
1

NATIONAL OPEN UNIVERSITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE:CIT 736

COURES TITLE:COMPUTER PROGRAMMING

2

Course Code CIT 736

Course Title Computer Programming

Course Developer/Writer O. B. Ajayi

ICT Resource Centre

University of Agriculture

Abeokuta, Nigeria

Course Editor

Programme Leader

Course Coordinator

3

NATIONAL OPEN UNIVERSITY OF NIGERIA

4

CONTENTS

Page

Introduction

What you will learn in this Course

Course Aims

Course Objectives

3

3

3

3

Working through this Course 3

The Course Material

Study Units

4

4

Presentation Schedule 5

Assessment

Tutor Marked Assignment

5

5

Final Examination and Grading 5

Course Marking Scheme 6

Facilitators/Tutors and Tutorials 6

Summary 6

5

Introduction

In writing the Computer programming course and the use of computers to solve engineering and mathematical problems, emphasis will be
placed on applying problem solving skills. This course is specifically directed towards those students who are interested in writing Fortran
and Pascal Program.

What you will Learn in this Course

This is a course with design content. Throughout the semester, students will complete 3 modules of 15 units, self assessment
exercises and programming assignments expected to meet specific design criteria.

Course Aims

The aim of the course is to guide learners on Pascal and Fortran Programming. It is to simplify the act of programming skills and hence
prepare them for advanced programming techniques of the languages.

Course Objectives

Below are the objectives of the course:

1. Provide Fortran and Pascal language skills.

2. Provide engineering problem solving skills using structured programming.

3. Provide experience in project development and meeting requirements.

Working through this Course

To complete this course you are required to read each study unit and other materials which may be provided by the National Open
University of Nigeria. Each unit contains self assessment exercises and some units with practical demonstration exercises. At the end of every
unit, you may be required to submit tutor marked assignments for assessment and grading. At the end of the course there is a final
examination.

To be abreast of this course, you are adviced to avail yourself the opportunity of attending the tutorial sessions where you have opportunity of
comparing your knowledge with your colleagues.

6

The Course Materials

The main components of the course are:

1.0 The Course Guide

2.0 Study Units

3.0 References/Further Readings

4.0 Assignments

5.0 Presentation Schedule

Study Units

The study units in this course are as follows:

Module 1 Programming Fundamentals

Unit 1 Basic Concepts in Programming

Unit 2 Debugging Program Codes

Unit 3 Algorithm and Flowcharts

Unit 4 Internal Representation of Data

Unit 5 Programming Techniques

Module 2 FORTRAN Programming Language

Unit 1 FORTRAN Language Organization

Unit 2 Statements, Input and Output

Unit 3 Transfer of Control and Program Loop

Unit 4 Arrays and Subscripted Variables

Unit 5 Functions and Subroutines

Module 3 PASCAL Programming Language

Unit 1 Elements of Pascal Language

Unit 2 Data Input and Output

7

Unit 3 Control structures

Unit 4 Arrays and Sub-programs

Unit 5 Structured Design Techniques

Presentation Schedule

The course materials assignments have important deadlines for submission. The learners should guide against falling behind stipulated
deadlines.

Assessment

There are three ways of carrying out assessment of the course. First assessment is made up of self assessment exercises, second consists of the
tutor marked assignments and the last is the written examination/end of course examination.

You are expected to do all the self assessment exercises by applying what you have read in the units. The tutor marked assignments should be
submitted to your facilitators for formal assessment in accordance with the deadlines stated in the presentation schedule and the assignment
files. The total assessment will carry 30% of the total course score. At the end of the course, the final examination will not be more than
three hours and will carry 70% of the total marks.

Tutor Marked Assignments

Tutor Marked Assignments (TMA) is a very important component of the course. You are to attempt three TMAs out four given before sitting
for final examination. The TMA will be given to you by your facilitator and return same after the assignment is completed. Make sure the
TMA reach the facilitator before the deadline given in the presentation schedule.

Final Examination and Grading

The final course examination will not exceed 3 hours which will total 70% of the final score. The examination questions will reflect the self
assessment exercises, tutor marked assignments that are previously encountered in the course units.

Course Marking Scheme

Your grade will be based on assignments and end of course examination. The assignments submitted will be weighted equally.

8

Marks

Assignments 30%

Examination 70%

Total 100%

Facilitators/Tutor and Tutorials

There are 16 hours of tutorials provided in support of this course. You will be notified of the dates, times and location of these tutorials as
well as the name and phone number of your facilitator, as soon as you are allocated a tutorial group.

You facilitator will mark and comment on your assignments, keep a close watch on your progress and any difficulties you might face and
provide assistance to you during the course. You are expected to mail you Tutor Marked Assignments to your facilitator before the schedule
date (at least two working days are required). The assignments will be marked by your tutor and returned to you as soon as possible.

Do not delay in contacting your facilitator on telephone or e-mail if you need assistance. Such assistance could be as a result of the
followings:

Having difficulties in understanding any part of the study unit or assigned readings

Difficulties in the self assessment exercises

Questions or problems with assignment or grading of assignments

The only way to have face to face contact and to ask questions from your facilitator is to attend tutorials. To gain from the tutorials
prepare lists of questions and participate actively in discussions.

Summary

This course is to provide overview of computer languages and detailed facts about computer program development. In particular, we will
see how a computer executes some simple and complex programs. In fact, the learners will actually code some programs and run them
on the computer.
I wish you success in the course and I hope you will find the course both interesting and useful.

9

CIT 736 - Computer Programming (2 Units)

Table of Content

Page

Module 1 Programming Fundamentals 2

Unit 1 Basic Concepts in Programming 2

Unit 2 Debugging Program Codes 14

Unit 3 Algorithm and Flowcharts 20

Unit 4 Internal Representation of Data 26

Unit 5 Programming Techniques 30

Module 2 FORTRAN Programming Language

Unit 1 FORTRAN Language Organization 38

Unit 2 Statements, Input and Output 51

Unit 3 Transfer of Control and Program Loop 65

Unit 4 Arrays and Subscripted Variables 77

Unit 5 Functions and Subroutines 87

Module 3 PASCAL Programming Language

Unit 1 Elements of Pascal Language 97

Unit 2 Data Input and Output 109

Unit 3 Control structures 115

Unit 4 Arrays 128

Unit 5 Sub-programs 139

Answers to Tutor Marked Assignments

10

Module 1: Programming Fundamentals

Unit 1: Basic Concepts in Programming

Page

1.0 Introduction 3

2.0 Objectives 3

3.0 What is Programming 4

3.1 Programming Languages 4

3.1.1 Machine Language 5

3.1.2 Symbolic Language 5

3.1.3 High Level Language 6

3.2 Program Process and Errors 7

3.3 Properties of a Good Programming 9

3.4 Structure of a Program 10

3.5 Example of a Simple Program 10

4.0 Conclusion 12

5.0 Summary 12

6.0 Tutor Marked Assignments 13

7.0 Further Reading and Other Resources 13

11

1.0 Introduction

A computer simply performs three functions of receiving data, processing it using various

computations and generating results. These functions are accomplished by giving the

computer a program consisting of a sequence of statements called program segment. The

main purpose of this course material is to teach the learner to write computer programs using

both FORTRAN and PASCAL languages. Programming the computer the way you want it is

fun and professional. The user has to identify and define the problem to be solved and the

solution path. In essence, if you cannot in principle solve the problem, the computer certainly

cannot; it can only follow precise instructions given by the user in the form of a program. A

systematic approach of problem solving using a computer is generally as follows:

Statement of the problem

Development of the mathematics of the solution

Drawing of flowcharts indicating the sequence of operations to be performed

Writing the program

2.0 Objectives

By the end of this unit, you should be able to:

Define what computer programming is

Distinguish between classes of programming languages

Describe programming and error handling processes

Identify good programming practises

Design computer programming structures

12

3.0 What is Programming

A computer program is a series of instructions given to the computer at a particular time to

solve a problem. It is usually written in a particular programming language, and named

according to the language used in writing it.

3.1 Programming Language

The Programming Language is the language through which we can pass instructions to user

and the system. A Computer Language (Programming Language) is composed of a set of

characters, words and rules that can be used to write a computer program. Examples of some

of the programming languages are BASIC, FORTRAN, COBOL, C, C++ etc. that the user

and the computer must understand it.

Apart from Programming Language, a Command Language (CL) helps the user to

communicate with and obtain services from the system in the following ways:

Identifies the user to the system

Asks for program to be run and

Tells the computer where the data may be found.

Programming languages can be classified according to their levels as follows:

Machine Language

Symbolic Language

High Level Language

13

3.1.1 Machine Language

Every computer has its own machine language. Instructions to the computer are given in

machine language since this is the only language computer actually understands. The

machine language varies from machine to machine which is a function of the hardware of the

computer. Programs written in machine language are only good for that particular machine.

The machine language is a low level interface, natural to the hardware of the computer. The

instructions are usually represented by binary numbers, that is, the communication symbols

or sequence of instructions consist of 0’s and 1’s otherwise known as the binary digit (BIT).

Since the machine language depends on the particular computer model, it is said to be

machine dependent. The early days of computer programming was almost exclusively

machine language programming. The difficult nature of writing in machine language and the

machine dependent nature which is very involved and detailed led to the development of

symbolic languages and later higher level languages.

3.1.2 Symbolic Languages

Arising from the machine language difficulties, is the development of a higher level up the

ladder (hierarchy) of programming languages called assembly languages. Here the sequence

of 0’s and 1’s are replaced with symbols, so that instructions can be given in symbolic codes

called mnemonics. The symbolic language is a middle level language between the machine

language and high level languages. The language adopts mnemonic codes to represent

machine instructions. The uses of mnemonic codes imply that mnemonic names are used for

operators, addresses and instructions. Ordinarily, the computer does not understand these

codes until they are translated to machine language using the appropriate translator. Symbolic

language is largely machine dependent just like machine language. An example of symbolic

language is the Assembly language. We use Assembler to translate Assembly language to

machine language for the understanding of the computer.

We can define Assembler as a machine language instruction or program that translates

symbolic instructions such as Assembly language instructions into machine language

instruction. The difficulty in understanding, the dependence of the language on the machine

model and peculiarity of the mnemonics codes posed a serious disadvantage to the

programmer. This necessitated the introduction of high-level languages because the

14

programmer must be concerned with various details and complex sequence of instructions to

be able to write symbolic language.

3.1.3 High Level Languages

High level language introduces the use of “almost English” language in writing computer

programs which are also known as problem oriented languages. Examples are FORTRAN,

COBOL, PASCAL, C, etc.

BASIC - Beginners All Purpose Symbolic Instruction Code

COBOL - Common Business Oriented Language

FORTRAN - Formula Translation

PASCAL - Named after French mathematician Blaise Pascal

The language use English like phrases to represent computer instructions (codes) in a way

that resemble programmers thinking process using English like expressions. The language is

procedure oriented rather than machine oriented. Programs written in this type of language

can, with possible minor modifications, run on different machines as long as there is

appropriate translator/compiler. A translator is a machine language program that translates

source codes written in either symbolic or high level language to machine language program

known as the object language. They can also be referred to as compiler languages and are

almost machine independent and very easy to use. If the source program (source code) is a

high level language program such as FORTRAN, PASCAL, etc., the translator that produces

the object code in machine understandable form is called a Compiler. A compiler is a special

program which translates programs written in high-level language into machine language.

In more detail, the compiler (e.g. FORTRAN compiler, PASCAL compiler, etc.) reads the

source code and generates the machine code (object code), and saves it unto disk file. When

the program is to be executed, the computer simply loads the object code into the memory

and executes it. An interpreter, a kind of translator such as BASIC, is required to translate the

source program to machine understandable form. Interpreter reads the source program

directly, line by line, starting from the beginning of the source program each time it is to be

executed and generates machine codes necessary to carry out the instructions as they proceed

through the program, without saving it onto disk. If the source program is a low level

language (Assembly language), the translator that produces the object code in machine

15

understandable form is the Assembler. It must be noted that original program is called the

source program, and its translation is called the object program. It is also important to

remember that a high/low level language program is first translated into machine language

instructions before the computer can actually executes them as shown in figure 1.1 below.

Source Program Translation phase Object Program

Programs in
FORTRAN, PASCAL,
COBOL, C, C++

Compiler

Interpreter

Assembler

Machine language
instructions

Fig. 1.1: Illustration of Translators

Although compiler languages are less efficient than machine or assembly languages, they do

relieve the programmers from the burden of keeping careful details.

