is the relationship between grammar and lagea

3.5 Programming Languages

A compiler usually has two distinct components/uattie analysis part
that breaks up the source programme into constané @nd creates an
intermediate representation of the source programntethe synthesis
part that constructs the desired target programora the intermediate
representation.

A lexical analyser, generated by a tool like, identifies the tokens of
the programming language grammar, e.g. identibetseywords, which
are themselves expressed in a simpler formal laggguasually by
means of regular expressions. At the most basiceoal level, a
parser, generated by a parser generatoryidaz, attempts to decide if
the source programme is valid, that is if it bel®ng the programming
language for which the compiler was built. Of ceyrsompilers do
more than just parse the source code; they transtainto some

14
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executable format; because of this, a parser ysaatputs more than a
yes/no answer. Typically an abstract syntax trebichvis used in

subsequent stages of the compiler to eventuallgrgé® an executable
containing machine code that runs directly on thedWware, or some
intermediate code that requires a virtual machinexecute.

3.5.1 Formal Theories, Systems and Proofs

Symbols and
strings of symbols

Well-formed
formulas

Theorems

Fig. 2: Syntactic Divisions within a Formal System

Figure 2 shows the syntactic divisions within aral system. Symbols
and strings of symbols may be broadly divided imbasense andwell-
formed formulas. The set of well-formed formulas is dedd into
theorems and non-theorems. However, quite oftéormaal system will
simply define all of its well-formed formula as trems.

In mathematical logic, a formal theory is a sesentences expressed in
a formal language.

A formal system (also called dogical calculus or alogical system)
consists of a formal language together with a dixdei@pparatus (also
called a deductive system). The deductive apparafiysconsist of a set
of transformation rules which may be interpretedva$id rules of
inference or a set of axioms, or have both. A fdraystem is used to
derive one expression from one or more other esmes. Although a
formal language can be identified with its formylasformal system
cannot be likewise identified by its theorems. T¥awmal systems
FSand FS'may have all the same theorems and yet differ meso
significant proof-theoretic way (a formula A may & syntactic
consequence of a formula B in one but not anothreinktance).

15
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A formal proof or derivation is a finite sequencé well-formed
formulas (which may be interpreted as propositi@ah of which is an
axiom or follows from the preceding formulas in $eguence by a rule
of inference. The last sentence in the sequenaghsorem of a formal
system. Formal proofs are useful because theirréne® can be
interpreted as true propositions.

3.5.2 Interpretations and Models

Formal languages are entirely syntactic in natuné hay be given
semantics that give meaning to the elements of ldnguage. For
instance, in mathematical logic, the set of possifdrmulas of a
particular logic is a formal language, and an tetation assigns a
meaning to each of the formulas - usually, a tuatiue.

The study of interpretations of formal languagescalled formal
semantics. In mathematical logic, this is oftenaam terms of model
theory. In model theory, the terms that occur foranula are interpreted
as mathematical structures, and fixed compositiortalpretation rules
determine how the truth value of the formula candeaved from the
interpretation of its terms; model for a formula is an interpretation of
terms such that the formula becomes true.

4.0 CONCLUSION

In this unit you have been taken through a briefisten of formal
grammars, formal languages and automata becausei@él roles they
play in the development of compilers. You shoulddrenore on these
various topics before proceeding to the next ulmtthe subsequent
units, you will be learning about compiler constioie. Precisely, unit 2
of this module will introduce you to the concepicoimpilers.

5.0 SUMMARY

In this unit, you learnt that gormal grammar is a set of rules of a
specific kind, for forming strings in a formal lamgge. It has four
components that form its syntax and a set of oa®tthat can be
performed on it, which form its semantic.

Each type of grammars is recognised by a partidyjae of automata.

For example, type-2 grammars are recognised bydowah automata
while type-3 grammars are recognised by finiteestattomata.

16
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Parsing is the process of recognising an utterbpd®eaking it down to
a set of symbols and analysing each one againsgrdmamar of the
language.

According to Chomsky hierarchy, there are four sypegrammars. The
difference between these types is that they haceeasingly strict
production rules and can express fewer formal laggs.

A formal language is a set ofwords, i.e. finite strings ofletters,
symbols or tokens. The set from which these letters are taken ikdal
the alphabet over which the language is defined. A formal |aagg! is
often defined by means of a formal grammar.

Formal languages play a crucial role in the develept of compilers
and precise definition of the syntax of programmilagguages. A
formal system consists of a formal language together with a dedel
apparatus.

6.0 TUTOR-MARKED ASSIGNMENT

I Name the class of automata that are used in resiognihe
following grammars:

a. Regular grammars

b. Context-sensitive grammars
C. Type-0 grammars

d. Context-free grammars

. What are the use(s) of formal languages?

iii. What does it mean to say a class of languageosedlunder a
particular operation? Hence or otherwise supggsandL, are
languages over some common alphabet; state (wiphoppate
examples) the standard operations that can berpetbon the
languages.

Iv. From what you have learnt so far in this coursestify the
relevance of formal languages to computer prograrmgi

V. Briefly discuss the Chomsky hierarchy. What is ta&ationship
among the various types of grammars describedarCimomsky
hierarchy?
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UNIT 2 WHAT IS A COMPILER?
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Translators
3.2  Why do we need Translators?
3.3 Whatis a Compiler?
3.4  The Challenges in Compiler Development
3.5 Compiler Architecture

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous unit you were taken through som&cbaoncepts you
learnt in an earlier course. This was done becaaketheir
relevance/importance to your understanding ofdbisse.

In this unit you will be introduced to the conceptcompilers and their
importance to programme development.

Now let us go through your study objectives fos thinit.
2.0 OBJECTIVES
At the end of this unit, you should be able to:

define compiler and its importance in the prograngrworld
distinguish between a translator, compiler andhéerpreter
discuss the major challenges to be faced in buyldompilers
state the qualities of compilers

mention some of the knowledge required for buildiognpilers
describe the architecture of a compiler.

3.0 MAIN CONTENT
3.1 Translators

A translator is a programme that takes as inputogramme written in
one programming language ( the source language)paoduces as
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output a programme in another language (the objetarget language).
If the source language is a high-level languageh sas COBOL,

PASCAL, etc. and the object language is a low-léaefjuage such as
an assembly language or machine language, then asudmslator is
called aCompiler.

Executing a programme written in a high-level pesgming language is
basically a two-step process, as illustrated inufggl. The source
programme must first be compiled, that is, traeslainto object
programme. Then the resulting object programmedded into memory
and executed.

Source > Compiler Object
Programme Programme
Object Object Object
Programme ’ Programme ’ Programme
Fig. 1: Compilation and Execution

Certain other translators transform a programmiaggliage into a
simplified language, called intermediate code, Wwhean be directly
executed using a programme called an interpreteun. ¢an think of the
intermediate code as the machine language of atraabsomputer
designed to execute the source code.

There are other important types of translatorsidesscompilers. If the
source language is assembly language and the t#émgguage is
machine language, then the translator is calledsaambler. The term
preprocessor is used for translators that take programmes m lugh-

level language into equivalent programmes in amothigh level

language. For example, there many FORTRAN prepsacsshat map
‘structured’ versions of FORTRAN into conventiof@RTRAN.

3.2 Why Do We Need Translators?

We need translators to overcome the rigour of @nogmning in machine
language, which involves communicating directlyhwd computer in
terms of bits, register, and primitive machine apiens. As you have
learnt in earlier courses in this programme, a nmecHanguage
programme is a sequence of 0's and 1's, thereforegramming a
complex algorithm in such a language is terriblgides and prone to
mistakes.
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Translators free the programmer from the hassleprogramming in
machine language.

3.3 Whatis a Compiler?

A compiler is a programme that translates a source prograwnitien
in some high-level programming language (such &a)Jato machine
code for some computer architecture (such as thel IRentium
architecture). The generated machine code can baterxecuted many
times against different data each time.

An interpreter reads an executable source programme writterhigla
level programming language as well as data for phaggramme, and it
runs the programme against the data to produce gseswdts. One
example is the UNIX shell interpreter, which rungemating system
commands interactively.

You should note that both interpreters and compildike any other
programme) are written in some high-level prograngnianguage
(which may be different from the language they atcand they are
translated into machine code. For example, a Jatepreter can be
completely written in Pascal, or even Java. Therpreter source
programme is machine independent since it doeg®&oérate machine
code. (Note the difference betweagenerate and translated into
machine code.) An interpreter is generally sloweant a compiler
because it processes and interprets each statémanprogramme as
many times as the number of the evaluations of stesement. For
example, when a for-loop is interpreted, the stat@siinside the for-
loop body will be analysed and evaluated on evepplstep. Some
languages, such as Java and Lisp, come with bothterpreter and a
compiler. Java source programmes (Java classes.jaith extension)
are translated by the java compiler into byte-cditks (with .class
extension). The Java interpreter, java, calledJdnea Virtual Machine
(JVM), may actually interpret byte codes directly may internally
compile them to machine code and then executectiv.

Like was mention in section 3.1, compilers andriprteters are not the
only examples of translators. In the table belogvafew more:
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Table 1: Table of Translators, Source Language andlarget
Language

Source Language| Translator Target Language
LaTeX Text Formater PostScript
SQL database query optimizer  Query Evaluation Plan
Java javac compiler Java byte code
Java cross-compiler C++ code

: Natural Languag : :
English text Understanding semantics (meaning)
Regular .

: JLex scanner generator a scanner in Java

Expressions
BNF of a languageCUP parser generator a parser in Java

This course deals mainly with compilers for higldk programming
languages, but the same techniques apply to imtensror to any other
compilation scheme.

SELF-ASSESSMENT EXERCISE

I What is a translator?
. What is the importance of translators in prograngfin
iii. Distinguish among a translator, compiler and aerpreter.

3.4 The Challenge in Compiler Development

There are various challenges involved in develogimgpilers; some of
these are itemised below:

1) Many variations:
a. many programming languages (e.g. FORTRAN, C++,
Java)
b. many programming paradigms (e.g. object-oriented,
functional, logic)
C. many computer architectures (e.g. MIPS, SPARC,| Inte
alpha)
d. many operating systems (e.g. Linux, Solaris, Winsjow
2) Qualities of a compilerthese concerns the qualities that are
compiler must possess in other to be effective wseful. These
are listed below in order of importance:
a. the compiler itself must be bug-free
b. it must generate correct machine code
C. the generated machine code must run fast

22



CIT 445 MODULE 1

d. the compiler itself must run fast (compilation timeist be
proportional to programme size)

e. the compiler must be portable (i.e. modular, sufpgr
separate compilation)

f. it must print good diagnostics and error messages

g. the generated code must work well with existing
debuggers

h must have consistent and predictable optimisation.

3) In-depth knowledge:
Building a compiler requires in-depth knowledge of:
a. programming languages (parameter passing, variable
scoping, memory allocation, etc.)
b. theory (automata, context-free languages, etc.)

C. algorithms and data structures (hash tables, graph
algorithms, dynamic programming, etc.)
d. computer architecture (assembly programming)

e. software engineering.

You should try building a non-trivial compiler farPascal-like language
as the course project. This will give you a handsexperience on
system implementation that combines all this knolyée

3.5 Compiler Architecture

As earlier mentioned, a compiler can be viewed ggogramme that
accepts a source code (such as a Java programrdepearerates
machine code for some computer architecture. Sepihad you want to
build compilers fom programming languages (e.g. FORTRAN, C, C++,
Java, BASIC, etc.) and you want these compilemutoonm different
architectures (e.g. MIPS, SPARC, Intel, alpha,)eti. you do that
naively, you need to write"*m compilers, one for each language-
architecture combination.

The holly grail of portability in compilers is toodthe same thing by
writing n + m programmes only. You can do this by using a usiade
Intermediate Representation (IR) and you make the compiler a two-
phase compiler. An IR is typically a tree-like dateucture that captures
the basic features of most computer architecti®@es. example of an IR
tree node is a representation of a 3-address atgtny such asl —s; +

s, that gets two source addressss.ands,, (i.e. two IR trees) and
produces one destination addretsThe first phase of this compilation
scheme, called th&ont-end, maps the source code into IR, and the
second phase, called tiack-end, maps IR into machine code. That
way, for each programming language you want to dlengou write
one front-end only, and for each computer archiregtyou write one
back-end. So, totally you hawet m components.
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But the above ideal separation of compilation into phases does not
work very well for real programming languages amgdhdectures.
Ideally, you must encode all knowledge about thé&re® programming
language in the front end, you must handle all nmeclarchitecture
features in the back end, and you must design ¥Rsirin such a way
that all language and machine features are capprogzérly.

A typical real-world compiler usually has multiptdases (this will be
treated to greater details in unit 3 of this moddlais increases the
compiler's portability and simplifies retargetinhe front end consists
of the following phases:

. scanning: a scanner groups input characters into tokens

. parsing: a parser recognises sequences of tokens accotaling
some grammar and generafdistract Syntax Trees (ASTS)

. semantic analysis: performstype checking (i.e. checking whether

the variables, functions etc. in the source prognanare used
consistently with their definitions and with the nt¢uage
semantics) and translates ASTs into IRs

o optimisation: optimises IRs.

The back end consists of the following phases:

. instruction selection: maps IRs into assembly code

) code optimisation: optimises the assembly code using control-
flow and data-flow analyses, register allocatidn, e

) code emission: generates machine code from assembly code.

The generated machine code is written in an olfilectThis file is not
executable since it may refer to external symbslgely as system calls).
The operating system provides the following ughtito execute the
code:

. linking: A linker takes several object files and libraras input
and produces one executable object file. It retigefrom the
input files (and puts them together in the exedetalbject file)
the code of all the referenced functions/procedaresit resolves
all external references to real addresses. Thariéds include the
operating system libraries, the language-specibiaties, and,
maybe, user-created libraries.

) loading: A loader loads an executable object file into rogm
initialises the registers, heap, data, etc. andsstiae execution of
the programme.

. Relocatable shared libraries allow effective memosg when
many different applications share the same code.
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4.0 CONCLUSION

In this unit you have been taken through the didinj functions, and
architecture of a compiler in the next unit youlvie learning more
about the structure of a compiler and the variobasps involved in
compilation process

50 SUMMARY
In this unit, you learnt that:

. a translator is a programme that takes as inputogrgmme
written in one programming language ( the sourocguage) and
produces as output a programme in another lang(ibgeobject
or target language)

o a compiler is a programme that translates a source programme
written in some high-level programming languagecksas Java)
into machine code for some computer architectunehsas the
Intel Pentium architecture)

. aninterpreter reads an executable source programme written in a
high-level programming language as well as data tlus
programme, and it runs the programme against tha t@a
produce some results

o translators are needed to free the programmer fnenmassles of
programming in machine language and its attendatigms

. there are several challenges to be surmounted velaj@ng a
compiler.

6.0 TUTOR-MARKED ASSIGNMENT

I What are the challenges involved in developing dtarg®?

. Enumerate the essential qualities of a compiler.

Iii. Distinguish between the function of loader anchsr.

V. Outline some specific knowledge require for buitdancompiler.
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1.0 INTRODUCTION

In the previous unit you were introduced to theasgt of compilers and
their roles in programming.

In this unit you will learn about the structure afcompiler and the
various phases involved in the compilation process.

Now let us go through your study objectives fos thinit.
2.0 OBJECTIVES

At the end of this unit, you should be able to:

. list the various components of a compiler

) describe the activities that take place at eacth@fcompilation
phases

) explain cross compilation

) analyse hand implementation.
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3.0 MAIN CONTENT

3.1 The Structure of a Compiler

We can identify four components

1. Front end

2. Back-end

3. Tables of information

4. Runtime library

)] Front-End: the front-end is responsible for the analysis of the

structure and meaning of the source text. Thisiengually the
analysis part of the compiler. Here we have thetaxjic
analyser, semantic analyser, and lexical analyBeis part has
been automated.

i) Back-End: The back-end is responsible for generating thestarg
language. Here we have intermediate code optimisede
generator and code optimiser. This part has bemated.

i)  Tables of Information: It includes the symbol-table and there
are some other tables that provide informationrdudompilation
process.

Iv)  Run-Time Library: Itis used for run-time system support.

Languages for Writing Compiler

a. Machine language

b. Assembly language

C. High level language or high level language with tstrapping
facilities for flexibility and transporting.

3.2 Phases of a Compiler

A compiler takes as input a source programme andyaes as output
an equivalent sequence of machine instructionss ocess is so
complex that it is not reasonable, either from gidal point of view or
from an implementation point of view, to considée tcompilation
process as occurring in one single step. For #asan, it is customary
to partition the compilation process into a seaesub-processes called
phases as shown in the figure 1 below. A phaselagjiaally cohesive
operation that takes as input one representatidimectource programme
and produces as output another representation.

28



CIT 445 MODULE 1

3.2.1 The Lexical Analyser

this is the first phase and it is also referredddheScanner. It separates
characters of the source language into groups ldwtally belong
together; these groups are caltekens. The usual tokens are keywords,
such as DO or IF, identifiers such as X or NUM, rap@ symbol such
as <= or +, and punctuation symbol such as parsether commas. The
output of the lexical analyser is a stream of takemhich is passed to
the next phase, thgyntax analyser or parser. The tokens in this stream
can be represented by codes which we may regardeggers. Thus DO
might be represented by 1, + by 2, and “identifigy”3. In the case of a
token like “identifier’, a second quantity, tellingvhich of those
identifiers used by the programme is representedhisy instance of
token “identifier” is passed along with the integede for “identifier”.
For Example, in the FORTRAN statement:

IF (5 .EQ. MAX) GO TO 100
we find the following eight tokens: IF; (; 5; .EQIAX; ); GOTO; 100.

Source Programme

l

Lexical Analysis

A 4

Syntax Analysis

\ 4

Generation

Table Management Intermediate Code Error Handling

A 4

Code Optimisation

\ 4

Code Generation

] ) Targe$Programme
Fig. 1: Phases of a Compiler
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3.2.2 The Syntax Analyser

This groups tokens together into syntactic strestufFor example, the
three tokens representing A+B might be grouped iatsyntactic
structure called aexpression. Expressions might further be combined to
form statements. Often the syntactic structure mamegarded as a tree
whose leaves are the tokens. The interior nodetheftree represent
strings of tokens that logically belong togetheheTparser has two
functions. It checks that the tokens appearingsnnput, which is the
output of the lexical analyser, occur in pattetmet are permitted by the
specification for the source language. It also isgsoon the tokens a
tree-like structure that is used by the subseqpleases of the compiler.

3.2.3 The Intermediate Code Generator

This uses the structure produced by the syntaxysemalto create a
stream of simple instructions. Many styles of intediate code are
possible. One common style uses instructions with operator and a
small number of operands. These instructions with operator and a
small number of operands. These instructions canidaged as simple
macros like the macro ADD2. the primary differentetween
intermediate code and assembly code is that teenm&diate code need
not specify the registers to be used for each opera

3.2.4 Code Optimisation

This is an optional phase designed to improve rtherinediate code so
that the ultimate object programme runs faster @nidkes less space.
Its output is another intermediate code programina¢ does the same
job as the original, but perhaps in a way that sdwvee and/or space.

3.2.5 Code Generation

This is the final phase and it produces the olgede by deciding on the
memory locations for data, selecting code to aceash datum, and
selecting the registers in which each computatisnta be done.
Designing a code generator that produces trulyciefii object

programmes is one of the most difficult parts @oapiler design, both
practically and theoretically.
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3.2.6 The Table Management or Bookkeeping

This portion of the compiler keeps track of the eamused by the
programme and records essential information abaah,esuch as its
type (integer, real, etc.). The data structure usedrecord this
information is called aymbol table.

3.2.7 The Error Handler

This is invoked when a flaw in the source programmeletected. It
must warn the programmer by issuing a diagnostid adjust the
information being passed from phase to phase doetieh phase can
proceed. It is desirable that compilation be conegleon flawed
programmes, at least through the syntax-analysasglso that as many
errors as possible can be detected in one conguilaBoth the table
management and error handling routines interadt walit phases of the
compiler

SELF-ASSESSMENT EXERCISE

I List the various phases of the compilation process.
. Why is error handler important in a compiler?
iii. Which is the first phase of the compiler?

3.2 Passes

In an implementation of a compiler, portions of @mremore phases are
combined into a module called a pass. A pass reahdssource
programme or the output of the previous pass, makes

transformations specified by its phases, and wrii@fput into an

intermediate file, which may then be read by a sghent pass. If
several phases are grouped into one pass, theopim@tion of the
phases may be interleaved, with control alternatamgyong several
phases.

The numbers of passes, and the grouping of phasgespasses, are
usually dictated by a variety of considerationsnggane to a particular
language and machine, rather than by any matheshadiotimality
criteria.

The structure of the source language has stromgtedh the number of
passes. Certain languages require at least twepdssgenerate code
easily. For example, languages such as PL/I or ALGB allow the
declaration of a name to occur after uses of thehen Code for
expression containing such a name cannot be gedecanveniently
until the declaration has been seen.
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3.3 Reducing the Number of Passes

Since each phase is a transformation on a streafatafrepresenting an
intermediate form of the source programme, you maynder how
several phases can be combined into one pass witheueading and
writing of intermediate files. In some cases ongspgaroduces its output
with little or no memory of prior inputs. Lexicahalysis is typical. In
this situation, a small buffer serves as the iat@fbetween passes. In
other cases, you may merge phases into one passielays of a
technique known as ‘back patching’. In general rihthe output of a
phase cannot be determined without looking at #meainder of the
phase’s input, the phase can generate output wltts* which can be
filled in later, after more of the input is read.

3.4 Cross Compilation

Consider porting a compiler for C written in C fran existing machine
A to an existing machine B.

Steps to Cross Compilation
a. Write new back-end in C to generate code for compit

b. Compile the new back-end and using the existingo@gler
running on computer A generating code for compBter

C. We now have a compiler running on computer A antegating
code for computer B.

d. Use this new compiler to generate a complete cangdibr

computer B. In other words, we can compile the nempiler on
computer A to generate code for computer B

e. We now have a complete compiler for computer B thiltrun
on computer B.

f. Copy this new compiler across and run it on compBtéthis is
cross Compilation).

3.5 Operations of a Compiler

As you have seen in section 3.1 of this unit, theration of a compiler
includes:

. The lexical analysis ( or scanning)

. The syntax analysis Front-end
. Semantic analysis

o Intermediate code optimisation

o Code generation Back-end

. Code optimisation
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In this course, we will concern ourselves with rhoshe front-end i.e.
those parts of compilation that can be automatedttwhre lexical,
syntax and probably semantic analyses.

3.6 T-Diagrams

They are used to describe the nature of a commlatit is usually in the
form of T and is diagrammatically represented dsgiure 2 below:

Compiler

Source Language Target Language

Language

Implementation

Fig. 2: T-Diagrams

4.0 CONCLUSION

In this unit you have been taken through the simect phases and
functions of each phase of a compiler. In the naxt you will be

learning more about the compilation process; sigchrass compilation
and hand implementation.

5.0 SUMMARY

In this unit, you learnt that:

) the compilation process can be partitioned interes of sub-
processes called phases
o several phases can be grouped into one pass,tdbehaperation

of the phases may be interleaved, with controfradténg among
several phases

o the numbers of passes, and the grouping of phasepasses, are
usually dictated by a variety of considerationsnggane to a
particular language and machine

) the operations of a compiler can be classified ini: front-end
comprising the lexical analysis ( or scanning), thgntax
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analysis, and semantic analysis and the back-engrising of
intermediate code optimisation, code generationd aode
optimisation.

6.0 TUTOR-MARKED ASSIGNMENT

I Describe what happens at each phase of the cormpilattocess.

. Distinguish between the intermediate code genegatdrthe code
generator phase of the compiler.

iii. Which of the phases of the compiler is optional?

V. In your own opinion would error handler be part ah
interpreter?
V. Enumerate the steps in cross compilation.
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MODULE 2 LEXICAL ANALYSIS

Unit 1 The Scanner

Unit 2 Hand Implementation of Lexical Analyser
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Unit 4 Implementing a Lexical Analyser

UNIT 1 THE SCANNER
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1.0 INTRODUCTION

As you learnt in unit 3 of the previous module, tluaction of the
lexical analyser is to read the source programme ,character at a time,
and translate it into a sequence of primitive urctled tokens.
Keywords, identifiers, constants, and operatorseaeanples of tokens.

This module, starting from this unit, exposes youthe problem of
designing and implementing lexical analysers.

Now let us go through your study objectives fos thinit.
2.0 OBJECTIVES
At the end of this unit, you should be able to:

state the role of a compiler

state the need of a compiler
define the scanner

state the functions of the scanner.
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3.0 MAINCONTENT

3.1 TheRoleof theLexical Analyser

The lexical analyser could be a separate passinglés output on an
intermediate file from which the parser would thake its input. But,

more commonly, the lexical analyser and the paasertogether in the
same pass; the lexical analyser acts as a subeoutioo-routine, which
is called by the parser whenever it needs a neentokhis organisation
eliminates the need for the intermediate file. s tarrangement, the
lexical analyser returns to the parser a representtor the token it has
found. The representation is usually an integerecidbdhe token is a
simple constructs such as left parenthesis, conameglon; it is a pair

consisting of an integer code and a pointer tobéetd the token is a
more complex element such as an identifier or @mtstThe integer
code gives the token type, the pointer points éovildue of that token.

3.2 TheNeed for Lexical Analyser

The purpose of splitting analysis of the sourcegpmme into two
phases, lexical analysis and syntactic analysigy smplify the overall
design of the compiler. This is because it is eatie specify the
structure of a token than the syntactic structufe tlee source
programme. Therefore, a more specialised and nibogeat recogniser
can be constructed for tokens than for syntacticsires.

By including certain constructs in the lexical mttihan the syntactic
structure, we can greatly simplify the design & $lyntax analyser.

Lexical analyser also performs other functions sastkeeping track of
line numbers, producing an output listing if nee@gs stripping out
white space (such as redundant blanks and tabg), deteting
comments.

SELF- ASSESSMENT EXERCISE
I Enumerate the functions performed by the lexicalyser.

. What is the advantage of implementing the lexicalgser and
the parser in the same pass?

3.3 The Scanner
A scanner groups input characters into tokens. For examptbe input

Is:
X = x*(b+1);
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then the scanner generates the following sequdrio&ens
id(X)

id(x)

*

(

id(b)

+
num(1)

)

where id(x) indicates the identifier with name xpf@gramme variable
in this case) and num(1) indicates the integer dchEtime the parser
needs a token, it sends a request to the scanmen, The scanner reads
as many characters from the input stream as gégssary to construct a
single token. The scanner may report an error duscanning (e.g.
when it finds an end-of-file in the middle of aisty). Otherwise, when a
single token is formed, the scanner is suspendededarns the token to
the parser. The parser will repeatedly call thensea to read all the
tokens from the input stream or until an error &tedted (such as a
syntax error).

Tokens are typically represented by numbers. Famge, the token *
may be assigned number 35. Some tokens require sexir@a
information. For example, an identifier is a toksn it is represented by
some number) but it is also associated with a gttimat holds the
identifier name. For example, the token id(x) iscasated with the
string, "Xx". Similarly, the token num(1) is assdewith the number, 1.
Tokens are specified by patterns, callegjular expressions. For
example, the regular expression [a-z][a-zA-Z0-9]&cagnises all
identifiers with at least one alphanumeric lettenoge first letter is
lower-case alphabetic.

A typical scanner:

. recognises thé&eywords of the language (these are the reserved
words that have a special meaning in the langusigeh as the
word class in Java);

o recognises special characters, such as ( andyjpops of special
characters, such as := and ==;

. recognises identifiers, integers, reals, decinsifgs, etc;

) ignores whitespaces (tabs and blanks) and comments;

o recognises and processes special directives (sutteatinclude

"file" directive in C) and macros.
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A key issue is speed. One can always write a neta@ner that groups
the input characters into lexical words (a lexieard can be either a
sequence of alphanumeric characters without whateesp or special
characters, or just one special character), and thes to associate a
token (i.e. number, keyword, identifier, etc.) tast lexical word by
performing a number of string comparisons. This obees very
expensive when there are many keywords and/or rspagial lexical
patterns in the language. In this unit you willrreaow to build efficient
scanners using regular expressions and finite attamThere are
automated tools callestanner generators, such adlex for C andJLex
for Java, which construct a fast scanner autonibtiGccording to
specifications (regular expressions). You will ffiesarn how to specify a
scanner using regular expressions, then the undgrltheory that
scanner generators use to compile regular expressitto efficient
programmes (which are basically finite state magsinand then you
will learn how to use a scanner generator for Jeated JLex.

40 CONCLUSION

In this unit you have been taken through the furelstal concepts and
importance of the lexical analyser. In the next you will be learning
more about the workings and implementation of eclbanalyser

50 SUMMARY

In this unit, you learnt that:

. the lexical analyser could be a separate passnglés output on
an intermediate file from which the parser woulérthtake its
input

o when the lexical analyser and the parser are tegaththe same

pass, the lexical analyser acts as a subroutige-ooutine, which
is called by the parser whenever it needs a neantok

o the analysis of the source programme is usuallit 8gb two
phases, lexical analysis and syntactic analysissinglify the
overall design of the compiler

) a scanner groups input characters into tokens

o the key issue in the design of a scanner is speed.

6.0 TUTOR-MARKED ASSIGNMENT
I. What is a scanner?
il Enumerate the functions of the scanner.

iii. Write a naive scanner that groups the input characof a
compiler into lexical words.

38



CIT 445 MODULE 2

7.0 REFERENCESFURTHER READING

Aho, A. V. & Ullman, J. D. (1977)Principles of Compiler Design.
Addison-Wesley Publishing Company. ISBN 0-201-00022

Chomsky, Noam & Schitzenberger, Marcel P. (196Bhe"algebraic
Theory of Context Free Languages." In: P. BraffétD.
Hirschberg. Computer Programming and Formal Languages.
Amsterdam: North Holland. pp. 118-161.

Davis, Martin E., Sigal, Ron & Weyuker, Elaine J1994).
Computability, Complexity, and Languages. Fundamentals of
Theoretical Computer Science. Boston: Academic Press,
Harcourt, Brace. pp. 327. ISBN 0122063821.

Grzegorz Rozenberg & Arty Salomaa (199Handbook of Formal
Languages. Volume I-lll, Springer. ISBN 3 540 61486 9.

John, E. Hopcroft & Jeffrey D. Ullman (1979)ntroduction to
Automata Theory, Languages, and Computation. Addison-
Wesley Publishing, Reading Massachusetts. ISBNI3GAD880-
X.

Michael, A. Harrison (1978)ntroduction to Formal Language Theory.
Addison-Wesley.

39



CIT 445 PRINCIPLES AND TECHNIQUES OF COMPILERS

UNIT 2 HAND |IMPLEMENTATION OF LEXICAL
ANALYSER

CONTENTS

1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1 Lexical Analysis
3.2  Construction of Lexical Analyser
3.2.1 Hand Implementation
3.2.1.1 Input Buffering
3.2.1.2 Transition Diagram (TD)
3.2.1.3How to Handle Keywords
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Having learnt about the role and need of a lexmmahlyser in the
previous unit, in this unit we will go on to dissugarious methods of
constructing and implementing a lexical analyser.

Now let us go through your study objectives fos thinit.