3.2 Program Process and Errors

There are general violations of the rule of programming or pitfalls of computer arithmetic that

are referred to as Errors or Program Errors. The arithmetic errors could be conversion error

or round-off error. Program could also exhibit three types of errors namely; syntax errors,

run-time errors and logical errors. During program execution, errors detected will be listed,

corrected by the programmer and program re-run carried out again.

Conversion Error: numbers are mostly stored in their binary form. A decimal number 0.5 is

represented by the binary number 0.1 in such computers. Again, a number 1/10 is represented

by 0.0001100110011……. which has no finite binary representation. Depending on the

computer word length, errors will be noticed if the arithmetic operations become bigger.

Round-off Error: this occurs when a specific significant digits are used, for example, 1/3

which supposed to be 0.3333333….. could be stored as 0.333.

Syntax Error: errors due to misspelled (spelling errors) statements or instructions or wrong

use or non use of punctuation marks (such as commas, colon etc.) where necessary. When

16

such errors are detected, the programmer should look at the program for possible spelling

errors or omission of punctuation marks.

Run-time Error: this error occurs when the translator come across wrong mathematical

operation during program execution. This could occur, as an example, when a number is

divided by zero.

Logical Error: program logic is always the cause of the error when the sequences of

programming steps are not executed properly. Logical error may not have impact with the

smooth translation process of the program but may give wrong result. There could be

successful interpretation or compilation of a program that actually has a logical error. The

logical errors are mostly noticed upon execution of the program.

3.2.1 Processing Error Steps

The following steps are very necessary in dealing with errors in program compilation and

execution. They are:

Program writing and correction requires patience. The programmer should carefully

through the program for possible correction of any error.

Use appropriate manuals and reference text books for the programming language

employed for possible assistance.

Double check for misspelled statements or omission of punctuation marks

Check for proper use of data types

Make sure variables meant for counting purposes are properly initialized

Self Assessment Exercise

1. What is a computer program?

2. Differentiate between an interpreter and compiler

3. What type of programming error that is not easily noticed during compilation and

why?

17

4. State why High level language is very easy to use compared with the earlier ones

3.3 Properties of a Good Program

A good programming practice is needed to write a good program. Program development has

to follow problem definition, analysis, modelling, algorithm/flowchart design, coding and

documentation. The following properties are required for developing a good program.

Program Correctness: a good program must be able to solve the intended problem

with relevant results. The output (result) must be readily available for testing with

assumed or calculated results using real or dummy data.

Documentation: every module or procedure must be preceded with comments on

brief explanation of the module in the program. These make programs easy to read

and understand by other users that may want to modify or improve on the program.

Complete documentation of the whole program is also necessary to give details of the

input, output, processing tasks and manual guide.

Robustness and Scalability: programs that can survive various unexpected events

are said to be robust and those that can easily be upgraded are scalable. They are

sometimes called safe or defensive programs because of the way they are written, the

choice of variable names, surviving incorrect data etc.

User Interface: a good look or design of the medium of interaction of the user and

the program must be well taken care so as to have a good user interface. This is the

part of the program that performs the dialog aspect of the program with the user and

must be easy and friendly to use.

Program Style: the programming language rules are to be adapted in writing

programs. You should not do what is not to be done with the programming language

in question.

Use of Tools and Library Functions: programming languages have special tools and

libraries that can assist in developing computer programs. Some editors are also used

to enhance the development of programs.

18

3.4 Structure of a Program

Programs are written in one or more units. The main unit is called the Main Program whine

the other optional units are subroutines which could be either subprograms or functions.

The main unit is usually of the form:

i. Program Name

ii. TYPE declaration statements

iii. Statements Performing Arithmetic and other Operations

iv. STOP

v. END PROGRAM

As indicated in item one above, each program has a name by which it is distinguished. The

next segment starts with Type declaration statements. Example of these type statements are

REAL and INTEGER statements amongst others. The following segment is the statements

performing arithmetic and other operations where the processes to executing the instructions

are stated. There must be an END statement or END of program statement and STOP

statement preceding END statement in case of FORTRAN language. The END statement is

used to inform computer of the physical end of the program. Hence, there could be only one

end statement in a program which normally appears at the last statement of a program.

3.5 Example of a Simple Program

We write a program which compute and output the sum and product of three numbers. In

solving the program, the language chosen is FORTRAN 90/95 to compute the sum and

product of three numbers. The three numbers are identified by letters A, B, and C with the

variables SUM and PRODUCT as summation and the products of the three numbers

respectively. First, the writer must know how to sum and find product of the three numbers

numerically.

19

Note that letters A, B and C are simply variable locations for three numbers because the

actual values are not known. It is also used because computer stores its data in variable

locations in the memory and retrieved during computations.

The simplified FORTRAN 90/95 program for the summation and the product of three

numbers are as follows:

Program SUMPRODUCT Line 1
IMPLICIT NONE Line 2
INTEGER :: A, B, C, SUM, PRODUCT Line 3
READ (*, *) A, B, C Line 4
SUM = A + B + C Line 5
PRODUCT = A * B * C Line 6
WRITE (*, *) SUM, PRODUCT Line 7
STOP Line 8
END PROGRAM SUMPRODUCT Line 9

The above program is explained as follows:

Line 1: this indicates the program name

Line 2: the IMPLICIT NONE statement is supported by FORTRAN 90/95 as standard. It is

used to show all variables are explicitly typed and declared. This statement should come

before any other declarations or executable statements in the program.

Line 3: a declaration statement for A, B, C, SUM and PRODUCT as Integers numbers. The

letters A, B and C contain the actual numbers to be read by the computer and the output of

the summation of the numbers and product stored in SUM and PRODUCT respectively.

Line 4: the READ statement causes data to be read from appropriate device to the memory

locations of variables A, B and C.

Line 5 and 6: the two lines indicate the process to be carried out or executed by the program.

The computation of the sum and product of the three numbers are carried out with the

resultant solution stored in SUM and PRODUCT.

Line 7: this is the output statement that generates the results in the form of the sum and

product of the three numbers. The (*, *) in the statement indicate that the output can be

generated from appropriate device e.g. Printer.

20

Line 8: the STOP statement acts like a purse to the program which indicates the end of the

program.

Line 9: the END statement tells the compiler that it has come to the end of the program.

Self Assessment Exercise

1. As an exercise, code, compile and run program SUMPRODUCT with two set of data

2. A program is said to be robust if?

3. State the units of a program

4. Why do we use IMPLICIT NONE in Fortran 90/95 compiler

4.0 Conclusion

Program developments are accomplished by giving the computer sequence of statements to

perform and solve specific tasks. This is done by given the readers the feelings for some of

the dynamics involved in writing good programs.

5.0 Summary

In this unit we have learnt overview of computer languages and few facts about computer

program development. In particular, we have seen how a computer executes some simple

programs. In fact, the learner should actually code the programs and run them on the

computer.

6.0 Tutor Marked Assignment

1. Explain the following terms

(a) Programming Language (b) Machine Dependence

21

(c) Object Code (d) Source Code

2. State five properties of a good program. Which of these properties is most important and

why?

3. State possible errors encountered during program compilation

4. Distinguish between Machine Language and Symbolic Language

7.0 Further Reading and other Resources

Ajayi O. B. and Ajayi I. A. (2004) – Introduction to Programming in Fortran, ISBN

978-37209-7

Chapman S. J. (1998). Introduction to Fortran 90/95 Macgrew-Hill, New York, 1st Edition

Meissner, Laren P. (1995). Fortran 90, PWS, Boston

Wille D. R. (1995). Advanced Scientific Fortran. John Willey and Son, New York

22

Module 1: Programming Fundamentals

Unit 2: Debugging Program Codes

Page

1.0 Introduction 15

2.0 Objectives 15

3.0 Debugging Code 15

3.1 Understanding Type of Errors 15

3.2 Desk Checking Logic 17

3.3 Setting Breakpoints 17

3.4 Stepping through Code 18

4.0 Conclusion 19

5.0 Summary 19

6.0 Tutor Marked Assignments 19

23

1.0 Introduction

Debugging is an essential part of any development project because it helps you find errors in

code and in logic. Some Compilers have some sophisticated debugger built right into the

development environment.

2.0 Objectives

By the end of this unit, you will be able to

Understand various type of errors

Know debugging methods

Use the understanding in debugging codes

3.0 Debugging Code

This unit looks at some of the debugging features available in some compilers. You’ll learn

how to set breakpoints in your code to stop execution at any given point, how to watch the

value of a variable change, and how to control the number of times a loop can execute before

stopping. All these can help you determine just what is going on inside code.

3.1 Understanding Types of Errors

The errors caused by a computer program (regardless of the language in which the program is

written) can be categorized into three major groups: design-time errors, runtime errors, and

logic errors.

3.1.1 Correcting Design-Time Errors

Design-time errors, which are the easiest type of error to find and fix, occur when you write a

piece of code that does not conform to the rules of the language in which you’re writing.

They are easy to find because some compilers tells you not only where they are but also what

part of the line it doesn’t understand. Design-time errors, also called syntax errors, occur

when the compiler cannot recognize one or more statements that you have written. Some

design-time errors are simply typographical errors (e.g., a mistyped keyword). Others are the

result of missing items (e.g., undeclared or untyped variables).

A program with as few as one design-time error cannot be compiled and run; you must locate

and correct the error before you can continue.

24

3.1.2 Understanding Runtime Errors

Runtime errors are harder to locate than design-time errors because compiler does not give

you any help in finding an error until it occurs in a program. Runtime errors occur when a

program attempts something illegal, such as accessing data that does not exist or a resource to

which it does not have the proper permissions. These types of errors can cause a program to

crash, or hang, unless they are handled properly.

Runtime errors are much more difficult to find and fix than design-time errors. Runtime

errors can take on dozens of different shapes and forms. Here are some examples:

Attempting to open a file that doesn’t exist

Trying to log in to a server with an incorrect username or password

Trying to access a folder for which you have insufficient rights

Accessing an Internet URL that no longer exists

Dividing a number by zero

Entering character data where a number is expected (and vice versa)

As you can see, runtime errors can occur because of an unexpected state of the computer or

network on which the program is running, or they can occur simply because the user has

supplied the wrong information (e.g., an invalid password, a bad filename). You can therefore

write a program that runs fine on your own computer and all the computers in your test

environment but fails on a customer site because of the state of that customer’s computing

resources.

3.1.3 Understanding Logic Errors

The third type of error, the logic error, is often the most difficult type to locate because it

might not appear as a problem in the program at all. If a program has a logic error, the output

or operation of the program is simply not exactly as you intended it. The problem could be as

simple as an incorrect calculation or having a menu option enabled when you wanted it

disabled. Quite often, logic errors are discovered by users after the application has been

deployed.

Logic errors also occur at runtime, so they are often difficult to track down. A logic error

occurs when a program does not do what the developer intended it to do. For example, you

might provide the code to add a customer to a customer list, but when the end user runs the

program and adds a new customer, the customer is not there. The error might lie in the code

that adds the customer to the database; or perhaps the customer is indeed being added, but the

25

grid that lists all the customers is not being refreshed after the add-customer code, so it

merely appears that the customer was not added.

3.2 Desk Checking Logic

Debugging an application should actually start when you are designing the program flow.

After you write the algorithm for a procedure, you should walk through it using a pencil and

paper to make sure it works as you intended. This process is called desk checking. To desk

check an algorithm, you supply sample values and walk through the algorithm, performing

the calculations.

To see how this works, let us use the algorithm example:

1. Declare variables for Wage, HoursWorked, GrossPay, WithholdingAmount, and NetPay.

2. Declare a constant for WithholdingPercent and set it equal to 20%.

3. Input Wage.

4. Input HoursWorked.

5. Set GrossPay Wage * HoursWorked.

6. Set WithholdingAmount GrossPay * WithholdingPercent.

7. Set NetPay GrossPay WithholdingAmount.

8. Output NetPay.

To desk check this algorithm; you perform each step, using sample values for the variables.

You document the expected value for each variable after the step completes. You test

expected input values and unexpected input values to try to find potential problems in the

algorithm. For example, what if the user entered a negative number for hours worked?

3.3 Setting Breakpoints

When trying to debug a large program, you might find that you want to debug only a section

of code; that is, you might want your code to run up to a certain point and then stop. This is

where breakpoints come in handy: They cause execution of code to stop anywhere a

breakpoint is set. You can set breakpoints anywhere in code, and the code will run up to that

point and stop. Note that execution of the code stops before the line on which a breakpoint is

set.

You can set breakpoints when you write code, and you can also set them at runtime by

switching to the code and setting a breakpoint at the desired location. You cannot set a

26

breakpoint while a program is actually executing a section of code, such as the code in a loop,

but you can when the program is idle and waiting for user input.