20 OBJECTIVES

At the end of this unit, you should be able to:

. list the various methods of constructing a lexaadlyser

) describe the input buffering method of constructemgexical
analyser

) explain the transition diagram method of constngta lexical
analyser

) state the problems with hand implementation methafd
constructing lexical analysers

) construct transition diagrams to handle keywordeniifiers and
delimiters.
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3.0 MAINCONTENT

3.1 Lexical Analysis

In lexical analysis, we read the source programhagacter by character
and converge them to tokens.

A token is the smallest unit recognisable by thengiter. There are
basically a few numbers of tokens that are receghi§&enerally, we
have four classes of tokens that are usually rasedrand they are:

Keywords
Identifies

Constants
Delimiters

PoONE

3.2 Construction of Lexical Analyser
There are 2 general ways to construct lexical aealy

o Hand implementation
) Automatic generation of lexical analyser

3.2.1 Hand Implementation

There are two ways to use hand implementation:

) Input Buffer approach
o Transitional diagrams approach
3211 | nput Buffering

The lexical analyser scans the characters of taeee@rogramme one at
a time to discover tokens. Often, however, manyaittars beyond the
next token may have to be examined before the toé&eh itself can be
determined. For this and other reasons, it is dekrfor the lexical
analyser to read its input from an input bufferefiédhare many schemes
that can be used to buffer input but we shall disconly one of these
schemes here. Figure 1shows a buffer divided wwto Halves of, say,
100 characters. One pointer marks the beginningheftoken being
discovered. We view the position of each pointebasn between the
character last read and the character next to dwk ita practice, each
buffering scheme adopts one convention; either mt@ois at the
symbol last read or the symbol it is ready to read.
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T |

token lookahead
beginning pointer

Fig. 1. I nput Buffer

The distance which the lookahead pointer may haveatvel past the
actual token may be large. For example, in a Ptdgmmme we may
see

DECLARE (ARG1, ARG2... AR@)

) without knowing whether DECLARE is a keyword or array
name until we see the character that follows thgktnparenthesis.
In either case, the token itself ends at the sedéndf the
lookahead pointer travels beyond the buffer halfwihich it
began, the other half must be loaded with the meracters
from the source.

Since the buffer of Figure 1 is of limited sizeetd is an implied
constraint on how much lookahead can be used b#feraext token is
discovered. For example, in Figure 1, if the loadauh travelled to the
left half and all the way through the left halfttee middle, we could not
reload the right half, because we would lose chiara¢hat had not yet
been grouped into tokens. While we can make thé&bldrger if we

choose or use another buffering scheme, we cagnote the fact that
lookahead is limited.

By using buffer, we mean that you read part oftthé into the buffer
(temporary storage) and then begin to scan by ugeig character
(GETCHAR) to scan and you form the token as yoalgag.

e.g.

real x, y, z

integer r,

read (6, 7) (a (i), | = 1, 20)

You can prepare a buffer of 80 characters and tteadirst line to it and
begin to scan, and then go to the next line.
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Problems associated with hand implementation

Where the language allows keyword to be used ademtifier e.g. DC:
in PL2

Where the language does not recognise blanks apaaator, you will
not stop scanning until you reach a comma. LIkE@RTRAN: using
hand implementation for real x, y, z; you takeafr& as an identifier.

3.2.1.2 Transition Diagram (TD)

One way to begin the design of any programme isldecribe the
behaviour of the programme by a flowchart. This rapph is
particularly useful when the programme is a lexiaahlyser, because
the action taken is highly dependent on what chardtas been seen
recently. Remembering previous characters by theitipp in a
flowchart is a valuable too, so much so that a igfised kind of
flowchart for lexical analysers, callédansition diagram, has evolved.
In a TD, the boxes of the flowchart are drawn asles and called
states. The states are connected by arrows, cadtieggs. The labels on
the various edges leaving a state indicate thetinparacters that can
appear after that state.

In TD, we try to construct a TD for each token, éimeh link up.

For example, the TD for keywords and identifiers #re same. See in
Figure 2 below an automation you can use for antifier

Letter or digit Final

R ‘/state
letter delimiter

Fig. 2: Transition Diagram for Identifier

If the automaton sees a letter in state O, it goestate 1, if it sees a
letter or digit in state 1 it remains there. But ifees a delimiter while in
state 1, it moves to state 2, which is the finatest

3.2.1.3 How to Handle Keywords

There are two ways we can handle keywords.

We can use the transition diagrams for the idesntéind when you get a
delimiter, you look up a dictionary (that contaiaé the keywords) to

see if the identifier you are seeing is a keywarda.
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Another way is to bring all the keywords togetheri TD i.e. construct
a TD for each keyword.

E.g. Suppose the following keywords exist in a laage: BEGIN, END,
IF, THEN, ELSE. You can construct a single TD fdir& them and
then you have something like the diagram in Figubelow.

blank
B E G | N or
Start @_'@_'@_'@_J: ) return(1,)
PR H N

blank

return(5,)

return(4,)

ONONOMD
Fig. 3: Transition diagram for keywords

NOTE:
Here, we make the keywords the basis of our saahgreas in the first
method, we make the identifiers the basis of oarde

We are also assuming here that the keyword carenttdbeginning of
an identifier. Therefore, if it sees something IIKHENPAP”, it will
break it into two like “THEN PAP” because you aret mllowed to use
keywords as the beginning of an identifier.

For delimiters especially relational operators, y@un also construct a
TD like the one above.
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SELF -ASSESSMENT EXERCISE

I What are the different ways to construct a lexaalyser?
. State the problems with hand implementation.

40 CONCLUSION

In this unit you have been taken through hand implatation method of
lexical analyser construction. This method can agied out in two
ways: input buffer and transition diagram. Duehe attendant problems
of this method, there are now tools that are usexlitomatic generation
of lexical analyser. This will be discussed in tatait of this module.

50 SUMMARY

In this unit, you learnt that:

. the lexical analyser could be constructed by usimgnd
implementation or automatic generation

o hand implementation can be done by input buffedngransition
diagram

) hand implementation has some attendant problems

) using TD, keywords can be handled two ways.

6.0 TUTOR-MARKED ASSIGNMENT

I. Describe how to construct a TD.
il How is a TD similar to a flowchart?
iii. Construct a TD to recognise relational operators.
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UNIT 3 AUTOMATIC GENERATION OF LEXICAL
ANALYSER

CONTENTS

1.0 Introduction
2.0  Objectives
3.0 Main Content
3.1 Automatic Generation of Lexical Analyser
3.2. Language Theory Background
3.2.1 Definitions
3.2.2 Operations on Strings
3.2.3 Operations on Languages
3.3 Regular Expressions (RES)

3.3.1 Definition of a Regular Expression and the

Language it Denotes

3311 Basis
3.3.1.2 Induction
3.3.1.3 Extensions of Regular Expressions

3.3.2 Lexregular Expressions
3.4  Tokens/Patterns/Lexemes/Attributes
3.5 Languages for Specifying Lexical Analyser
3.5.1 Specifying a Lexical Analyser with LEX
3.5.2 LEX Source
3.5.3 Steps in LEX Implementation
2.5.4 Sample LEX programmes
3.5.5 Creating a Lexical Processor with LEX
3.5.6 LEX History
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
In the previous unit you learnt about hand impletagon and the two
ways it can be carried out. You also learnt abbetgroblems with hand

implementation.

In this unit, we will discuss regular expressionsd ahe automatic
generation of lexical analysers.

Now let us go through your study objectives fos thinit.
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20 OBJECTIVES

At the end of this unit, you should be able to:

o define regular expressions (Res)

. define basic terms such as tokens, patterns, lexam attributes

. distinguish between normal regular expressions lardegular
expressions

. Construct Lex-style regular expressions for pagtern

o Write the language that is denoted by any reguWpressions

. describe tools for generating lexical analysers.

3.0 MAINCONTENT
3.1 Automatic Generation of Lexical Analyser

There are tools that can generate lexical anafgsgrou. But before we
begin the discussion of the design of a progranongénerating lexical
analysers, you will first be introduced to a veseful notation, called
regular expressions, suitable for describing tokens

3.2 Language Theory Background
3.2.1 Definitions

Symbol: (character, letter)

Alphabet: a finite nonempty set of characters. E.g. {0, ASCII,
Unicode

String (sentence, word): a finite sequence of charaghessibly empty.
Language: a (countable) set of strings, possibly empty.

3.2.2 Operationson Strings

I concatenation
. exponentiation
a.  Xis the empty string.
b. X=X fori>0
iii. prefix, suffix, substring, subsequence

3.2.3 Operationson Languages
I union
. concatenation

iii. exponentiation
a. L%is { £ }, even wherL is the empty set.
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b. L'=L",fori>0
V. Kleene closure
a L*=L°ul'u..
V. Note thatL* always contains the empty string.

3.3 Regular Expressions (RES)

Regular expressions are a very convenient form epgresenting
(possibly infinite) sets of strings, calledgular sets. For example, the
RE (@] b)*aa represents the infinite set §a", "aaa", "baa", "abaa", "},
which is the set of all strings with charactarandb that end iraa.

Many of today's programming languages use reguk@ressions to
match patterns in strings. E.g., awk, flex, lexyajajavascript, perl,

python.

3.3.1 Definition of a Regular Expression and the Language it
Denotes

3.3.1.1 Basis

. ¢ is a regular expression that denotes}H{
. A single charactea is a regular expression that denotes}{

3.31.2 I nduction

Suppose ands are regular expressions that denote the languages
and LG):

()|(s) is a regular expression that denotes L L(s)
(r)(s) is a regular expression that denote IL((s)
(r)* is a regular expression that denotep)t (

(r) is a regular expression that denoteg.L(

We can drop redundant parenthesis by assuming:

o the Kleene star operator * has the highest preaedand is left
associative

. concatenation has the next highest precedence anteft
associative

. the union operator | has the lowest precedence isnkgft
associative

E.g., under these rules r|s*t is interpreted d€<)j(t)).
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3.3.13 Extensions of Regular Expressions
. Positive closurer+ =rr*

. Zero or one instance? =¢ |r

. Character classes:

a. [abc]=a|b|c
b. [0-9]=02]|2]...]9

We can freely put parentheses around REs to dethateorder of
evaluation.

For example, 4] b)c. To avoid using many parentheses, we use the
following rules: concatenation and alternation associative (i.eABC
means AB)C and is equivalent t&\(BC)), alternation is commutative
(i.e., Al B = B| A), repetition is idempotent (i.eA” = A), and
concatenation distributes over alternation (agh)c = ac| bc).

For convenience, we can give names to REs so weetanto them by
their name. For example:

for —keyword = For

Letter =la-zA-Z]

digit =[0-9]

identifier = letter (letter | digit)’

Sign =)=

integer =sign (0 | [1 - 9pligit)

decimal = integer . digit’

real = (integer | decimal ) E sign digit”

There is some ambiguity though: If the input inesdhe characters
for8, then the first rule (fofor-keyword) matches 3 characters (for), the
fourth rule (foridentifier) can match 1, 2, 3, or 4 characters, the longest
being for8. To resolve this type of ambiguities,entthere is a choice of
rules; scanner generators choose the one that esattle maximum
number of characters. In this case, the chosen iaulthe one for
identifier that matches 4 characters (for8). This disambigoatule is
called thelongest match rule. If there are more than one rule that match
the same maximum number of characters, the rukdlirst is chosen.
This is therule priority disambiguation rule. For example, the lexical
word for is taken as #r-keyword even though it uses the same number
of characters as an identifier.

Today regular expressions come in many differermmhfo
a. The earliest and simplest are the Kleene regularession
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b. Awk and egrep extended grep's regular expressiatis wion
and parentheses.

C. POSIX has a standard for Unix regular expressions.
d. Perl has an amazingly rich set of regular expressperators.
e. Python uses pcre regular expressions.

SELF-ASSESSMENT EXERCISE

I What language is denoted by the following reguiqressions?

a. (a*b*)*

b. a(alb)*a

C. (aalbb)*((ab|ba)(aa|bb)*(ablba)(aalbb)*)*
d. a(baja)*

e. ab(a|b*c)*bb*a

3.3.2 Lex Regular Expressions

The lexical analyser generators flex and lex ustergled regular
expressions to specify lexeme patterns making uken® The
declarative language Lex has been widely usedreating many useful
lexical analysis tools including lexers. The faliag symbols in Lex
regular expressions have special meanings:

\AS[]F 2 {3 ()
To turn off their special meaning, precede the syirbly \. Thus,

\* matches *.
\\ matches \.

Examples of Lex regular expressions and the sttimgyg match are:

"a.*b" matches the string a.*b.

. matches any character except a newline.

A matches the empty string at the beginning ohe. li
$ matches the empty string at the end of a line.
[abc] matches an a, or a b, or ac.

[a-z] matches any lowercase letter between a and z.
[A-Za-z0-9] matches any alphanumeric character.
[*abc] matches any character except an a, or adco
[*0-9] matches any nonnumeric character.

10. a* matches a string of zero or more a's.

11. a+ matches a string of one or more a's.

12. a? matches a string of zero or one a's.

13. a{2,5} matches any string consisting of two to fe/s.
(@) matches an a.

©CooNOOA~WNE
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14. a/b matches an a when followed by a b.
15. \n matches a newline.
16. \t matches a tab.

Lex chooses the longest match if there is more gmmatch. E.g., ab*
matches the prefix abb in abbc.

3.4 Tokens/Patter ng/L exemes/Attributes

A token is a pair consisting of a token name and an ogliatiribute
value. e.g., <id, ptr to symbol table>, <=>

Some regular expressions corresponding to tokens:

o For the token keyword, we can say

. Keyword = BEGIN| END | IF| THEN | ELSE
. Identifier = letter (letter digit)*

. Constant = digit

° Relop:<i<:|<>|>|>:

A pattern is a description of the form that the lexemes mgkip a
token in a source program may have. We will useleggexpressions to
denote patterns. e.g., identifiers in C: [ _A-Za-A{Za-z0-9]*

A lexeme is a sequence of characters that matdiegpattern for a
token, e.g.,

. identifiers: count, x1, i, position
. keywords: if
. operators: =, ==, I=, +=

An attribute of a token is usually a pointer to the symbol ¢adahtry that
gives additional information about the token, sashts type, value, line
number, etc.

3.5 Languagesfor Specifying Lexical Analyser
There are tools that can generate lexical analyZarsexample of such

tools is LEX which is discussed in the next secti¥ou are to read
about other tools in your further reading.
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3.5.1 Specifyinga Lexical Analyser with Lex

Lex is a special-purpose programming language foeatig
programmes to process streams of input charattexshas been widely
used for constructing lexical analysers. A Lex pamgme has the
following form:

declarations

%%

translation rules
%%

auxiliary functions

The declarations section can contain declaratiénsaables, manifest
constants, and regular definitions. The declaratieection can be
empty. The translation rules are each of the form

pattern {action}
Each pattern is a regular expression which mayregelar definitions
defined in the declarations section. Each actianfimgment of C-code.
The auxiliary functions section starting with trecsnd %% is optional.
Everything in this section is copied directly teethle lex.yy.c and can
be used in the actions of the translation rules.

LEX ] LEX - Lexical

source compiler Analszer L

Input Lexical | Sequence of
—>

text Analyser tokens

Fig. 1 Theroleof LEX
The input to the LEX compiler is called LEX souraed the output of

LEX compiler is called lexical analyser i.e. the X Eompiler generate
lexical analyser.
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3.5.2 LEX Source

LEX source is an input that states the characiesistf the lexical
analyser for the language. In actual fact, it @Wéfine the tokens for the
language. LEX source differs from language to |aaggu

The LEX source programme consists of two parts: eyugnce of
auxiliary definitions followed by a sequence ofnskation rules.

1) The auxiliary definitions. are statements of the form:

D]_:R]_
D2:R2
Dn=R,

Where each Dis a distinct name and; & a regular expression
whose symbols are chosen from the alphabets datigriage

Di =2U{ Dy, D, ..., D4} i.e. the characters of previously
defined names (Note that what you have not defieadier
cannot be used later)

2) The Trangdation Rules: these are of the form:
P{A 1}
P, {A 2}

P {Am}

Where each jHAs a regular expression called Pattern over tpbadlet
consisting of sigma)() and the auxiliary definition names. The patterns
described the form of the tokens.

Each A is a programme segment describing what action éxecdl
analyser should take when tokens¥ound.

To create the lexical analysdr’, each of the £, must be compile into
machine codes just like any other program writtethe language of the
A;S.

In summary, the lexical analysér created by LEX behaves in the
following manner:
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. L reads its input one character at a time untilais fiound the
largest prefix in the input which matches one oé tlegular
expressions;P

. Oncel has found that prefid,. removes it from the input and
places it in a buffer called tokeh.then executes the actions. A
After completing A L returns control to the parser.

) When requested to,. repeats these series of actions on the
remaining input.

3.5.3 Stepsin lex implementation

Read input lang. spec

Construct NFA with epsilon-moves (Can also do DRctly)
Convert NFA to DFA

Optimise the DFA

Generate parsing tables & code

agrwNE

3.5.4 Sample L ex programmes

Example 1: Lex programme to print all words in aput stream
The following Lex programme will print all alphaletvords in an input
stream:

%%
[A-Za-z]+  { printf("%s\n", yytext); }

J\n {}

The pattern part of the first translation rule sthat if the current prefix
of the unprocessed input stream consists of a sequef one or more
letters, then the longest such prefix is matchetl assigned to the Lex
string variable yytext. The action part of the tfinnslation rule prints
the prefix that was matched. If this rule firesritthe matching prefix is
removed from the beginning of the unprocessed isfyaam.

The dot in pattern part of the second translatiole matches any
character except a newline at the beginning ofuhprocessed input
stream. The \n matches a newline at the beginnintyeounprocessed
input stream. If this rule fires, then the charactethe beginning of the
unprocessed input stream is removed. Since theracsi empty, no
output is generated.

Lex repeatedly applies these two rules until theuinstream is
exhausted.

Example 2: Lex programme to print number of wondsmbers, and
lines in a file
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int num_words = 0, num_numbers = 0, nunedi= 0;
word [A-Za-z]+
number [0-9]+
%%
{word} {++num_words;}
{number} {++num_numbers ;}
\n {++num_lines;}

. {}
%%

int main()
{

yylex();
printf("# of words = %d, # of numbers = %d, #lioks = %d\n",

num_words, num_numbers, num_lines );

Example 3: Lex programme for some typical prograngmianguage
tokens
%({ /* definitions of manifest constants */

LT, LE,

IF, ELSE, ID, NUMBER, RELOP */

[* regular definitions */

delim [\t\n]

ws {delim}+

letter [A-Za-Z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%

{ws} {}

if {return(IF);}

else  {return(ELSE);}

{id}  {yylval = (int) installlD(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBR);}
"<"  {yylval = LT; return(RELOP); }
"<="{yylval = LE; return(RELOP); }

%%

int installlD()

{

/* function to install the lexeme, whose firsiachcter
Is pointed to by yytext, and whose lengthyiegg,
into the symbol table; returns pointer to spirtable
entry */

}
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int installNum() {
[* analogous to installlD */

}
3.5.5 Creating a Lexical Processor with Lex
Put lex programme into a file, say file.l.

Compile the lex programme with the command:
. lex file.l

This command produces an output file lex.yy.c.
Compile this output file with the C compiler anetlex library -lI:
gcce lex.yy.c -lI

The resulting a.out is the lexical processor.
3.5.6 LexHistory

The initial version of Lex was written by Michaeésk at Bell Labs to
run on UNIX.

The second version of Lex with more efficient regukxpression
pattern matching was written by Eric Schmidt atl Babs.

Vern Paxson wrote the POSIX-compliant variant ok Lealled Flex, at
Berkeley.

All versions of Lex use variants of the regulardegsion pattern-
matching technology described in section 3.3.2

Today, many versions of Lex use C, C++, C#, Jand,adher languages
to specify actions.

SELF- ASSESSMENT EXERCISE 2

I Construct Lex-style regular expressions for thelofaing
patterns.
a. All lowercase English words with the five vowelsarder.
b. All lowercase English words with exactly one vowel.

. Write a Lex programme that copies a file, replaciegch
nonempty sequence of whitespace consisting of blamks, and
newlines by a single blank.
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40 CONCLUSION

In this unit, you have been taken through the cpha& regular
expressions, and the languages that are used dmaititally generate
lexical analysers. In the next unit you will be ¢akthrough how to
convert regular expressions to non-deterministiddiautomata (NFA)
and deterministic finite automata (DFA)

5.0 SUMMARY

In this unit, you learnt that:

. regular expressions are a very convenient formepfasenting
(possibly infinite) sets of strings

. parentheses can be put around REs to denote ther oid
evaluation

. lexical analyser generators Flex and Lex use ex@negular
expressions to specify lexeme patterns making kgn®

. Lex chooses the longest match if there is more tmenmatch

. a pattern is a description of the form that the lexemes mgkip
a token in a source programme may have

. a lexeme is a sequence of characters that matohgmttern for a
token

. an attribute of a token is usually a pointer to the symbol ¢abl

entry that gives additional information about tbken, such as its
type, value, line number, etc

o Lex is a special-purpose programming language featog
programmes to process streams of input characters
. the input to the LEX compiler is called LEX souraed the

output of LEX compiler is called lexical analyseEX source is
an input that states the characteristics of theddxanalyser for
the language

. LEX source differs from language to language

. the LEX source programme consists of two partsedquence of
auxiliary definitions followed by a sequence oinskation rules

) there are several tools for automatically genegatlaxical

analysers of which LEX is one.

6.0 TUTOR-MARKED ASSIGNMENT

I Construct Lex-style regular expressions for thelofaing
patterns.

a. All lowercase English words beginning and endinghwi
the substring "ad".
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b. All lowercase English words in which the letterg an
strictly increasing alphabetic order.

C. Strings of the form abxba where x is a string &, &’s,
and c’s that does not contain ba as a substring.

. Write a Lex programme that converts a file of Eslgltext to
"Pig Latin." Assume the file is a sequence of wasdparated by
whitespace. If a word begins with a consonant, mdve
consonant to the end of the word and add "ay"..(Epig" gets
mapped into "igpay".) If a word begins with a vowpist add
"ay" to the end. (E.g., "art" gets mapped to "drjay

Iii. Describe a language (different from the one dissdigs this
course) for specifying Lexical analyser.

\Y2 How is the language described in question (3) alswelar or
different from LEX.
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UNIT 4 IMPLEMENTING A LEXICAL ANALYSER
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3.1.1 Nondeterministic Finite Automaton (NFA)
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1.0 INTRODUCTION

In the previous unit you were taken through autaengéneration of
lexical analyser. The importance of regular expogssin the generation
of lexical analysers was brought out.

In this unit, we will discuss finite state machineshich are the
recognisers that recognise regular expressionsalaedhow to convert
REs into finite automata and vice versa.

Now let us go through your study objectives fos thnit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define finite automata
° convert REs to NFA
° convert NFA to DFA.
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3.0 MAIN CONTENT

3.1 Finite Automata

A recogniser for a languagdeis a programme that takes as input a string
x and answers “yes” ik is a sentence df and “no” otherwise. Clearly,
the part of a lexical analyser that identifies gresence of a token on
the input is a recogniser for the language defitiag token.

Variants of finite automata are commonly used totcmaregular
expression patterns.

3.1.1 Nondeter ministic Finite Automaton (NFA)

A nondeterministic finite automaton (NFA) consisfs

. a finite set of stateS
o an input alphabet consisting of a finite set of bpilax
. a transition functiord that mapsS x (X U {¢}) to subsets ofS

This transition function can be represented byaasition graph
in which the nodes are labelled by states and tisesedirected
edge labelleé from nodew to nodev if 6(w, a) containsv

) an initial states; in S

. F, a subset 08, called the final (or accepting) states.

An NFA accepts an input stringif there is a path in the transition graph

from the initial state to a final state that spedist x. The language

defined by an NFA is the set of strings acceptethbyNFA.

3.1.2 Deterministic Finite Automata (DFAS)

A deterministic finite automaton (DFA) is an NFAwhich:

. there are n@ moves, and

) for each state and input symboh there is exactly one transition
out of s labelleda.

Therefore, a DFA represents a finite state macthaerecognises a RE.

For example, the following DFA:
a

(D— e@a’

Fig. 1: DFA Recognising the String (abc’)*

61



CIT 445 PRINCIPLES AND TECHNIQUES OF COMPILERS

recognisesabc’)’. A finite automaton consists of a finite set aftes, a
set of transitions (moves), one start state, ansktaof final states
(accepting states). In addition, a DFA has a unimaesition for every
state-character combination. For example, Figuhad 4 states, state 1
Is the start state, and state 4 is the only fitaks

A DFA accepts a string if starting from the stagts and moving from
state to state, each time following the arrow ttatesponds the current
input character, it reaches a final state wheneihtgre input string is
consumed. Otherwise, it rejects the string.

The Figure 1 represents a DFA even though it iscoatplete (i.e. not
all state-character transitions have been drawmg.cbmplete DFA is as
in Figure 2 below.

Fig. 2: Complete DFA Recognising the String (abc’)”

But it is very common to ignore state O (called ¢her state) since it is
implied. (The arrows with two or more charactermigate transitions in
case of any of these characters.) The error states as a black hole,
which does not let you escape.

A DFA is represented bytaansition table T, which gives the next state
T[s, c] for a states and a character. For example, th@ for the DFA
above is:

A bic
0000
1200
20 30
3004

4204
Suppose that we want to build a scanner for the REs
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for - keyword = For
|dentifier  =[a-Z[a-20- 9]

The corresponding DFA has 4 final states: one teicthefor-keyword
and 3 to accept an identifier:

accept accept
£ identifier 5  identifier .

accept
for-keyword

et T
jdentifier [2-20-9]

Fig. 3: DFA Recognising I dentifier and for-keyword

(The error state is omitted again). Notice thatdach state and for each
character, there is a single transition.

A scanner based on a DFA uses the DFA's trandtiole as follows:

state = initial_state;
current_character = get_next_character();
while ( true )
{ next_state = T[state,current_character];
if (next_state == ERROR)
break;
state = next_state;
current_character = get_next_character ();
if ( current_character == EOF )
break;
I3
if (is_final_state(state) )
‘we have a valid token'
else ‘report an error’

This programme does not explicitly take into acadhe longest match
disambiguation rule since it ends at EOF. The falhg programme is
more general since it does not expect EOF at tideoérioken but still
uses the longest match disambiguation rule.

state = initial_state;
final_state = ERROR;
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current_character = get_next_character();
while ( true )
{ next_state = T[state,current_character];
if (next_state == ERROR)
break;
state = next_state;
if (is_final_state(state) )
final_state = state;
current_character = get_next_character();
if (current_character == EOF)
break;
I3
if ( final_state == ERROR)
‘report an error'
else if ( state != final_state )
‘we have a valid token but we need to backtrack
(to put characters back into the inpugastn)’
else "we have a valid token'

Is there any better (more efficient) way to buildcanner out of a DFA?
Yes! We can hardwire the state transition table mfprogramme (with
lots of gotos). You've learned in your programmiagguage course
never to use gotos. But here we are talking abouyiragramme
generated automatically, which no one needs to &ioKhe idea is the
following. Suppose that you have a transition fretates, to s, when
the current character ¢s Then you generate the programme:

sl: current_character = get_next_character ();

if ( current_character =="'c")
goto s2;

s2: current_character = get_next_character();
3.2 Equivalence of Regular Expressions and Finite Automata
Regular expressions and finite automata define ghme class of

languages, namely the regular sets. In ComputeznBei Theory we
showed that:

o every regular expression can be converted into gnvalent
NFA using the McNaughton-Yamada-Thompson algorithm.

. every NFA can be converted into an equivalent Dsfkg the
subset construction.

o every finite automaton can be converted into aleggexpression

using Kleene's algorithm.

64



CIT 445 MODULE 2

3.3 Converting a Regular Expression to an NFA

The task of a scanner generator, such as JLexo igeherate the
transition tables or to synthesise the scannerranoge given a scanner
specification (in the form of a set of REs). Smeéteds to convert REs
into a single DFA. This is accomplished in two stefirst it converts
REs into a non-deterministic finite automaton (NFAhd then it
converts the NFA into a DFA.

An NFA, as earlier stated, is similar to a DFA butalso permits
multiple transitions over the same character aaakitions ovet. In the
case of multiple transitions from a state over sheme character, when
we are at this state and we read this charactehave more than one
choice; the NFA succeeds if at least one of théséces succeeds. The
e-transition does not consume any input characseryou may jump to
another state for free.

Clearly DFAs are a subset of NFAs. But it turns that DFAs and
NFAs have the same expressive power. The problerhas when
converting a NFA to a DFA we may get an exponeritialv-up in the
number of states.

We will first learn how to convert a RE into a NFAhis is the easy
part. There are only 5 rules, one for each typR©f

(]

A B

A_i

Fig. 4: NFA for each RE Characteristics

As it can been shown inductively, the above rul@sstruct NFAs with
only one final state. For example, the third rulelicates that, to
construct the NFA for the RBEB, we construct the NFAs fok andB,

which are represented as two boxes with one stai® snd one final
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state for each box. Then the NFA faB is constructed by connecting
the final state oA to the start state @& using an empty transition.

For example, the REa|b)c is mapped to the following NFA:

Fig. 5: NFA for the RE (alb)c

Theorem 3.1: Any regular expression can be converted to atefini
automaton (FA) or recogniser or finite state maehusually a Non-
deterministic one (NFA) to generate the possibditin that transition.

A better way to convert a regular expression toeeogniser is to
construct a generalised transition diagram (TD)nfrthe expression.
The TD is usually a non-deterministic one but befgou can program
it, you have to convert it to a deterministic ofe. turn a collection of
TDs into a programme, we construct a segment oé dod each state.
The first step, in the code for any state is toawbthe next character
from input buffer. So for this purpose, we use GEHRR

The finite state diagram for the regular expressi(dnhd)*:
3

Fig. 6: NFA Recognising IdentifiEer

The algorithm below can be used to convert the Bbva into a finite
state automaton.
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Algorithm:

State 0: C:= GETCHAR()
If LETTER(C) then go to state 1
Else FAIL ()

State 1: C: = GETCHAR ()
If LETTER(C) or DIGIT(C) then go toasée 1
Else if DELIMITER(C) then go to stdte
Else FAIL ()

SELF -ASSESSMENT EXERCISE
I. Define finite automata.

. Distinguish between NFA and DFA.
1 Convert the following REs into NFAs:

a. (a*b*)*

b. a(alb)*a

C. (aalbb)*((ab|ba)(aa|bb)*(ablba)(aalbb)*)*
d. a(baja)*

e. ab(a|b*c)*bb*a

3.4 Converting a Regular Expression into a Deterministic
Finite Automaton

To convert a RE into a DFA, you first convert the Rto an NFA as
discussed in section 3.3. The next step is to abrkle NFA to a DFA
(called subset construction). Suppose that you assign a number to each
NFA state. The DFA states generated by subsetromtisin have sets of
numbers, instead of just one number. For examplBeFA state may
have been assigned the set {5, 6, 8}. This indec#tat arriving to the
state labelled {5, 6, 8} in the DFA is the sameaasving to the state 5,
the state 6, or the state 8 in the NFA when parsireg same input
(Recall that a particular input sequence when plaogea DFA, leads to
a unique state, while when parsed by a NFA it neadl|to multiple
states).

First, we need to handle transitions that lead tteerostates for free
(without consuming any input). These are #teansitions. We define
the closure of a NFA node as the set of all the nodes reaehlaplthis
node using zero, one, or mofEransitions. For example, the closure of
node 1 in the left Figure 7 below
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AT RNy 5

ah

o)

ok

. is the set {1, 2}. The start state of the conseddDFA is labelled
by the closure of the NFA start state. For everyADstate
labelled by some sets{,..., s,} and for every character in the
language alphabet, you find all the states reaehayd,, s, ..., or
S, usingc arrows and you union together the closures ofethes
nodes. If this set is not the label of any othedenin the DFA
constructed so far, you create a new DFA node tith label.
For example, node {1, 2} in the DFA above has apnwirto a {3,

4, 5} for the charactea since the NFA node 3 can be reached by
1 ona and nodes 4 and 5 can be reached by 2.bTéweow for
node {1, 2} goes to the error node which is asgediavith an
empty set of NFA nodes.

Fig. 7: Closure of NFA

The following NFA recognisesa[b) (abb | a'b), even though it was not
constructed with the above RE-to-NFA rules. It theesfollowing DFA:

Fig. 8: NFA Recognising (a| b) (abb | a*b)

SELF-ASSESSMENT EXERCISE 2

I Convert the NFAs in question (3) of Self Assessntest 1 into
DFAs

. Construct an NFA to accept the strigmy |bb*
iii. Convert the NFA drawn in question (2) above to DFA
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4.0

MODULE 2

CONCLUSION

In this unit, you have been taken through the cphoéfinite automata,
equivalence of REs and finite automata and also towonvert REs
into NFAs and subsequently DFAs.

5.0

SUMMARY

In this unit, you learnt that:

6.0

a DFA represents a finite state machine that resegra RE

a finite automaton consists of a finite set of edata set of
transitions (moves), one start state, and a selinal states
(accepting states). In addition, a DFA has a unigaesition for
every state-character combination

to covert a RE into a DFA, you will first have torwert it into a
non-deterministic finite automaton (NFA) and thesneert the
NFA into a DFA.

An NFA is similar to a DFA but it also permits mple
transitions over the same character and transibuase

there are several tools for automatically genegatlaxical
analysers of which LEX is one.

TUTOR-MARKED ASSIGNMENT

Write down deterministic finite automata for thelldaving
regular expressions:

a. (a*b*)*

b. (aa|bb)*((ab|ba)(aa|bb)*(ablba)(aa|bb)*)*

C. a(baja)*

d. ab(a|b*c)*bb*a

Construct a deterministic finite automaton that waelcognise all
strings of O's and 1's representing integers ttetaisible by 3.
Assume the empty string represents 0.

Use the McNaughton-Yamada-Thompson algorithm tovedn
the regular expression a (alb)*a into a nondetastignfinite
automaton.

Convert the NFA of (3) into a DFA.

Minimise the number of states in the DFA of (4).
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7.0 REFERENCESFURTHER READING

Aho, A. V. & Ullman, J. D. (1977)Principles of Compiler Design.
Addison-Wesley Publishing Company. ISBN 0-201-00022

Alfred, V. Aho et al. (2007). Compilers. Principles, Techniques, and
Tools. Second Edition. Wesley: Pearson Addison.

Andrew, W. Appel (2002)Modern Compiler Implementation in Java.
Second edition. Cambridge University Press.

Davis, Martin E., Sigal, Ron & Weyuker, Elaine J1994).
Computability, Complexity, and Languages. Fundamentals of
Theoretical Computer Science. Boston: Academic Press,
Harcourt, Brace. pp. 327. ISBN 0122063821.

John, E. Hopcroft & Jeffrey, D. Ullman (1979)ntroduction to
Automata Theory, Languages, and Computation. Reading
Massachusetts :Addison-Wesley Publishing. ISBN 0-20
029880-X.

Keith, D. Cooper& Linda, Torczon (2004kngineering a Compiler.
Morgan Kaufmann.

Michael, L. Scott (2009)Programming Language Pragmatics. Third
Edition. Morgan Kaufman.

Robert, W. Sebesta (201@oncepts of Programming Languages. Ninth
Edition. Wesley: Addison.

Steven, S. Muchnick (1997)Advanced Compiler Design and
Implementation. Morgan Kaufmann.

70



CIT 445 MODULE 3

MODULE 3 SYNTAX ANALYSIS

Unit 1 Context-Free Grammars

Unit 2 Bottom-Up Parsing Techniques
Unit 3 Precedence Parsing

Unit 4 Top-Down Parsing Techniques
Unit 5 LR Parsers

UNIT 1 CONTEXT-FREE GRAMMAR
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1.0 INTRODUCTION

In the previous module, you have been taken throligtexical analysis
phase of a compiler. The module showed you thaletkieal structure of
tokens could be specified by regular expressionistiaat from a regular
expression you could automatically construct a ciaixianalyser to
recognise the tokens denoted by the expression.uMao8 will give

similar treatment of the next phase of a compirich is the syntax
analysis phase. For the syntactic specification aofprogramming
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language, we shall use a notation called a coffitegt-grammar
(grammar, for short), which is also called BNF (Bas-Naur Form)
description.

In this first unit of the third module, you will bexposed to grammars,
how a grammar defines a language, and what featdirpgogramming
languages can, and cannot, be specified by cofrExigrammars.

Now let us go through your study objectives fos thinit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define context-free grammars (CFGSs)
. define and state the roles of a parser
. describe the concept of ambiguity

. generate parse trees for sentences

) verify grammars.

3.0 MAIN CONTENT
3.1 The Parser

The Parser takes tokens from lexer (scanner ocdéxnalyser) and
builds a parse tree. The parser has two basici@unsctlt checks that the
tokens appearing in its input, which is the outpiuthe lexical analyser,
occur in patterns that are permitted by the speadibn for the source
language. It also imposes on the token a treedikecture that is used
by the subsequent phases of the compiler.

3.1.1 Role of the Parser

) The parser reads the sequence of tokens genematibe fexical
analyser
) It verifies that the sequence of tokens obeys threect syntactic

structure of the programming language by generatipgrse tree
implicitly or explicitly for the sequence of tokens

) It enters information about tokens into the synthble

. It reports syntactic errors to the user.
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3.2 Context-Free Grammars (CFG's)

CFG's are very useful for representing the syrntastructure of
programming languages. A CFG is sometimes callexkiaNaur Form
(BNF). It consists of

A finite set of terminal symbols,

A finite nonempty set of nonterminal symbols,

One distinguished nonterminal called the start sylrdnd

A finite set of rewrite rules, called productiomsch of the form
A — o where A is a nonterminal and is a string (possibly
empty) of terminals and nonterminals.

PopNE

A context- free grammar is formally representedh®ytuple:
CFG=(N, T, P, s)

where: N andT are finite sets of nonterminals and terminals unde
the assumption th&t andT are disjoint
P is a finite set of productions such that each pctidn is
of the form:A —» o (whereA is a nonterminal and is a
string of symbols)
sis the start symbol

3.2.1 Notational Conventions

Terminals are usually denoted by:

o lower-case letters early in the alphabetb, c;
operator symbols: +, -, *, etc.;

punctuation symbols: (, ), {, }, ; etc;

digits: 0,1, 2, ..., 9;

boldface stringsif, else etc.;

Nonterminals are usually denoted by:

) upper-case letters early in the alphabet: A, B, C;
. the letter S representing the start symbol;
) lower-case italic namesexpr, stmt etc.;

Grammar symbols, that is either terminals or nonterminals, are
represented by upper-case letters late in the agth¥, Y, Z

Strings of Terminals only are represented by lower-case letters late in
the alphabetu, v, w ...z

Productions are represented in the following way: A a1, A —> a2
etc.
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Alternativesin productions are represented by A a1 | a2 etc.
Consider the context-free grammar G with the préidos

ESE+T|T
T>T*F|F
F— (E) | id

. The terminal symbols are the alphabet from whiging$ are
formed. In this grammar the set of terminal symbsl&d, +, *,
(,) }. The terminal symbols are the token names.

. The nonterminal symbols are syntactic variables demote sets
of strings of terminal symbols. In this grammar tket of
nonterminal symbolsis { E, T, F}.

o The start symbol is E.

3.3 Derivations and Parse Trees
3.3.1 Derivations

The central idea to how a CFG define a languadfeaisproduction may
be applied repeatedly to expand the nonterminalsairstring of
nonterminals and terminals. For example, consider following
grammar for arithmetic expressions:

ESE+E|[E*E|(E)|-Efl oo (1)

The nonterminal E is an abbreviation for expressidre production E

— -E signifies that an expression preceded by a sngign is also an
expression. This production can be used to generate complex

expressions from simpler expressions by allowing yo replace any
instance of an E by -E. In the simplest case youreplace a single E by
-E. This action can be described by writing:

E=-E

which is read as “E derives -E". The productior-HE) tells us that we
could also replace one instance of an E in anyngtof grammar
symbols by (E); e.g.

E*E=(E)*EorE*E= E * (E).

You can take a single E and repeatedly apply ptoshsin any order to
obtain a sequence of replacements. For example,

E=-E=-(E)= - (id)
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Such sequence of replacements is called a denvafiec- (id) from E.
This derivation provides a proof that one particuilastance of an
expression is the string —(id).

In a more abstract setting, we say thé&if — ayp if A — y is a
production and andp are arbitrary strings of grammar symbolsu &
a = ...= a, We say, derivesa,. The symbok means “derives in one
step”. Often we wish to say “derives in zero or engteps”. For this
purpose we can use the symbgi. Therefore:

. a =* o for any stringn, and
. If o =* B anda = vy, thena =* y

Similarly, we usex =+  to mean & derivesp in a derivation of one or
more steps”.

Given a context-free grammar G with start symb@leScan use the>*
relation to defineL(G), thelanguage generatetly G. Strings inL(G)
may consists of all strings of terminal symbolst iten be derived from
the start symbol of G. We say a string of terminals in L(G) if and
only if S=* w. The string w is called sentencef G. If S=" a, where
a may contain nonterminals, then we saig asentential fornof G.

Example 1:
The string -(id + id) is a sentence of grammaraligve because
E=>-E==-E)>-(E+E)= -(id + E)> -(id + id)

The strings E, -E, -(E), ..., -(id + id) appearingtivis derivation are all
sentential forms of this grammar.

To understand how certain parsers work, we neegiisider derivation
in which only the leftmost nonterminal in a sentainfiorm is replaced at
each step. Such derivations are termed leftmosilo§gously, rightmost
derivations are those in which the rightmost nanteal is replaced at
each step.

3.3.1.1 Leftmost Derivations

Derivations in which only the leftmost nonterminal any sentential
form is replaced at each step are calédtinost o =|m B.

if WAYy=>WJdy then o =|m B.

where A— § is a production anav is a string of terminals, and
v is a string of grammar symbols.
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To emphasise the fact that derives B by a leftmost derivation may
be written:

o =Im* B-
If S=|m* o then a is aleft-sentential fornof the grammar.

Example 2: Consider the grammar G with the follayymoductions:
E-E+T|T

To>T*F|F

F— (E)|id

A leftmost derivation expands the leftmost nonterahi in each
sentential form:

E=>E+T
=>T+T
>F+T
>id+T
>id+T*F
>id+F*F
>id+id*F
= id+id *id

3.3.1.2 Rightmost Derivations

Derivations in which only the rightmost nonterminalany sentential
form is replaced at each step are catlgdtmost o =rm B.

if YAW=7ydW then o =rmB-

where A— § is a production anav is a string of terminals, and
v is a string of grammar symbols.

To emphasize the fact that derives by a rightmost derivation may
be written:

(04 :>rm* B
If S=rm* a thena is aright-sentential fornof the grammar.

Example 3: Consider the grammar G with the follayymoductions:

E->E+T|T
T>T*F|F
F— (E)|id
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A rightmost derivation expands the rightmost nomieal in each
sentential form:

E=E+T
>E+T*F
>E+T*id
>E+F*id
>E+id*id
=>T+id*id
=>F+id*id
=id +id *id

Note that these two derivations have the same paase
3.3.2 Parse Trees

Parse tree is a graphical representation for disivahat filters out the
choice regarding replacement. It has the imporpampose of making
explicit the hierarchical syntactic structure ohtaces that is implied
by the grammar.

Each interior node of the parse tree is labelleddaye nonterminal A,
and the children of the node are labelled, frofh te right, by the
symbol in the right side of the production by whibis A was replaced
in the derivation. For example, A — XYZis a production used at some
step of a derivation, then the parse tree for deaivation will have the

subtree illustrated below:

X y 4

A

The leaves of the parse tree are labelled by tedsiar nonterminals
and, read from left to right. They constitute ateatial form, called the
yield or frontier of the tree. For example, the parse tree for +(id)

implied by the derivation of Example 1 above isshswn in Figure 1

below:
/ \
/ | \
/ | \E
| |
Fig. 1: Parse Tree ™ id
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SELF-ASSESSMENT EXERCISE 1

I Let G be thegrammarS aShS|bSa$]|
. What language is generated by this grammar?
Iii. Draw all parse trees for the sentence abab

3.4  Ambiguity

A grammar that produces more than one parse tregofoe sentence is
said to be ambiguous i.e. An ambiguous grammanésthat produces
more than one leftmost or more than one rightmesitvdtion for some

sentence. For certain types of parsers, it desgirdddt the grammar be
made unambiguous, for if it is not, we cannot uelguwetermine which

parse tree to select for a sentence.

Consider the context-free grammar G with the pradoes
E-E+E|E*E|(E)|Id
This grammar has the following leftmost derivatfonid + id * id
E>E+E
=>id+E
=>id+E*E
=id+id*E
=id +id *id
This grammar also has the following leftmost deromafor id + id * id
E=>E*E
>E+E*E
=>id+ E*E
=>id+id*E
=id +id *id
These derivations have different parse trees.

A grammar isambiguousf there is a sentence with two or more parse
trees.

The problem is that the grammar above does noifgpec

. the precedence of the + and * operators, or
) the associativity of the + and * operators
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However, the grammar in section (3.2) generatesdnee language and
is unambiguous because it makes * of higher prewsd¢han +, and
makes both operators left associative.

A context-free language isnherently ambiguousif it cannot be
generated by any unambiguous context-free grammar.

The context-free language {la"aw" [m > 0 andn > 0} u { a™b"a’b™ |
m> 0 andn > 0} is inherently ambiguous.

Most natural languages are inherently ambiguousnbuprogramming
languages are inherently ambiguous.

Unfortunately, there is no algorithm to determinbether a CFG is
ambiguous; that is, the problem of determining Wheta CFG is
ambiguous is undecidable.

We can, however, give some practically useful sidfit conditions to
guarantee that a CFG is unambiguous.

3.5 Left Recursion

"A grammar is left-recursive if we can find somenrterminal A which
will eventually derive aentential fornwith itself as the left-symbol."

3.5.1 Immediate Left Recursion
Immediate left recursion occurs in rules of tharfor

A— Aa | _,1'3

where o and p are sequences of nonterminals and terminals, fand
doesn't start witi\. For example, the rule

Frpr — Expr + Term

is immediately left-recursive. Thecursive descent parséor this rule
might look like:

function Expr()

{
}

and a recursive descent parser would fall intonitdi recursion when
trying to parse a grammar which contains this rule.

Expr(); match('+"); Term();
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3.5.2 Indirect Left Recursion

Indirect left recursion in its simplest form coudd defined as:

A= Ba|C
B — A3| D,

possibly giving the derivatiort = Ba = Afa = ...

More generally, for the nonterminaldo, A1, ..., Ay, indirect left
recursion can be defined as being of the form:

..‘11] —+ ..‘11_!':21_ | e
_.-11 — _.-1311'1'3 | M

_.‘1.” — A{Dﬂ'ﬂ+1 | R
where®1, @z, - - ., Gpgre sequences of nonterminals and terminals.

3.5.3 Removing Left Recursion
3.53.1 Removing Immediate Left Recursion

The general algorithm to remove immediate left reicun follows.
Several improvements to this method have been madkeiding the
ones described in "Removing Left Recursion from t€xiFree
Grammars", written by Robert C. Moore. For eack nflthe form
Ay | 81| ... | B

:1—>:1Q']_|

where:
A is a left-recursive nonterminal

a is a sequence of nonterminals and terminals shabt null & # €)
B is a sequence of nonterminals and terminals tes dot start with A.
replace the A-production by the production:

A— _3144_.’| ... |_L5’m44_f
And create a new nonterminal
!

A= e|la Al ... |aA

This newly created symbol is often called the "fail the "rest".
As an example, consider the rule

Exrpr — Expr + Expr|Int|String
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This could be rewritten to avoid left recursion as

Ezpr — Int ExprRest | String Expr Rest
ExprRest — €| + Expr ExprRest

The last rule happens to be equivalent to the tighorter form
ExrprRest — €| + Fxpr

3.5.3.2 Removing Indirect Left Recursion

If the grammar has nos-productions (no productions of the
formd — ... [€.. ) and is not cyclic (no derivations of the form

A = ... = Afor any nonterminal A), this general algorithm mag
applied to remove indirect left recursion :
Arrange the nonterminals in some (any) fixed order. - - A,

fori=1ton{
forj=1toi—1{

let the curren# productions be
Aj— &) .. |0

replace each productioﬂnz’ - *{j"fby
Ai = oyl |0y

remove direct left recursion féy;

}
}

The left-recursive pair of productions

A— Ao |B

could be replaced by the non-left-recursive proidnst
A—>PBA' and A'—>aA'|e

without changing the set of strings derivable frAam

The left-recursive productions
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A— Aa, |Ac, Ao, | ... [Aa, | By | By Bsl - IB,
could be replaced by the non-left-recursive proidnst

A> B,A" |B,A" |.. |3, A" and
Ao A | oa,A' | lo, A | e

3.5.4 Algorithm for Elimination of Left Recursion

Initialise: Arrange the nonterminals in some ordﬁr, Az’ ...,An
Repeat for i:= 1to n do
for j:=1toi-1do
replace any production the form. — Ajy
by the production\ — 6,y [8,y | ... |5,y
where Aj—»> 35, |3, ] ... |5,
end
eliminate the immediate left-recursamong theA

productions A — A" andA' > oA | e )

Exampled: S—Aa | b

A— Ac |Sd| €

for i=1 nothing happens

for i=2 we obtain A— Ac |Aad | bd | €

after eliminating the immediate left recursions

S—>Aa|b

A—DbdA'|A

A'— cA' | adA'| €
3.6 Verifying Grammars
Given a grammar G, we may want to prove th@b) = L for some
given language L. To do this, we need to show #Zary string

generated by G is in L, and every string in L cargbnerated by G.

Consider the grammar with the productions»>§ S) S k.
Let L be the set of strings of balanced parentheses
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We can use induction on the number of steps irrigaten to show that
every string generated from S is balanced, thusstgothat every string
generated by the grammar is in L.

We can use induction on the length of a string hows that every
balanced string can be generated from S, thus sigowhat every
balanced string is generated by the grammar.

SELF ASSESSMENT EXERCISE

I Let G be the grammarS aSbS|bSag,|
. Is this grammar ambiguous?

4.0 CONCLUSION

In this unit, you have been taken through the cphoé context-free
grammars, derivations and parse trees. In theofetis module, you
will learn about parsing techniques.

5.0 SUMMARY

In this unit, you learnt that:

o a leftmost derivation expands the leftmost nonteahin each
sentential form

. a rightmost derivation expands the rightmost nonteal in each
sentential form

o parse tree is a graphical representation for deoivahat filters
out the choice regarding replacement

) the leaves of the parse tree are labelled by teisiror

nonterminals and, read from left to right and tlwpstitute a
sentential form, called the yield or frontier oéttree

. an ambiguous grammar is one that produces more diman
leftmost or more than one rightmost derivation feome
sentence.

6.0 TUTOR-MARKED ASSIGNMENT

i Let G be the grammar-S a S b k. Prove that. (G) = {db" |n
>0}

. Consider a sentence of the form id + id + ... wltkre there are
n plus signs. Let G be the grammar in section (8dHve. How
many parse trees are there in G for this senteheamequals

a. 1
b. 2
C. 3
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d. 4
e. m?

iii. Consider the grammar in section (3.6) above. Hownyma
sentences does this grammar generate havileft parentheses
wheren equals

a. 1
b 2
C. 3
d. 4
e m?
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UNIT 2 BOTTOM-UP PARSING TECHNIQUES
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1.0 INTRODUCTION

In unit 1 of this module, you have been exposedcdotext free
grammars, how a grammar defines a language, and fehtures of
programming languages can, and cannot, be spedffecontext-free
grammars. In this unit, you are going to learnulparsing techniques.
There are various kinds of parsing techniques hedet can be broadly
categorised into two viz: top-down and bottom-upsp®y techniques.

Now let us go through your study objectives fos thinit.
2.0 OBJECTIVES
At the end of this unit, you should be able to:

define parsing techniques

distinguish between top-down and bottom-up parsiegniques
describe shift reduce parsing

define handle

analyse an input string using shift-reduce parsing.
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3.0 MAIN CONTENT

3.1 Parsing Techniques

There are two types of Parsing

a. Top-down Parsing (start from start symbol and dersiring)
A Top-down parser builds a parse tree by startinperoot and
working down towards the leaves. It is easy to gatieeby hand.
Examples are Recursive-descent parser and Predpinser.

b. Bottom-up Parsing (start from string and reducstést symbol)
A bottom-up parser builds a parser tree by starinthe leaves
and working up towards the root. Bottom-up parsiisy
characterised by the following:

o It is not easy to handle by hands, usually compiler
generating software generate bottom-up parser
o It handles larger class of grammar

Example is LR parsers, simple precedence parseratyy precedence
parsers, etc.

3.2 Bottom-Up Parsing

In programming language compilers, bottom-up parsing is a parsing
method that works by identifying terminal symbaistt and combines
them successively to produce non-terminals. Thelywmions of the
parser can be used to build a parse tree of a groge written in
human-readable source code that can be compilagstembly language
or pseudo code.

3.2.1 Types of Bottom-up Parsers
The common classes of bottom-up parsers are:

. LR parser (you will learn more about this in unitdb this
module)
a. LR(O) - No lookahead symbol
b. SLR(1) - Simple with one lookahead symbol
C. LALR (1) - Lookahead bottom up, not as powerfulfaé
LR (1) but simpler to implement. YACC deals withsth
kind of grammar.

d. LR (1) - Most general grammar, but most complex to
implement.
e. LR(k) - (wherek is a positive integer) indicates an LR

parser withk lookahead symbols; while grammars can be
designed that require more than 1 lookahead, pedcti
grammars try to avoid this because increasingan
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theoretically require exponentially more code aratad
space (in practice, this may not be as bad). Ats®class
of LR (k) languages is the same as that of LR (1)

languages.
. Precedence parsers (you will learn more aboutithignit 5 of
this module)
a. Simple precedence parser
b. Operator-precedence parser
C. Extended precedence parser.

3.2.2 Shift-Reduce Parsers

The most common bottom-up parsers are the shitteegarsers. These
parsers examine the input tokens and either spifsi) them onto a
stack or reduce elements at the top of the stagiacing a right-hand
side by a left-hand side.

3.2.2.1Action Table
Often an action (or parse) table is constructedclviielps the parser

determine what to do next. The following is a dggmn of what can be
held in an action table.

Actions

a. Shift - push token onto stack

b. Reduce - remove handle from stack and push on spwneling
nonterminal

C. Accept - recognise sentence when stack containg tme
distinguished symbol and input is empty

d. Error - happens when none of the above is possikeans

original input was not a sentence.
3.2.2.2Shift and Reduce

A shift-reduce parser uses a stack to hold the gransymbols while

awaiting reduction. During the operation of thesesy symbols from the
input are shifted onto the stack. If a prefix of ttymbols on top of the
stack matches the RHS of a grammar rule which asctirrect rule to

use within the current context, then the parseuces the RHS of the
rule to its LHS, replacing the RHS symbols on téphe stack with the

non-terminal occurring on the LHS of the rule. Tinsft-reduce process
continues until the parser terminates, reportirtigegisuccess or failure.
It terminates with success when the input is |legal is accepted by the
parser. It terminates with failure if an error etected in the input.
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The parser is a stack automaton which is in oneseseral discrete
states. In reality, in the case of LR parsing, plaese stack contains
states, rather than grammar symbols, as you vathnlen unit 5 of this

module. However, since each state corresponds unigue grammar

symbol, the state stack can be mapped onto thengaaraymbol stack
mentioned earlier.

3.2.2.3 Algorithm: Shift-Reduce Parsing

Step 1: Start with the sentence to be parsed anitla sentential form
Step 2: Until the sentential form is the start sphdo:

a. Scan through the input until we recognise somethihgt
corresponds to the RHS of one of the productioesrythis is
called a handle)

b. Apply a production rule in reverse; i.e., replabhe RHS of the
rule which appears in the sentential form with tHS of the rule
(an action known as a reduction)

In step 2(a) above we are "shifting" the input sgialio one side as we
move through them; hence a parser which operatesepgatedly
applying steps 2(a) and 2(b) above is known asfarslluce parser.

A shift-reduce parser is most commonly implementsthg a stack,
where we proceed as follows:

o start with an empty stack

. a "shift" action corresponds to pushing the curieptit symbol
onto the stack

. a "reduce" action occurs when we have a handleoprot the

stack. To perform the reduction, we pop the haonflehe stack
and replace it with the nonterminal on the LHS dfet
corresponding rule. This is referred to as handieaipg.

Example 1
Take the grammar:
Sentence --> NounPhrase VerbPhrase

NounPhrase --> Art Noun
VerbPhrase --> Verb | Adverb Verb

Art ->the|a] ..
Verb --> jumps | sings | ...
Noun -->dog | cat | ...

And the input:
the dog jumps
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Then the bottom up parsing is:

Stack Input Sequence Action

0 (the dog jumps)

(the) (dog jumps) SHIFT womt@ stack

(Art) (dog jumps) REDUCE using gwaar rule
(Art dog) (jumps) SHIFT..

(Art Noun) (jJumps) REDUCE..

(NounPhrase) (jumps) REDUCE

(NounPhrase jumps) 0 SHIFT

(NounPhrase Verb) §) REDUCE

(NounPhrase VerbPhrase) () REDUCE

(Sentence) 0 SUSSE

Example 2

Given the grammar:

<Expression> --> <Term> | <Term> + <Expression>

<Term> --> <Factor> | <Factor> * <Term>

<Factor> -->[ <Expression>]|0...9

Stack Input String Action

0 2*[1+3] SHIFT
(2) *[1+3] REDUCE
(<Factor>) *[1+3) SHIFT
(<Factor> *) [1+3)]) SHIFT
(<Factor>*) (1+3) SHIFT
(<Factor>*[1) (+3)) REDUCE
(<Factor>*[<Factor>) (+3)) REICE
(<Factor>*[<Term>) (+3) §H
(<Factor>*[<Term>+) (3] SH
(<Factor>*[<Term>+3) (D REICE
(<Factor>*[Term>+<Factor>) (D REDUCE
(<Factor>*[<Term>+<Term>)  (]) REDUCE
(<Factor>*[<Term>+<Expression>) (D RBEDBE
(<Factor>*[<Expression>) (D SHIFT
(<Factor>*[<Expression>]) §) REDUCE
(<Factor>*<Factor>) 0 REDUCE
(<Factor>*<Term>) 0 REDUCE
(<Term>) 0 REDUCE
(<Expression>) 0 SUCCESS
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3.2.3 Shift-Reduce Parsing

This technique is a bottom-up parsing technique.atiiempts to
constructs a parse tree for an input string begmrat the links and
walking towards the root. This process is calledliotion. For instance
construct a parse tree for:

I went to Lagos yesterday

noun verb prep. noun adverb

N4

Object phrase

This is analogous to replacing the right hand sideroduction with left
hand side.

The problem is how to decide which production tduae at which
points. This bottom-up parsing method is calledtgbiduce because it
consists of shifting input symbols unto a stackiluhe right side of a
production appears on the top of the stack. Thiet sgde may then be
replaced by the symbols of the left side of thedpmiion, and the
process repeated.

Informally, a substring which is the right sideaoproduction such that a
replacement of that substring by the variable anl#it side eventually
leads to a reduction to the stack symbols through reverse of a
rightmost derivation is called a “handle”

The process of bottom up parsing may be viewedhasob finding and
reducing handle.

Technically, given grammar G, we say a string ahieal omegan
oelL(Q)Iiff, S= o

o sentence of G, if &* a wherea may contains non-terminal then say
a is a sentential form of G.

3.23.1 Handles

A handle of a string is a substring that matches right side of a
production whose reduction to the nonterminal anléft represents one
step along the reverse of a rightmost derivatiorhahdle of a right-
sentential formy is a production, A-> B (A derivesp) at a position of

v where the stringB may be found and replaced by A to produce the
previous sentential form in the rightmost derivatas v.
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l.e. If S= * 0Ao = ofo, then A— B in the position followingy is
a handle otfo.

For example let us consider the grammar:

E->E+E
E->E*E
E— (E)

E—i

Using top-down parsing (rightmost derivation) tadithe handles, we
have:

E>E+E=>mE+E*E
=>mE+E*}
=>mE+L*i
=rmis+i*i
(Note that handles have been underlined above)

Another rightmost derivation: E =mE*E
=>mE*i3
—>mE+E*i3
—>mE +i2* i3

=rmig +i2*i3
3.2.4 Stack Implementation of Shift-Reduce Parsing

There are two problems to be solved in parsing agdke pruning.
These are:

) how to locate the substring to be reduced in thbtisentential
form
) which production to choose in order to implemesetitaduction.

A convenient way for dealing with such difficulties to design shift-
reduce parser which uses a stack to hold the grarmymabols and an
input buffer to hold the string to be parsed.

The shift-reduce parseoperates by shifting zero or more symbols onto
the stack until a handle appears on the top. Theepahen reduces the
handle to the left side of the corresponding préidac This process
continues until an error occurs or the start symméolains on the stack.
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Theshift-reduce parseperforms four operations:

) shift- the next input symbol is shifted onto the tophd stack

) reduce- the parser knows the right end of the handk ihe top
of thestack. It must then locate the left end & tfandle within
the stack and decide with what nonterminal to replthe handle

. accept- the parser announces successful completionrsinga

. error - the parser discovers that a syntax error hasroed.

Example 3:Successive steps in rightmost derivations:

a) S=* rm oAz =rm OLBByZ =rm (XB'}/yZ

Stack Input
1) $Sapy yz$
2) $apB yz$
3) $apBy z$

b) S=%rm aBXAZ =m aBXyz=rm ayxyz

Stack Input
1)  $oay xyz$
2) $aBxy z$

Example 4: The shift-reduce parser for the context-free gramm

E>E+E

E->E*E

E— (E)

E— id
performs the following steps when analysing thautrgiring:id, +id, *
ids3
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Stack Input Action

$ id; +id, *id3$ shift

$id, +id, *id3$ reduce byE — id
$E +id, * id3$ shift

$E+ id,*id3$ shift

$ E+id, *id3$ reduce byE — id
$E+E *ids$ shift

$ E+E* ids$ shift

SE+E*id; | $ reduce byE — id

$ E+E*E $ reduce bye —» E*E
$E+E $ reduce byE — E+E
$E $ accept

Another way of analysing this could be as below:

Stack Input

$ h+i,*i3$
$iy +h*i3$
$E +h*is P
$E+ 1 *i3$
$E+ b *5$
SE+E *i$
$E *1$
$E* £$
$E * i3 $
$E* E $
$E $
Shift reduce parsing is not adequate. In pardneget are four possible
actions:

. Shift

o Reduce

. Accept

o Reject/error

SELF-ASSESSMENT EXERCISE

Action
Shift
reduce
shift
shift
reduce
reduce
shift
Shift
reduce
reduce
Accept

I Given the grammar in Example 4 above analyse tHewimg

input string using shift-reduce parsing

a.
b.