When the development environment encounters a breakpoint, execution of the code halts, and

the program is considered to be in break mode. While the program is in break mode, a lot of

debugging features are available. In fact, a lot of debugging features are available to you only

while a program is in break mode.

3.4 Stepping Through Code

When debugging an application, it is helpful to be able to step through the code line by line.

You can use the followings:

Step Into: This includes stepping into any function or procedure that the code calls

and working through it line by line.

Step Over: This works in a similar way to Step Into, but it enables you to pass straight

over the procedures and functions; they still execute, but all in one go. You then move

straight on to the next line in the block of code that called the procedure.

Step Out: This allows you to jump to the end of the procedure or function that you are

currently in and to move to the line of code after the line that called the procedure or

function. This is handy when you step into a long procedure and want to get out of it.

The rest of the code in the procedure is still executed, but you do not step through it.

Self Assessment Exercise

1. Compare design-time error, runtime error, and logic error. Give an example of each.

2. A logic error is also called a syntax error. True or False?

3. Which type of error results in a hang or an exception during execution?

(a) design-time error

(b) logic error

(c) runtime error

(d) syntax error

4. Logic errors are often discovered by end users. True or False?

5. Desk checking is performed after you write code. True or False?

6. You can set a hit counter on a breakpoint to cause a program to pause after a loop

executes a specific number of times. True or False?

27

4.0 Conclusion

Debugging helps in finding errors and allowing the programmer to correct such errors with

the view of executing an error free code.

5.0 Summary

In the unit, we have learnt debugging methods and getting to understand various types of

error.

6.0 Tutor Marked Assignment

1. You are writing a program that finds mean of 5 numbers. Describe the importance of
desk checking values before writing code.

28

Module 1: Programming Fundamentals

Unit 3: Algorithms and Flowcharts

Page

1.0 Introduction 21

2.0 Objectives 21

3.0 Describing a Program using Algorithms and Flowcharts 21

3.1 Writing Algorithm using Pseudocode 21

3.2 Using Flowcharts 22

4.0 Conclusion 24

5.0 Summary 25

6.0 Tutor Marked Assignment 25

29

1.0 Introduction

As programs become more complex, a flowchart is most helpful in planning, designing, and

structuring a program. A flowchart is a graphical representation of an algorithm. An

algorithm is a step-by-step method for solving a problem.

2.0 Objectives

By the end of this unit, you will be able to

Plan program code using algorithm and flowchart

Know the use of program flow

3.0 Describing a Program, Using Algorithms and Flowcharts

When you write a program, that program must perform some task. It might be a real-world

business task, such as managing payroll or processing orders. Or it might be a program that

provides entertainment, such as a game. In either case, the program will perform a large

number of tasks, and for each of them, you must provide a very specific set of instructions.

Before you begin to write code, you need a clear understanding of the tasks the program must

perform: the requirements and the steps it should take to perform them. The steps a program

must take to perform a task is known as the program’s flow. You can design a program’s

flow by using algorithms and flowcharts.

3.1 Writing Algorithms Using Pseudocode

An algorithm is a step-by-step description of a procedure. Writing an algorithm allows you to

think about the logic of a program without worrying about the syntax of the programming

language.

You can think of an algorithm as being like a recipe:

1. Put 1 tablespoon of oil in a frying pan.

2. Heat the oil on the stove at low temperature.

3. Break three eggs into a bowl.

4. Beat the eggs with a whisk.

5. Add cheese.

6. Add seasonings.

7. Add the egg mixture to the frying pan.

8. Cook on both sides.

30

You write an algorithm by using pseudocode. As the word suggests, pseudocode is like code

but different. In fact, pseudocode is a description of the program flow, written in the language

you speak. When you write pseudocode, you usually keep the sentences short and to the

point.

You clearly define each step that must be taken to perform the task. For example, suppose

you need to write a program that accepts a person’s hourly wage and calculates the person’s

pay. For the sake of this example, let’s assume a withholding rate of 20%. The algorithm for

this procedure is as follows:

1. Declare variables for Wage, HoursWorked, GrossPay, WithholdingAmount, and NetPay.

2. Declare a constant for WithholdingPercent and set it equal to 20%.

3. Input Wage.

4. Input HoursWorked.

5. Set GrossPay Wage * HoursWorked.

6. Set WithholdingAmount GrossPay * WithholdingPercent.

7. Set NetPay GrossPay WithholdingAmount.

8. Output NetPay.

There are different ways you could write this pseudocode. For example, you could write step

5 as “Multiply Wage by HoursWorked and store the result in GrossPay.” However, the point

of writing an algorithm is to describe the program’s logic, not to worry about language.

Self Assessment Exercise

1. Compare an algorithm with a flowchart

2. Compare pseudocode and code

3.2 Using Flowcharts

A flowchart is a graphical representation of a program’s logic. You can draw a flowchart on

paper or using a flowcharting tool such as Microsoft Visio. There are even flowcharting

objects available in Microsoft Office.

31

For example

Example 1: Finding the sum of two numbers.

– Variables:

A: First Number

B: Second Number

C: Sum (A+B)

– Algorithm:

Step 1 – Start

Step 2 – Input A

Step 3 – Input B

Step 4 –Calculate C = A + B

Step 5 – Output C

Step 6 – Stop

Example 2: Find the difference and the division of two numbers and display theresults.

– Variables: --Algorithm:

• N1: First number * Step 1: Start

• N2: Second number * Step 2: Input N1

• D : Difference * Step 3: Input N2

• •V : Division * Step 4: D = N1 –N2

• Step 5: V = N1 / N2

• Step 6: Output D

• Step 7: Output V

• Step 8: Stop

32

When you draw a flowchart, you should use industry-standard shapes to represent each step

in the process. You usually draw the flow from top to bottom or from left to right. Arrows

connect the shapes to define the flow. The oval is a terminator and marks the beginning and

end of the flow. The parallelograms are used to represent input and output. The rectangles are

used to represent a process.

Self Assessment Exercise

1. Which of the following is a step-by-step description of a process written in

pseudocode?

(a) algorithm

(b) flowchart

(c) control of flow

2. Which of the following is a graphical depiction of a program’s flow?

(a) algorithm

(b) control of flow

(c) flowchart

(d) UML diagram

4.0 Conclusion

Flowcharts and algorithm is to show graphical representation and step-by-step method of

solving problems.

33

5.0 Summary

Flowchart has been used to show visual pictures that give the steps in the algorithm and also

the flow of control between the various steps in the algorithm.

6.0 Tutor Marked Assignment

1. Say that you are writing a program that will calculate a company’s gross sales and

revenue. Sales and expenses are logged in a database, by month. You need to create a

flowchart for the program.

Use the following algorithm:

Get sales data from the database.

Add the sales data for each of the 12 months to calculate gross sales.

Output gross sales.

Get expense data from the database.

Add expense data for each of the 12 months to calculate total expenses.

Subtract total expenses from gross sales to calculate revenue.

Output revenue.

34

Module 1: Programming Fundamentals

Unit 4: Internal Representation of Data

Page

1.0 Introduction 27

2.0 Objectives 27

3.0 Number System 27

3.1 Computers 27

3.2 Binary Numeral System 28

4.0 Conclusion 29

5.0 Summary 29

6.0 Tutor Marked Assignment 29

35

1.0 Introduction

Each memory cell is composed of devices which are bistable in nature, i.e. devices which can

be either of two states. Since these states can be represented by the binary digits 0 and 1, each

bistable device is capable of storing one bit (binary digit) of information. Usually, a

collection or sequence of bits is used to represent a unit of information. Binary is a way to

show whole numbers using only 1 and 0. Computers work in binary. Binary is a number

system and is known as a base 2 system because it uses two characters: 0 and 1. Decimal is a

base 10 system - it uses 10 characters (0 - 9).

2.0 Objectives

By the end of this unit, you will be able to

Know the binary representation

Know the use of bits in computer

3.0 Number system

Binary numbers can be changed to decimal (base 10, the kind most people use) in a simple

way. The value of the bit (binary 1 or 0) on the right side of the number is 1. Every other bit

has a value two times the value of the bit to its right. Add the values of every bit that is a 1

together to get the decimal number. {The 4 bit code has weight associated with it from left

i.e. 1, 2, 4, 8, 16, 32, 64, Thus the code 1101 converted into decimal number will be 13.

For example, the binary number 101 is 5 in decimal. The bit on the right is 1 and has a value

of 1. The middle bit has a value of 2 (1 times 2), but it is a 0, so it is not added. The bit on the

left is 1 and has a value of 4 (2 times 2). The bits that are 1's have values of 1 and 4. 1 + 4 =

5.

3.1 Computers

All computers use binary at the lowest level. Most computer storage, like compact discs and

DVDs, use binary to represent large files. With computers, 8 binary bits together is called a

byte. The size of files is commonly measured in kilobytes or megabytes (sometimes in

gigabytes). A kilobyte is 1,024 bytes. A megabyte is 1,024 kilobytes, or 1,048,576 bytes,

while a gigabyte is 1,024 megabytes.

36

3.2 Binary numeral system

The binary numeral system is a way to write numbers using only two digits: 0 and 1. These

are used in computers as a series of "off" and "on" switches. In binary, each digit represents

twice as much as the next digit to the right. Here is a list of some numbers that can be made

from these digits (zero is represented by a single "0"):

Decimal Binary Explanation

1 1 1

2 10 2+0

3 11 2+1

4 100 4+0+0

5 101 4+0+1

6 110 4+2+0

7 111 4+2+1

8 1000 8+0+0+0

9 1001 8+0+0+1

10 1010 8+0+2+0

11 1011 8+0+2+1

12 1100 8+4+0+0

13 1101 8+4+0+1

14 1110 8+4+2+0

15 1111 8+4+2+1

16 10000 16+0+0+0+0

Binary is a numbering system that is a series of 1s and 0s meaning (to the computers) on and

off. It is base 2 and our number system (decimal) is base 10. Binary was invented by many

people but is credited to Gottfried Leibniz, a German mathematician. The idea of binary was

created in the 1600s. Binary has been used in nearly everything electronic; from calculators

to supercomputers.

Self Assessment Exercise

1. What is the maximum decimal number you can represent in 4 bits?

37

4.0 Conclusion

Internal representation of data depicts the sequence of bits to represent a unit of information.

Those bits are bi-state in nature representing 0 and 1 or on and off.

5.0 Summary

Sequences of binary digits are viewed as binary numbers which are important in computer

science.

6.0 Tutor Marked Assignment

1 Represent decimal numbers 20 to 30 as binary numbers

2 Differentiate between bits and unit of information

38

Module 1: Programming Fundamentals

Unit 5: Programming Techniques

Page

1.0 Introduction 31

2.0 Objectives 31

3.0 Framing Methods 31

3.1 Caching 32

3.2 Buffering 33

3.3 Logical Layering 33

3.4 Centralized Resource Management 34

3.5 Object Oriented Programming (OOP) 34

3.6 Lookup Tables 35

4.0 Conclusion 35

5.0 Summary 35

6.0 Tutor Marked Assignment 35

39

1.0 Introduction

When you write a program, that program must perform some task. It might be a real-world

business task, such as managing payroll or processing orders. Or it might be a program that

provides entertainment, such as a game. In either case, the program will perform a large

number of tasks, and for each of them, you must provide a very specific set of instructions.

Before you begin to write code, you need a clear understanding of the tasks the program must

perform: the requirements and the steps it should take to perform them.

2.0 Objectives

By the end of this unit, you will be able to

Know common methods in programming techniques

3.0 Framing Methods

A common method of combining a sequence of bytes to form one unit, usually several such

units are stringed one after the other.

Examples of framing:

Variable-size records used in FORTRAN unformatted files

Packets used in TCP/IP and other communication protocols

A possible structure of one such unit may be:

Signature Count Data bytes Integrity check

SIGNATURE: some byte combination that identifies the unit type (by some

convention agreed on between the users).

COUNT: an integer (whose size is agreed on by convention), the value of COUNT is

the number of data bytes to follow. With the COUNT field units can have variable

length, that flexibility is important in many applications.

DATA BYTES: the 'payload'

CHECK: Some error checking/correcting code associated with the data when the data

is written, the code can be rechecked whenever the unit is accessed to validate data

integrity.

40

3.1 Caching

Whenever we have available two data storage methods, it usually happens that one of them

will be slower and cheaper so we can buy more storage, and the other faster and more costly,

for example:

Local files vs. files accessed through the web

Local filesystem vs. network filesystem (NFS)

Local files/partitions vs. main memory (RAM)

Dynamic memory vs. static memory

Caching promotes efficiency when two conditions are met:

We have "locality of reference", i.e. subsequent data references are usually made to

"close by" items.