(id + id) * id
id + (id * id).
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4.0

CONCLUSION

In this unit, you have been taken through bottonpargsing using as an
example shift-reduce parsing. You have also leaow to implement

shift-reduce parser using stack. In the next unthis module, you will

learn about another type of bottom-up parsing dalfgecedence
parsing.

5.0

SUMMARY

In this unit, you learnt that:

6.0

94

a top-down parser builds a parse tree by startirthearoot and
working down towards the leaves

a bottom-up parser builds a parser tree by stadinthe leaves
and working up towards the root

ahandleof a right-sentential form G is a productidn— b and a
position in g where b may be found and replaced by produce
the previous right-sentential form in a rightmostidation of a
grammar G.

the process to construct a bottom-up parse is ccdlndle-

pruning

a shift-reduce parser has just four canonical astghift, reduce,
accept, anderror.

TUTOR-MARKED ASSIGNMENT

Given the grammar below:

a. E-E+T|T

b. T->T*F|F

C. F— (E)|id

d. Find the rightmost derivation of the input string t id) +
id using top-down parsing

e. Using shift-reduce parsing, analyse the followimgut

string:

f. (id *id) +id

g. id(id + id) * id

Consider the following grammar for list structure:

a. S—al|™(T)

b. T->T,S|S

find the rightmost derivations for

(i) (a (a, )

(i) ((a, @), ™ (a)), &)

a Indicate the handle of each right sententiamfdor the
derivations in (b) above
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C) show the steps of a shift-reduce parser
corresponding to these rightmost derivations
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1.0 INTRODUCTION

In the previous unit you have been introduced tiono-up parsing and
a type of bottom-up parsing referred to as shifiee parsing. In this
unit you will be exposed to another type of bottomparsing known as
precedence parsing. This parser can be developed wperator
grammars.

Now let us go through your study objectives fos thinit.

96



CIT 445 MODULE 3

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o define operator grammars and operator precedeacengars

. explain the methods of generating relationship betwoperators
. describe operator precedence parsing

) state the advantages of operator precedence parsing

o compute the Wirth-Weber precedence relationshigetédr any

precedence grammar

. determine if a grammar is operator grammar or dpera
precedence grammar

o parse input strings using the precedence relatipriahle

o construct precedence functions.

3.0 MAIN CONTENT

3.1 Operator Precedence Parser

An operator precedence parseis a bottom-up parser that interprets an
operator-precedence grammar. For example, mostulatdes use
operator precedence parsers to convert from theahueadable infix
notation with order of operations format into ariemally optimised
computer-readable format like Reverse Polish nmiatiRPN).

3.1.1 Relationship to other Parsers

An operator-precedence parser is a simple shifiaegarser capable of
parsing a subset of LR(1) grammars. More precistéig, operator-

precedence parser can parse all LR(1) grammarsevitver consecutive

nonterminals never appear in the right-hand sidengfrule.

Operator-precedence parsers are not used oftemactiqe, however
they do have some properties that make them usatbln a larger
design. First, they are simple enough to write lypdy which is not
generally the case with more sophisticated shdtice parsers. Second,
they can be written to consult an operator tableiatime, which makes
them suitable for languages that can add to or g#dheir operators
while parsing.

To show that one grammar aperator precedence first it should be
operator grammar. Operator precedence grammar is the only grammar
which can construct the parse tree even thoughgithen grammar is
ambiguous.
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We try to look at the relationship between opemattmr guide us in
parsing.

3.1.2 Operator Grammars

Operator grammarsave the property that no production right side is
empty or two or more adjacent non-terminals. Thgpprty enables the
implementation of efficienbperator-precedence parsershese parsers
rely on the following three precedence relations:

3.1.3 Operator Precedence Grammar

An operator precedence grammar is @free operator grammar in
which the precedence relations define above ajeintis.e. for any pair

of terminalsa andb, never more than one of these relatiangb, a
=pb a>bistrue.

3.1.4 Precedence Relations between Operators (temais)

For terminalsa andb,

I <: if a < b, we say a “yields precedence tm"This means that a
production involvinga has to yield to a production involvirg

. =: if a = b, we saya “has the same precedence &s"This
means thaa andb are part of the same production.

iii. >: if a > b, we saya “has precedence ovel. This means that
production involvinga will be reduced before the production
involving b.

An operator grammar is one that has no productibose right-hand
side has two or more adjacent non-terminals.

3.14.1 Methods of Generating Relationship between
Operators

I. Intuition
il Formal

3.1.4.1.1Intuition Method

We can use associativignd precedence of the operations to assign the
relation intuitively as follows:

I. If operator,; and0, has higher precedence thgnthen we make
0, > 0, and92 < 0
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. If 6, and 6, are operators of equal precedence then either we
make 6, > 6,and6, > 0,, if the operators are left associative or
makeb; < 0, and0, < 04, if they are right associative.

SELF-ASSESSMENT EXERCISE 1

I Consider the grammar G:
a. E>E+T/T
b. To>T*F/F
C. Fo>(E)/i
. Compute the operator precedence relationship témethis
grammar.

3.1.4.1.2Formal Method

For each two terminals symbasandb,
a = b if there is a right side of a production of thenfonaBby, wheref3

Is eithere or a single non-terminal. i.a.= b if a appears immediately to
the left ofb in a right side or they appear separated by oneteroninal

e.g. S— iCtSeS implies that+ t and t= e

a < b if for some non-terminal A there is a right sidetlee formoaAp

and A=* ybd, wherey is eithere or a single non-terminal. i.e.< b if
a non-terminal A appears immediately to the rightacand derives a
string in whichb is the first terminal symbol. E.g.-S ICtS and C=*

b, therefore i<, b. Also define $ b if there is a derivation S>* ybd
andy is either empty or a single non-terminal.

a > b if for some non-terminal A there is a right sidetlee formoaAbS

and A=* yad, whereg is eithere or a single non-terminal. i.e.> b if
a non-terminal A appearing immediately to the t&fto and derives a
string whose last terminal symbolas E.g. in S— iCtS and C=* b,

therefore k> t. Also definea > $ if there is a derivation S* yaé and
d Is either empty or a single non-terminal.

3.1.5 Construction of Matrix of all Precedence Rekons for a
Grammar

To construct the matrix of precedence operatiomsafgrammar, you

need to first deduce for each nonterminal thosaitels that can be the
first or last terminal in a string derived from thaonterminal. To

demonstrate this, let us consider the grammar below
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ESE+T/T
T>T*F/F
Fo (E)/i

For this grammar, all derivations from F will hate symbols (or i as
the first terminal and the symbols ) or i as th&.l& derivation from T
could begin T= T * F, showing that * could be both first and last
terminal. Or a derivation could begin=$ F, meaning that every first
and last terminals derivable from F is also a fiostlast terminal
derivable from T. Thus, the symbols *,), and i denfirst and *, ), and i
can be last in a derivation from T. A similar arggmhapplies to E, and
we see that +, *, (, or i can be first and *, +p),i can be last. These
facts are summarised in the table below.

Table 1: First and Last Terminals

Nonterminal First terminal Last terminal
E +) *) () I *! +l )l I

T *1 (1 I *, ), I

F (,i ), i

Now, to compute the= relation, we look for right sides with two
terminals separated by nothing or by a nontermi@aly one right side,

(E), qualifies, so we determine].

Next, consider:. We look for right sides with a terminal immedigtto
the left of a nonterminal to play the rolesaohndA in rule (ii). For each

such paira is related by< to any terminal which can be first in a string
derivable fromA. The candidates in the grammar above are + amd T i
the right side E+ T, *and Fin T * F, and ( andrE(E). The first of

these gives « *, + < (, and +< i. The *:F pair gives *< (and *< i.
The (:E pair gives € *, (< +, (< (, and & i. We then add the

relationships & *, $ < +, $< (, $ < i, since $ must be related byto
all possible first terminals derivable from therss&ymbol E.

Symmetrically, we can construct the relation. We look for the right
sides with a nonterminal immediately to the leftaoferminal, to play
the roles ofA andb of rule (iii). Then, every terminal that could tee

last in a string derivable from is related by> to b. In our grammar, the
pair corresponding to A and b are E:+, T:*, and Elus, we have the

relations *> +, +> +, ) > +, 1>+, *> * ) > * | > * * > ) +>))
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> ), and i> ). We add the relations > $, +> $,)> $, and i> $
according to rule (iii). The precedence relatioosdur grammar are as
shown in the table below:

Table 2: Operator-Precedence Relations

+ * ( ) i $
+

> < < > < >
*

> > < > < >
( < < < = <
) > > > >
! > > > >
$ < < < <

These operator precedence relations allow us tonileghe handles in
the right sentential forms: <- marks the left emd, appears in the
interior of the handle, and - > marks the right end.

Let us assume that between the symbpbnda;.; there is exactly one
precedence relation. Suppose that $ is the enlgeadtting. Then for all
terminals we can write: $ < and b > $. If we remove all
nonterminals and place the correct precedencearlat

<., =, -> between the remaining terminals, thengain strings that can
be analysed by easily developed parser.

Example The input string:

Iy +ix*i3

after inserting precedence relations becomes
$<iip>+<i, >*<i3->$

Having precedence relations allows us to identé#gdies as follows:

scan the string from left until seeing ->
. scan backwards the string from right to left uséieing <-
) everything between the two relations <- and -> $ottme handle

Note that not the entire sentential form is scartnddhd the handle.
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SELF-ASSESSMENT EXERCISE 2

Using this formal method, compute the precedentaioaship matrix
table for the grammar G in the Self -Assessmentdise 1 above.

3.1.6 Operator Precedence Parsing Algorithm

Initialise: Setip to point to the first symbol ow$

Repeat Let X be the top stack symbol, arad the symbol pointed
to byip

if $ is on the top of the stack and ip points tth&n return

else

Let a be the top terminal on the stack, dnithe symbol pointed to kip
if a<-b or a=-b then
pushb onto the stack
advanceip to the next input symbol
else if @->bthen
repeat
pop the stack
until the top stack terminal is related By
to the terminal most recently popped
elseerror()
end

3.1.7 Making Operator Precedence Relations

The operator precedence parsers usually do no¢ $her precedence
table with the relations; rather they are impleradnh a special way.

Operator precedence parsers use precedence funttietnmap terminal
symbols to integers, and so the precedence refatlmtween the
symbols are implemented by numerical comparison.

Not every table of precedence relations has prewsdinctions but in
practice for most grammars such functions can kegded.

3.2 Simple Precedence Parser

A Simple precedence parserlike the operator precedence parser
discussed earlier in this unit is a type of bottomparser for context-
free grammars that can be used only by Simple gesw® grammars.

The implementation of the parser is quite simitatite generic bottom-
up parser. A stack is used to store a viable prefiia sentential form
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from a rightmost derivation. Symbc<, — and = are used to identify
thepivot, and to know when t8hift or when taReduce

3.2.1 Implementation of Simple Precedence Parser

To implement the simple precedence parser, follwvfollowing steps:

Step 1 Compute the Wirth-Weber precedence relstiipntable
as you learnt in section 3.1.5 above

Step 2 Start with a stack with only tsiarting marker $.

Step 3 Start with the string being parsétp(t) ended with an
ending marker $.

Step 4 While not (Stack equals to $S and Inputibsqgio $) (S =

Initial symbol of the grammar)
a. Search in the table the relationship between Tapkjt
and NextToken(Input)
b. if the relationship is-or <t
a. Shift:
b. Push(Stack, relationship)
C. Push(Stack, NextToken(Input))
d. RemoveNextToken(Input)
C. if the relationship i
a. Reduce
b. SearchProductionToReduce(Stack)
C. RemovePivot(Stack)
d Search in the table the relationship between the
Non terminal from the production and first symbol
in the stack (Starting from top)
e. Push(Stack, relationship)
f. Push(Stack, Non terminal)
Step 5: SearchProductionToReduce (Stack)
a. search théivot in the stack the neare<from the top
b. search in the productions of the grammar which lvenee
the same right side than tRevot

Example 1

Given the grammar below:
E-E+T|T

T->T

T->T*F|F

F— (E')|num

E'—E

num is a terminal, and the lexer parses any integeuas
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By step 1, the Parsing table is generated as below:

Table 3: Parsing Table for the Grammar in Exampédve

EETTF+*

E =

E

T ==

T =

= |

< |= |

* =

( < |= <€ < <€

) = |3

num > | >

$ € €<

()
>

VWV

A A

=
=

num '$
P

AV

A A

Al

<

By steps 2 through step 5, we have:

STACK

$

$<2

$<F

$<T
$<T="*
$<T=<(
$<T=*<(<1

VNN v vV A

(F—=num)(T— F)(T'->T)(E—-T")

$<T=*<(<E =
P<T=*<(<E=+ <
$<T=*<(<kE=+<3
num) (T— F) (T'— T)
$<T=*<(<KE=+=T
+T)(E'—E)
$<T=*<(<E
$<T:*<(:E':)
$<T=*=F

$<T

(E—-T9

$<E
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vVVi Vv

\Y/

INPUT
2*(1+3)$
*(1+3)$
*(1+3)$
*(1+3)$
(1+3)$
1+3)$
+3)$

+3)$
3)$
)$

)$

&+
» Oy

ACTON

SHIFT

REDUCE (F>num)

REDUCE (F)

SHIFT
gH

HET
REDEC 4times
SHIFT

SHIFT

REDUCE 3 times (F—

REDUCE 2 times (B> E
SHIFT
REDUCE (F (E"))
REDUCE (T—- T *F)
REDUCE 2 times (3T)

ACCEPT
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3.3

MODULE 3

Algorithm for Constructing Precedence Functions

Create function§, for each grammar terminal and for the end
of string symbol,

Partition the created symbols into as many gsoas possible
such thaff, andg, are in the same groupaf=: b ( there can be
symbols in the same group even if they are not ecied by this
relation);

Create a directed graph whose nodes are igrthes, next for
each symbols a and b do: place an edge from thggrbg, to
the group off, if a <- b, otherwise ifa -> b place an edge from
the group of, to that ofg;

If the constructed graph has a cycle then ecgutence functions
exist. When there are no cycles collect the lemjtthe longest
paths from the groups &f andg, respectively.

Example Consider the table below:

Fig. 1:

Id + * $
id > o> >
+ <. > <. >
* <. > > >
$ < < <. >

Using the algorithm leads to the following graph:

Graph Representing Precedence Functions

from which we extract the following precedence fimrcs:

Table

id + * $
f 4 2 4 0
g 5 1 3 0
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4.0 CONCLUSION

In this unit, you have been taken through anotlgpe tof bottom-up
parsing technique known as precedence parsing.tétimique is very
suitable for languages that can add to or change tperators while
parsing. In the next unit you will learn more abdop-down parsing
techniques.

5.0 SUMMARY

In this unit, you learnt that:

o an operator precedence parseris a bottom-up parser that
interprets an operator-precedence grammar

) an operator-precedence parser is a simple shificeegparser
capable of parsing a subset of LR(1) grammars

o operator grammarshave the property that no production right
side is empty or two or more adjacent non-terminals

. an operator precedence grammar is-&ee operator grammar in

which the precedence relations define above aieinlis.e. for
any pair of terminalsa and b, never more than one of these

relations:a <b, a=b a>bistrue
. precedence parsing techniques is suitable for kEgegithat can
add to or change their operators while parsing.

6.0 TUTOR-MARKED ASSIGNMENT

I Consider the following grammar for list structsr

S—a|"[(T)

T->T,S|S

a) Compute the operator-precedence relations fus t
grammar. Is it an operator-precedence grammar?

b) Using the operator-precedence relations condpirte(a)
above, analyse the following input string:
() (a (a, @)
(i) (((a, &), " (a)), &)

C) Find precedence functions for the relations mot@d in
(a) above.
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UNIT 4 TOP-DOWN PARSING TECHNIQUES

CONTENTS
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3.1  Top-Down Parsing Techniques
3.1.1 Difficulties with Top-Down Parsing
3.1.1.1Minimising the Difficulties.
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3.4.1 Nonrecursive Predictive Parsing Algorithm
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3.4.2.1.1FIRST
3.4.2.1.2FOLLOW
3.4.3 How to Construct a Parsing Table
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In the previous units of this module you have begroduced to some
types of bottom-up parsing. In this unit you wi bxposed to some top-
down parsing techniques such as recursive descardging and
nonrecursive predictive parsing.

Now let us go through your study objectives fos thinit.
2.0 OBJECTIVES
At the end of this unit, you should be able to:

. define top-down parsing

state the difficulties with top-down parsing andivhthey can be
overcome

describe recursive descent parsing

define LL(k) grammars

describe nonrecursive predictive parsing

write an algorithm for nonrecursive predictive pags

construct a predictive parser for LL(k) grammars
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. use the predictive parsing table for a grammar to
analyse/determine input strings belonging to ttzargnar.

3.0 MAIN CONTENT
3.1 Top-Down Parsing Techniques

Top-down parsing can be viewed as an attempt td &nleftmost
derivation for an input string or as attemptingctmstruct a parse tree
for the input string starting from the root andatieg the nodes of the
parse tree in pre-order.

3.1.1 Difficulties with Top-Down Parsing

I Which production will you apply? If the right prochion is not
applied you will not get the input string.

. If you are not careful, and there is a left recwggproduction, it
can lead to continue cycling without getting to teswer i.e.
input string.

iii. The sequence in which you apply the production enatas to
whether you are going to get the input string dr mbat is, there
is a particular sequence that will lead you toittpit string.

V. If you apply a production and find out that the gurotion cannot
work, you have to start all over again.

3.1.1.1 Minimising the Difficulties
However, some of these difficulties can be miniisemoved.

I Left recursion can be removed from the gramniduis can be
done as follows:

If you have a production like:

A — Aoq. This is left recursive but it can be removed by
having something like:

A— Aa|p
You can set

A— BA

Then set A—> oA’ | ¢
By so doing, we have removed left recursion ang tpenerate
the same language. But instead of two productigns, have
three productions.

. Order of trying the alternatives may influengeur getting the
input or not. You can use a method callegtoring i.e left
factoring is used to ensure that the right sequender is used or
followed.
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eg. A-ap
A—ay

If we have the above, which one do we expand AMga?can get rid of
this dilemma by using left factoring to determire tright sequence.
That is the above becomes:

A — oA’
A —>Bly

3.2 LL (K) GRAMMARS

LL (K) grammars are those for which the left parsan be made to
work deterministically, if it is allowed to look #&-input symbols, to the
right of its current input position. The left parsxpands the leftmost
non-terminal or variable.

In other words, a context-free grammar is calledgcammarwhen it is
elaborated to enable scanning the input from ¢eftght (denoted by the
first L) and to produce a leftmost derivation (debby the second L).

Often we consider LL (1) grammars that use one tirggumbol of
lookahead at each step to make parsing decisions.

These two properties allow us to perform efficieatursive parsing.
Moreover there can be automatically constructediptige parsers from
LL grammars.

We use what is called a predictive parsing metbquhtse certain things
derivable from LL (K)

3.3 Recursive Descent Parsing

Recursive descents a strategy for doing top-down parsing. As you
learnt earlier in this uniffop-down parsingims to identify a leftmost
derivation of a given input string with respect toe predefined
grammar. The top-down parsing process construperse tree starting
from the root and proceeding to expand the treereating children
nodes till reaching the leaves.

Recursive descent parsers however operate doiddraeking, that is,
they make repeated scans of the input in order @oidd which
production to consider next for tree expansion.ngsbacktracking
makes the recursive descent parsers inefficierd, tapy are only a
theoretically possible alternative. That is whyumsive parsers that do
not need backtracking to obtain the parse tree leeen developed.
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Therefore, today, recursive descent parsing igpaltavn approach that
avoids backtracking.

The Recursive procedures can be quite easy to amidefairly efficient
if written in a language that implement proceduakscefficiently.

Example 1

Consider the following grammar

(@ E—TE (b) E—>E+T|T
E' > TE'|E T>TF| F
T>FT Fo(E)|i
T S*FT | e
Fo (E) ] i

Grammar (a) and (b) are alike/identical becausengrar (b) has left
recursion, we can transform it to the form writtergrammar (a) above.
We can then easily implement the parser by wriinmocedure for each
non-terminal like the one below.

For grammar (a), we have five non-terminals: E,TET’, F
By writing five (5) procedures for each of thesensterminals, then our
parser is complete.

Procedure E ( );
Begin
T();EPRIME ()
End

Procedure EPRIME ( );
Begin
If input-symbol = “+” then
Begin
ADVANCE ( ); T( ); Eprime ()
End
end

Procedure F( ) ;

Begin
If input-symbol = “i” then Advance ( )
Else if input-symbol = “(” then

begin
ADVANCE ( ); E();
If input-symbol = *)” then ADVANCE ( );
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Else ERROR ( );

End

Else ERROR () ;

End

Fig. 1:Recursive Procedures for Top-down Parsing

Example 2:

Suppose we have a grammar G:

E>E+T

E->T

To>T*F

T—>F

F— (E)

F—>a

Let us say we want to find the left parse of thetesece a * (a + a)

Solution
We need to generate or derive to get a*(a+a)
Remember, we derive leftmost

E—-T (2)
—->T*F (3)
—->F*F (4)
—>a*F (6)
—a*(E) (5)

—a*(T+T) (1)

—>a*(T+T) (2)

—sa*(F+T) (4)

—a*(@+T) (6)

—>a*(@a+F) (4)

—a+(a+a) (6)

Sequence of derivation is 23465124646
3.4 Non-Recursive Predictive Parsing

Nonrecursive parsers rely on careful rewriting bk tcontext-free
grammar (as you learnt in unit 1 of this module absb in section
3.1.1.1 of this unit) so as to decide unambiguoustich production to
apply next, without recursive backtracking, upoarsa particular input
symbol.

After rewriting of the grammar there is made a paysable which
allows us to implement an efficient stack-basedgar
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| nput al+|b|sg
A
St ack Qut put
X Pr_edl ctive
Par si ng Program
Y
Z
$
Par si ng Tabl e
Fig. 1: Model of a Predictive Parser

A nonrecursive parseis an implementation of a predictive parser that
keeps the symbols on a stack explicitly, withoutintaning them
implicitly via recursive calls.

The input of a nonrecursive parser consists ofiagstv and a parsing
tableM for the grammaé.

The output of a nonrecursive parseddatmost derivatiorof w, if the
string w belongs to the grammar, that is it islin( G ), otherwise it
announces an error.

We can picture a predictive parser as in figurédva.

A predictive parser has an input, a stack, a pgrsble and an output.
The input contains the string to be parsed followgddollar ($) sign,
the right-end marker. The stack contains a sequesicgrammar
symbols preceded by the dollar sign, the bottomstaick marker.
Initially the stack contains the start symbol o trammar preceded by
the dollar sign. The parsing table is a 2-dimeraicarray M[A, a].
Where A is a non-terminal aradis a terminal or the dollar sign

The parser is controlled by a programme that behasdollows:

The program determines X, the symbol on top ofdtaek anda, the
current input symbol to be parsed. These two symidetermine the
action of the parser.
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Looking at the symbols, there are three possibditi

1. If X is a terminal and is also the end of stringe tright end
marker (i.e. X =a = $), the parser halts and announces the
successful completion of parsing.

2. If X=a=$, i.e.ais on top of the stack aralis the input to the
processthe parser pops X off the stack and advances &t in
pointer to the next input symbol.

3. If X is a non-terminal, the programme consults ¢hé&ry M[X, a]
of the parsing table M and behaves accordinglys HEmtry will
either be an X-production of the grammar or anreemiry. If
M[X, a] = {X — UVW}, the parser replaces X on top of the
stack by WVU (with U on top). As output, the grammdaes the
semantic action associated with this productioniciyhfor the
time being, we shall assume is just printing thedpction used.
If M[X, a] = error, the parser calls an error recovery routine.

3.4.1 Nonrecursive Predictive Parsing Algorithm

We shall describe the behaviour of the parser irmge of its
configurations, which give the stack contents dmel remaining input.
Initially, the parser is in configuration:

Stack Input

$S o$

where S is the start symbol of the grammar ands the string to be
parsed. The program that utilises the predictivsipg table to produce
a parse is shown in Figure 2 below.

Initialise: Setip to point to the first symbol oW$
Repeat Let X be the top stack symbol, aral the symbol
pointed to byip
if X is aterminal or $hen
if X=a then
pop X from the stack and advande
else error()
else /* X is a nonterminat/
if M[X,a]l=X— Yl, Y2, ...,Yk then
begin
pop X from the stack
push Yk, Yk_l, ...,Y1 onto the stack, With(l on top

output the productionX - Y, Y,, ..., Y,
end
elseerror()

until X=$%
Fig. 2: Predictive Parsing programme
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3.4.2 Functions Definitions

To guide us in constructing the parsing table, wedto define the
following functions.

3.4.2.1 FIRST and FOLLOW

To fill in the entries of a predictive parsing tapve need two functions
associated with grammar G. These functions, FIRBd BOLLOW,
will indicate the proper entries in the table foifssuch a parsing table
for G exists.

3.4.2.1.1FIRST

If a is any string of grammar symbols, define FIRGYt6 be the set of
terminals that begin strings derived frarhIf o =*¢, theneg is also in
FIRST @).

The general definition of FIRST is FIRE&) meaning the first k
symbols in any string thatcan derive.

To compute FIRST(X) for all grammar symbols X, gpisie following
rules until no more terminals efcan be added to any FIRST set.

1. If X is terminal, then FIRST(X) is (X)

2. If X is nonterminal and X— ao is a production, then adal to
FIRST(X). If X — ¢ is a production, then adoto FIRST(X).
3. If X — Y1 Y5 ...Yyis a production, then for allsuch that all of

Y1...,Yiq are nonterminals and FIRSTj¥ontainse for j = 1, 2,
e 1-1 (e, Y1.Y2..,Yi1 =* ¢g), add every nom- symbol in
FIRST(Y;) to FIRST(X). Ife is in FIRST (Y) for all forj =1, 2,
..., K, then ad& to FIRST(X).

Now we can compute FIRST for any stringX%...X, as follows. Add to
FIRST(XX,...Xy) all the none symbols of FIRST(X. Also add the the
non- symbols of FIRST(Y if € is in FIRST(X), the none symbols of
FIRST(X) if € is in both FIRST(X) and FIRST(X%), etc. Finally, add
to FIRST(XX,...Xy) if, for all i, FIRST(X) contains.

Example: Consider the Grammar below:

G: E-TE
E'— +TEe
T FT
T - *FT'¢
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Fo (E)/]

Suppose we want to find FIRST(E) i.e. What are firs¢ elements of
strings which E can derive?

Solution

Elements of FIRST(E) ={(, 1}
Elements of FIRST(E’) ={ +s }
Elements of FIRSTT) ={* ¢}

3.4.2.1.2FOLLOW

Define FOLLOW(A), for non-terminal A to be the seft terminalsa,
that can appear immediately to the right of A imsosentential form.
l.e. s—>* aAap

If A can be the rightmost symbol in some senterfbamin, thene is in
FOLLOW(A)

If A is the distinguish or is the start symbol, thieOLLOW (A) contains
€

To compute FOLLOW(A) for all nonterminals A, appiye following
rules until nothing can be added to any follow set.

g is in FOLLOW(), whereSis the start symbol.

If there is a production A» aBf, then everything in FIRSPB] bute is
in FOLLOW(B). Note that may still wind up in FOLLOW(B) by rule

(3)
If there is a production A~ aff, or a production A~ aBp where

FIRST(@) containse (i.e. p =* ¢, then everything in FOLLOW(A) is in
FOLLOW(B)

Example 3

Find FOLLOW (E), FOLLOW (E’) , FOLLOW (T), FOLLOWT) ,
and FOLLOW (F) for the grammar below:

G: E—-> TE

E'— +TE'/e
T—>FT
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T - *FT/e
Fo (E)/i

Solution:

FOLLOW (E) = FOLLOW (E") = &, )}
FOLLOW (T) = FOLLOW (T') = {g, ), +}
FOLLOW (F) ={g,), +, *}

3.4.3 How to Construct a Parsing Table

The following algorithm can be used to construgiredictive parsing
table for a grammar G. The idea behind the algaorihsimple. Suppose
A— a is a production witla in FIRST@). Then whenever the parser has
A on top of the stack witl the current symbol, the parser will expand
A by a. The only complication occurs when= ¢ or a =* ¢. In this
case, you should also expand A dyf the current input symbol is in
FOLLOW(A), or if the $ on the input has been reatlade is in
FOLLOW(A).

The algorithm for constructing the parsing tablassollows:

Input: Grammar G
Output: Parsing table M

Method:

Step 1: For each production A derives(i.e. A> o) of the
grammar do steps 2 and 3.

Step 2: For each terminalin FIRST (), add production A> o to
M [A, &

a N
A Terminals
Non-Terminals >
/

Fig. 2: The Parsing Table M[A, a]

Step 3: Ife is in FIRST ), add A— a to M[A, b] for each
terminalb in FOLLOW(A). If ¢ is in FIRST @) and also
in FOLLOW(A) add A—a to M[A, $]

Step 4: Make each undefined entry of M error

117



CIT 445 PRINCIPLES AND TECHNIQUES OF COMPILERS

Example 4

Using the grammar G below, let us construct a pgr&ble.
G: E—>TE

E'—> +TE'/¢g

T FT

T > *Tl/e

F—> (E)/i

We want to construct the parsing table for eacllycton

a. Considering the®Iproduction E>TE’ ,
A=E; a=TE’
. FIRST(TE’) = FIRST(E) = {(, i} ande is not in
FIRST(TE") ’
b. Considering the"2production E— +TE’
A=E; a=+TE’
.. FIRST(+TE’) = {+} and¢ is not in FIRST(+TE")
C. Considering "8 production, E'— ¢
A=E’; 0O=g
.. FIRSTE) = {e}.
Since g is in FIRSTE), therefore, we find FOLLOW(E’) = {)s}
d. Considering the"¥production T» FT’
A=T; a=FT

. FIRST(FT’) = {i, (} ande is not in FIRST(FT’)

e. Considering the"5production T *FT’
A=T; a=*FT
" FIRST(*FT’) = {*} and ¢ is not in FIRST(*FT")
f. Considering 8 production, T'— ¢
A=T; a=e
.. FIRSTE) = {e}.
Sinceg is in FIRSTE), therefore, we find FOLLOW(T’) = {+, ),
e}
g. Considering the"7production F— (E)
A=F, a=(E)
.. FIRST ((E)) = {(} ande is not in FIRST((E))
g. Considering thet%production F>i
A=F, A=
.. FIRST(i) = {i} and ¢ is not in FIRST(i)
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Table 2: Parsing Table for the Grammar in Example 4

| + * ( ) $
E Eo TE EsE
E’ E’ - E'E—>¢ |E—>c¢
TE’
T T—>FT T—>FT
T T >e | T *FT T >e |T >c¢
F Fo i F- (E)

We want to know if the sentence i+i*i can be forniexin the grammar
above using the parsing table above

Solution

Using Top-down parsing

Stack
$E
SE'T
SE'TF
SET
SE'T
$E’
SE'T+
SE'T
SE'TF
SE'T
$E'T
$E'T'F*
SE'TF
SE'T
SE'T
$E’

$

Input
i+i*i$
i+i*i$
i+i*i$
i+i*i$
+i*1$
+i*i$
+i*i$
i*i$
i*i$
i*i$
~k|$
~k|$

i $

i$

$

$
$

Output

E—- TE’
T—-FT
F—i
pop |
T—e¢
E'— +TE’
pop +
T— FT
Foi
Popi
T—-*T
pop *
F— i
pop i
T—¢
EX> e

Since the stack and input is empty, therefore #memnce i+i*i can be
formed from the grammar and the parsing table.

The problem with the parsing table above is thatghrammar must be
non-left recursive otherwise it will not be easydonstruct the above

parsing table.
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SELF -ASSESSMENT EXERCISE

I Given the grammar in example 4 above and theesponding
parsing table in figure 3 above, determine whetherfollowing
input strings can be generated from the grammar.

a)  (ix*(i+i)
b) P +0) %

4.0 CONCLUSION

In this unit, you have been taken through some dimpn parsing

techniques such as recursive descent parsing asdicpve parsing

techniques. These two techniques like their copatér bottom-up

techniques that you have learnt about so far is thodule and be
implemented by hand. The predictive parser haslithigation that it

cannot be constructed for left-recursive grammirshe next unit you
will learn about another type of parser that carfmtimplemented by
hand. These are LR parsers which are so calledubedhey can scan
the input from left-to-right and construct a riglutsh derivation in

reverse. They are efficient bottom-up parsers ¢hatbe constructed for
a large class of context-free grammars.

5.0 SUMMARY
In this unit, you learnt that:

. LL(K) grammars are those for which the left parsan be made
to work deterministically, if it is allowed to loolat K-input
symbols, to the right of its current input position

o Top-down parsingaims to identify a leftmost derivation of a
given input string with respect to the predefinedngmar. The
top-down parsing process constructs a parse taengt from the
root and proceeding to expand the tree by creatiigren nodes
till reaching the leaves

) Recursive descens a top-down parsing strategy that operate
doing backtracking

. Using backtracking makes the recursive descent epars
inefficient, and they are only a theoretically pblsalternative

o A nonrecursive parseis an implementation of a predictive parser

that keeps the symbols on a stack explicitly, withmaintaining
them implicitly via recursive calls

o The general definition of FIRST is FIRgd&) meaning the first k
symbols in any string thatcan derive

o FOLLOW(A), for non-terminal A is the set of termisan, that
can appear immediately to the right of A in someteetial form.
l.e. s—>* aAap
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6.0 TUTOR-MARKED ASSIGNMENT

I The grammar below is an LL(1) grammar for regubgsressions
over alphabetd, b}, with + standing for the union operator (| )
and€ for the symbok.

E—>TE

E' > +E |e

T>FT

T->Tle

F— PF

FF>*|e¢

P> (E)|a|bl|€

a. Compute FIRST and FOLLOW for each nonterminal of
the above grammar

b. Show that the grammar is LL(1)

C. Construct the predictive parsing table for the gram

d. Construct a recursive-descent parser for the gramma

. Consider the following grammar:

S— aSa|aa

Clearly the grammar generates all even length gdriof a's

except for the empty string

a. By tracing through the steps of a top-down parseth(
backtracking) which tries the alternat&a before aa,
show that S succeeds on 2, 4, @& but fail on 6a’s

b. What strings cause the parser to succeed?
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UNIT 5 LR PARSERS
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4.0 Conclusion
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1.0 INTRODUCTION

The problem with the parsing table discussed inptieeious unit is that
the grammar must be non-left recursive otherwiseilitnot be easy to
construct the parsing table. In this unit, you wik shown how to
construct efficient bottom-up parsers for a lardggs€ of context-free
grammars. These parsers are called LR parsers dethey can scan
the input from left-to-right and construct a riglush derivation in

reverse. These class of parsers are attractiva feariety of reasons
amongst which is that they can be constructed cogmise virtually all

programming language constructs for which contexé¢-fgrammars can
be written.

Now let us go through your study objectives fos thinit.
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2.0 OBJECTIVES
At the end of this unit, you should be able to:

define LR(k) grammars

state the advantages and drawbacks of LR parsers
construct a simple LR parser

distinguish among the different types of LR parsers

compute all the LR(0) items for a given grammar

construct an NFA whose states are the LR(0) itesnsafgiven
grammar

. define basic functions involved in the generatidrn_B parsers
such as GOTO, CLOSURE, etc.

3.0 MAIN CONTENT
3.1 LR (K) GRAMMARS

These are grammars for which the right parser eambde to work
deterministically if it is allowed to look at k-imp symbols to the left of
its current input position. That is, a context-figammar is calledR
grammarwhen it is elaborated to enable scanning the ifom left to
right (denoted by L) and to produce a rightmosiwdgion (denoted by
R).

3.1.1 Why Study LR Grammars?

We study LR grammars for a variety of reasons arsongdpich are the
following:

) LR (1) grammars are often used to construct pardsies call
these parsers LR(1) parsers and it is everyone®ufite parser

) virtually all context-free programming language stacts can be
expressed in an LR(1) form

o LR grammars are the most general grammars parseibla
deterministic, bottom-up parser

. efficient parsers can be implemented for LR(1) grears

) LR parsers detect an error as soon as possiblelaeft-to-right
scan of the input

o LR grammars describe a proper superset of the &ayesu

recognised by predictive (i.e., LL) parsers
LL (k): recognise use of a production-A  seeing firsk symbols off

LR (K): recognise occurrence pf(the handle) having seen all of what
is derived fronP [Iplusk symbols of lookahead.
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3.2 LR Parsing

LR parsing can be generalised as arbitrary coritegtlanguage parsing
without a performance penalty, even for LR (k) gmaans. This is
because most programming languages can be expresgsed.R (k)
grammars, where k is a small constant (usuallyNb}e that parsing of
non-LR (k) grammars is an order of magnitude slo@@ebic instead of
guadratic in relation to the input length).

3.2.1 Benefits of LR Parsing

LR parsing is attractive for a variety of reasonsoagst which are the
following reasons:

a. LR parsing can handle a larger range of languabas LL
parsing, and is also better at error reporting, itedetects
syntactic errors when the input does not conforrthéogrammar
as soon as possible. This is in contrast to an K)L(¢r even
worse, an LL (*) parser) which may defer error dét to a
different branch of the grammar due to backtrackingen
making errors harder to localise across disjunstiaith long
common prefixes.

b. LR parsers can be constructed to recognise Miytuall
programming language constructs for which contesé-f
grammars can be written

C. It is more general than operator precedence owo#rgr common
shift-reduce techniques discussed so far in thidul® yet it can
be implemented with the same degree of efficierscthase other
methods.

d. LR parsing also dominates the common forms of toywsd
parsing without backtrack. That is it is the mosheral non-
backtracking parsing method.

3.2.2 Drawback of LR Parsing

The principal drawback of the method is that ita® much work to
implement an LR parser by hand for a typical prograng language
grammar. However, an LR parser generator is novergdly available

to assist. You need a specialised tool called ap&Rer generator. The
design of one of such will be discussed in thig.uni

3.2.3 Techniques for Producing LR Parsing Tables

There are three common techniques for buildingewldbr an “LR”
parser. These are itemised below with their pecaharacteristics.
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The first method is called simple LR (SLR (1) fowost). It is easiest to
implement. Unfortunately, it may fail to producetable for certain
grammars on which the other methods succeed. Inmsuyn SLR has
the following characteristics:

. smallest class of grammars
. smallest tables (number of states)
o simple, fast construction

The second method is called canonical LR (or LR.(lt)is the most
powerful and works on a very large class of gransmbinfortunately,
the canonical LR method can be very expensive tplament. In
summary, the characteristics of the LR(1) are Hevis:

. full set of LR(1) grammars
. largest tables (hnumber of states)
. slow, expensive and large construction

The third method is called lookahead LR (LALR (by fshort). It is
intermediate in power between the SLR and the daabhR. The
LALR method works on most programming-language grams and,
with some effort, can be implemented efficientiy summary, the
characteristics of the LALR(1) are as follows:

o intermediate sized set of grammars

) same number of states as SLR(1)

. canonical construction is slow and large
. better construction techniques exist

Note that an LR (1) parser for either Algol or Rdsbas several
thousand states, while an SLR (1) or LALR (1) parse the same
language may have several hundred states.

In subsequent sections of this unit you will be esqd to how
ambiguous grammars can be used to simplify the rgien of
languages and produce efficient parsers.

3.3 LR (K) PARSER

As you learnt earlier, LR (K) parsers are so calledause they scan the
input from left to right and construct a rightmalgrivation in reverse.
LR parsing method is more general than operatoceplence or any
other shift-reduce technique. They generally caogaise virtually all
programming language constructs for which contesg-fgrammars can
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be written. LR parser can detect syntactic errersaon as it is possible
to do so on a left to right scan of the input.

3.3.1 Configuration of LR Parser

Logically, an LR parser consists of two parts, &veir routine and a
parsing table. The driver routine is the same fioLR parsers, only the
parsing table changes from one parser to anothersthematic form of
an LR parser is shown in figure 1. As the driveutioe is simple to
implement, we shall often consider the LR parserstroiction process
as one of producing the parsing table for a givermgnar as in figure
1(a).

Table
Grammar === Ganerator ™ Parsing Table

(a) Generating the parser

Parsing

Input =3 Driver ——> Output

(b) Operation of the parser
Fig. 1: Generating an LR Parser

The parser has an input, a stack and a parsing. tabke input is read
from left to right one symbol at a time. The stacktains a string of the
form:

SX151X2S; ... XS

where §, is on top; each Xis a grammar symbol and eachi$ a

grammar symbol called a state. Each state symbwinguises the
information contained in the stack below it andsitused to guide the
shift-reduce decision. In actual implementatiore trammar symbols
need not appear on the stack. We include them thdyeto help explain
the behaviour of an LR parser.

The parsing table consist of two parts:
. a parsing action function called ACTION, and
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o a go to function called GOTO

Input

apt+ta,taz+..+a,$s

Stack
Sm k\/
Driver Routine

(Program)

Parsing

Fig. 2: LR Parser

The programme driving the LR parser behaves asvisll It determines

S, the state currently on top of the stack, andtla, current input

symbol. It then consults ACTION[Sa], the parsing action table entry
for state § and inputa. The entry ACTION[S, a] can have one of

four values:

Shift S
Reduce A—
Accept
Reject (error)

The function GOTO takes a state and grammar syadalguments and
produces a state. It is essentially the transitientransition table of a
deterministic finite automaton whose input symbaits the terminals
and nonterminals of the grammar.

A configuration of an LR parser is a pair whosatficomponent is the
stack contents and whose second component is tigended input.

(S0XS1X25 X300 XinSm 8 Ajr1, Qv2 ... D)

The next move of the parser is determined by repdinthe current
input symbol and § the state on top of the stack and then consulting
the parsing action table entry ACTION][S]

(ijlleZSZ ---- Xmsrm ai" a+1’ ai+21 Xy an$)

Note that:
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(i
(ii)
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ACTION () will take care of parsing
GOTO() will take care of states

The configurations resulting after each of the fiyyres of move are as
follows:

1.

how

If ACTION [S,, a] = Shift S, the parser executes a shift move,
entering the configuration:

{SX1S1X2S; ... XSS, 841 @iz -....an9)

I.e. Shifta; to join §,and go to a new state S.

Here the parser has shifted the current input syrapband the
next state S = GOTO [$a] onto the stacka.; becomes the
new current input symbol.

If ACTIONI[S,, a] = Reduce A— B, then the parser executes a
reduce move entering the configuration:

(Soxlslxzsz ----- Xm-rSm-r A Syai, Q+1y Ajs2y «ovy an$)

Where S = GOTO[&, A] andr is the length of, the right side
of the production. Here the parser first pops tvegymbols off the
stack ( state symbols and grammar symbols), exposing states
Snr. The parser then pushed both A, the left side ha t
production, and S, the entry for ACTION[S A], onto the stack.
The current input symbol is not changed in a reduose. For
the LR parsers we shall construct, % ... Xy, the sequence of
grammar symbols popped off the stack, will alwaysahp, the
right side of the reducing production.

IF ACTION[S,, &] = Accept, parsing is completed

IF ACTIONIS,, a] = Error, the parser has discovered an error
and would call the error recovery routine.

The LR parsing algorithm is very simple. Initiatlye LR parser is in the
configuration: (§, a; a...... a$) where §is a designated initial states
anda;a,...a, is the string to be parsed. Then the parser egsaubves
until an accept, or error action is encountereadu Will either accept or
reject the string. All LR parsers behave in thisnmex. The only
difference between one LR parser and another isnfoemation in the
parsing action and goto fields of the parsing table

3.4 Simple LR (SLR) Parser

3.4.1 Definitions

3.4.1.1Viable Prefix

Suppose S=* cAo = afw Iin a rightmost derivation in grammar G.
Theny is a viable prefix of G if is a prefix ofup. That is,y is a string
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which is a prefix of some right sentential form bubich does not
extend past the right end of the handle of thdttrsgntential form (i.e
do not contain any symbols to the right of the hand

A viable prefix is so called because it is alwagsgble to add terminal
symbols to the end of a viable prefix to obtainghtr sentential form.
Therefore, there is apparently no error as lontpagportion of the input
seen to a given point can be reduced to a vialetiexpr

3.4.1.2 LR (0) Item (or Simple Item)

LR (0) item or simple item of a grammar G is a pitbn of G with a
dot at some position on the right side. Thus, if ave a production of
the form: A— XYZ, then it will generate the following four itesn

A— XYZ
A — XYZ
A — XY.Z
A — XYZ. are all LR (0) item.

Also the production A> € generates only one item-/A .

Inside the computer, items are easily represengguhls of integers, the
first giving the number of the production and tlee@nd the position of
the dot.

We group items together into sets, which give tisthe states of an LR
parser. The items can be viewed as the states OfFanrecognising
viable prefixes.

One collection of sets of items, which we call #enonical LR (0)
collection, provides the basis for constructing lase of LR parsers
called simple LR (SLR). To construct the canonicRl (0) collection
for a grammar, we need to define an augmented geanand two
functions, CLOSURE and GOTO.

3.4.1.3 Augmented Grammar

If G is a grammar with start symbol S, then G’ (auggnted Grammar for
G) is G with a new start symbol S’ and new products’ — S. The
purpose of this new starting production is to iatkcto the parser when
it should stop parsing and announce acceptandeahput. This would
occur when the parser was about to reduceS.
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Example 1:

Consider the grammarr,
G: E-E+T|T
T->TF|F

F—(E)|i

The augmented grammar for this grammar is grammaelBw:

G: FE —E
E-E+T|T
T->TF|F
F—(E)|Ii

3.4.14 CLOSURE

If Iis a set of items for a grammar G, then thieafetems CLOSURE]I]
is constructed from | by the following rules:

Every itemin | is in CLOSURE(I]

If A — a.Bf is in CLOSURE [l] and B— vy is a production, then add
the item B— vy is a production, then we add the item-B.y to I, if it is
not already there.

The function CLOSURE can be computed as in therdlgo below.

Procedure CLOSURE(I);
begin

repeat

for each item A— a.Bp in | and each production
B — vyin G such that B» .yisnotin |
doadd B— .ytol

until no more items can be added to ;

return I;
end

Fig. 3: Computation of CLOSURE
Example 2:

Consider the augmented grammar
E'—->E

E-E+T|T

T->TF|F

F—(E)|i
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| ={E’ — .E},
Find CLOSUREI]

Solution:

If 1 is the set of one item {[E> E]}, then CLOSURE]I] contains the
items

E'—- .E

E—->E+T

E—-.T

T—- .T*F

T—.F

F— .(E)

F—.i

That is, E'— .E is in CLOSURE (I) by rule (i). Since there is &
immediately to the right of a dot, by rule (ii) vaee forced to add the E
productions with dots at the left end, that is—E.E + T and E— .T.
Now there is a T immediately to the right of a dmt,we add > .T * F
and T— .F. Next, the F to the right of a dot forces+#.(E) and F— .i
to be added. No other items are put into CLOSURBYIrule (ii).

3415 GOTO Function

If 1'is a set of items and X is a grammar symb@ntGOTO (I, X) is
defined to be the closure of the set of all itetas$ aX.p] such that [A
— o.Xp]isin I.

Example 3:

Consider the Grammar
E—-E

E-E+T|T
T->TF|F

F—(E)|i

If 1 is the set of items {{[E'— E.], [E — E.+T]}, then GOTO][l,+]
consists of

E-E+.T

T .T*F

T—.F

F— .(E)

F—.i

That is, we examine | for items with + immediatébythe right of the

dot. E'— E. Is not such an item, but& E.+T is. We move the dot
over the + to get [E> E+.T] and take the closure of this set.
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i.e. | = CLOSURE (E— E+.T)

This implies that | =E-> E +.T
T— . T*F

T—.F

F— .(E)

F—o.

Therefore, CLOSURE (B> E+.T)={E>E+.T, T—» .T*F, T— .F, F
— .(E), F—.i}

3.4.1.6 The Sets-of-ltem Construction
You are now ready to learn the algorithm to cortdt@ the canonical
collection of sets of LR(0) items for an augmenggdmmar G’ (i.e.

CLOSURE [S'— .S])), the algorithm is shown if figure 4 below:

procedure ITEMS (G);

begin
C := {CLOSURE({S — .S})};
repeat

for each set of items | i@ and each grammar symbol X
such that GOTO(I, X) is mohpty and is not i€
do add GOTO(l, X) taC
until no more sets of items can be adde@ to
end

Fig. 4: The Sets-of Items Construction

Example 4:

For the augmented grammar below,

Find the canonical collection of sets of items. CeOSURE(E'— .E))
Represent the GOTO function for this set of itemsstlze transition
diagram of a deterministic finite automatbn

E'—->E

E-E+T|T

T->TF|F

F—(E)|i

Solution:

C = CLOSURE (E— .E)

lo: E'— .E
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E—-E+T|.T
T .T*F | .F
F— (B)]|.
Expanding I
I GOTO (b, E) b: GOTO (b, T)
E—>E. E—-T.
E—-E.+T T-T.*F
13:GOTO (b, F) l:  GOTO (b, () ls: GOTO (b, i)
T—F. F— (.E) F—i.
E—-.E+T|.T
T .T*F | .F
F— .(B)]|.i
Expanding I Expanding I,
le: GOTO (k, +) l: GOTO (b, *)
E—-E+.T F-T*.F
T—-.T*F|.F F— .(E) | .i
F— (B)]|.
Expanding |4
lg: GOTO (L, E) GOTO (L, T)=L GOTO (L ()=14
GOTO (b, F) =k GOTO (L, i) =I5
Expanding l¢
lo: GOTO (4, T) GOTO (bF) =13 GOTO (k () =Ila4
E—-E+T.
T .T*F GOTO (k1) =15
Expanding I
;0 GOTO (F, F) GOTO(}, (=1l GOTO (k1) =15
T— T*F.
Expanding Ig
12 GOTO (k,)) GOTO (b, +) =15
F— (E).
Expanding I
GOTO (b, +) = k
NOTE:

The final state for the given grammar G ig $ince it cannot be
expanded further. Thereforg Is the closure.
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(
* \ F

Fig. 5: Deterministic Finite Automaton D

3.4.2 Constructing SLR Parsing Table

In this section you will learn how to construct t8eR parsing action
and GOTO functions from the deterministic finitet@uaton that
recognises viable prefix. It will not produce uredy+tdefined parsing
tables for all grammars but does succeed on maaynmars for
programming languages. Given a grammar G, we aug@&e¢o produce
G’, and from G’ we construdZ, the canonical collection of sets of items
for G’. We construct ACTION, the parsing action étion, and GOTO,
the goto function, fronC using the following “simple” LR (SLR for
short) parsing table construction technique. Itunexs you to know
FOLLOW (A) for each nonterminal A of a grammar asl\earlier learnt
in section 3.4.2.1.2 of the previous unit.

3.4.2.1 Algorithm for Construction of an SLR Parsimg
Table

Input: C, the canonical collection of sets of simple itefios an
augmented grammar G'.

Output: If possible, an LR parsing table consisting gfaasing action
function ACTION and a goto function, GOTO.

Method: LetC = {lg, Iy, ..., I}. The states of the parser are 0, 1,n,.,
state i being constructed from IThe parsing actions for state i are
determined as follows:
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1. If [A — a.af] is in | and GOTO (| a) = I; then set ACTION (i,
a) to “shift j”. Hereais a terminal

2. If [A — a.]isin [, then set ACTION(ia) to “reduce A— a” for
all ain FOLLOW(A). If € is in FOLLOW (A), set ACTION (i,
$) to “reduce A- o”.

3. If [S'— S.]isin |, then set ACTION (i, $) to “accept”

REMARK : If any conflicting actions are generated by thee rules,
then we say the grammar is not SLR (1). The algoritails to produce
a valid parser in this case.

The GOTO transitions for state i are constructemating to the rules:

4. If GOTO (I, A) = |;; then GOTO(i, A) =]

5. All entries not defined by rules (1) through &¢ made “error”

6 The initial state of the parser is the one aosed from the set
of items containing [S> .S]

The parsing table consisting of the parsing actod goto functions
determined by the algorithm in section 3.4.2.1 &wvcalled theSLR
table for G An LR parser using the SLR table for G is called SLR
parser for G, and a grammar having an SLR parsibtptis said to be
SLR(1)

Example 5:

Using the augmented grammar and the correspondmmpuated
canonical collection of sets of items in examplabbve, construct an
SLR (1) parsing table for the grammar.

We use S to denote states

E'—>E
E->E+T
E->T
T—->T*F
T—>F
F— (E)
Foi
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Table 1. SLR (1) Parsing Table for the Grammar in Ekample 5

State | A C T 1 O N+« GOTO
— —
i + * ( ) $ E T F
0 S5 S4 1 2 3
1 S6 Accept
2 r2 S7 r2 r2
3 r4 r4 r4 r4
4 S5 S4 8 2 3
5 ré ré ré ré
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11
9 ri S7 rl rl
10 r3 r3 r3 r3
11 rs rs5 rs5 rs5

Where Sj means “shift j” and rk means “reduce k”
Example 6:

Use the SLR parsing table developed in exampleovelo process the
string:

X0+
Solution:

Table 2: String i*i+i Processing Table

Line Stack Input
0 i*i+i1$
0i5 *I+i$
OF3 *ij+i$
0T2 i+i%
0T2*7 +i$
0T2*7i5 +i$
0T2*7F10 +i$
0T2 +i$
OE1 +i$
OE1+6 i $
OEH6I5 $
OE1+6F3 $
OE1+6T9 $
OE1 $
Accept
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SELF- ASSESSMENT EXERCISE

I Consider the grammar
S—AS|b
A—SA|a
Compute all the LR(0) items for the above grammar
Construct an NFA whose states are the LR(0) iteoma {a)
Show that the canonical collection of LR (0) iterfm the
grammar is the same as the states of the equivafeht

. Is the grammar SLR? If so, construct the SLR pgrtable.

4.0 CONCLUSION

In this concluding unit of this module, you haveebdaken through the
concept of LR parsing techniques and how to devBldR (1) parser for
any grammar. You also learnt how to use the gee@r8t.R parser to
parse sentences derived from the grammar. In tkemedule you will
be taken through the code generation phase oftmpiter.

5.0 SUMMARY
In this unit, you learnt that:
o a context-free grammar is calledR grammar when it is

elaborated to enable scanning the input from ¢efight (denoted
by L) and to produce a rightmost derivation (deddig R)

o there are three techniques/algorithms to buildewlbbr an “LR”
parser viz:
. SLR
. Canonical LR
. LALR

) an LR parser consists of two parts, a driver reuind a parsing
table

) the driver routine is the same for all LR parserdy the parsing

table changes from one parser to another.
6.0 TUTOR-MARKED ASSIGNMENT

I Consider the grammar
S—»L=R|R
L—>*R|i
R—L
a. Compute all the LR(0) items for the above grammar
b. Construct an NFA whose states are the LR(0) itenmis f

(a)
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C. Show that the canonical collection of LR (0) itefosthe
grammar is the same as the states of the equivafeht

d. Is the grammar SLR? If so, construct the SLR pgrsin
table.

. Consider the following SLR (1) grammar genergtistrings of
balanced symbola andb terminating at end marker:
E' - Ec
E—->ES| S
S—aEb | ab
a. Develop the canonical LR(0) collection of setsiteims
for this grammar using the sets of items constoncti

algorithm.

b. Construct the SLR parsing table

C. Use the developed parsing table to process thagstri
aababb&
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MODULE 4 CODE GENERATION

Unit 1 Error Handling

Unit 2 Symbol Tables

Unit 3 Intermediate Code Generation
Unit 4 Code Generation

Unit 5 Code Optimisation

UNIT 1 ERROR HANDLING
CONTENTS

1.0 Introduction
2.0  Objectives
3.0 Main Content
3.1 Dealing with Errors
3.2  Historical Notes
3.3 Integrated Development Environment (IDE)
3.4  Compile-time Errors
3.4.1 Errors during Lexical Analysis
3.4.2 Errors during Syntax Analysis
3.4.3 Errors during Semantic Analysis
3.5 Reporting the Position of Run-Time Errors
3.6 Run-Time Speed versus Safety
3.6.1 Cheap Detection of 'Undefined'
3.6.2 How to Check for 'Undefined’
3.6.3 How to Check at Compile-time
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

So far in this course you have learnt about thetfemd of the compiler.
In this concluding module of the course you willlbarning more about
the back end of the compiler namely, intermediatdecgeneration, code
generation and code optimisation. But this firsit will be introducing
you to the concept of error detection and recoweompilers.

Now let us go through your study objectives fos thinit.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

. classify errors based on the stage at which theyroc

. design a better error handling compiler for a patér
programming language

. distinguish between runtime errors and compile @mers

. explain how error detection and recovery mechanima

compiler can affect the performance of an applicati
3.0 MAIN CONTENT
3.1 Dealing with Errors

Even experienced programmers make mistakes, soagneciate any
help a compiler can provide in identifying the ralsts. Novice

programmers may make lots of mistakes, and mayunderstand the
programming language very well, so they need cl@&cise and jargon-
free error reports. Especially in a learning enwinent, the main

function of a compiler is to report errors in s@i@ogrammes; as an
occasional side-effect you might actually get agpmonme translated
and run.

As a general rule, compiler writers should attertgptexpress error
messages in moderately plain English, rather thiéim neference to the
official programming language definition (some laage definitions
use somewhat obscure or specialised terminology).

For example, a message "can't convert string tegart' is probably
clearer than "no coercion found."

3.2 Historical Notes

In the 1960s and much of the 1970s, batch procgsgas the normal
way of using a (large) mainframe computer (persauahputers only
started to become household items in the early 9980could well be
several hours, or even a day, from when you hanged deck of
punched cards to a receptionist until you couldectlthe card deck
along with a printed listing of your programme, @epanied either by
error messages or by some useful results.

Under such circumstances, it was important thatplems report as
many errors as possible, so part of the job ofingit compiler was to
‘recover' from an error and continue checking (imittranslating) in the
hope of finding more errors. Unfortunately, onceearor has occurred
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(especially if the error affects a declaration)isiquite possible for the
compiler to get confused and produce a host ofiepsierror reports.

Programmers then had the task of deciding whicbreio try and fix,
and which ones to ignore in the hope that they di@ahish once earlier
errors were fixed. Some compilers were particul@rigne to producing
spurious error reports. The only useful advice ti@pdesk staff could
provide was: fix the first error, since the compiasn't had a chance to
confuse itself at that point.

A significant amount of compiler development effads often devoted
to attempts at error recovery. You could try ancesgu what the
programmer might have intended, or insert somerta&eat least allow
parsing to continue or just give up on that statgna@d skip to the next
semicolon. The latter action could skip and or other significant
programme structure token and so get the compitem enore confused.

3.3 Integrated Development Environment (IDE)

Fast personal computers are now available, so ED&d®ecoming more
popular, with an editor and compiler tightly couplend usable from a
single graphical interface. Many IDEs also incliaddebugger as well.
In some cases the editor is language-sensitivié,cem supply matching
brackets and/or statement schemas to help redeceutmber of trivial

errors. An IDE may also use different colours faifedent concepts
within a source language, e.g. reserved wordbdld, comments in

green, constants in blue, or whatever.

This speed and tight coupling allows the compileiter to adopt a
much simpler approach to errors: the compiler gisps as soon as it
finds an error, and the editor then places theocuas the point in the
source text where the error was detected and gsmame specific
error message. Note that the point where an erew detected could
well be some distance after the point where ther exctually occurred.
There were line-mode IDEs back in 1964, many BASYStems were
examples of such systems; we are going to implersemtething like
this in the book section case study - a simplepnéter.

3.4 Compile-time Errors

During compilation it is always possible to giveetprecise position at
which the error was detected. This position cowddshown by placing
the editor cursor at the precise point, or (batatde) by listing the
offending line followed by a line containing somertsof flag (e.g.'|")

positioned under the point of error, or (less comeetly) by providing

the line number and column number of that point.
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Remember that the actual position of the errod{ssnct from where it
was detected) may well be at some earlier poirtheprogramme; in
some cases (e.g. bracket mismatch) the compilerbmable to indicate
the nature of the earlier error.

It is important that error messages be clear, cgread relevant.

The worst counter-example that Murray Langton heoentered was a
compiler which reported "Missing semicolon" whee tictual error was
an extra space in the wrong place. To further cemfmatters, no
indication was given as to where in the programineeetrror was. Just to
add insult to injury, the source language didndreuse semicolons!

3.4.1 Errors during Lexical Analysis

There are relatively few errors which can be detaiuring lexical
analysis. Some of these are as follows:

o Strange characters: Some programming languages do not use
all possible characters, so any strange ones vdpplear can be
reported. Note however that almost any characteall®ved
within a quoted string.

. Long quoted strings I: Many programming languages do not
allow quoted strings to extend over more than ame; lin such
cases a missing quote can be detected. Languagiss dfype
often have some way of automatically joining consgiee quoted
strings together to allow for really long strings.

) Long quoted strings Il If quoted strings can extend over
multiple lines then a missing quote can cause quiteg of text to
be 'swallowed up' before an error is detected. &trer will
probably then be reported as somewhere in thedfeitte next
guoted string, which is unlikely to make sense ast pf a
programme.

. Invalid numbers: A number such as 123.45.67 could be detected
as invalid during lexical analysis (provided thedaage does not
allow a full stop to appear immediately after a iam. Some
compiler writers prefer to treat this as two congiee numbers
123.45 and .67 as far as lexical analysis is coretkand leave it
to the syntax analyser to report an error. Somguages do not
allow a number to start with a full stop/decimalmpin which
case the lexical analyser can easily detect thustson.
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3.4.2 Errors during Syntax Analysis

During syntax analysis, the compiler is usuallyrigyto decide what to
do next on the basis of expecting one of a smathber of tokens.
Hence in most cases it is possible to automatiogdigerate a useful
error message just by listing the tokens which wdog acceptable at
that point.