Reading a "block" of consecutive data is relatively quick.

For example, caching of read operations (from a slow medium) may be implemented by the

following guidelines:

Whenever a read operation from the slower media is needed we read a data block

containing the required item.

The data block is kept on the faster media, if there is no available place, older blocks

are discarded.

When a data item is needed the faster storage is first checked to see if it contains the

required item.

If the required item is on the faster storage it is read from it and used, otherwise it is

read from the slower media (see #1).

Write operations (to a slow medium) may also be cached, but this is a bit more complicated.

Caching is an effective technique that is used intensively in all computing systems. As

caches may be shared (among processes etc), the time it takes to perform a task becomes non-

deterministic, other users of the cache, doing their own work may or may not discard your

data, and so affect computation time.

A high-performance Fortran programmer must take into consideration the size of the various

caches (memory, I/O) when writing programs. A simple advice is to keep often used data in

arrays, instead of reading it again and again from a file.

41

3.2 Buffering

Data transfers between hardware and software, or between different pieces of the software,

are many times "blocked" and not simply "byte-by-byte", for example:

commands written at the operating system prompt, are interpreted and executed only

after you press the "return" key. When a "return" (or a pre-defined "control

sequence") is sent from the keyboard, the accumulated string is made available to the

running program.

Disk controllers transfer data in "chunks" that are multiples of a sector (512 bytes). I/

O is therefore "buffered", sometimes few times on different levels to satisfy this

condition.

Buffering is done utilizing an array (the buffer), large enough to hold a chunk of data of the

required size, and a few procedures that are used to put and get data from the buffer.

3.3 Logical Layering

Well, the best example would be Fortran itself. Poor “virtual programmers” need a simpler

and portable interface to our computer. The solution is to define a 'high-level language' e.g.

Fortran/C/... and have on each machine a program (compiler) that translates programs written

in Fortran/C/... to machine language. At the price of some CPU time we get a portable and

easy to use interface to every computer.

Examples for 'logical layering' are innumerable, they can be found in the following

interfaces:

Interactive user / Operating system / Different kinds of terminals

User program / Operating system / Different disks and tape drives

File names / File system / Data blocks on disks and tape drives

Graphic package / Different graphic devices

Word-processor / Different printers

In a PC: DOS functions / ROM-BIOS interrupts

In TCP/IP: DNS names/IP addresses/Ethernet hardware addresses

The 'logical interface' is implemented by a 'translator' that can translate between the two

languages spoken on the two sides of the interface.

42

3.4 Centralized resource management

When resources such as the pool of logical unit numbers, access to some data file, etc are

shared by several routines or processes, the natural way to eliminate access collisions is to

have a centralized management.

3.5 Object-Oriented Programming

The idea behind OOP is (approximately) that sometimes it is more natural to partition a

program to LOGICAL ENTITIES communicating by passing messages instead of

FUNCTIONAL UNITS as in the modular paradigm.

A good example is a modern visualization program (e.g. SGI Explorer, or the popular AVS),

in which you choose the required data processing modules from a menu, connect them

together with some mouse clicks, and then tell the input module the name of your data file,

and the whole thing starts producing pictures.

The natural conceptual model for this kind of magic is to view the program as a set of logical

entities: the input reader module that reads the 3-dimensional data, and passes it to a module

that may take a 2D section, then the graphic module translates the floating-point numbers into

a colour picture where the colours correspond to the data values.

The logical entities used in OOP are a sweeping generalization of the data structure called

'record' in Pascal and 'structure' in C: an ordered collection of simpler data structures, not

necessarily of the same type, that can be accessed individually by a name that consists of two

parts, the structure name and the name of the 'field'.

The required generalization is made by allowing a "record" to also include procedures

(usually called 'member functions') performing functions specific to the record type, for

example:

Allocating memory for the internal variables and initializing the variables

(constructor)

Maintaining the variables's values according to a pre-defined algorithm coded into the

'member procedures'.

Deallocating the memory storage when the "record" is no longer necessary

(destructor)

The new data structure is suitable for implementing the abstract concept of an 'object'. In

short, objects are data structures with associated procedures, which are used to maintain the

data structure values in a consistent way.

43

Object-oriented programming can be directly expressed with suitable programming

languages (e.g. Objective C, C++) that support 'objects'. Fortran 90 supports a few OOP

concepts, and the rest can be done "by hand" if the programmer is disciplined enough.

3.6 Lookup Tables

Lookup tables are a simple programming trick to speed a special kind of calculations. If you

have to compute again and again some function or expression and the possible values the

argument(s) can take are relatively few you can do the computing once and put the results in

an array. To retrieve results you just reference the array.

Self Assessment Exercise

1. Differentiate between caching and buffering

4.0 Conclusion

In writing good codes, there must be clear understanding of the tasks the program must

perform, the requirements and the steps it should take to perform them.

5.0 Summary

Good programming techniques can be achieved by employing the use of caching, buffering,

logical layering, and framing methods.

6.0 Tutor Marked Assignment

1 Show relevance of programming techniques in the followings:

a. Caching

b. Buffering

2 What do you understand by the term “Object Oriented Programming”

44

CIT 736 - Computer Programming (2 Units)

Module 2 FORTRAN Programming Language

Unit 1 FORTRAN Language Organization and Statements

Unit 2 Input and Output

Unit 3 Transfer of Control and Program Loop

Unit 4 Arrays and Subscripted Variables

Unit 5 Functions and Subroutines

45

Module 2: FORTRAN Programming Language

Unit 1: FORTRAN Language Organization & Statements

Page

1.0 Introduction 39

2.0 Objectives 39

3.0 Brief History of FORTRAN language 39

3.1 Language Evolution 40

3.2 Coding Convention 41

3.3 Sources and Types 41

3.4 Procedures and Modules 44

3.5 Fortran 90/95 Compilers and Compilation Procedures 48

4.0 Conclusion 49

5.0 Summary 50

6.0 Tutor Marked Assignment 50

7.0 Further Reading and other Resources 50

46

1.0 Introduction

FORTRAN is an acronym for Formula Translator. This is a high level programming designed

primarily for use by scientist, engineers and designers. The statements used in the language

resemble the formulae normally used by such people. Some of its dialects are now being used

for business computing and character manipulation. This course material covers the transition

from the programming language Fortran 77 to the more modern Fortran 90/95, and is aimed

at guiding learners who require an understanding of the principles and new features of

Fortran 90/95.

2.0 Objectives

By the end of this unit, you should be able to:

Know coding convention in Fortran Language

Language supports for source codes

Language types and form of declaration

Differentiate between main program and external procedures

Know steps in coding and running a program

3.0 Brief History of Fortran Language

The programming language Fortran was originally designed for the solution of problems

involving numerical computation. The development of Fortran dates back to the 1950s, the

first Fortran system being released in 1957, for the IBM 704.

In the early 1960s, as other manufacturers released Fortran compilers for their own computer

systems, the need to control and standardize Fortran became apparent. A standards committee

was established in 1962, and the first Fortran standard was published in 1966.

Unfortunately, the 1966 Standard did not give a clear, precise definition of Fortran. In the

1970s a new standard was formulated to overcome the problems of Fortran 66 and

incorporate several new features. In 1978, the new standard, Fortran 77, was published.

The standards preceding Fortran 90 attempted mainly to standardise existing extensions and

practices. Fortran 90, however, is much more an attempt to develop the language, introducing

new features using experience from other languages. A further revision of Fortran 90 brought

in new features not existing in Fortran 90, and this led to Fortran 95.

47

3.1 Language Evolution

Fortran 90 is a superset of Fortran 77, and so all standard Fortran 77 programs should run. To

prevent the language growing progressively larger, however, as new revisions are produced,

the standards committee has adopted a policy of removing obsolete features.

The following major new features are included in Fortran 90/95:

Array processing

Dynamic memory allocation, including dynamic arrays

Modules

Procedures:

o Optional/Keyword Parameters

o Internal Procedures

o Recursive Procedures

Pointers

Other new features include:

Free format source code

Specifications/IMPLICIT NONE

Parameterised data types

Derived types

Operator overloading

CASE statement

EXIT and CYCLE

Many new intrinsic functions

New I/O features

The new features allow the writing of more readable compact code, resulting in more

understandable modular programs with increased functionality. Numerical portability is

provided through selected precision, programming errors are reduced by the use of explicit

interfaces to sub-programs, and memory is conserved by dynamic memory allocation.

Additionally, data parallel capability is provided through the array processing features, which

makes Fortran 90/95 a more efficient language on the new generation of high performance

computers.

48

3.2 Coding Convention

The coding convention followed throughout the student notes is:

All keywords and intrinsic function names are in capitals; everything else is in lower

case.

The bodies of program units are indented by two columns, as are INTERFACE

blocks, DO-loops, IF-blocks, CASE-blocks, etc.

The name of a program, subroutine, or function is always included on its END

statement.

In USE statements, the ONLY clause is used to document explicitly all entities which

are actually accessed from that module.

In CALL statements and function references, argument keywords are always used for

optional arguments.

Self Assessment Exercise

1. Where is Fortran derive its name?

2. What year is the Fortran Language originated?

3. Give different versions of Fortran Language and their major features

3.3 Sources and Types

3.3.1 Source Form

Fortran 90/95 supports two forms of source code; the old Fortran 77 source code form (now

called fixed form), and the new free form. Using free source form, columns are no longer

reserved and so Fortran statements can now appear anywhere on a source line. The source

line may contain up to 132 characters.

The character set now includes both upper and lower case letters and the underscore. A good

convention is that the words which are not in your control are in upper case and names which

you invent yourselves, such as variable names, are in lower case.

Identifier names can consist of between 1 and 31 alphanumeric characters (including the

underscore), the only restriction being that the first must be a letter. Remember that the use of

sensible names for variables helps readability.

49

Fortran 90/95 introduces new symbols, including the exclamation mark, the ampersand, and

the semicolon, and the alternative form of relational operators. These are discussed in the

following paragraphs.

The exclamation mark introduces a comment. A comment can start anywhere on a source line

and thus can be placed alongside the relevant code. The rest of the line after the ! is ignored

by the compiler. For example:

REAL :: length1 ! Length at start in mm (room temperature)

REAL :: length2 ! Length at end in mm (after cooling)

The ampersand character, &, means `continued on the next line'. Usually you will arrange the

line break to be in a sensible place (like between two terms of a complicated expression), and

then all that is needed is the & at the end of all lines except the last. If you split a string,

though, you also need an ampersand at the start of the continuation line.

a = b + &

c + d + e

WRITE (*,'NATIONAL OPEN UNIVERSITY OF&

& NIGERIA')

The semicolon is used as a statement separator, allowing multiple statements to appear on

one line.

a = 2; b = 7; c = 3

Alternative forms of the relational operators are now provided:

.LT. or <

.LE. or <=

.EQ. or ==

.NE. or /=

.GT. or >

.GE. or >=

3.3.2 Program and Subprogram Names

All programs and subprogram have names. A name can consist of up to 31 characters (letters,

digits, or underscore), starting with a letter.

50

PROGRAM test

...

...

END PROGRAM test

where test is the name of the program. The same syntax applies for other program elements,

such as FUNCTION or MODULE.

3.3.3 Specifications

Fortran 90/95 allows an extended form of declaration, in which all the attributes of a

particular entity may be declared together. The general form of the declaration statement is:

type [[, attribute] ... ::] entity list

where type represents one of the following:

INTEGER [([KIND=]kind-value)]

REAL [([KIND=]kind-value)]

COMPLEX [([KIND=]kind-value)]

CHARACTER [(actual-parameter-list)]

LOGICAL [([KIND=]kind-value)]

TYPE (type-name)

The attribute is one of the following:

PARAMETER, PUBLIC, PRIVATE, POINTER, TARGET, ALLOCATABLE,

DIMENSION(extent-list), INTENT(inout), OPTIONAL, SAVE, EXTERNAL, INTRINSIC

For example, it is now possible to initialize variables when they are declared, so there is no

need for a separate DATA statement:

REAL :: a=2.61828, b=3.14159 ! two real variables declared and assigned initial values

INTEGER, PARAMETER :: n = 100, m = 1000 ! two integer constants declared and

assigned values

CHARACTER (LEN=8) :: ch ! character string of length 8 declared

INTEGER, DIMENSION(-3:5,7) :: ia ! integer array declared with negative lower bound

INTEGER, DIMENSION(-3:5,7) :: ia, ib, ic(5,5) ! integer array declared using default

dimension

51

3.3.4 Strong Typing

For backward compatibility, the implicit typing of integers and reals by the first character is

carried over, but the IMPLICIT statement has been extended to include the parameter NONE.