Source: A+*B
Error: | Found *', expect one of: Identifi€@onstant, ('

More specific hand-tailored error messages maydszled in cases of
bracket mismatch.

Source: C:=(A+B*3,;
Error: | Missing )" or earlgurplus ‘('

3.4.3 Errors during Semantic Analysis

One of the most common errors reported during sémamalysis is
"identifier not declared"; either you have omitteddeclaration or you
have misspelt an identifier.

Other errors commonly detected during semantic yamsalrelate to
incompatible use of types, e.g. attempt to assigpgi@al value such as
true to a string of characters. Some of these erransbeaquite subtle,
but again it is easy to automatically generatelyfaprecise error
messages.

Source: SomesString true;
Error: Can't assign logical value to charactangtr

The extent to which such type checking is posdgilgleends very much
on the source language.

PL/1 allows an amazingly wide variety of automatpe conversions,
so relatively little checking is possible.

Pascal is much more fussy; you can't even assiggalavalue to an
integer variable without explicitly specifying wihetr you want the
value to be rounded or truncated.

Some writers have argued that type checking shbeldextended to

cover the appropriate units as well for even madnecking, e.g. it
doesn't make sense to multiply a distance by adesmyre.
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Other possible sources of semantic errors are mesnmiscount and
subscript miscount. It is generally an error toldex a subroutine as
having 4 parameters and then call that routine Wwitharameters (but
some languages do allow routines to have a variamber of
parameters). It is also generally an error to decda array as having 2
subscripts and then try and access an array elensamg 3 subscripts
(but some languages may allow the use of fewercsijhs than declared
in order to select a 'slice’ of the array).

3.5 Reporting the Position of Run-Time Errors

There is general agreement that run-time erroré siscdivision by 0
should be detected and reported. However, thereoissiderable
variation as to how the location of the error isared.

Some systems merely provide the hexadecimal addfdbg offending
instruction. If your compiler/linker produced a tbenap you might then
be able to do some hexadecimal arithmetic to iélentinich routine it is
in.

Some systems do tell you the name of the routieesthor was in, and
possibly the names of all the routines which weteva at the time.

A few kind systems give you the source line numibdnich is very
helpful. Note however that extensive programmenoistétion can move
code around and intermingle statements, in whicte dmme numbers
may only be approximate. From the implementor'svp@nt there are
several ways in which line number details or egeintcan be provided.
The compiled programme can contain instructionsctvhplace the
current line number in some fixed place; this maltes programme
longer and slower. Of course the compiler need oadid these
instructions for statements which can actually earserror.

The compiled programme can contain a table indigatine position at
which each source line starts in the compiled ctnléhe event of an
error, special code can then consult this table detdrmine the source
line involved. This makes the compiled code loniget doesn't slow it
down.

In some unoptimised systems, it may be possibtethuce some source
information from the compiled code, e.g. the Etli&03 Algol 60
compiler could report: "divide by 0 at second dmmsafter thirdbegin
of routine 'xyz™. This doesn't affect code sizespeed, but may not
always be feasible to implement.
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3.6 Run-Time Speed versus Safety

There are some potential run-time errors which msystems do not
even try to detect. The language definition may etyesay that the
result of breaking a certain language rule is uinéef i.e. you might get
an error message, or you might get the wrong answerout any
warning, or you might on some occasions get thit ragnswer, or you
might get a different answer every time you run phggramme, or you
might trigger off World War Ill ('undefined' doesean that anything
could happen).

In the past there have been some computers (Bursobig00+, Elliott
4130) which had hardware support for fast detectibsome of these
errors. Many current IDE's do have a debuggingoopivhich may help
detect some of these run-time errors:

. attempt to divide by 0

. overflow (and possibly underflow) during arithmesiperations.

. attempt to use a variable before it has been ssoitte sensible
value (undefined variable)

o attempt to refer to a non-existent array elememvalid
subscript).

. attempt to set a variable (defined as having atdichrange) to
some value outside this range

o various errors related to pointers:

) Attempt to use a pointer before it has been sepdmt to
somewhere useful.

) attempt to use anil pointer, which explicitly doesn't point
anywhere useful

) attempt to use a pointer which points outside tiayait should
point to.

) attempt to use a pointer after the memory it poiaothas been
released.

Historically, the main reason for not doing thekedks is the effect on
performance. When FORTRAN was first developed &it957), it had
to compete with code written in assembler; indeednynof the

optimising techniques used in modern compilers wast developed

and used at that time. C was developed (circa, )1@ifially as a

replacement for assembler for use by experiencstéisyprogrammers
when writing operating systems.

In both the above cases there was a justifiabksorefor not doing these

checks. Nowadays, computer hardware is very mustieiféghan it was in
1957 or 1971, and there are many more less-expedeprogrammers
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writing code, so the arguments for avoiding cheaks much weaker.
Actually adding the checks on a supposedly workirggramme can be
enlightening/surprising/embarrassing; even prograsnwvhich have
been 'working' for years may turn out to have agmising number of
bugs.

Hoare was responsible for an Algol 60 compiler e early 1960s;
subscript checking was always done. Indeed Hoagesaia in "Hints on
Programming Language Design" that: "Carrying ouecdis during
testing and then suppressing then in productiohkes a sailor who
wears a lifejacket when training on dry land andntlremoves the
lifejacket when going to sea."

In his book "The Psychology of Computer Programrhing/ienberg
recounts the following anecdote:

. After months of effort, a particular application svatill not
working, so a consultant was called in from anotbant of the
company. He concluded that the existing approacidawever be
made to work reliably. While on his way home hdisea how it
could be done. After a few days work he had a destnation
programme working and presented it to the origoragramming

team.

. Team leader. How long does your programme take when
processing?

. Consultant: About 10 seconds per case.

. Team leader: But our programme only takes 1 secfhelm
look smug at this point}

) Consultant: But your programme doesn't work. If pnegramme

doesn't have to work then | can make it as fagbadike.

o Wirth designed Pascal as a teaching language (&®@2); for
many Pascal compilers the default was to performsalety
checks. Some Pascal systems had an option to ssppine
checks for some limited part of the programme.

. When a programming language allows the use of ea@nand
pointer arithmetic for accessing array elements,dbst of doing
checks for access to non-existent array elemenghtmbe
significant. Note that it can indeed be done: gaminter is large
enough to contain three addresses, the first ibmgne which is
directly manipulated and used by the programmed, the other
two addresses being the lower and upper limitshenfitst. This
approach may have problems when the language allows
interconversion between integers and pointers.

) In the case of 'undefined variables', note thdtnggetll variables
initially to O is a reallybad idea (unless the language mandates
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this of course). Such an initial setting reducesgpmmme
portability and may also disguise serious logioesr

3.6.1 Cheap Detection of 'Undefined'

Murray Langton has had some success in checkingufalefined' in a
140,000 line safety-critical legacy FORTRAN prograely The

fundamental idea is to set all global variablegdgoognisably strange
values which are highly likely to produce visiblyasge results if used.

For an IBM mainframe, the strange values were:

. REAL set to -9.87654E70
. INTEGER set to -123456789
° CHAR set to '?

Note that the particular values used depend on gystem; in particular
the large number used for REAL is definitely hardevdependent. For a
machine with IEEE floating point arithmetic (mosE'B) the best choice
for REAL is NaN (not a number), with a possibleeattative being -

9.87654E37.

The reason for choosing large negative numericalegais that they
tend to be very obvious when printed or displaysdatput, and they
tend to cause numerical errors (overflow) if usadarithmetic. Also, in
FORTRAN, all output is in fixed-width fields, anda output which
will not fit in the field is displayed as a fieldilf of asterisks instead,
which is very easy to spot.

In the safety-critical example quoted above, a @ogne was written
which identified all global variables (by analysi@®@MMON blocks),

excluded those (in BLOCK DATA) which were expligitinitialised,

and then wrote a FORTRAN routine which set all ¢hetly values. If
any changes were made to a COMMON block, it wasnale matter to
rerun this analysis programme.

During execution, the routine which sets silly \edwses less than 0.1%
of the total CPU time. When these silly values wing used, it took
several months to track down and eliminate the ltieguflood of
asterisks and question marks which appeared imoul@ut, despite the
fact that the program had been ‘working' for ov@years.

3.6.2 How to Check for 'Undefined'

The basic idea is to ensure that all variablesflagged as ‘undefined'
when declared. Some languages allow simultaneoutardéon and
initialization, in which case a variable is flaggaesl 'defined’. Whenever
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a value is assigned to a variable the flag is cedntp ‘defined'.
Whenever a variable is used the flag is checkedaanerror is reported
if it is 'undefined'.

In the past a few lucky implementors have had hardvwassistance in
the form of an extra bit attached to each word emury (Burroughs
5000+). On modern byte-addressable machines yold cattach an
extra byte to each variable to hold the flag. Unifoately, due to
alignment requirements, this would tend to doulie @mount of
memory needed for data (many systems require 4-bgmes such as
numbers to have an address which is a multiple pfeven if

misalignment is allowed its use may slow the progree down

significantly).

The simplest way of providing a flag is to use s@pecific value which
is (hopefully) unlikely to appear in practice. Rautar values depend on
the type of the variable involved.

o Boolean: Such variables are most likely to be allocated loyte
of storage with O for false and 1 for true. A vakieh as 255 or
128 is a suitable flag.

o Character. When used for binary input/output, any value could
appear, so no checking is possible. Hence it maigtdssible to
switch off checking in such cases.

When used as a character there are many possibl@rirging
characters. 127 or 128 or 255 may be suitable eBoic

. Integer: Most computer systems use two's complement
representation for negative numbers which givessymmetric
range (for 16-bits, range is -32768 to +32767). ¥da restore
symmetry by using the largest negative number esutidefined'
flag.

) Real: If your hardware conforms to the IEEE standard (Ri3's
do) you can use NaN (not a number).

3.6.3 How to Check at Compile-Time

You may well be thinking that all this checking r(fandefined, bad
subscript, out of range, etc.) is going to slow@gpamme down quite a
lot. Things are not as bad as you think, sincetafldhe checking can
actually be done at compile-time, as detailed below

o First, some statistics to show you what can be done

) Just adding checking to an existing compiler resulin 1800
checks being generated for a 6000-line programme.

) Adding a few hundred lines to the compiler allowedo many
checks at compile-time, and reduced the numberuaftime
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checks to just 70. The programme then ran more 208t faster
than the version with all checks included.

. We have already mentioned that variables whichgiwven an
initial value when declared need never be chec&edridefined.
. The next few tests require some simple flow-cordrmlysis e.g.

variables which are only set in one branch ofifastatement
become undefined again after tliestatement, unless you can
determine that a variable is defined on all possiishnches.

) Once a variable has been set (by assignment @dulng it from
a file) it is then known to be defined and need bhettested
thereafter.

) Once a variable has been tested for 'undefinechnitbe assumed
to be defined thereafter.

. If your programming language allows you to distiispubetween

input and output parameters for a routine, you chack as
necessary before a call that all input parametees defined.
Within a routine you can then assume that all inpatameters
are defined.

. For discrete variables such as integers and entim@sayou can
often keep track at compile time of the maximum amdimum
values which that variable can have at any pointthe
programme. This is particularly easy if your soutaaguage
allows variables to be declared as having somedamniange (e.g.
Pascal). Of course any assignment to such a bouvaable
must be checked to ensure that the value is wittienspecified
range.

) For many uses of a bounded variable as a subsitrgften turns
out that the known limits on the variable are witkihe subscript
range and hence need not be checked.

. In a count-controlled loop you can often check thege of the
control variable by checking the loop bounds befamtering the
loop which may well reduce the subscript checkiagded within
the loop.

SELF-ASSESSMENT EXERCISE

List out some of the run-time errors that can beoantered and how
they can be reported and handled

4.0 CONCLUSION

In this unit, you have been taken through the cphog error detection
and recovery in compilers. Certain errors occurcatain stage of
compiling and the way the error is handled depeamdthe type of error
and at what stage it was detected. In the nextymitwill be learning
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about another concept that is paramount to errodlireg which is
symbol table organisation.

5.0 SUMMARY
In this unit, you learnt that:
o compiler writers should attempt to express errorssages in

moderately plain English, rather than with refeeenio the
official programming language definition

) during compilation it is always possible to givee tiprecise
position at which the error was detected

. it is important that error messages be clear, cgramd relevant

o there is variation as to how the location of th@weof division by
0 is reported

) the extent to which type checking is possible ddperery much
on the source language

o in a count-controlled loop you can often check ithege of the
control variable by checking the loop bounds befamtering the
loop.

6.0 TUTOR-MARKED ASSIGNMENT

I Briefly itemise and describe the different stagesviich errors
might occur during compilation.

. Outline the different ways that error of divisioty 0 can be
reported.

iii. Distinguish between run-time errors and compilestenrors.

V. Briefly describe some ways to check for ‘undefined.
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1.0 INTRODUCTION

A compiler needs to collect and use information wbthe names
appearing in the source programme. This informaisamsually entered
into a data structure called a symbol table. THerimation collected
about a name includes the string of charactershoghnit is denoted, its
type, its form, its location in memory and otheribtites depending on
the language. Information about a name is enteredthe table during
lexical and syntactic analysis.

The information collected in the symbol table idi-during several
stages in the compilation process. There are alsonaber of ways in
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which the symbol table can be used to aid in edetection and
correction. Also space in the symbol table can Isedufor code
optimisation purposes.

In this unit you will learn the principal ways ofganising and accessing
symbol tables.

Now let us go through your study objectives fos thinit.
2.0 OBJECTIVES
At the end of this unit, you should be able to:

define symbol tables

state their uses in the compilation process

list item that usually entered into symbol tables

describe ways of organising the symbol table

list the kind of information needed by the compiler

construct symbol table for block-structured progsam

. describe collision resolution methods in hashing afvantages.

3.0 MAIN CONTENT
3.1 Semantic Analysis

Semantic analysis is roughly the equivalent of &her that some
ordinary text written in a natural language (e.gglish) actually means
something (whether or not that is what it was ideghto mean).

The purpose of semantic analysis is to check tleahawe a meaningful
sequence of tokens. Note that a sequence can beinga without
being correct; in most programming languages, tirage "I + 1" would
be considered to be a meaningful arithmetic expyasslowever, if the
programmer really meant to write "I - 1", thensitnot correct.

3.2 Symbol Tables

A compiler uses a symbol table to keep track ofpecand binding
information about names.

The symbol table is searched every time a hamadsumtered in the
source text. Changes to the symbol table occurnéw name or new
information about an existing name is discovered.

A symbol table mechanism must allow us to add netkies and find
existing entries. The two symbol table mechanismasliaear lists and
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hash tables. Each scheme is evaluated on the dfasime required to
add n entries and make e inquiries. A linear Isstthe simplest to
implement, but its performance is poor when n amdeelarge. Hashing
schemes provide better performance for greatemranogning effort and
space overhead.

It is useful for a compiler to be able to grow tkgmbol table
dynamically at compile time. If the symbol table fised when the
compiler is written, the size must be chosen lamgeugh to handle any
source programme that might be presented

For compile-time efficiency, compilers use aymbol tablewhich
associates lexicaamegqsymbols) with theiattributes

The items that are usually entered into a symlipétare:

variable names

defined constants

procedure and function names
literal constants and strings
source text labels
compiler-generated temporaries

usually separate tables are constructed for streitdyouts (types)field
offsets and lengths

Therefore, a symbol table is a compile-time strrectu
3.2.1 Symbol Table Information/Entries

Each entry in the symbol table is for the declaratof a name. The
format of entries does have to be uniform, becabgeinformation

saved about a name depends on the usage of timeh dntry can be
implemented as a record consisting of a sequencersecutive words
of memory. To keep symbol table entries unifortnmay be convenient
for some of the information about a name to be kepside the table
entry, with only a pointer to this information stdrin the record.

Information is entered into the symbol table aiaas times. Keywords
are entered initially. The lexical analyser loaks sequences of letters
and digits in the symbol table to determine if aerged keyword or a
name has been collected. With this approach, keysvomust be in the
symbol table before lexical analysis begins. Al&ively, if lexical
analyser intercepts reserved keywords, they shbeléntered into the
symbol table with a warning of their possible usea&eyword.
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The symbol table entry itself can be set up whenrtile of a name
becomes clear, with the attribute values beingedillin as the

information become available. In some cases, ity €an be initiated

from the lexical analyser as soon as a name is isethre input. More

often, one name may denote several different ofjesten in the same
block or procedure.

For example, the C declarations
int X;
struct x {float y, z;};

use x as both an integer and as the tag of a steuatith two fields. In

such cases, the lexical analyser can only returthégparser the name
itself rather than a pointer to the symbol tableyenThe record in the
symbol table is created when the syntactic roleggaaby the name is
discovered. Attributes of a name are enteredsparse to declarations.
Labels are identifiers followed by a colon, so @etion associated with
recognising such an identifier may be to enterfidugs into symbol table.

The compiler usually needs the following kind dioirmation:

textual name

data type

dimension informationf@r aggregatep
declaring procedure

lexical level of declaration

storage clasd@se addregs

offset in storage

if record, pointer to structure table

if parameter, by-reference or by-value?
can it be aliased? to what other names?
. number and type of arguments to functions

3.2.2 Symbol Table Organisation

Symbol tables may be implemented using linear, lisesh-tables and
various sorts of tree structures. An issue is gezd with which an entry
can be added or accessed. A linear list is sloactess but simple to
implement. A hash table is fast but more compleeeTstructures give
intermediate performance. In summary, each of tkesetures has the
following characteristics:

Linear List
o O(n) probes per lookup
o easy to expand — no fixed size
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. one allocation per insertion

Ordered Linear List
. O(log2n) probes per lookup using binary search
o insertion is expensive (to reorganise list)

Binary Tree
O(n) probes per lookup, if the tree is unbalanced
O(log2n) probes per lookup, if the tree is balanced
easy to expand with no fixed size
one allocation per insertion

Hash Table
o O(1) probes per lookup on the average
. expansion costs vary with specific scheme

In the abstract, a symbol table is merely a tahth two fields, a name
field and an information field. We require sevecalpabilities of the
symbol table. We need to be able to:

determine whether a given name is in the table,

add a name to the table,

access the information associated with a givenenamd

add new information for a given name,

delete a name or group of names from the table.

in a compiler, the names in the symbol table demdtect of
various sorts. There may be separate tables foablarnames,
labels, procedure names, constants, field namess{foctures)

and other types of names depending on the progmagmi

language.
3.2.3 Attribute information

Attributes are internal representation of declarai Symbol table
associates names with attributes. Names may hdieredhit attributes
such as below depending on their meaning:

Variables: type, procedure level, frame offset
Types type descriptor, data size/alignment
Constants type, value

coow

information (local declarations), frame size.
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3.2.4 Characters in a Name

There is a distinction between the token id foicemtifier or name, the
lexeme consisting of the character string formihg hame, and the
attributes of the name. The lexeme is needed wh®mbol table entry
is set up for the first time and when we look uf@xeme found in the
input to determine whether it is a name that hasadly appeared. A
common representation of a name is a pointer yordosl table entry for
it.

If there is a modest upper bound on the length ofame, then the

characters in the name can be stored in the sytabl@d entry as shown
in figure. If there is no limit on the length af name the indirect

scheme can be used. Rather than allocating in ®aunbol table entry

the maximum possible amount of space to hold ankexautilise space

more efficiently if there is only space for a penin the symbol table

entry. In the record for a name, a pointer is @bio a separate array of
characters giving the position of the first chagaaif the lexeme. The

indirect scheme permits the size of the name fiélthe symbol table

entry itself to remain a constant.

The complete lexeme constituting a hame must bedtom ensure that
all uses of the same name can be associated wetlsytmbol table
record.

Table 1. SymbolTable Record
Name Attributes

ojr |t

elaldalr|r|alyY

—=|o|n

In fixed size space within a record.
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3.3 Table Organisation
General form of symbol table organisation is asable 2 below:

Table 2: General Form of Symbol Table Organisation

Argument| Value

Entry 1
Entry 2

Arguments are the symbols or identifiers while ealare the attributes
obtained from declaration and usage on the symBatgiments can be
stored by letting the argument portion of the symtadle contain
pointers to the actual symbols stored in the stepgce. The argument
portion may also contain the length of the symhdhe string space.

Two ways to implement tables are:

I One-table for all entries
. One-table for each entry i.e. if k-entries, rihetables.

A sorted table is searched using binary searchtlaadaverage search
number of comparisons is nlgg An unsorted table requires on the

n .
averageé comparisons.

3.3.1 Storage Allocation Information

Information about the storage locations that wdl lound to names at
run time is kept in the Symbol table. If machineleas to be generated
by the compiler, then the position of each datadbjelative to a fixed
origin, such as the beginning of an activation rdgaust be ascertained.
The same remark applies to a block of data loadeal module separate
from the programme. For example, COMMON bloak$-ORTRAN
are loaded separately, and the positions of namsétive to the
beginning of the COMMON block in which they lie nmupe
determined.

3.3.2 The List Data Structure for Symbol Tables

The simplest and easiest to implement data stei¢tura symbol table
is a linear list of records. Arrays are used twestheir names and their
associated information. New names are added tbsthie the order in
which they are encountered. The position of thd ehthe array is
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marked by the pointer available, pointing to whitse next symbol table
entry will go. The search for a name proceeds Wwaatts from the end
of the array to the beginning. When the nameogated, associated
information can be found in the words following hexf we reach the

beginning of the array without finding the namefaalt occurs- an

expected name is not in the table.

Making for an entry for a name and looking up tlaene in the symbol

table are independent operations. In a block-strad language, an
occurrence of a name is in the scope of the massetf nested

declaration of the name. This scope can be implésdeby making a

fresh entry for a name every time it is declarechedv entry is made in
the words immediately following the pointer avallgbthat pointer is

increased by the size of the symbol table recordceSentries are
inserted in order, starting from the beginningha airray, they appear in
the order they are created in.

Table 3: A Linear List of Records

id1

Infol

d2

Info2

........... available

If the symbol table containsnames the work necessary to insert a new
name is constant if we do the insertion withoutotieg to see the name

Is already in the table. If multiple entries fommas are not allowed look
the entire table before discovering that a namaads in the table.
Insertions and inquiries take time proportional o names and m
inquiries is at most n (n + e),cis a constant.

3.3.3 Hash Addressing
This is a method for converting symbols into indicé# n-entries in the

symbol table with fixed size. Collision occurs whé&mo or more
symbols hashed into the same index.
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3.3.3.1 Hash Tables

Variation of the searching technique is known @ashing. Open hashing
refers to the property that there need be no bmithe number of entries
that can be in the table. This scheme gives thalskiy of performing e
enquiries om names in time proportional to(n + e)/m Sincem can be
made large up to n this is more efficient thandmnbst. In the basic
hashing scheme, there are two parts to the datetste:

a. A hash table consisting of a fixed array of m peistto table
entries.

b. Table entries organised into m separate linkeds, lisialled
buckets. Each record in the symbol table appearsxantly one
of these lists. Storage for the records may be nfa@m an array
of records. The dynamic storage allocations faeditof the
implementation language can be used to obtain sfrc¢he
records.

To determine whether there is an entry for string the symbol table,
apply a hash functioh to s, such thah(s) returns an integer between 0
andm-1l. If sis in the symbol table, then it is on tis¢ numbered(s).

If s is not in the symbol table, it is entered bbgating a record for s that
is linked at the front of the list numberbds) The average list is/m
record long if there are names in a table of size. By choosing m so
thatn/mis bounded by a small constant the time to acadsable entry
Is constant. This space taken by the symbol tedesistsm words for
the hash table anch words for the table entries, wheres the number
of words per table entry. Thus the space for tghhable depends only
on m and the space for table entries depends only emtimber of
entries.

The choice oim depends on the intended application for a synddakt
One suitable approach for computing hash functisn® proceed as
follows:

a. Determine a positive integarfrom the charactersl, c2, ..., ckn
strings. The conversion of single characters to integeusually
supported by the implementation language.

b. Convert the integeh determined above into the no. of the list.
Divide by m and take the reminder.

A technique for computindn is to add up the integer values of the
characters in a string. Multiply the old value lofby a constant @
before adding in the next character. That is, h@+=0@ hi-1+ci

1. #define PRIME 211
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2 #define EOS \0’

3 int hashpjw(s)

4. char *S;

5. {

6. char *p;

7 unsigned h=0, g;

8 for( p=0;*p '=EOS; p=p+1){
9. h=(h << 4)+(*p)’

10. if(g= h@0xf0000000){

11. h=h"(g >>24);

12. h=h"g;

13. }

14. '}

15. return h % PRIME;
16. }

In the hash functiomashpjw the sizes included the first primes larger
than 100,200,...,1500. A close second was the ifimd¢hat computed
the old value by 6559,i goring overflows, addingtie next character.
Functionhashpjwis computed by starting with h=0. For each charmact
c, shift bits ofh left 4 positions and add i If any of four high-order
bits of h is 1, shift four bits right 24 positionsxclusively-or them into
h, and reset to 0 any of the high order bits that tva

pThe sim
3.3.4 Collision Resolution
Two ways of resolving collision are

I Re-hashing

. Chaining

3.34.1 Re-Hashing

Suppose we hash a symiwlto h and find that a different symbol

already occupies the enthy Then a collision has occurred. We then
compares against an entryn + py(modulo the table size) for some

integer p. If a collision occurs again, we compare with argh + p,
(modulo the table size) for some integer p

This continues untih = h + p (modulo table size) is empty, contamer
is again entryh. In other words jp= 0.

In the latter case, we stop the programme becaesilble is full.
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If {P;} is the set if natural numbers then it is a linealnash otherwise it
is non-linear.

3.34.2 Chaining

Suppose we hash a symb®lto h and find that a different symbol
already occupies the entinya collision has occurred.

Chaining method uses a hash table called buckatfofed size as the
symbol table. It is a table of pointers to the edats of the symbol table
and points to nothing initially. Another pointeripts to the last symbol
entered into the symbol table. Symbols hash tddtscof the hash
table. Each bucket points to nil or to the firktneent in the symbol
table that hashes to it.

Symbols are entered in first-come-first-served FQR&nner in the
symbol table. The symbol table has an additionahtpo field used to
chain entries which hash to the same bucket.

Bucket is a table of pointers

Bucket Symbol Table
PTR
1|8, NIL
2 55
3
Si
Fig. 1: Chaining

If s, 5, sy hash into K, the chain is as above.
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3.3.5 Representing Scope Information

The entries in the symbol table are for declaratiohnames. When an
occurrence of a name in the source text is lookeh uhe symbol table,
the entry for the appropriate declaration of trexhe must be returned.

A simple approach is to maintain a separate syratdé for each scope.
Information for the nonlocals of a procedure isrfdlby scanning the
symbol tables for the existing programme. With thlisproach the
symbol table is integrated into the intermediatpresentation of the
input. Most closely nested scope rules can be imgrged by adapting
the data structures. We keep track of the localesanf the procedure by
giving each procedure a unique number. The numbeach procedure
can be computed in a syntax directed manner framas#c rules that
recognise the beginning and ending of each proeedilte procedure
number is made a part of all locals declared imptloeedure.

When we look up a newly scanned name,a match oamlysif the
characters of the name match an entry charactecHaracter,and the
associated number in the symbol table entry is ritbeber of the
procedure which is processed. Most closely nestegesrules can be
implemented in terms of the following operationsaoname:

. Lookup : find the most recently created entry
. Insert : make a new entry
. Delete : remove the most recently created entry.

Deleted entries must be preserved, they are justved from the active
symbol table. In a one-pass compiler ,informatiorthe symbol table
about a scope consisting of a procedure bodypti;meeded at compile
time after the procedure body is processed. Howglvaray be needed
at run time. In this case, the information in tlyenbol table must be
added to the generated code for user by the linker.

When a linear list consisting of an array of resonchs described, it was
said that lookup can be implemented by insertingienat one end .A
scan starting from the end and proceeding to tlggnbang of an array,
finds the most recently created entry for the nafnpointer front point
to the most recently created entry in the list. TThplementation of the
insert takes constant time because a new entmeatex at the front of
the list. The implementation of the lookup is ddnescanning the list
starting from entry pointed by front and followihgks until the desired
one is found.
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A hash table consists om lists accessed through an array. For
implementing the delete operation, we would rati@rhave to scan the
entire hash table. Suppose each entry has twa links

1. A hash link that chains the entry to othetriea whose names
hash to the same value
2. A scope link that chains all entries ia #ame scope.

Deletion of entries from the hash table must beedwith the care,
because deletion of an affects the previous onétsohist. When we
delete the i-1 entry points to i+1entry.

The i-T entry can be found if the hash links from a ciacuink list. We
can use a stack to keep track of the lists comtgientries to be deleted.
A marker is placed in the stack when a new proeceduscanned. When
we finish processing the procedure, the list numican be popped from
the stack until the marker for the procedure ished.

3.3.6 Implementation of Block Structured Languages

Languages with block structure such as ALGOL preseertain
complexities not found in C. First, in a block-sttwred language, not
only procedures, but blocks as well, may definartbesn data. Thus
activation records or portions of activation recrdust be reserved for
blocks. Second, many languages, ALGOL, for exanyg@emit arrays of
adjustable length. Third, the data-referencing mmment of a
procedure or block includes all procedures andKsl@urrounding it in
the programme.

Consider the code segment below:
1/ begin

real a, B, C, D;

— bégin real E, F;

L|:

end ~
begin
real G, H;

L2 yDegin
4 real A ;
d

L3:
K ~ end

end
Fig. 2: Block Structured Programme
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The symbol table for this block structure can barmged as in Figure 3

be|OW: Temporary
Symbol
Table
Permanent
Block Surrounding No. of . Symbol
block No. Entries Pointer Table
1 0 4
; ; 3 B EF L1
2 : 3 A /“ E,F L1 2
\_/
3 1 4 T
—_—
A \‘ A
4
L2, L3
H 12,13, H, G 3
Fig. 3: Symbol Table for the Block Structured Progamme

The way to build the symbol table is to construtd@ck list consisting
of block numbers, surrounding block numbers, Numifeentries and
Pointers.

Symbols are entered into the table in the ordewlich their blocks
closed. A block list containing entries, surroumdiblock numbers,
number of entries and pointers is used to implertt@at(symbol table)
on a stack.

The rule for finding the current declaration cop@sding to the use of
an identifier/symbol is first to look in the curtdsiock (the one in which
the identifier is used), then the surrounding bl@sid so on until a
declaration of that identifier is found.

Temporary locations may be reserved for identifideslared whose
blocks have not been closed and then transfertedtie main symbol
table when their blocks have closed. We number oeks in the
manner they open.
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3.4 Parameter Passing

Called Procedure Calling Procedure
e A(Pli P21 P3’ ey R‘I) \
Object Program
COde ’%11 a21 a3’ rery aI)
(.
Data ( <
Area
Data
Area
— _/
Fig. 4: Actual-Formal Parameter Correspondence

A(Py, P, Ps, ..., B) are called formal parameters
A(ay, &, &, ..., @) are called actual parameters

3.4.1 Call by Reference

It is the easiest to implement. At run time priorthhe call in the calling

procedure, the actual parameter is processed.idf bt a variable or
constant, it is evaluated and stored into a temgolacation. The

address of the variable or constant or temporamabke is passed to the
called procedure. The called procedure uses tlisead to refer to the
parameter.