It is recommended that the statement

IMPLICIT NONE

be included in all program units. This switch off implicit typing and so all variables must be

declared. This helps to catch errors at compile time when they are easier to correct. The

IMPLICIT NONE statement may be preceded within a program unit only by USE and

FORMAT statements.

3.4 Procedures and Modules

3.4.1 Program Units

Fortran 90/95 consists of the main program unit and external procedures as in Fortran 77, and

additionally introduces internal procedures and modules and module procedures. A program

must contain exactly one main program unit and any number of other program units (modules

or external procedures).

A module exists to make some or all of the entities declared within it accessible to more than

one program unit. A subprogram which is contained within a module is called a module

procedure. A subprogram which is placed inside a module procedure, an external procedure,

or a main program is called an internal procedure.

The following diagram illustrates the nesting of subprograms in program units:

52

Fig. 2.1: Program Units

The form of the program units and procedures is summarised below.

Main program:

[PROGRAM program_name]

[specification-statements]

[executable-statements]

[CONTAINS

internal procedures]

END [PROGRAM [program_name]]

Module:

MODULE module_name

[specification-statements]

[executable-statements]

[CONTAINS

module procedures]

END [MODULE [module_name]]

External procedures:

[RECURSIVE] SUBROUITNE subroutine_name(dummy-argument-list)

53

[specification-statements]

[executable-statements]

[CONTAINS

internal procedures]

END [SUBROUTINE [subroutine-name]]

or

[type] [RECURSIVE] FUNCTION function_name &

(dummy-argument-list) [RESULT(result_name)]

[specification-statements]

[executable-statements]

[CONTAINS

internal procedures]

END [FUNCTION [function-name]]

Module procedures have exactly the same form as external procedures except that the word

SUBROUTINE or FUNCTION must be present on the END statement.

Internal procedures also must have the word SUBROUTINE or FUNCTION present on the

END statement:

[RECURSIVE] SUBROUTINE subroutine_name(dummy-argument-list)

[specification-statements]

[executable-statements]

END SUBROUTINE [subroutine_name]

[type] [RECURSIVE] FUNCTION function_name &

(dummy-argument-list) [RESULT (result_name)]

[specification-statements]

[executable-statements]

END FUNCTION [function_name]

54

3.4.2 Procedures

Procedures may be subroutines or functions. Self-contained sub-tasks should be written as

procedures. A function returns a single value and does not usually alter the values of its

arguments, whereas a subroutine can perform a more complicated task and return several

results through its arguments.

Fortran 77 contained only external procedures, whereas in Fortran 90/95, structurally,

procedures may be:

Internal - inside a program unit.

External - self contained (and not necessarily written in Fortran).

Module - contained within a module.

An Interface block is used to define the procedure argument details, and must always be used

for external procedures.

3.4.3 Modules

A major new Fortran 90/95 feature is a new type of program unit called the module. The

module is very powerful in communicating data between subprograms and in organising the

overall architecture of a large program.

The module is important for both sharing data and sharing procedures (known as module

procedures) between program units. Modules also provide a means of global access to entities

such as derived type definitions and associated operators. A program may include several

different modules, but they must all have different names.

The form of a module is:

MODULE module-name

[specification-statements]

[executable-statements]

[CONTAINS

module-procedures]

END [MODULE [module-name]]

3.5 Fortran 90/95 Compilers and Compilation Procedures

55

The following compilers can be used to compile and execute a Fortran 90/95 programs.

Lathey’s Fortran 90 compiler

Microsoft Fortran PowerStation 4.0 professional

NAGware Fortran 90 compiler

Microsoft Developer Studio (MS-DEV) Tool

To code, compile and execute a Fortran 90/95 program using MS-DEV, the following steps

are carried out:

Start MS-DEV if available on your computer

Start the editor and type in your program

o Click on File menu

o Select New File

Save as text file with the extension (.f90)

Compile and execute your program

o Click on BUILD menu

o Click on Compile

o Click on BUILD

o Click on Execute when you have compile successfully

The Fortran source codes are translated into machine language during compilation. If errors

are detected, they are corrected by the programmer and re-compiled. Successful compilation

and build will generate object code with the extension (.EXE). With the executable code

(EXE) created, the program can be executed.

A very good first program to write, compile and execute, is one that writes a message to the

screen. A program in Fortran 95 to do this might look like this:

! Writes a welcoming message onto the user's screen

PROGRAM hello

IMPLICIT NONE

WRITE(*,*) 'hello world' END

PROGRAM hello

You can see that programs contain words that are special to Fortran (i.e. PROGRAM,

IMPLICIT, WRITE, END) and some that are chosen by the programmer (in the above

program there are two of these, the program name hello, and the output text hello world).

56

We have chosen to indicate Fortran 95 commands using CAPITAL letters and words chosen

by the programmer using lower case letters. You do not have to do this, though it can make

the program easier to read.

Note that text following a '!' is treated as a comment. A comment does not form part of the

program proper, i.e. the text is ignored by the computer. It is good programming practice to

include a comment at the start of your program explaining what the program is intended to

do.

Comments are a very important part of a program even though they are not used by the

computer to compile the program. They are crucial for you and other programmers to

understand how you have organised your programs, and how they run. You should get in the

habit of including comments in your programs now.

Note that Fortran statements must usually appear on a single line, and not be broken across

lines. Also, Fortran only allows each line to be a maximum of 132 characters long. If you

wish to write a statement longer than this, or you simply want to break a statement over

multiple lines, you should use the & symbol as explained earlier.

A useful way to make sure that your program is readable and easy to understand is to indent

sections of the code

Self Assessment Exercise

1. Introduce yourself to any Fortran 90/95 Compiler environment of your choice

2. As an exercise, learners should code, compile and run the above program with the

output ‘Introduction to Fortran Programming’.

3. What do you understand by the terms: internal and external procedures

4.0 Conclusion

Fortran Language is primarily used by scientist, engineers and designers for its dialects and

computation capabilities resemble the formulae normally used by such people. Essentially,

Fortran 90/95 has brought about advances in programming as is utilized in well structured

languages such as PASCAL, C and C++.

5.0 Summary

57

In simple terms, Fortran 90/95 provides internal procedures with an explicit interface

allowing the compiler to check for any argument inconsistencies.

Structured Fortran 90/95 programs will consist of a main program and modules containing

specifications, interfaces and procedures - external procedures no longer being required. The

introduction of many new features such as derived types, internal subprograms and modules

make possible the creation of sophisticated Fortran 90/95 code.

6.0 Tutor Marked Assignment

1. Write steps to code, compile and run a Fortran 90/95 program

2. Give five new features found in Fortran 90/95

3. Explain line by line the program to print ‘hello world’

7.0 Further Reading and other Resources

Adams, J. C. et. al. (1992) Fortran 90 Handbook. McGraw-Hill. ISBN 0-07-000406-4

Brainerd, W. S. et. al., (1994) Programmer's Guide to Fortran 90. 2nd edition , Unicomp.

ISBN 0-07-000248-7

Buckley, A. G. (1993) Conversion to Fortran 90: A Case Study. Via Web.

Counihan, M. (1991) Fortran 90. Pitman. ISBN 0-273-03073-6

Dodson, Z. (1994) A Fortran 90 Tutorial. ViaWeb.

Einarsson, B. and Shokin, Y. (1993) Fortran 90 for the Fortran 77 Programmer. Via Web.

Ellis, T. M. R. et. al., Fortran 90 Programming. Wesley. ISBN 0-201-54446-6

Hahn, B. D. (1994) Fortran 90 for Scientists and Engineers. Edward Arnold. ISBN:
0-340-60034-9

Kerrigan, J. (1993) Migrating to Fortran 90. O'Reilly and Associates. ISBN 1-56592-049-X

Metcalf, M. (1990) Fortran 90 Tutorial. Via Web.

Metcalf, M. & Reid, J. (1992) Fortran 90 Explained. Oxford University Press. ISBN:
0-19-853772-7

58

Module 2: FORTRAN Programming Language

Unit 2: Input and Output

Page

1.0 Introduction 52

2.0 Objectives 52

3.0 Data Type and Simple Calculations 52

3.2 The Input Statement 58

3.3 The Output Statement 59

3.4 Formatted Input/Output Statements 60

3.5 Using Files: Open and Close Statements 62

4.0 Conclusion 64

5.0 Summary 64

6.0 Tutor Marked Assignments 64

59

1.0 Introduction

This unit is to see how a computer reads in external data (input) and prints out data (output).

This is accomplished by a READ and a WRITE/PRINT statement respectively. Normally,

each READ and WRITE statement is accompanied by a FORMAT statement. A FORMAT

statement provides the computer with the types of the information and their respective

locations within an input record or where to be printed as the case may be. The addition of

FORMAT statement in the READ and WRITE statements makes the input or output a

formatted I/O statement.

2.0 Objectives

By the end of this unit, you will be able to:

Know how to calculate with various data types

Specify input and output statements

Differentiate between formatted and unformatted I/O statements.

3.0 Data types and simple calculations

Obviously, one of the most common tasks of a computer program is to perform calculations.

To do this, the programmer must define variables. In mathematics, variables are usually

single characters, such as x or t or i etc.

When programming, however, you have the flexibility to give your variables names which

reflect their meaning. So, you could use x_coordinate or time or radius or counter. You

should not use Fortran 95 reserved words (words that are Fortran 95 commands such as

"program", "end" etc.) and you cannot leave spaces (which is why "x_coordinate" has an

underscore; "x coordinate" could not be used).

Variables can be of the following type:

REAL (a number with a decimal point, such as 3.142, 1.0, -0.002)

INTEGER (a whole number, without a decimal point, such as 0, 5654, -26472)

COMPLEX (a complex number (whose real and imaginary parts are REAL, not

INTEGER))

CHARACTER (a string of characters)

LOGICAL (can take the values .TRUE. or .FALSE. only)

60

The user has to declare all variables that will be used in the program at the beginning of the

program. This allows the computer to allocate sufficient memory for each variable and also to

know what operations it can expect each variable to be used for. For example, the computer

cannot do mathematical operations on a character string. Note that in the list above, 1.0 was

listed as a REAL variable because it has a decimal point (even though the numerical value of

the variable is an integer). REAL variables can hold integer values, but not vice versa.

We will focus on the REAL and INTEGER variables as these are most commonly used.

Variables are defined as REAL or INTEGER immediately after the IMPLICIT NONE

command, thus,

PROGRAM reals_and_integers

IMPLICIT NONE

REAL :: x, radius, sum, error=1.0e-5

REAL, PARAMETER :: pi = 3.14159265

INTEGER :: i, counter=0

WRITE(6,*) pi,error,counter

END PROGRAM reals_and_integers

Note that the initial values of some variables have been specified at the same time as defining

them as REAL or INTEGER. In addition, one of these variables, pi has the extra word

PARAMETER in its definition. This tells the compiler that you in fact want this "variable"

never to vary. The code will not run any differently, but the compiler will warn you if you

attempt to vary pi later on that you set it to be a constant. You should use it in the declaration

of variables that you want really to be constants, so that you get this extra error checking

from the compiler.

Note also the format used for numbers multiplied by some power of 10. The quantity "error"

is equal to 1.0×10-5, or 0.00001

Finally, look at the WRITE statement. The values of the variables will be printed to the

screen so you will see 3.1415927 1.0E-5 0

The two data types INTEGER and REAL may be used in numeric expressions, but care must

be used to ensure that the types of the variables match, or that the types are converted as you

want them. The rule is that an operation (e.g. addition, division ...) between two variables of

the same type (e.g. both REAL or both INTEGER) will always return a result of that same

type. When an operation takes place between a REAL and an INTEGER, the INTEGER is

first converted to a REAL equivalent, and the final result will also be REAL.

61

Now, let us do some simple calculations. The Fortran 90/95 commands are +,-,*,/ for

addition, subtraction, multiplication and divide, respectively. The command ** is used to

raise to a power, thus 2**4 is 2 raised to the power of 4 and is equal to 16.

Precedence

What do you think the result of the expression 1+2/3+4 should be? If the operations take

place from left to right in order, then 1 and 2 would be added to give 3, this would then be

divided by 3 to give 1, which would be added to 4 to give 5. In fact, the answer is 5 2/3. This

is because division takes precedence over addition and is evaluated first.

The order of precedence is:

Operator Precedence

** High

*,/ Medium

+,- Low

Within the same level of precedence, the operations proceed left to right, except a series of **

operations, which takes place right to left.You can change the order of evaluation of the

operations using brackets, so (1+2)/(3+4) gives the result 3/7.

Consider the following program.

PROGRAM calculations

IMPLICIT none

REAL :: a, b, c

INTEGER :: i, j, k

i = 1 ! assigns the integer value 1 to the integer variable i

j = 2 ! assigns the integer value 2 to the integer variable j

j = i+j ! assigns the value of i + j to the integer variable j

k = i/j ! assigns the integer value i/j (=0) to the integer variable k

a = 1.0; b=2.0 ! assigns values to the real variables a and b.

c = 2.0+a/b ! note that a/b is executed first. A value 2.5 is assigned to c.

a = a/2.0*b ! Careful, this is (a/2.0)*b not a/(2.0*b). a retains the value 1.0.

b = i/j ! two integers will truncate to integer before assigning to real variable.

62

WRITE(*,*) i,j,k

WRITE(*,*) a,b,c

END PROGRAM calculations

Note the semi-colon which allows you to put several commands on the one line.

Note also that the equals sign (=) means "assign the value of the expression on the right hand

side to the variable on the left" and not quite the same as the mathematical equality symbol.

You can't, for example, write x**2 + 2*x + 1 = 0 in Fortran and expect it to solve the

equation. Calculations like j=i+j look a little strange at first. The computer calculates the

right-hand side of the equal sign and whatever value is obtained is assigned the variable on

the left of the equals sign.

Self Assessment Exercise

1. Using a piece of paper, work through the above program and WRITE DOWN the

values that YOU think will be written to the screen by the WRITE(*,*) statements.

Copy this program into the Fortran editor, compile and run. Were you correct?

2. Which of the following numbers are integers (in a Fortran sense)?

(a) -34 (b) 1.0 (c) 0 (d) 1.0E+01 (e) 54635

3. If i and j are defined as INTEGER, which of the following Fortran calculations will

yield an integer value?

(a) i*j (b) 2.0*i*j (c) i/j (d) i**2 (e) (i/4.0 + j)

4. If i and j are defined as INTEGER, which of the following Fortran calculations will

yield a real value?

(a) i**0.5 (b) i/j (c) i-j+1 (d) i+j+0.5 (e) i**j

5. What is the value of the calculation (1/2)*(3.0+5.0)?

(a) 4.0 (b) 4 (c) 0 (d) 0.0

63

Practical Exercise 1: Using Integer and Real

Make sure you have read section 3.0 before attempting the following exercise.

Consider the following program.

PROGRAM using_integers_and_reals

IMPLICIT none

REAL :: a, b, c, d, e, f, result, error

INTEGER :: i, j, k, l, m

i = 1; j = 2

a = 3.0; b = 2.0

result = (a+b) * (a/b - 3.0)

j = j + 1

k = I / j

l = j + j / 2

m = I ** j

c = a / 2.0 * b

d = I / j

error = 10**(-3)

e = REAL(i)/REAL(j)

f = 3.0e-4 * b - 2.0e-4 * a

WRITE (*,*) 'result = ', result

WRITE (*,*) 'j = ', j

WRITE (*,*) 'k = ', k

WRITE (*,*) 'l = ', l

WRITE (*,*) 'm = ', m

WRITE (*,*) 'c = ', c

WRITE (*,*) 'd = ', d

WRITE (*,*) 'error = ', error

WRITE (*,*) 'e = ', e

WRITE (*,*) 'f = ', f

END PROGRAM using_integers_and_reals

Your task, in this exercise, is not to write a program, but to interpret an existing program. On

a piece of paper, write down the values of all the variables that will be printed on the screen.

64

Once you have done this, copy this program, compile and run it. How many answers did you

get correct? Give yourself a mark out of 10!

Suppose you write a program to convert centimetres into inches. You will arrange the

program to allow you to enter the number of centimetres at the keyboard every time the

program is run. This is achieved using the READ statement.

The following program will convert centimetres to inches.

! This program converts centimetres to inches

PROGRAM cm_to_ins

IMPLICIT none

REAL :: cm, ins

WRITE(6,*) 'Please enter the number of centimetres'

WRITE(6,*) 'to be converted to inches'

READ(5,*) cm

ins = cm/2.54

WRITE(6,*) cm,' cm = ',ins,' inches'

END PROGRAM cm_to_ins

In the expression WRITE(6,*), the number 6 is predefined in Fortran to mean "write to the

screen", and in READ(5,*) the 5 means "read from the keyboard". You can set up different

numbers to refer to files on the computer. Look at the following version of the centimetres-to-

inches conversion program.

! This program converts centimetres to inches

PROGRAM cm_to_ins

IMPLICIT none

REAL :: cm, ins

OPEN(10, file='cm_to_ins.out')

WRITE(6,*)' Please enter the number of centimetres'

WRITE(6,*)' to be converted to inches'

READ(5,*)cm

ins = cm/2.54

WRITE(10,*)cm,' cm = ',ins,' inches'

CLOSE(10)

END PROGRAM cm_to_ins

65

Look at the final WRITE statement. The only change is that "6" has been replaced by "10".

This allows the information to be written to a file rather than a screen. But the name of the

file must be defined. This is achieved using the OPEN command.

If you run this version of the conversion program, no output will appear on the screen. The

output has been written to the file called cm_to_ins.out. You can check this by using text

editor to view cm_to_ins.out from the screen. You will see (for example),

50.0 cm = 19.68504 inches

Any physicist should know that it is not justified to present this result to 7 significant figures!

The computer does not know this however. You can modify, or FORMAT, the output and

you will see how this can be achieved in the subsequent section.

Practical Exercise 2: Fahrenheit to Celsius

Write a Fortran 95 program to convert a temperature in fahrenheit to its equivalent value in

celsius. Your program should READ the fahrenheit value from the terminal and output the

celsius value to the screen. Make sure you include appropriate comments.

The temperature in celsius is equal to (5/9) × (F-32) where F is the temperature in fahrenheit.

DOES YOUR PROGRAM WORK?

Test your program by converting the following temperatures in Fahrenheit to Celsius.

82.0

212.0

Check the output and see if the answers are

27.8

100.0

If you get the wrong answers, debug, compile and rerun.

3.2 The Input Statement

The Input statement reads one or more values from an input device, and stores them into

variables specified by the programmer. In the process of data input, the data read are stored

by the program in the main memory.

General form of READ statement syntax is:

READ (*,*) input list

Example:

66

PROGRAM StudentGPA

IMPLICIT NONE

REAL :: gpa

INTEGER :: Matric

CHARACTER (Len = 25) :: Name

READ (*,*) Matric, Name, gpa

STOP

END PROGRAM

In the example, data to be supplied to the computer are Integer type Matric number; 25

Character length Name; Real type gpa. The order of the values to be supplied must also

match the order of the variables i.e. the input list: Matric, Name and gpa.

3.3 The Output Statement

The output statement causes the processed data to be sent to appropriate output device.

Examples of such devices are screen (computer monitor) or console and printer. Sometimes

PRINT statement is used instead of WRITE statement to exclusively print to the screen.

The syntax for the general form of WRITE statement is:

WRITE (*, *) output list

Example:

PROGRAM StudentGPA

IMPLICIT NONE

REAL :: gpa

INTEGER :: Matric

CHARACTER (Len = 25) :: Name

READ (*,*) Matric, Name, gpa

WRITE (*,*) Matric, Name, gpa

STOP

END PROGRAM

3.3.1 PRINT statements

67

The Print statement is mainly used to generate output to the screen or console or computer

monitor. They are also used as users prompts for a response in the cause of executing a

program.

The general form of PRINT syntax is:

PRINT *, output list

Example:

PRINT *, A, B, C

PRINT *, Matric, Name, gpa

PRINT *, ‘Enter Yes (Y) or No (N)’

3.4 Formatted Input/Output Statements

When the type of information and the location are needed in the input/output list, then the

FORMAT statement is used to accompany the READ and the WRITE statements.

The general form is:

READ (unit, format label) input list

Or

WRITE (unit, format label) output list

Example:

READ (5,10) a, b, c, d

10 FORMAT (4F5.2)

Or

WRITE (6, 20) sum, mean

20 FORMAT (1H, 2F10.2)

The READ statement in the example is linked with the FORMAT statement labelled 10 (i.e.

format label). The format descriptor “4F5.2” means that 4 correspond to the number of

variable to be read; The F specified that these variables are floating points or real numbers;

The number 5.2 indicates allocated spaces including the decimal part that each real numbers

(a, b, c, d) will occupy. In this case, the total size is 5 including the decimal point and the

decimal place is 2. Suppose a = 6.1, then the descriptor will make a = 006.1 and so are the

other variables.

In a nut shell, 4F5.2 is described as follows:

68

4 - values to be read

F - for floating point or real number

5 - size of the value including the decimal point

2 - number of decimal places

The WRITE statement is linked format label 20. The description is:

20 - format statement label

1H - takes a new header line before the output

2 - number of output list i.e. sum and mean

F - float or real number specification

10 - size or number of columns of the output

2 - decimal places

3.4.1 FORMAT Field Descriptors

The following are the field descriptors that are used along with the FORMAT statements:

I - Integers

F - Real (Floating Point)

E - Exponential

G - Large or too small Real or Exponential

A - Alphanumeric

X - Skipping fields

H - Hollerith, skipping lines and pages

/ - Slash for printing blank lines

T - indicates starting columns to read data

The syntax for using the field descriptors for Integer is:

Integer: nIw

Real: nFw.d

Exponential: nEw.d

Alphanumeric: Aw

Skipping Field: wX

Slash: no of slash indicate number of blank lines

where n = optional number of variables; w = width or size of columns to be occupied by each

variable type; d = number of decimal places.

3.5 Using Files: Open and Close Statements

69

Fortran statements used to control the disk file for input and output include OPEN, CLOSE,

READ, WRITE, REWIND, BACKSPACE commands.

3.5.1 The OPEN Statement

The form is:

OPEN (open list separated by commas)

Where open list comprises of some clauses specifying the unit number, the file name and

information on how to access the file. Examples are as follows:

To open a file for Input:

OPEN (UNIT = 8, FILE = ‘datain.dat’, STATUS = ‘OLD’, ACTION = ‘READ’)

The unit 8 specifies the I/O unit number associated with the file ‘datain.dat’. The Status=’old’

specifies that the file already exist. The action means read only.

To open file for Output:

OPEN(UNIT = 10, FILE = ‘datout.dat’,STATUS = ‘NEW’, ACTION=’WRITE’)

In case of avoiding overwriting an existing file, STATUS = ‘REPLACE’ is used.

To open a scratch file:

OPEN (UNIT = 12, STATUS = ‘SCRATCH’, IOSTAT = ierror)

A temporary file is created that is automatically deleted when the file is closed or at program

termination. The IOSTAT returns error code in variable ierror if there is error. It is also used

for other OPEN methods.

3.5.2 The CLOSE Statements

The Close statement closes an opened file and releases the I/O unit number associated with it.

The format is

CLOSE (close list)

Even if CLOSE command is not specified in a program, file closed automatically when the

program terminates. The close list should specify the I/O number and other associated

clauses.

3.5.3 Data and Parameter Statement

70

The DATA statement within the program is used to initialize variables at compile time. The

format is

DATA variable list/constants/

Example

PROGRAM Sumval

IMPLICIT NONE

INTEGER :: a, b , c, sum

DATA a, b, c/4, 4, 9/

SUM = a + b + c

WRITE (*, *) sum

END Sumval

The DATA statement can be written as DATA a, b, c/2 * 4, 9/. The 2 * 4 indicates that there

are 2 sets of figure 4 in data list.

3.5.4 File Positioning

The order of accessing file records can be changed using the BACKSPACE and REWIND

statements. Ordinarily, Fortran reads file records from the first to the last sequentially. The

BACKSPACE statement moves back one record each time it is called. REWIND statement

restarts the file reading at the beginning each time it is encountered.

The general form of these two statements are:

BACKSPACE (UNIT = unit no)

REWIND (UNIT = unit no)

The unit no is the number associated with the file to be read or accessed.

Self Assessment Exercise

1. What is the field descriptor to format large real numbers

2. Which clause in the OPEN statement that reports error code if error is encountered.

4.0 Conclusion

71

The input and output routine in Fortran reads in external data (input) and prints out data

(output). This is accomplished by the read, write and print statements respectively. They are

called input/output operations or simply I/O operations. The read tells the computer to read

in numerical or symbolic information from a console or file, and a write or print statement

tells the computer to print out information on the console or printer.