3.4.2 Call by Value

The called procedure in this type of correspondehas a location
allocated in its data area for a value of the typthe formal parameter.
The calling procedure calculates and passes thessldontaining the
value of the actual parameter. Before executionctled procedures
takes the value from the address and puts it ioavits location and uses
this location for further reference to the paramet@ere is no way the
called procedure can change the value of the aparaimeter. i.e. Here

the calling procedure passes the valuaofe, &, ..., @ to the called
procedure and when the called procedure finishingntne result of P
P,, P; ..., By will not be stored ina;, &, &, ..., & Iin the calling
procedure.
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3.4.3 Call by Result

This is similar to the call by value but no iniigadtion. But when the
called procedures finishes, the final value of pagameter is stored at
the address of the actual parameter. i.e. Initidhg calling procedure
does not pass anything to the called procedure,wian the called
procedure finishes, the resultg P, Ps, ..., B, will be stored ina;, ap,

az, ..., &
3.4.4 Call by Value Result

A parameter can be stored as both value and resulthis case, the
local location of the formal parameters is inigseld to the value
contained in the address of the actual parametetrencalled procedure
returns the result back to the actual parameter.

3.4.5 Call by Name

This call implementation requires a textual subston of the formal
parameter name by the actual parameter. It is igheed by using a
routine called THUNK to evaluate the actual paraneat each
reference and returns its address. i.e. Here,dhedcprocedure will be
recompiled substitutingy, &, &, ..., & for the parameters, PP, P;, ...,
P, (the name without the address or the value).

SELF- ASSESSMENT EXERCISE

I Compare rehashing and chaining method of collisgsolution.
. Describe each of the following parameter passinthatk

a. Call by value

b. Call by reference

C. Call by name

d. Call by value result.

4.0 CONCLUSION

In this unit, you have been taken through symhaletand how it can be
constructed for a block structured language. As lyave learnt in this
unit, symbol table is a very important feature tbfcampilers and it is
made use of at all phases of compilation. In thd nait you will learn
about how codes are generated.

168



CIT 753 MODULE 4

5.0 SUMMARY

In this unit, you learnt that:

o semantic analysis is roughly the equivalent of &hgrthat some
ordinary text written in a natural language actuatheans
something

. the purpose of semantic analysis is to check thathave a
meaningful sequence of tokens

o a symbol table contains the environmental infororati
concerning the attributes of various programmingglage
constructs

o symbol tables may be implemented using linear, llsésh-tables
and various sorts of tree structures

) in block-structured implementation, symbols aresgsd into the
table in the order in which their blocks closed

o parameters can be passed by value, by resultfénenee, etc.

6.0 TUTOR-MARKED ASSIGNMENT

I Suppose we have a hash table with 10 locationsaenaish to
enter “names” which are integers, using the hasbtion h(i) =i
mod 10, that is, the remainder when i is dividedlBy Show the
links created in the hash and storage tables ifitbe2, 3, 5, ...,
29 are entered in that order. As you hash moreqwimto the
table, do you expect them to distribute randomlyamthe ten
list> why or why not?

. Compare the performance of linear list structurgchtsol table
and tree structured symbol table.
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UNIT 3 INTERMEDIATE CODE GENERATION
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1.0 INTRODUCTION

Having learnt about symbol tables in the previoois, you will be taken
further into code generation in this unit. Code ggation phase of the
compiler starts with intermediate code generatlarthis unit you will
learn specifically about three-address code whiclthé most popular
type of intermediate language representation.

Now let us go through your study objectives fos thinit.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

o define intermediate representation

. define three-address code

. state with examples types of three-address code

. describe  stack-based implementation of intermediate
representation

o convert representations like three-address codeetstack-based
code

. convert representations stack-based code to tlieess code

o generate intermediate code for Declarations, Espss,

Commands, and Procedures.
3.0 MAIN CONTENT
3.1 Machine Independent Languages
The front part of the compiler usually translaté® tsource code
programme intoan intermediate language representatiavhich after

that is converted into a machine code for the catediarget computer.

Using an intermediate language representationlemied properties:

o the compiler becomeagtargetableand can be ported easily, with
a little effort to another computer

. the compiler become®ptimisable and can be considerably
improved.

3.1.1 Intermediate Code Generator

The data structure passed between the analysisyanriesis phases is
called theintermediate representation(IR) of the programme. A well
designed intermediate representation facilitatesitidependence of the
analysis and syntheses (front- and back-end) phdseésrmediate

representations may be:

o assembly language like or
. be an abstract syntax tree.

In Intermediate code generation we use syntax tidecnethods to
translate the source programme into an intermediate programming
language constructs such as declarations, assigeanasmd flow-of-
control statements.
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_ intermediate . . code
arser static code intermediate
p checker generation code genetator z
Fig. 1: Intermediate Code Generator

3.2 Intermediate Languages/ Representations
There are three types of intermediate representatio

a. Syntax Trees
b. Postfix notation
C. Three Address Code

Semantic rules for generating three-address coden ficommon
programming language constructs are similar toghos constructing
syntax trees of for generating postfix notation.

3.2.1 Graphical Representations

A syntax tree depicts the natural hierarchical cdtme of a source
programme. A DAG (Directed Acyclic Graph) gives thsame
information but in a more compact way because comnsab-
expressions are identified. A syntax tree for tBsignment statement
a:=b*-c+b*-c appear in figure 2 below.

assign

/N
N
a a/\

urminus urminus

c C
Fig. 2: A Syntax Tree for the Assignment Statemena:=b*-
ct+b*-c

Postfix notation is a linearised representatioa sfyntax tree; it is a list
of the nodes of the in which a node appears imnegiaafter its
children. The postfix notation for the syntax tnedigure 1 is:

ab cuminus + b cuminus* + assign
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The edges in a syntax tree do not appear explititiyostfix notation.
They can be recovered in the order in which theesaappear and the
no. of operands that the operator at a node exp&bts recovery of
edges is similar to the evaluation, using a staffan expression in
postfix notation.

Syntax tree for assignment statements are prodihgedhe syntax
directed definition in Table 1 below

Table 1: Syntax -Directed Definition

Production | Semantic Rule

S—id ;= E | Sinptr:= mknode( ‘assign’, mkleaif(, id.place), Enptr)

E — E1 + E2| E.nptr:= mknode(‘+’, Elnptr ,E2nptr)

E —» E1 * E2| E.nptr:= mknode(*’, Elnptr ,E2nptr)

E—-E1 E.nptr:= mkunode(‘uminus’, Ehptr)

E— (E1) |Enptr:=ELlnptr

E—id E.nptr:= mkleaf{d, id.place)

This same syntax-directed definition will producke tdag if the
functions mkunode(op, child) and mknode(op, lefght) return a
pointer to an existing node whenever possible gaxtof constructing
new nodes. The token id has an attribute placepihiats to the symbol-
table entry for the identifier id.name, represegtine lexeme associated
with that occurrence of id. If the lexical analy$mids all lexemes in a
single array of characters, then attribute namentrbg the index of the
first character of the lexeme. Two representatiohthe syntax tree in
Figure 1 appear in Figure 3. Each node is repredeas a record with a
field for its operator and additional fields foripters to its children. In
Figure 3(b), nodes are allocated from an arrayeobrds and the index
or position of the node serves as the pointeréatbde. All the nodes in
the syntax tree can be visited by following poistestarting from the
root at position 10.
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assigh

| uminus ‘ |

[ |

||d

Fig. 3(a): Two Representations of the Syntax Tree
0 id b

1 id C

2 | uminus| 1

3 * 0|2

4 id b

5 id C

6 | uminus| 5

7 * 4|6

8 + 3|7

9 id a

10| assign | 98

110 ......

Fig. 3(b):  Two Representations of the Syntax Tree

The form of the internal representation among d#ffié compilers varies
widely. If the back end is called as a subroutipehe front end then the

intermediate representation is likely to be sonrenfof annotated parse
tree, possibly with supplementary tables. If thekband operates as a

separate programme then the intermediate repréenta likely to be
some low-level pseudo assembly language or somisteegransfer
language (it could be just numbers, but debuggmgasier if it is
human-readable).

A popular intermediate language is the so calede-address code
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3.2.2 Three-Address Code
Three-address code a sequence of statements of the general form:
X:=yopz

where: x,y,z are names, constants or compileeigead temporaries,
op stands for an operator, such as a fixed or flgapioint arithmetic
operator, or a logical operator on a Boolean-valdath. Note that no
built-up arithmetic expressions are permitted, lasrd is only one
operator on the right side of a statement.

Example 1:

An expression of the kind x +y * z will be trda®d into the sequence
tbi=y *z
Li=x +¢§

where t and § are compiler-generated temporary hames.

This unravelling of complicated arithmetic express and of nested
flow-of-control statements makes three-address dede@able for target
code generation and optimisation. The use of ndorebe intermediate
values computed by a programme allow- three-addreds to be easily
rearranged — unlike postfix notation. Three-addiste is a linearised
representation of a syntax tree or a dag in whigpli@gt names
correspond to the interior nodes of the graph.

The syntax tree and dag in Figure 1 are represdiyele three-address
code sequences in Figure 4. Variable names caraadpectly in three-

address statements, so Figure 4(a) has no stakmamesponding to
the leaves in Figure 3.

tl::'C
L= b*tl
t3::'C
t4::b*t3
=L+,
a=t

Fig. 4(a):  Three-address Code for Syntax Tree
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t]_ =-C
L= b *t
=6L+0
a =

Fig. 4(b):  Three-address Code for DAG

The reason for the term “three-address code” i$ dagh statement
usually contains three addresses, two for the operand one for the
result. In the implementations of three-addresseogiden later in this
section, a programmer-defined name is replaced lkpoiater to a
symbol-table entry for that name.

3.2.2.1 Types of Three-Address Statements

Three-address statements are akin to assembly &ideements can
have symbolic labels and there are statementsldar 6f control. A
symbolic label represents the index of a three-@gkistatement in the
array holding inter- mediate code. Actual indicas ®e substituted for
the labels either by making a separate pass, orusigg “back
patching,”. Here are the most common three-addteasements and they
are the ones used in the remainder of this couederral:

1) Assignment statemera$the form: x :=yopz
whereop is a binary arithmetic or logical operation;
2) Assignment statemera§the form: x :=opy
where op is a unary operation. Essential unary operations
include unary minus, logical negation, and shi¢i@tors;
3) Copy statementsf the form: x :=y
where the value of y is assigned to x;
4) The unconditional jump goto L. The three-address statement
with label L is the next to be executed;
5) Conditional jumpssuch as: if xelopy goto L.
This instruction applies a relational operator£<3, <=, etc.) to
x and y, and executes the statement with labelxt e stands
in relatiorelop to y. If not, the three-address statement follgwin
if X relop y goto L is executed next, as in thealsequence.;
6) Procedure calls call pn andreturned value$rom functions:
return y.

Their typical use is the following:

param x
param X

param x
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call pn

generated as part of a call of the function: (pkx,... X). The
integer n indicating the number of actual paranset@icall p, n”
Is not redundant because calls can be nested;

7) Indexed assignmentd the form: x := y[i] and X[i] ;=Y.

The first one sets x to the value in the locatianemory units
beyond y. The statement x[i] := y sets the contehthe location
I units beyond x to the value of y. In both thes&tuctions, X, vy,
and i refer to data objects;

8) Address and pointer assignments= &y and X := *y. The first
of these sets the value of x to be the locatiog. &fresumably y
is a name, perhaps a temporary, that denotes apssipn with
an l-value such as A[i, j], and x is a pointer naongemporary.
That is, the r-value of x is the I-value (locatiaf)some object!.
In the statement x: = ~y, presumably y is a poiotes temporary
whose r- value is a location. The r-value of x &d® equal to the
contents of that location. Finally, +x: = y setg thvalue of the
object pointed to by x to the r-value of y.

The choice of allowable operators is an importasué in the design of
an intermediate form. The operator set must clelaglyrich enough to
implement the operations in the source languaganAll operator set is
easier to implement on a new target machine. Howexeestricted
instruction set may force the front end to genefatgy sequences of
statements for some source, language operatiors.opiimiser and
code generator may then have to work harder if gonde is to be
generated.

3.2.3 Stack-Based Representation

In this unit, we discuss the stack-based representaf intermediate
code. It has a number of advantages, some of vaneh

. an interpreter for the stack-based language teadbet more
compact and straightforward

) a syntax of the language tends to be simple.

o But the representation also has the following disathges,
which make it unsuitable for manipulating and impng code:

. it is not trivial to change the order of instructs

) little research has been done to the stack-bas#=l co

Complications with the stack-based code arise oftiéim control flows.
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3.3 Conversion algorithms

It is usually trivial to convert representationkelithree-address code to
the stack-based code, so the case is left as acisxdt is the inverse of
this that is a challenging problem.

The main task behind the algorithm converting ttaelsbased code is
to identify dependencies among operations. And iconditional and
unconditional jumps that make hard to figure theéespendencies. So the
code without them can be transformed into the tgress code in a
straightforward way, as follows:

. push 2
. push 3
. push 4
. add
o mul

We can see each stack position has a correspotetimgprary variable.
Put in another waystore and load are done only byush and pop
respectively, and a temporary variable that camadmessed at a time is
limited to only the top as opposed to a usual eaasehich variables are
specified freely.

s0=2
s1=3
s2=4
sl=sl+s2
sO=s0*sl1

When a variable is typed, it may be beneficialdo@ SSA form. This
dispenses with the need to analyse what type eachble holds at a
moment, which, as illustrated below, can be quitky. The adaptation
can be done after the conversion or simultanecassithe code is being
converted.

Now, suppose the execution may not go from topottoln. In that case,
we basically have to analyse the control flow befibanslating the code.
More specifically, we calculate how each instructmontributes to the
depth of the stack. For example,

goto A // unconditionally jump to label A

A/l alabel
add // push the sum of two values popped fronsthek.
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As we can see, at label A, the status of the stimghends on the
operation before instruction "goto A".

One conservative approach is to annotate the kode-cbefore
converting it. The basic idea is that when we pretr the code, we
know both where we are and how tall the stackasbppretending as if
we were evaluating the code, we can calculate éiighhof the stack for
each position. An algorithm for this would be likdote that in actual
writing you have to arrange the code so that it t@iiminate):

procedure eval(start, depth)

{

for i from startto code.length
{
depth_at[i] = depth
casecodei]
{
‘push’: depth = depth + 1
‘pop': depth =depth -1
‘goto’: i = code]i].target
'if_so_goto'": eval(code[i].target, depth)

=
}
}

eval(0, 0) // start the calculation

Coding the above solution may be tedious in practspecially when a
number of instructions in the language is largaiaJayte code is a
notable example of this. So a radical alternatielw is to convert the
stack-based code not in the usual sequential waypéu basic block
(i.e., a block that has no jumps). To see thissittar the following:

0 (A): push 10

1 (A): push 13

2 (A): less_than // pop < pop

3 (A): if_not_goto 6

4 (B): push '10 < 13'

5 (B): goto 7

6 (C): push 'itis not 10 < 13; your computer iekan!'
7 (C): print

In the above we can identify three basic blocks:fttst (A) from line O

to 3, the second (B) from line 4 to 5 and the ti{{©d from line6 to 7.
We first compile A, then we know the height of tiack with which
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either B or C begins. After each block is compile®, output blocks in
the order they appear in the source code.

If you are an astute reader/learner, you wouldceatat throughout this
section we are assuming the depth of the stackixisdfat each
instruction position and thus can be determinecoatpiler time. If the
assumption does not hold, then we have to have &imdeof stack at
runtime.

SELF-ASSESSMENT EXERCISE

I Write the stack-based code for each of followinghHievel
expressions:
10 * (20 + 30);
If a < b then -a else -b;
casea% 3{0:x;1:y; 2:z;}

. Write a piece of stack-based code so that the defpthe stack
may vary after the piece, depending on an execabin.

3.4 Intermediate Code Generation for Declarations,
Expressions, Commands, and Procedures

3.4.1 Intermediate Code Generation for Declarations

P — D {offset:=0}
D — D;D
D —id:T { ente(id.name T type offse}
offset:= offset+ T.width }
T — integer { T.type:=integer
Twidth:= 4}
T — real { T.type:=real
Twidth:= 8 }

T — array[num] of Tq1 { T.type:=array(0..num.val, T1.type
Twidth := num.valx T1.width}

Translation scheme for processing declarationgsted functions

P— MD {addwidti{top(tblptr), top(offset);
pop(tblptr);
poffoffset)}

M- e {t := mktabl€nil)) ;

pusHt, tblptr);
puskO, offset)}
D — func id; {t := top(tblptr) ;
N Dy S addwidth(t, top(offset);
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pop(tblptr);

pofoffset)

enterfun¢top(tblptr), id.name, t)}
Do>id:T { ente(top(tblptr), id.name,T.type top(offset))

top(offset):= top(offset)+ T.width }
N—> e { t:= mktablétop(tblptr)) ;

puslHt, tblptr);

pusliO, offset) }

3.4.2 Intermediate  Code Generation for Assignment
Statements

S — id :=E {p :=lookugid.name);
if p=nil thenemii(p :=* E.place)
elseerror }

E — E1+ Ep {E.place:=newtemp

emii(E.place‘:=' E1.place‘+’ E.place}
E — E1* Ep {E.place:= newtemp
emiiE.place’:=' E1.place *" E 2.place}

E = { Eplace:= newtemp
emii(E.place":="-" E 1.place}
E - (B1) { Eplace:= Ej.placé
S — id { p :=lookup(id.name);
if p=nil then Eplace:=p
elseerror }

3.4.3 Intermediate Code Generation for Boolean Exm@ssions

E — EjorEp { E.place:= newtemp

emiiE.place‘:=* E1.place‘or’ Ep.place}
E — Ejand Eo { E.place:= newtemp

emii(E.place:='E 1.place‘and’Ep.place}

E — not E1 { E.place:= newtemp
emiiE.place’:="' ‘not’ E 1.place}
E - (B1) { E.place:= Ej.placeg

E — id, relop id; { E.place:= newtemp
emif('if’ id,.placerelop id,.place goto’ nextstat+ 3) ;
emif{E place='0) ;
emif‘ goto’ nextstat+ 2) ;
emi(E.place:="'1") }
E — true { E.place:= newtemp
emi{E.place="'1") }
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Example 2:a or b and not ¢

t1 :=notc
to:=band{
tg3:=aordp

Example 3:a<b

100: if (a < b) goto 103

101: t:=0
102: goto 104
103: t:=1
104:

3.4.4 Intermediate Code Generation for Commands

S — if Ethen § { E.true:=newlabel

E false:= Snext;
S;.next.:= Snext;
Scode:= Ecodd|genE.true *)|| S;.codg

S — if Ethen § { E.true:=newlabel;
elseSy Efalse:= newlabel;

S,.next.:= Snext;

S,.next:= Snext;

Scode:= Ecodd|gen(E true ’)||S;.code
ger(‘goto’ S.next)||genEfalse’’) || S,.codg

S —while EdoS1  { S.begin:= newlabel

Etrue := newlabel

E false:= Snext;

S,.next:= Shegin;

Scode:=genSbegin*’) || E.code

ger{Etrue‘’) || S;.code
ger(‘goto’ S.begin }

Example 4: while a<b do
if c <dthen
X:=y+z
else
X:=y-2z

L1: if(a<b)gotolL2
goto Lnext
L2: if(c<d)gotoL3
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goto L4
L3: H=y+z
X=f
goto L1
L4: t=y-z
X=b
goto L1

Lnext:
3.4.5 Generating Intermediate Code for a Simple Pgramme
Generate three-address code for the following modiragment:

void Ssort(int a[], int N)

{
inti, j, k, min;
i =0;
while (i < N)
{

min=i;j=1+1;
while j <N + 1)
{

if (a[j] < a[min]) min = j;
++;

}

k = a[min];
a[min] = a[il;
ali] = k;

++i;

}

}

void main()
{

inti, N;

int a[10];

N =10;

i=0;

while (i < N)

{
a[i] = getch();
+4+i;
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Ssort(a, N);
}

Three-address Code:

1) t := mktable(nil) 23) gi=alty

2) S := mktable(nil) 24) kst

3) enter(s, i, int, 4) 25) aft=tg

4) enter(s, j, int, 4) 26) aft=Kk

5) enter(s, k, int, 4) 27) i=i+1

6) enter(s, min, int, 4) 28) goto (8)

7) i:=0 29) enterproc(t, s, proc, 4 * 4)

8) if (i >= N) goto (30) 30) m := mktable(nil)

9) min := i 31) enter(m, i, int, 4)

10) j=i+1 32) enter(m, N, int, 4)

11) if (j >= N+1) goto (20) 33) enter(m, a, recodd)

12) t:=4%*] 34) N:=10

13) b:=alty 35 i:=0

14) &:=4*min 36) if (i>=N) goto (41)

15) t:=alt 37) bH:=47*i

16) if (,>=1t,) goto (20)38) al} = read

17) min:=]j 39) i=it+l

18) j==j+1 40) goto (36)

19) goto (11) 41) parama

200 t:=4*min 42) param N

21) &:=alt 43) calls, 2

22) t=4%*| 44)  enterproc(t, m, proc, 40+2*4)

4.0 CONCLUSION

In this unit, you have learnt about intermediatelecayeneration in
compilers. In the next unit you will learn aboutleogeneration.

5.0

In this

SUMMARY
unit, you learnt that:

the front part of the compiler usually translatee source code
programme int@an intermediate language representatiovhich
after that is converted into a machine code forcitrecrete target
computer

using an intermediate language representation |gntavo
properties: retargetability and optimisability

a popular intermediate language is tieee-address code

185



CIT 753 INTERNET CONCEPTS AND WEB [

. certain conversion algorithms can be applied tovednstack-
based code of intermediate representation to thaeeess code
and vice versa.

6.0 TUTOR-MARKED ASSIGNMENT

I Sketch the algorithm for converting three-addresdecto the
stack-based code, assuming no jumps. Hint: view pasition in
the stack has a corresponding temporary variable.

. Write a stack-based code such that the heighteo§tiick at each
position cannot be determined at a compiler time.
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1.0 INTRODUCTION

In the previous unit you have learnt about interiagedcode generation
and the various intermediate languages that carsée for intermediate
code generation. In this unit, you will learn abthe final phase of a
compiler, which is code generation. It takes asuingn intermediate
representation of the source programme and prodasesutput an
equivalent target programme.

Now let us go through your study objectives fos thinit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define code generation

) diagrammatically show the position of code generato a
compiler

) explain basic code generation issues such as imutput,
memory management, instruction selection, etc.

) describe runtime storage allocation.
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3.0 MAIN CONTENT
3.1 Code Generation

The primary objective of theode generatoris to convert atoms or
syntax trees to instructions.

The final phase in our compiler model is ttade generator It takes as
input an intermediate representation of the soyoegramme and
produces as output an equivalent target programme.

The requirements traditionally imposed on a codeeggtor are severe.
The output code must be correct and of high quafitganing that it
should make effective use of the resources of #rget machine.
Moreover, the code generator itself should rurcedfitly.

SOURCE FRONT INTERMEDIATE CODE INTERMEDIATE CODE TARGET
— —> GENERATOR [
END OPTIMISER
SYMBOL
TABLE
Fig. 1: Position of Code Generator

3.2 Issues in the Design of a Code Generator

While the details are dependent on the target @aggwand the operating
system, issues such as memory management, instruselection,
register allocation, and evaluation order are iehern almost all code
generation problems.

3.2.1 Input to the Code Generator

The input to the code generator consists of thesrimediate

representation of the source programme producedhbeyfront end,

together with information in the symbol table theused to determine
the run time addresses of the data objects dermtede names in the
intermediate representation.

There are several choices for the intermediate uagg, including:

linear representations such as postfix notationfeeth address
representations such as quadruples, virtual mackpresentations such
as syntax trees and dags.
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We assume that prior to code generation the frowt legas scanned,
parsed, and translated the source programme irdasonably detailed
intermediate representation, so the values of naapgearing in the
intermediate language can be represented by geantitat the target
machine can directly manipulate (bits, integeralg,gpointers, etc.). We
also assume that the necessary type checking kasptace, so type
conversion operators have been inserted whereveessary and
obvious semantic errors (e.g., attempting to ingi@xarray by a floating
point number) have already been detected. The gederation phase
can therefore proceed on the assumption thatpig iis free of errors. In
some compilers, this kind of semantic checking osedtogether with
code generation.

3.2.2 Target Programmes

The output of the code generator is the targetraragie. The output
may take on a variety of forms: absolute machimguage, relocatable
machine language, or assembly language.

Producing an absolute machine language progransneeitput has the
advantage that it can be placed in a location imarg and immediately
executed. A small programme can be compiled anduted quickly. A
number of “student-job” compilers, such as WATFI\hda PL/C,
produce absolute code.

Producing a relocatable machine language prograasreutput allows
subprogrammes to be compiled separately. A setlotatable object
modules can be linked together and loaded for diectioy a linking
loader. Although we must pay the added expensmkiht and loading
if we produce relocatable object modules, we gaigreat deal of
flexibility in being able to compile subroutinespseately and to call
other previously compiled programmes from an objacdule. If the
target machine does not handle relocation autoaibtiche compiler
must provide explicit relocation information to th@ader to link the
separately compiled programme segments.

Producing an assembly language programme as outpakies the

process of code generation somewhat easier .\Wegaaarate symbolic
instructions and use the macro facilities of theeasbler to help

generate code .The price paid is the assemblya$tepcode generation.
Due to the fact that producing assembly code da#sduaplicate the

entire task of the assembler, this choice is amotesonable alternative,
especially for a machine with a small memory, whereompiler must

uses several passes.
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3.2.3 Memory Management

Mapping names in the source programme to addredstsa objects in
run time memory is done cooperatively by the frend and the code
generator. We assume that a name in a three-adstegement refers to
a symbol table entry for the name.

If machine code is being generated, labels in tladdress statements
have to be converted to addresses of instructidigs process is
analogous to the “back patching”. Suppose thatisateder to quadruple
numbers in a quadruple array. As we scan each gplgdin turn we can
deduce the location of the first machine instructgenerated for that
guadruple, simply by maintaining a count of the bemof words used
for the instructions generated so far. This coust be kept in the
guadruple array (in an extra field), so if a refm® such as goto iis
encountered, and i is less than j, the current el number, we may
simply generate a jump instruction with the targétiress equal to the
machine location of the first instruction in thedeofor quadruple i. If,
however, the jump is forward, so i exceeds j, westnstore on a list for
guadruple i the location of the first machine instion generated for
guadruple j. Then we process quadruple i, werillhe proper machine
location for all instructions that are forward juso i.

3.2.4 Instruction Selection

The nature of the instruction set of the target mrae determines the
difficulty of instruction selection. The uniformitgnd completeness of
the instruction set are important factors. If theget machine does not
support each data type in a uniform manner, theh eaception to the
general rule requires special handling.

Instruction speeds and machine idioms are otheoitapt factors. If we
do not care about the efficiency of the target pmogne, instruction
selection is straightforward. For each type of ¢éhraddress statement
we can design a code skeleton that outlines thgetacode to be
generated for that construct.

For example, every three address statement obthex: =y + z, where
X, Yy, and z are statically allocated, can be tatpsdl into the code
sequence

MOV y, RO /*loady into register RO */

ADD z, RO /*add zto RO */
MOV RO, x /* store RO into x */
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Unfortunately, this kind of statement-by-statemarde generation often
produces poor code. For example, the sequencatehsnts:

a=b+c
d:=a+e

would be translated into

MOV b, RO
ADD ¢, RO
MOV RO, a
MOV a, RO
ADD e, RO
MOV RO, d

Here the fourth statement is redundant, and shashird if ‘a’ is not
subsequently used.

The quality of the generated code is determinetistbgpeed and size.

A target machine with a rich instruction set magyide several ways of
implementing a given operation. Since the costed#iices between
different implementations may be significant, aveairanslation of the
intermediate code may lead to correct, but unaabdptinefficient

target code. For example if the target machine &as‘increment”

instruction (INC), then the three address statenzert a+1l may be
implemented more efficiently by the single instraot INC a, rather
than by a more obvious sequence that loads a inégiater, add one to
the register, and then stores the result backanto

MOV a, RO
ADD #1,R0
MOV RO, a

Instruction speeds are needed to design good cedeesce but
unfortunately, accurate timing information is oftdifficult to obtain.
Deciding which machine code sequence is best gven three address
construct may also require knowledge about theestrit which that
construct appeatrs.

3.2.4 Register Allocation

Instructions involving register operands are usuahorter and faster
than those involving operands in memory. Therefefiggient utilisation
of register is particularly important in generatigpgod code. The use of
registers is often subdivided into two sub-problems

191



CIT 753 INTERNET CONCEPTS AND WEB [

1. Duringregister allocation, we select the set of variables that will
reside in registers at a point in the programme.
2. During a subsequenggister assignmentphase, we pick the

specific register that a variable will reside in.

Finding an optimal assignment of registers to \@es is difficult, even
with single register values. Mathematically, theolgem is NP-
complete. The problem is further complicated beeat®e hardware
and/or the operating system of the target machiag nequire that
certain register usage conventions be observed.

Certain machines requireegister pairs (an even and next odd
numbered register) for some operands and resutseXample, in the
IBM System/370 machines integer multiplication anteger division
involve register pairs. The multiplication instract is of the form:

M Xy

where X, is the multiplicand, is the even registean even/odd register
pair.

The multiplicand value is taken from the odd regispair. The
multiplier y is a single register. The product og@s the entire
even/odd register pair.

The division instruction is of the form
D xvy

where the 64-bit dividend occupies an even/oddstegpair whose even
register is x; y represents the divisor. After gign, the even register
holds the remainder and the odd register the quiotie

Now consider the two three address code sequeagesd (b) in figure
2 below in which the only difference is the operato the second
statement. The shortest assembly sequence fon¢ajld are given in

(©).

Ri stands for register i. L, ST and A stand fordpatore and add
respectively. The optimal choice for the registéoiwhich ‘a’ is to be
loaded depends on what will ultimately happen to e.

= a+b t:=a+b
=t*c t=t+c
=t/d t :=t/d
(@) (b)
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Fig. 2 Two three address code sequences

L Rl a L RO, a
A R1,b A RO, b
M RO,c A RO, c
D RO,d SRDA RO, 32
ST RI1,t D RO, d

ST R1,t

(a) (b)

Fig. 3: Optimal machine code sequence

3.2.5 Choice of Evaluation Order

The order in which computations are performed dfachthe efficiency
of the target code. Some computation orders redainer registers to
hold intermediate results than others. Picking st lmeder is another
difficult, NP-complete problem. Initially, we shallvoid the problem by
generating code for the three -address statemeriteeiorder in which
they have been produced by the intermediate coderger.

3.3 Approaches to Code Generation

The most important criterion for a code generasothat it produces
correct code. Correctness takes on special siginife because of the
number of special cases that code generator must f@iven the

premium on correctness, designing a code genesatdrcan be easily
implemented, tested, and maintained is an impodasign goal.