5.0 Summary

The data input or output routine in Fortran as described showed the use of the read and write

statements to read in and print out information or data by using various field descriptors,

printer controls and formatting features.

6.0 Tutor Marked Assignment

1. Supposed the values 12, 45, 7.78, 8.89, 9.10 are to be assigned to the variables X, Y,

Z, A, and B respectively. Write a formatted READ and WRITE statements

2. Write a program that will sum five numbers, find the mean and standard deviation

72

Module 2: FORTRAN Programming Language

Unit 3: Transfer of Control and Program Loop

Page

1.0 Introduction 66

2.0 Objectives 66

3.0 Control Statements 66

3.1 The Block IF … ENDIF 66

3.2 The ELSE and ELSE IF 67

3.3 Named Block IF 68

3.4 The CASE Construct 69

3.5 WHILE Loop/DO Loop 70

4.0 Conclusion 76

5.0 Summary 76

6.0 Tutor Marked Assignment 76

73

1.0 Introduction

Computer instructions are normally executed one after the other unless it is instructed

otherwise by a transfer of control or program loops within the program. A control structure

alters the sequential flow of the logic in a program by using branching instructions and/or

looping statements.

2.0 Objectives

By the end of this unit, you should be able to:

Understand the use of IF statements and looping statements

Distinguish between conditional and unconditional branching statements

Construct compound statements

3.0 Control Statements

At the initiation of a control statement control is immediately transferred to another part of
the program to execute some tasks, and thereafter continue in its sequential execution to the
end of the program unless otherwise stated by another control statement. Some of these
control statements and program loops include:

Block IF

ELSE and ELSE IF

The CASE

WHILE Loop/DO Loop

3.1 The Block IF Statement

IF ... END IF conditional statements are used for conditional execution of lines of code.

The format is

IF (logical expression) THEN

Statements in block

END IF

There are various forms of this construct, but the simplest is as shown in the following

example.

IF (i == 2) sum = 0.0

74

The statement is only executed if the expression in brackets is .TRUE.. In the example, this

means that sum = 0.0 only if the value of i is equal to 2. If i is not equal to 2, no action is

taken. Note the use of "==" and not "=" in the condition. "==" is called a relational operator.

The full list of relational operators is below:

Command Meaning

a < b true if a is less than b

a <= b true if a is less than or equal to b

a > b true if a is greater than b

a >= b true if a is greater than or equal to b

a == b true if a is equal to b

a /= b true if a is not equal to b

There are also logical operators of which .OR. and .AND. are the most useful. Their use is

easily understood, for example,

IF (i == 2 .OR. i <= 0) sum = 0.0

will set sum = 0.0 when i is negative, 0 or 2.

Suppose you want to execute, not one, but several statements if a certain condition is

satisfied. You may use, for example,

IF (i == 1) THEN

sum = 0.0

i = i + 1

END IF

3.2 The ELSE and ELSE IF

This is useful when more than one statement is true in order to execute one set of statement.

The format is

IF (logical expression1) THEN

Statement1 block

ELSE IF (logical expression2) THEN

Statement2 block

ELSE

Statement3 block

END IF

75

If logical expression1 is true the program executes the Statement1 block and skips to the next

statement after ENDIF. Otherwise, the program checks the Statement2 block if logical

expression2 is true else Statement3 is executed.

You could make the IF statement even more powerful by using the ELSE ELSEIF construct.

For example

IF (i < 0) THEN

sign = -1

ELSE IF (i > 0) THEN

sign = 1

ELSE

sign = 0

END IF

The statements in the first part are only executed if the first conditional expression is true.

Statements in the second part are only executed if the first conditional statement is false and

the second conditional expression is true. Otherwise, the third set of statements is executed.

This example, produces a value of sign of -1, 1 or 0 depending on whether i is negative,

positive or zero, respectively.

3.3 Named Block IF

The general form of the IF construct is:

[name:] IF (logical expression) THEN

[block]

[ELSE IF (logical expression) THEN [name]

[block]

[ELSE [name]

[block]

END IF [name]

Notice there is one minor extension, which is that the IF construct may be named. The ELSE

or ELSE IF parts may optionally be named, but, if either is, then the IF and END IF

statements must also be named (with the same name).

For example

select: IF (i < 0) THEN

76

CALL negative

ELSE IF (i==0) THEN select

CALL zero

ELSE select

CALL positive

END IF select

For long or nested code this can improve readability.

Self Assessment Exercise

4. What control structure is suitable for executing one set of statement if more than one

statement is true

3.4 CASE Construct

Repeated IF ... THEN ... ELSE constructs can be replaced by a CASE construct. The general

form of the CASE construct is:

[name:] SELECT CASE (expression)

[Case (selector)[name]

block]

.

.

END SELECT [name]

The expression can be of type INTEGER, LOGICAL, or CHARACTER, and the selectors

must not overlap. If a valid selector is found, the corresponding statements are executed and

control then passes to the END SELECT. If no valid selector is found, execution continues

with the first statement after END SELECT.

For example

SELECT CASE (day) ! sunday = 0, monday = 1, etc

CASE (0)

extrashift = .TRUE.

CALL weekend

CASE (6)

extrashift = .FALSE.

CALL weekend

77

CASE DEFAULT

extrashift = .FALSE.

CALL weekday

END SELECT

The CASE DEFAULT clause is optional and covers all other possible values of the

expression not included in the other selectors. It need not necessarily come at the end.

A colon may be used to specify a range, as in:

CASE ('a':'h','o':'z')

which will test for letters in the ranges a to h and o to z.

3.5 WHILE Loop/DO Loop

A WHILE loop is a block of statements that are repeated indefinitely as long as the control

clause is still valid or satisfied.

The general form of the DO loop is:

[name:] DO [control clause]

block

END DO [name]

The END DO statement should be used to terminate a DO loop. This makes programs much

more readable than using a labelled CONTINUE statement, and, as it applies to one loop

only, avoids the possible confusion caused by nested DO loops terminating on the same

CONTINUE statement.

For example

DO i = 1,n

DO j = 1,m

a(i,j) = i + j

END DO

END DO

Notice that there is no need for the statement label at all. It is often desirable to execute the

same type of calculation many times. One way of doing this is through the controlled DO

loop.

The most common form of the DO loop is shown in the example below:

DO i=1,9

78

...

... END

DO

The action of the DO loop in this example is as follows:

Command Action Value of i

DO i=1,9 i is set equal to 1. Is i > 9? No i=1

... statements are executed i=1

END DO i has 1 added to it i=2

DO i=1,9 Is i > 9? No i=2

... statements are executed i=2

END DO i has 1 added to it i=3

DO i=1,9 Is i > 9? No i=3

... etc. etc ...

... etc. etc ...

... statements are executed i=9

END DO i has 1 added to it i=10

DO i=1,9 Is i > 9? Yes Go to first statement after END DO i=10

In the above example, i takes on the values 1,2,3,4,5,6,7,8,9 and the statements in the loop are

executed for each value of i. When the loop has finished, the value of i in this example is 10,

and the program continues running after the END DO statement.

Consider the following simple program which finds the product of a set of numbers entered at

the keyboard.

! This program finds the product of a set

! of numbers entered at the keyboard.

PROGRAM calculate_product

IMPLICIT none

REAL :: value, product=1.0

INTEGER :: i, n

WRITE(6,*) ' This program evaluates the product '

WRITE(6,*) ' of n real numbers '

WRITE(6,*) ' '

WRITE(6,*) ' Enter the value of n'

79

READ(5,*)n

DO i=1,n

WRITE(6,*) ' Enter value number',i

READ(5,*) value

product = value*product

WRITE(6,*) ' i= ',i,' The product is',product

END DO

END PROGRAM calculate_product

In the DO loop, the value of i starts at 1 and increases in steps of 1 to a maximum value of n.

After this, DO loop control moves to the first statement after the END DO (in this case the

END statement).

Copy, compile and run the program and check that you understand the values of i and product

printed to the screen.

A DO-loop can calculate a triangular number as follows:

PROGRAM triangular

IMPLICIT NONE

INTEGER :: tri=0, n, i

WRITE(6,*) "Enter n to calculate the nth triangular number:"

READ(5,*) n

DO i=1,n

tri=tri+i

END DO

WRITE(6,*) n,"-th triangular number is ",tri

END PROGRAM triangular

By default a DO-loop will always increase its index by one every time through the loop. If

you want to change this, or to make it decrease, you give a third number, which is the

increment (or decrement) like this:

DO i=1,9,2

...

80

...

END DO

This is identical to the previous example except that the DO statement is DO i=1,9,2 rather

than DO i=1,9. The presence of the "2" simply means that i increases in increments of 2, and

so i=1,3,5,7,9 in this case.

Practical Exercise: Finding an average

Write a Fortran 90/95 program which calculates the average of a set of n numbers entered at

the keyboard. Your program should READ the value of n from the terminal, execute a DO

loop to determine the average and output the average value to the screen. Make sure you

include appropriate comments.

DOES YOUR PROGRAM WORK?

Test your program by averaging the following 5 numbers

8.0

9.0

0.5

-1.0

2.8

Check the answer. The answer is

3.86

3.5.1 Named DO and END DO

The DO and END DO may be named.

For example

rows: DO i = 1,n

cols: DO j = 1,m

a(1,j) = i + j

END DO cols

END DO rows

One point to note is that the loop variable must be an integer and it must be a simple variable,

not an array element.

81

The DO loop has three possible control clauses: an iteration control clause (as in example

above); a WHILE control clause (described below); an empty control clause ("EXIT and

CYCLE")

3.5.2 DO WHILE

A DO construct may be headed with a DO WHILE statement:

The form is

DO WHILE (logical expression)

body of loop

END DO

The body of the loop will contain some means of escape, usually by modifying some variable

involved in the test in the DO WHILE line.

For example

DO WHILE (diff > tol)

..

.

diff = ABS(old - new)

..

.

END DO

Note that the same effect can be achieved using the DO loop with an EXIT statement which

is described below.

3.5.3 EXIT and CYCLE

The EXIT statement permits a quick and easy exit from a loop before the END DO is

reached. The CYCLE statement is used to skip the rest of the loop and start again at the top

with the test-for-completion and the next increment value.

Thus, EXIT transfers control to the statement following the END DO, whereas CYCLE

transfers control to a notional dummy statement immediately preceding the END DO.

These two statements allow us to simplify the DO statement even further to the `do forever'

loop:

82

DO

.

..

IF (...) EXIT

.

..

END DO

Notice that this form can have the same effect as a DO WHILE loop.

By default the CYCLE statement applies to the inner loop if the loops are nested, but, as the

DO loop may be named, the CYCLE statement may cycle more than one level. Similarly, the

EXIT statement can specify the name of the loop from which the exit should be taken, if

loops are nested, the default being the innermost loop.

outer: DO i = 1,n

middle: DO j = 1,m

inner: DO k = 1,l

.

..

IF (a(i,j,k)<0) EXIT outer ! Leave loops

IF (j==5) CYCLE middle ! Omit j==5 and set j=6

IF (i==5) CYCLE ! Skip rest of inner loop, and

. ! go to next iteration of

. ! inner loop

.

END DO inner

END DO middle

END DO outer

Self Assessment Exercise

1. Write an ELSE and ELSE IF construct for Examination grading system (A = 70 and

above; B = 60 to 69; C = 50 to 59; D = 45 to 49; E = 40 to 44; F = below 40)

83

4.0 Conclusion

The normal sequence of program execution can be controlled through control structures. In a

normal sequence of program instructions, the instructions are executed one after the other

unless otherwise stated by a transfer of control. Basically, there are two ways of transfer of

control: use of control statements and program loops.

5.0 Summary

The control structures combine the use of control statements and program loops to plan,

design and structure programs in more compact form. Some of these control statements are

the Block IF, ELSE and ELSE IF, Named Block IF, the CASE construct, and While-

Loop/DO Loop.

6.0 Tutor Marked Assignment

1. Write a program to quadratic equation using the ELSE IF statement to differentiate

the roots

2. Use DO loop to find the sum of 100 natural numbers.

84

Module 2: FORTRAN Programming Language

Unit 4: Arrays and Subscripted Variables

Page

1.0 Introduction 78

2.0 Objectives 78

3.0 Subscripted Variables (Arrays) 78

3.1 Representation of Arrays 79

3.2 Array Terminology and Specification 80

3.3 Array Operations 81

3.4 Other Fortran 90/95 Array Commands 83

4.0 Conclusion 85

5.0 Summary 86

6.0 Tutor Marked Assignment 86

85

1.0 Introduction

The uses of subscripted notations are very much used in science and engineering problems.