3.4 Run-Time Storage Management

The semantics of procedures in a language detesnfioe names are
bound to storage during allocation. Information dese during an
execution of a procedure is kept in a block of ager called an
activation record; storage for names local to trec@dure also appears
in the activation record.

An activation record for a procedure has fieldshtd parameters,
results, machine-status information, local datmperaries and the like.
Since run-time allocation and de-allocation of \aation records occurs
as part of the procedure call and return sequengesfocus on the
following three-address statements:

1. call
2. return
3. halt
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4.  action, a placeholder for other statements

For example, the three-address code for procedurasd p in fig. 4

contains just these kinds of statements. The siddagyout of activation
records are communicated to the code generatothe@ainformation

about names that is in the symbol table. For glawe show the layout
in Fig. 4 rather than the form of the symbol-tadhéries.

We assume that run-time memory is divided into sfea code, static
data, and a stack.

three-address code activation record
for c activation record for p
(64 bytes)
(64 bytes)
/* code for c*/ o: return address 0: | return address
actionl g 4
callp buf

/* code for p*/

action3 gF 6. . e Generator

84: n

60: j

3.4.1 Static Allocation

Consider the code needed to implement static ditwta A call
statement in the intermediate code is implemenyed Sequence of two
target-machine instructions. A MOV instruction ssvéhe return
address, and a GOTO instruction transfers conrtthé target code for
the called procedure:

MOV  #here+20,callee.static_area
GOTO callee.code_area

The attributescallee.statatic_areaand callee.code areare constants
referring to the address of the activation recard the first instruction
for the called procedure, respectively. The sodtwmret20 in the MOV
instruction is the literal return address; it i® thddress of instruction
following the GOTO instruction.

The code for a procedure ends with a return toctilkng procedure
ends with a return to the calling procedure, extlepffirst procedure has
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no caller, so its final instruction is HALT, whigbhresumably returns
control to the operating system. A return from paae callee is
implemented by

GOTO *allee.static_area

this transfers control to the address saved atbéginning of the
activation record.

Example 1

The code in Figure 5 is constructed from the praoesl c and p in
Figure 4. We use the pseudo-instruction ACTION nglement the
statement action, which represents three-addrekstbat is not relevant
for this discussion. We arbitrarily start the cdde these procedures at
addresses 100 and 200, respectively, and assurhedbh ACTION
instruction takes 20 bytes. The activation recdodghe procedures are
statically allocated starting at location 300 &6d, respectively.

[*code for c*/
100: ACTION1

120: MOV #140,364 [*savéura address 140 */
132: GOTO 200 [* calt/

140: ACTION2

160: HALT

[*code for p*/
200: ACTION3

220: GOTO *364 [*return to add¥esved in location 364*/
/*300-363 hold activation record for c*/
300: [*return address*/
304: [*local data for c*/
...... [*364-451 haddtivation record for p*/
364: [*return address*/
368: [*local data for p*/
Fig. 5: Target Code for Input in Figure 4

The instructions starting at address 100 implertfenstatements
actionl; call p; action2; halt

of the first procedure c. Execution therefore stavith the instruction

ACTIONL1 at address 100. The MOV instruction at &ddr120 saves

the return address 140 in the machine-status figlich is the first word
in the activation record of p. The GOTO instructiah address 132
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transfers control to the first instruction is tleeget code of the called
procedure.

Since 140 was saved at address 364 by the caleseq above, *364
represents 140 when the GOTO statement at add2fsss Zxecuted.
Control therefore returns to address 140 and eketwf procedure c
resumes.

3.4.2 Stack Allocation

Static allocation can become stack allocation bgguselative addresses
for storage in activation records. The positiontlo¢ record for an
activation of a procedure is not known until ruméi In stack allocation,
this position is usually stored in a register, sordg in the activation
record can be accessed as offsets from the valdlkisrregister. The
indexed address mode of our target machine is coene for this
purpose.

Relative addresses in an activation record carakentas offsets from
any known position in the activation record. Fonwenience, we shall
use positive offsets by maintaining in a regist& & pointer to the
beginning of the activation record on top of theckt When a procedure
call occurs, the calling procedure increments SiPteansfers control to
the called procedure. After control returns to tadler, it decrements
SP, thereby de-allocating the activation recorthefcalled procedure.

The code for the firgtrocedure initialises the stack by setting SP & th
start of the stack area in memory.

MOV #stackstart SP [*initialise the stack*/
code for the first procedure
HALT [*terminaéxecution*/

A procedure call sequence increments SP, save®tine address, and
transfers control to the called procedure:

ADD #caller.recordsizeSP
MOV #here+16, SP [* save return address*/
GOTO callee.code_area

The attribute caller.recordsizerepresents the size of an activation
record, so the ADD instruction leaves SP pointioghte beginning of
the next activation record. The sourdeefet+16 in the MOV instruction
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Is the address of the instruction following the GI)Tt is saved in the
address pointed to by SP.

The return sequence consists of two parts. Thedalocedure transfers
control to the return address using

GOTO *0(SP) [*return to caller*/

The reason for using *0(SP) in the GOTO Iinstructiorihat we need
two levels of indirection: O(SP) is the addressthad first word in the
activation record and *0(SP) is the return addsas®d there.

The second part of the return sequence is in thher cahich decrements
SP, thereby restoring SP to its previous value.tTiBa after the
subtraction SP points to the beginning of the atitn record of the
caller:

SUB #caller.recordsizeSP

Example 2:

The programme in figure 6 is a condensation of the three-address code
for the Pascal program for reading and sortinggeite. Procedure q is
recursive, so more than one activation of q caalive at the same time.

/*code for s*/
actionl

callq

/*code for p*/

action3

/*code for q*/
action4
callp

action5

Fig. 6: Three-Address Code to lllustrate Stack Athcation

Suppose that the sizes of the activation recondprfcedures s, p, and g
have been determined at compile time tossee psize and gsize
respectively. The first word in each activationaetwill hold a return
address. We arbitrarily assume that the code fsdlprocedures starts
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at addresses 100,200 and 300 respectively, andhbadtack starts at
600. The target code for the programme in figuie & follows:

[*code for s*/
100: MOV #600, SP /*initialize tkeack*/
108: ACTION1
128. ADD $size SP  /*call sequence begins*/
136: MOV #152, *SP  [*push return ezkb*/

144: GOTO 300 [*call g*/
152: SUBsgskize SP  /[*restore SP*/
160: ACTION2

180: HALT

[*code for p*/
200: ACTIONS3
220: GOTO *0(SP) [*return*/
[*code for g*/
300: ACTION4 [*condition@imp to 456*/
320: ADD #size SP
328: MOV #344, *SP  [*push return eak$*/
336: GOTO 200 [*call p*/
344: SUB¢éfsize SP
352: ACTIONS
372: ADD #size SP
380: MOV #396, *SP  /[*push return eskb*/
388: GOTO 300 [*call gq*/
396: SUB¢fsize SP
404: ACTIONG6
424: ADD #size SP
432: MOV #448, *SP  [*push returrdeess*/

440: GOTO 300 [*call g*/

448. SUB ¢size SP

456: GOTO *0(SP) [*return*/

600: [*stestlarts here*/

We assume that ACTION4 contains a conditional jumphe address
4560f the return sequence from q; otherwise, tarstve procedure q
Is condemned to call itself forever. In an exanpéw, we consider an
execution of the programme in which the first adllg does not return
immediately, but all subsequent calls do.

If ssize, psizeand gsizeare 20,40, and 60, respectively, then SP is

initialized to 600, the starting address of theclstaby the first
instruction at address 100. SP holds 620 just befontrol transfers
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from s to g, becausssizeis 20. Subsequently, when g calls p, the
instruction at address 320 increments SP to 68@revkhe activation
record for p begins; SP reverts to 620 after comrturns to g. If the
next two recursive calls of g return immediatehg tmaximum value of
SP during this execution is 680. However, the $tatk location used is
739, since the activation record for g startingpattion 680 extends for
60 bytes.

3.4.3 Run-Time Addresses for Names

The storage allocation strategy and the layout aofall data in an
activation record for a procedure determine howstibeage for names is
accessed.

If we assume that a name in a three-address statesneally a pointer
to a symbol-table entry for the name; it makes toenpiler more
portable, since the front end need not be changed & the compiler is
moved to a different machine where a different tiome organisation is
needed. On the other hand, generating the spesafijcence of access
steps while generating intermediate code can lsgyaificant advantage
in an optimising compiler, since it lets the opse take advantage of
details it would not even see in the simple thréérass statement.

In either case, names must eventually be replagedode to access
storage locations. We thus consider some elabosatad the simple
three-address statement x: = 0. After the dectaratin a procedure are
processed, suppose the symbol-table entry for xaocm a relative
address 12 for x. First consider the case in whkidh in a statically
allocated area beginning at addresatic. Then the actual run-time
address for x isstatict12. Although, the compiler can eventually
determine the value ddtatict12 at compile time, the position of the
static area may not be known when intermediate d¢odaccess the
name is generated. In that case, it makes sergengrate three-address
code to “compute” statict12, with the understanding that this
computation will be carried out during the code@ation phase, or
possibly by the loader, before the programme rilihs. assignment x :=
0 then translates into

static [12] :=0

If the static area starts at address 100, the ttaayke for this statement
is

MOV #0, 112
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On the other hand, suppose our language is onePhiseal and that a
display is used to access non-local names. Sumissdhat the display
is kept in registers, and that x is local to anvacprocedure whose
display pointer is in registersRThen we may translate the copy x := 0
into the three-address statements

t:=12+R
*t]_:: 0

in which t1 contains the address of x. This seqe&an be implemented
by the single machine instruction

MOV #0, 12 (R)

The value in Rcannot be determined at compile time.

4.0 CONCLUSION

In this unit, you have been taken through the bassces in code
generation. In the next unit, which is the conahgdunit of this course
you will be learning about code optimisation.

5.0 SUMMARY

In this unit, you learnt that:

. the primary objective of theode generator,the final phase of
the compiler, is to convert atoms or syntax tregsstructions
. code generator takes as input an intermediate geptation of

the source programme and produces as output arvabejpi
target programme

o producing an assembly language programme as onngke:s the
process of code generation somewhat easier

) producing a relocatable machine language prograesneutput
allows subprograms to be compiled separately

) mapping names in the source programme to addregsdata

objects in run time memory is done cooperativelytihg front
end and the code generator

o information needed during an execution of a proceds kept in
a block of storage called an activation record

) static allocation can become stack allocation byguselative
addresses for storage in activation records

) relative addresses in an activation record carakent as offsets

from any known position in the activation record.
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6.0 TUTOR-MARKED ASSIGNMENT

I For the following prograe in Simple, generate stamtie.

A programme in Simple
let
integer n,x,n.
in
read n;
if n <10 then x :=1; else skip; fi;
while n < 10 dox := 5*x; n := n+1
end;
skip;
write n;
write X;
end

. Describe the various approaches to code generation.
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1.0 INTRODUCTION

In this concluding unit of the course, you will kEarning about code
optimisation. Code optimisation is code transforaratechniques that
are applied to the intermediate codes to makerfaste better in terms
of performance and memory management. Although,ofttemisation
phase is an optional phase in compilers it makebdtter and efficient
code generation when it is present.

Optimisation is a very rich and complex topic, &@s tunit will only
attempt to introduce the basics.

Now let us go through your study objectives fos thinit.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define code optimisation

. state criteria for code improving transformation

. list categories of optimisation

. state properties of optimising compilers

o list and describe common optimisation algorithms.

3.0 MAIN CONTENT
3.1 Code Optimisation

On modern computers, a compiler can be considerbdwe satisfactory
performance if it translates a moderate size soprogramme (say
about 1000 lines) in a matter of seconds. The waget a compiler with
satisfactory performance is more or less the saime you would get
any programme performing well.

Design using good algorithms.

Ensure your data structures match the algorithms.
Structure using modules with clean simple interace
Implement using clear straightforward code.

When there is an overall performance problem
Measure the actual performance in reasonable detalil
Identify the troublesome areas.

Redesign and re-implement these problem areas.

In this unit, we will consider various algorithmsdadata structures and
discuss their likely impact on performance.

Note that actual measurement is crucial, sincgtbblems are often not
where you guess they might be. For your initial lenpentation you

may well have selected simple algorithms whichlarewn to perform

poorly in order to get something working quicklyewrtheless, you
should still measure performance in detail, sirfoerd may be some
other source of (at least some of) your problems.

If you are very lucky, your implementation languageht have some
optional facility for selectively measuring CPU @mTake care to only
activate such a feature for a few crucial routirteg; timing overhead
could easily exceed the execution time for smaltirees and distort the
result.
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More commonly you will be unlucky and will have &xplicitly add
timing code to selected routines; make sure youeeasily disable it and
enable it as required. Typically you will have twseért calls to some
CPU timing routine at the beginning and end of atine, and then
subtract the two values to get the time for thaitine, which will
include the time for any routines called by it.

Various measurements on the performance of actoiapiters have
been reported over the years. Specific areas wiaske been known to
cause problems include:

. multiple routine calls during lexical analysis feach and every
source character

skipping white space during lexical analysis

skipping over a comment

decoding a tightly packed parse table during syatedysis
looking things up in the name table during semaantialysis
determining whether some name is a reserved keyaoaduser-
definable identifier.

Optimisation within a compiler is concerned withpimaving in some
way the generated object coddile ensuring the result is identical
Technically, a better name for this unit might hegrovement", since
compilers only attempt to improve the operations pnogrammer has
requested. Optimisations fall into three categories

a. Speed improving the runtime performance of the genetate
object code. This is the most common optimisation

b. Space reducing the size of the generated object code

C. Safety. reducing the possibility of data structures beitgm
corrupted (for example, ensuring that an illegahdyrelement is
not written to).

Unfortunately, many "speed" optimisations make t¢bee larger, and
many "space" optimisations make the code slowess iBrknown as the
space-time trade-off.

3.2  Criteria for Code-Improving Transformations

Simply stated, the best programme transformatioegstese that yield
the most benefit for the least effort. The transfations provided by an
optimising compiler should have several properties.

First, a transformation must preserve the meaningagrammes. That
is, an "optimisation” must not change the outpubdpced by a
programme for a given input, or cause an errorhaga division by
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zero, that was not present in the original versminthe source
programme. The influence of this criterion pervattes chapter; at all
times we take the "safe" approach of missing arodppity to apply a
transformation rather than risk changing what tteeyamme does.

Second, a transformation must, on the averagedsgeerogrammes by
a measurable amount. Sometimes we are interesteduiing the space
taken by the compiled code, although the size oflecthas less
importance than it once had. Of course, not eveaysformation
succeeds in improving every programme, and occaljonan
"optimisation” may slow down a programme slighthg, long as on the
average it improves things.

Third, a transformation must be worth the effarddes not make sense
for a compiler writer to expend the intellectuafoef to implement a
code improving transformation and to have the ctenpexpend the
additional time compiling source programmes if thifort is not repaid
when the target programmes are executed. Certeal & "peephole”
transformations of the kind are simple enough agrkhbcial enough to
be included in any compiler.

Some transformations can only be applied afterildetaoften time-
consuming, analysis of the source program, so tietdtle point in

applying them to programs that will be run only ewftimes. For
example, a fast, nonoptimising, compiler is likéty be more helpful
during debugging or for "student jobs” that will ben successfully a
few times and thrown away. Only when the programmejuestion

takes up a significant fraction of the maching/sles does improved
code quality justify the time spent running an opsing compiler on
the programme.

3.3 Improving Transformations

The code produced by straightforward compiling athms can be
made to run faster usingode improving transformationsCompilers
using such transformations are caltgrimizing compilers

The main subjects of research amachine-independent optimisations
They are implemented by algorithms that improve thmget code
without taking into consideration any propertiestlod target machine.
Making machine-dependent optimisations, such asstexgallocation
and utilisation of machine idioms is also possible.

The purpose behind making such optimisations rmake more efficient
the most frequently executed parts of the compiler.
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3.4 Optimising Compiler
An optimising compiler should provide the followipgoperties:

o the transformations should preserve the semanticsthe
programmes, that is the changes should guaranddhd same
input produces the same outputs (and should nsecauors)

o the transformations should speed up consideraklgdmpiler on
the average (although occasionally on some ingussmay not
be demonstrated, on most of the inputs it shoutdine faster)

. the transformation should be worth the intellecefédrt.

3.5 Common Optimisation Algorithms

Common optimisation algorithms deal with specifi@ases. The
possibilities to improve a compiler can be expldimgth the following
most frequently applied transformation techniques:

Function-preserving transformations

common sub-expressions identification/elimination
copy propagation

dead-code elimination

Loop optimisations

induction variables and reduction in strength

code motion

. Function Chunking.

A code improving transformation is callédcal if it is performed by
looking at statements within one concrete blockespectively, a code
improving transformation iglobal if it is performed by looking at
statements not only in one concrete block, but algside in global and
other outside blocks.

3.5.1 Function-Preserving Transformations

There are a number of ways in which a compileriogrove a program
without changing the function it computes. Comma-expression
elimination, copy propagation, dead-code elimingti@nd constant
folding are common examples of such function-pnaagr
transformations. The other transformations comeptmarily when
global optimisations are performed.

Frequently, a program will include several caldolas of the same

value, such as an offset in an array. Some of thepicate calculations
cannot be avoided by the programmer because tbeyelow the level
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of detail accessible within the source language.dxample, block B5
shown in figure 1 recalculates 4*i and 4%|.

ES

t:fm s o]
i o st
a[t?]:=tE! alt8l:= =

Fig. 1: Local Common Sub Expression Elimination

void quick sort(intm, intn)

{

inti};

int v,Xx;

if (N <=m) return;

i=m-1;

j=n;

v=a[n];

while (1)

{

doi=i+1;while(afi]<v);

doj=j-1;while(a[j]>V);

if (1>=]) break;

x=alil];

ali]=alj]

a[j]l=x

}

x=al[il];

a[fi]=a[n];

a[n]=x;

quicksort( m, j);

quicksort(i+1, n);

}

Three-address Code :

1) i=m-1 16) A=4%*i

2) j:=n 17) 4:=4*]

3) t:=4*n 18) 4:=al[s]

4) v:i=a[{] 19) a[#]=t

5) i:=i+1l 20) fH:=47%*]

6) bL:i=4%*i 21) a[t]:=x
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7) G:=a[t] 22) goto (5)

8) if(tz<v)goto (5) 23) h:=4%i

9) j=j-1 24) x:=at]
10) 4:=4%*] 25) fi=4*i
11) t:=alt] 26) t3:=4*n
12) if (> V) goto (9) 27) h:=a[ ts]

13) if(i>=j)goto(23)28) afi]:=1t4

14) §:=4*i 29) t5:=4*n
15) x:=al§] 30) a[ts]:=x

B
I:=m-1
j:=n
t1:=4*n
vi=alt]

B

I=1+1
tz::4*i
tz:=a[ ]

if (t3<v)goto B

Bs

j=i-1
t4::4*j

ts == a[ 4]

if (ts>v ) goto B

B4
if (i >=]) goto B

Bs Be
ts::4*i t]_l::4*i
x = a[ &] x = a[ ty]
t7::4*i t12:24*i
tg::4*j t13::4*n
to:= a[ ] tig 1= af ti3]
a[t]i=tg af tip]:=ty4
th::4*j t15::4*n
af tio]:= x af ts]:=x
goto B
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3.5.11 Copy Propagation

Input A flow graph with a set of copies x=y that reaciblock in the
graph along every path, with no assignment of ¥ @wllowing the last
occurrence of x=y on the path to the block.

Output A revised flow graph
Algorithm For each copy x :=y, do the following:

1) Determine those uses of x that are reachddibylefinition of x
namely,s: x:=y.

2) Determine whether for every use of x found ijpno definitions
of x or y can occur prior to this use of x withhretultimate block
of use.

3) If the blocks meets the conditions of 2 ) then remaveand
replace all uses of x foundin 1) byy.

Block Bs in the code below can be further improved by elating x
using two new transformations. One concerns assgtsrof the form
f:=g called copy statements, or copies for shaot. €&ample, when the
common sub expression in c:=d+e is eliminated iguf@ 2, the
algorithm uses a new variable t to hold the valtid+e. Since control
may reach c:=d+e either after the assignment toadter the assignment
to b, it would be incorrect to replace c:=d+e bijier c:=a or by c:=b.

The idea behind the copy-propagation transformaisoto use g for f,
wherever possible after the copy statement f:=g. &mample, the
assignment x:ztin block Bs of Figure 2 is a copy.

Copy propagation applied to;Bields:
X:=t3
aft]:=ts

aty]:=ts
goto B,
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b:=d+e | t:=d+e

co=d+e

Copies Introduced during Common Sub Expresion
Elimination

This may not appear to be an improvement, but asha# see, it gives
us the opportunity to eliminate the assignment to x

if (t3<v)goto B

if (ts>vVv ) goto B

if (i >=]) goto B

B:
l:=m-1
j:=n
t1:=4*n
vi=alt]
B
I=i+1
tz::‘4*i
ty:=al t]
Bs
j=j-1
ty:=47*)
ts 1= a[ ]
Ba

Bs

IIX =13
a[t]=ts
a[t]=13
goto B
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3.5.1.2 Dead Code Elimination

Dead code elimination is a size optimisation (altiio it also produces
some speed improvement) that aims to remove I|dgicaipossible
statements from the generated object code. Deaglisasbde which will
never execute, regardless of input

Consider the following programme:

a=>5
if (@!=5){
/l some complicated calculation

}

It is obvious that the complicated calculation wiver be performed,
since the last value assignedatdefore thelF statement is a constant,
we can calculate the result at compile-time. Simgldstitution of
arguments produces if (5!= 5), which fese Since the body of an
if(false) statement will never execute - idisad codave can rewrite the
code:

a=5
/| some statements

The algorithm was used to identify and remove sestof dead code

3.5.1.3 Common Sub-expression
Identification/Elimination

Common sub-expression elimination is a speed ogé#tion that aims to
reduce unnecessary recalculation by identifyingpugh code-flow,
expressions (or parts of expressions) which wikhleate to the same
value: the re-computation of an expression can be avoidethe
expression has previously been computed and theyvalf the operands
have not changed since the previous computation

3.5.1.3.1Common Sub-expression IdentificatioAlgorithm

Input A flow graph with available expression informatio
Output A revised flow graph

Algorithm For every statemerstof the form x :=y +z suchthat y +z

is available at the beginning ek block, and neither y nor z is defined
prior to statemerg in that block, do the following:
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1) To discover the evaluations of y + z thathesis block follow
going through any block that evaluates y + z /e Thst
evaluation of y + z in each block encountered ig@auation of
y + z that reaches x.

2) Create a new variable u

3) Replace each statement w: =y + z found irb{1)

u=y+z
wW:=u

4) Replace statemerst by x :=u

Example 1:

to =4 %
tsr=alb]

ts =4 %
tz7:=al&]

B:

I:=m-1

j:=n

{; =4*n
vi=alt]

B

I=i+1

to =4 %
ts:=al t]

if (t3<v)goto B
Bs

ji=i-1
t4::4*j

ts == a[ 4]

if (ts>vVv ) goto B
Ba

if (i >=]) goto B
Bs

X =1

a[t]=ts
a[u]:=x

goto B
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tt:=u
t7:=alk]

Bs

X =t
tiy:=al t]
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Example 2:

Consider the following programme:

a=b+c
d=e+f
g=b+c

In the above example, the first and last stateseight hand side are
identical and the value of the operands do not ghdretween the two
statements; thus this expression can be considerdgving a&ommon
sub-expressian

The common sub-expression can be avoided by stasngalue in a
temporary variable which can cache its result. Afépplying this
Common Sub-expression Elimination technique the graimme
becomes:

t0:b+C
a=-¢t
d=e+f
g=b

Thus in the last statement the re-computation efetkpression b + c is
avoided.

3.5.2 Loop Optimisations

We now give a brief introduction to a very impottaplace for

optimisations, namely loops, especially the inneops where
programmes tend to spend the bulk of their timee fiinning time of a
programme may be improved if we decrease the nuwib@structions

in an inner loop, even if we increase the amountade outside that
loop. Three techniques are important for loop ofg&tion: code motion,
which moves code outside a loop; induction-variaimination, which

we apply to eliminate | and j from the inner looB2 and B3 and,
reduction in strength, which replaces and expensiperation by a
cheaper one, such as a multiplication by an additio

There are three main techniques for loop optinesatioops are usually
processed inside out):

) Strength Reduction which replaces an expensive (time
consuming) operator by a faster one;

o Induction Variable Eliminatiorwhich eliminates variables from
inner loops;

) Code Motiorwhich moves pieces of code outside loops.

213



CIT 753 INTERNET CONCEPTS AND WEB [

3.5.21 Strength Reduction

This concept refers to the compiler optimisatiortirod of substituting
some machine instruction by a cheaper one and mi@intaining

equivalence in results. Certain machine instrustiame considerably
cheaper than others and can often be used as Ispase@s of more
expensive operators. For example, x2 is invarighlyaper to implement
as x*x than as a call to an exponentiation routifk@ed-point

multiplication or division by a power of two is dyger to implement as
a shift. Floating-point division by a constant ca@ implemented as
multiplication by a constant, which may be cheaper.

This type of optimisation can generate high gaispeeially when
targeting different hardware and the compiler isamvof the subtle
differences it can benefit from.

Example 3:

Apply strength reduction to the code below:

if (ts>vVv ) goto B

B4
if (1 >=]) goto B

Bs Bs
Solution:

As the relationship,t=4*] surely holds after such an assignmentto t
the code above and t4 is not changed elsewhehzimher loop around
Bs, it follows that just after the statement j.=jHetrelationshipst= 4*j-

4 must hold. We may therefore replace the assightmed*j by t;:= -

4. The only problem is that tloes not have a value when we enter block
B3 for the first time. Since we must maintain theatieinship {=4*j on
entry to the block B we place an initialisations of &t the end of the

214



CIT 753

MODULE 4

block where j itself is initialised, shown by thest line of block B in

the code below

The replacement of a multiplication by a subtractwll speed up the
object code if multiplication takes more time thaddition or
subtraction, as is the case on many machines

After Strength Reduction is applied to 4*j in bko®; we have:

B
I:=m-1
ji=
t1:=4*n
vi=alg]
t4::4*j
B>
Bs
j=i-1
t4::t4'4
ts == a[ 4]

if (ts>vVv ) goto B

B4
if (i >=]) goto By

Bs

Bs

Diagrammatically it can be depicted as in figuteelow

ii= -1 B ii= m-1
[=n =h
t:= 4 H:= 4%n
wi=a[t] yi= 4[]
L I
i , B2 S .
=1 =
b= 4% B3 t:= t4-4
15 = aftd] t5:= a[td]
if t5s v goto B3 u if e v goto B3
| J
ifis={ goto BB Bd | ifi>= goto B6
:é E BR BE
BS
Before (b) After
Fig. 1: Strength Reduction Applied to 4*J In Blok Bs

E1

B3

B4
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3.5.2.2 Induction Variable Elimination

Some loops contain two or more induction variabtkat can be
combined into one induction variable. Inductioniable elimination can
reduce the number of additions (or subtractionsg laop, and improve
both run-time performance and code space. Somdtextires have
auto-increment and auto-decrement instructions ¢hat sometimes be
used instead of induction variable elimination.

Example 4:

For the code in example 3 above, consider the dsopnd B.

Note that the values of j angremain in lock-step; every time the value
of j decreases by 1, that afdecreases by 4 because 4*j is assigned to
t,.Such identifiers are called induction variables.

When there are two or more induction variables ioap, it may
be possible to get rid of all but one, by the psscef induction-variable
elimination. For the inner loop around B Fig. we cannot get rid of
either j or § completely. is used in Band j in B,

After Induction Variable Elimination is applied virave:

B:
i:=m-1
j:=n
t1:=4*n
vi=alt]
tz::4*i
t4::4*j
B
tz::t2+4
ty:=al ]
if (t3<v)goto B
Bs
t4::t4'4
ts 1= a 4]

if (ts>Vv ) goto B

B4
if (to>=14) goto B
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Bs Be
a[bl=ts tiy:=al t]
a[yl=t3 a[b]:=11
goto B a[t]:=t3
Example 5:

The code fragment below has three induction vaeglfil, i2, and i3)
that can be replaced with one induction varialllesteliminating two
induction variables.

int a[SIZE];
int b[SIZE];

void f (void)

{
intil, i2, i3;

for (i1=0,i2=0,i3=0;il1 < SIZE; i1++)
afi2++] = b[i3++];
return;

}

The code fragment below shows the loop after indoctwariable
elimination.

int a[SIZE];
int b[SIZE];

void f (void)

{
intil;

for (i1 = 0; il < SIZE; i1++)
a[i1] = b[i1];
return;

}
35.2.3 Code Motion

An important modification that decreases the amoticbde in a loop is
code motion. This transformation takes an expressiat yields the
same result independent of the number of timesop Is executed (a
loop-invariant computation) and places the expogssiefore the loop.
Note that the notion “before the loop” assumesetkistence of an entry
for the loop.
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This optimisation technique mainly deals to redineenumber of source
code lines in the programme. For example, evalnatiblimit-2 is a
loop-invariant computation in the following whiléasement:

While (i<= limit-2 )

Code motion will result in the equivalent of

t= limit-2;
while (i<=t)

Example 6:
Consider the code below:

for i=0;i<n; ++i){

X=y+2z
afij=6*i+x*x;
}

The calculations x =y + z and x * x can be movatkuale the loop since
within they are looping invariant (i.e. they do ndtange over the
iterations of the loop) so our optimised code Wwdlsomething like this:

X=Yy+ 2z

t1=Xx*X;

for i=0;i<n; ++i){
afij=6*i+1tl;

}

This code can be optimized further. For examplegngth reduction
could remove the two multiplications inside theddé*i and a[i]).

Example 7:
for(i=0;i<10;i++)
{

a=a+tgc

}

In the above mentioned code, a = a + ¢ can be mouedf the'for'
loop, and the new code is

a=a+ 10*c;
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3.5.3 Function Chunking

Function chunking is a compiler optimisation for praving code
locality. Profiling information is used to move efy executed code
outside of the main function body. This allows foemory pages with
rarely executed code to be swapped out.

4.0 CONCLUSION

In this concluding unit of the course, you haverb&ken through the
concept of code optimisation and common optimisatagorithms.

Dramatic improvements in the running time of a pamgme-such as
cutting the running time form a few hours to a fegconds-are usually
obtained by improving the programme at all levéfem the source

level to the target level. At each level, the aafalé options fall between
the two extremes of finding a better algorithm aidmplementing a

given algorithm so that fewer operations are penéat.

5.0 SUMMARY

In this unit, you learnt that:

. optimisations fall into three categories: speedgcspsafety

. the best programme transformations are those talat tnhe most
benefit for the least effort

) the code produced by straightforward compiling Athms can
be made to run faster usingde improving transformations

. compilers using such transformations are callgatimising
compilers

o a code improving transformation is calledal if it is performed
by looking at statements within one concrete block

. a code improving transformation gdobal if it is performed by

looking at statements not only in one concretekbloc
6.0 TUTOR-MARKED ASSIGNMENT

I Define the following concepts:
a) Optimising compilers
b) loop optimisation
C) Function chunking
d) Strength reduction.
. State criteria for code-improving transformations.
iii. Briefly explain what you understand by space-timaglé off in
optimisation.
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