The variables that are used so far are also called unsubscripted variables or scalar variables.

Very frequently, one may want to use a named variable to refer to a list of values having the

same common attributes, e.g. student identification numbers, scores, and so on. This is done

by the use of arrays or subscripted variables. For example, s1, s2, …, s20 may be used to

denote the scores of a class of 20 students.

2.0 Objectives

By the end of this unit, you should be able to:

Differentiate between static and dynamic array

Use One and Multi-dimensional array

Use new array processing capabilities

3.0 Subscripted Variables (Arrays)

Suppose you want to do a calculation on a quantity x, not once, but for 100 different values of

x. obviously you would not read these numbers at the keyboard, it would take forever! You

would arrange for the 100 values of x to be read in from a file by the program. But what do

you call these values of x? Do you define variables in your program as x1, x2, x3, ... x100?

Suppose you had 1000 values of x instead of 100. Clearly defining variables in this way is

clumsy. We get around this problem by the use of ARRAYS. Arrays allow multiple values to

be stored with one variable name. In the case above, the array variable would just be x. This

array variable has an index that allows each element of the array to be accessed individually.

So the first value of x is x(1), the second value is x(2), the 100th value is x(100) and the ith

value is x(i).

The computer needs to know how many variables an array variable is to contain. In the above

example, array variable x is to contain 100 values. This is achieved through the DIMENSION

statement. Consider the first example which demonstrates a 5 element real array (indices

from 1 to 5).

PROGRAM array1

IMPLICIT none

REAL, DIMENSION(1:5) :: a

INTEGER :: i

86

DO i = 1,5

a(i) = i * i

END DO

DO i = 1,5

WRITE(6,*) a(i)

END DO

END PROGRAM array1

The numbers written to the screen are:

1.

4.

9.

16.

25.

so that a(1)=1.0, a(2)=4.0, ..., a(5)=25.0.

3.1 Representation of Arrays

Arrays are represented in one or two-dimensional array and more. Example of two-

dimensional array of numbers is a matrix.

Example of One-dimensional array format is

S(1), S(2), S(3), …., S(N)

Where S is the array name and 1, 2, 3, .., N are the subscripts. S(1), S(2), .. S(N) are the

elements of the array.

Example of Two-dimensional array format is

A(1,1) A(1,2) …… A(1,N)

A(2,1) A(2,2) ……. A(2,N)

: : :

A(M,1) A(M,2) …… A(M,N)

In A(2,1), 2 indicates the row and 1 indicates the column. The above example is M by N two-

dimensional array A(M,N) where m and n are integer number. A three-dimensional array is

represented by A(X,Y,Z). The fortran limit is 7-dimensions.

3.2 Array Terminology and Specifications

87

Fortran permits an array to have up to seven subscripts, each of which relates to one

dimension of the array. The dimensions of an array may be specified using either a dimension

attribute or an array specification. By default the array dimensions start at 1, but a different

range of values may be specified by providing a lower bound and an upper bound. For

example,

REAL, DIMENSION(50) :: w

REAL, DIMENSION(5:54) :: x

REAL y(50)

REAL z(11:60)

Here, w, x, y and z are all arrays containing 50 elements.

The rank of an array is the number of dimensions. Thus, a scalar has rank 0, a vector has rank

1 and a matrix has rank 2. The extent refers to a particular dimension, and is the number of

elements in that dimension. The shape of an array is a vector consisting of the extent of each

dimension. The size of an array is the total number of elements which make up the array.

This may be zero. Two arrays are said to be conformable if they have the same shape. All

arrays are conformable with a scalar.

The general form of an array specification is as follows:

type [[,DIMENSION (extent-list)] [,attribute]... ::] entity list

Here, type can be any intrinsic type or a derived type (so long as the derived type definition is

accessible to the program unit declaring the array). DIMENSION is optional and defines

default dimensions in the extent-list, these can alternatively by defined in the entity list.

The extent-list gives the array dimensions as:

integer constants

integer expressions using dummy arguments or constants

':' to show the array is allocatable or assumed shape

As before, attribute can be any one of the following

PARAMETER, PUBLIC, PRIVATE, POINTER, TARGET, ALLOCATABLE,

DIMENSION(extent-list), INTENT(inout), OPTIONAL, SAVE, EXTERNAL, INTRINSIC

Finally, the entity list is a list of array names with optional dimensions and initial values.

The following examples show the form of the declaration of several kinds of arrays, some of

which are new to Fortran 90/95:

Initialisation of one-dimensional arrays containing 3 elements:

88

INTEGER, DIMENSION(3) :: ia=(/1,2,3/), ib=(/(i,i=1,3)/)

Declaration of automatic array logb. Here loga is a dummy array argument, and SIZE is an

intrinsic function which returns a scalar default integer corresponding to the size of the array

loga:

LOGICAL, DIMENSION(SIZE(loga)) :: logb

Declaration of dynamic (allocatable) arrays a and b. The dimensions would be defined in a

subsequent ALLOCATE statement:

REAL, DIMENSION (:,:), ALLOCATABLE :: a,b

Declaration of assumed shape arrays a and b. The dimensions would be taken from the actual

calling routine:

REAL, DIMENSION(:,:,:) :: a,b

3.3 Array Operations

In Fortran 77 it was not possible to work with whole arrays, instead each element of an array

had to be operated on separately, often requiring the use of nested DO-loops. When dealing

with large arrays, such operations could be very time consuming and furthermore the required

code was very difficult to read and interpret. An important new feature in Fortran 90/95 is the

ability to perform whole array operations, enabling an array to be treated as a single object

and removing the need for complicated, unreadable DO-loops.

In order for whole array operations to be performed, the arrays concerned must be

conformable. Remember, that for two arrays to be conformable they must have the same

shape, and any array is conformable with a scalar. Operations between two conformable

arrays are carried out on an element by element basis, and all intrinsic operations are defined

between two such arrays.

For example, if a and b are both 2x3 arrays

a = , b =

the result of addition is

a + b =

and of multiplication is

a x b =

89

If one of the operands is a scalar, then the scalar is broadcast into an array which is

conformable with the other operand. Thus, the result of adding 5 to b is

b + 5 = + =

Such broadcasting of scalars is useful when initialising arrays and scaling arrays.

An important concept regarding array-valued assignment is that the right hand side evaluation

is computed before any assignment takes place. This is of relevance when an array appears in

both the left and right hand side of an assignment. If this were not the case, then elements in

the right hand side array may be affected before the operation was complete.

The advantage of whole array processing can best be seen by comparing examples of Fortran

77 and Fortran 90/95 code:

Consider three one-dimensional arrays all of the same length. Assign all the elements of a to

be zero, then perform the assignment a(i) = a(i)/3.1 + b(i)*SQRT(c(i)) for all i.

Fortran 77 Solution

REAL a(20), b(20), c(20)

...

DO 10 i=1,20

a(i)=0

10 CONTINUE

...

DO 20 i=1,20

a(i)=a(i)/3.1 + b(i)*SQRT(c(i))

20 CONTINUE

Fortran 90/95 Solution

REAL, DIMENSION(20) :: a, b, c

...

a=0

...

a=a/3.1+b*SQRT(c)

Note, the intrinsic function SQRT operates on each element of the array c.

Consider three two-dimensional arrays of the same shape. Multiply two of the arrays element

by element and assign the result to the third array.

Fortran 77 Solution

90

REAL a(5, 5), b(5, 5), c(5, 5)

...

DO 20 i = 1, 5

DO 10 j = 1, 5

c(j, i) = a(j, i) * b(j, i)

10 CONTINUE

20 CONTINUE

Fortran 90/95 Solution

REAL, DIMENSION (5, 5) :: a, b, c

...

c = a * b

Consider a three-dimensional array. Find the maximum value less than 1000 in this array.

In Fortran 77 this requires triple DO loop and IF statements, whereas the Fortran 90/95 code

is:

REAL, DIMENSION(10,10,10) :: a

amax=MAXVAL(a,MASK=(a<1000))

Find the average value greater than 3000 in an array.

In Fortran 77 this requires DO loops and IF statements, whereas Fortran 90/95 code is:

av=SUM(a,MASK=(a>3000))/COUNT(MASK=(a>3000))

Note in the last two examples the use of the following array intrinsic functions:

MAXVAL - returns the maximum array element value.

SUM - returns the sum of the array elements.

COUNT - returns the number of true array elements.

3.4 Other Fortran 90/95 Array Commands

Fortran 90/95 has some useful array commands. For example, suppose you want to initialise

an array by making every element equal to 0.0 (a common task). You could use the following

command, a = 0.0 or if you wish to put the first 5 elements of the array to zero, i.e. a(1)=0.0,

a(2)=0.0, ..., a(5)=0.0, you could put a(1:5) = 0.0

A large number of mathematical operations can be performed on each array element by

referring to the whole array, so if a, b and c are all REAL arrays of the same size and shape

you can write things like

a = b**2 ! each element of b is squared and assigned to the elements of a

91

a = b/c ! each element of b is divided by corresponding elements in c

! and assigned to same elements in a

a = exp(b) ! each element of b is exponentiated and assigned to the

! corresponding elements in a

The array manipulation powers of Fortran 90/95 are rather powerful. See more examples.

A matrix is a two-dimensional array. In Fortran 90/95, a two-dimensional array can be

declared in a similar way to a one-dimensional array. For example, the variable b below is a

"3 by 4" array.

INTEGER, DIMENSION(1:3,1:4) :: b

You can think of these as arrays consisting of three rows of four columns each:

b(1,1) b(1,2) b(1,3) b(1,4)

b(2,1) b(2,2) b(2,3) b(2,4)

b(3,1) b(3,2) b(3,3) b(3,4)

3.4.1 Allocatable Arrays

A useful feature of Fortran 90/95 is that you can declare an array of a given dimension, but

with a size that depends on something that happens in the code. These arrays are called

ALLOCATABLE arrays. Arrays are allocated with the ALLOCATE statement and then

deallocated with the DEALLOCATE statement. An example follows:

! This program allocates an array with a size based on user input and

! generates that many random numbers

PROGRAM allocate_example

IMPLICIT NONE

REAL, DIMENSION(:), ALLOCATABLE :: a

INTEGER :: i

WRITE(6,*) 'How many random numbers do you want to calculate ?'

READ(5,*) i

ALLOCATE(a(i))

CALL RANDOM_NUMBER(a)

WRITE(6,*) a

DEALLOCATE(a)

END PROGRAM allocate_example

92

Self Assessment Exercise

Make sure you have read this unit before attempting the following exercise.

1. Write a program that calculates the determinant of a 3 by 3 matrix.

Your program should READ in the matrix from a file using the OPEN and READ

commands. Therefore, start by writing a Fortran program which will read the elements of the

matrix

1.0 3.0 2.0

5.0 1.0 5.0

7.0 6.0 5.0

from a data file. You can create the data file yourself using text editor. Just enter the numbers

and save the file. Make use of processing the whole array by name, and Fortran will do the

right thing. Reading in and writing a matrix is not one of these.

The only solution to doing this in one line is to use the following implied do-loop technique

to read in the numbers.

READ(10,*) ((a(i,j),j=1,3),i=1,3)

This specifies explicitly which order the 9 elements get read in.

Now calculate the determinant of this matrix and print the result out to the screen.

2. Define a new 3 by 3 matrix. Let the elements of the new matrix each equal 2 times the

elements of the original matrix. Calculate the determinant of the new matrix. What do

you notice?

4.0 Conclusion

An array is a set (or collection) of related quantities of the same type with the same symbolic

name. Each array elements of data items is referred to by specifying the array name followed

by appropriate values for the subscripts enclosed in square brackets [] and separated by

commas. Array referenced by one subscript is called one-dimensional array and more than

one subscript are known as two-, three-, dimensional array or in general multi-dimensional

array.

5.0 Summary

Arrays are very powerful tools for manipulating data and performing calculations with

individual elements with individual elements of arrays one by one, with whole arrays at once

or with various subsets of arrays.

93

6.0 Tutor Marked Assignment

1. Suppose B is a linear array with M elements. Write a program to find the location of J

such that B(J) contains the largest absolute value in B

2. Suppose there are 200 positive integers in a deck. Write a program that prints the

positive integers from 1 to 25 and the number of times each of the integers occurs in

the deck.

94

Module 2: FORTRAN Programming Language

Unit 5: Functions and Subroutines

Page

1.0 Introduction 88

2.0 Objectives 88

3.0 Functions and Subroutine Subprograms 88

3.1 Categories of Subprograms 93

3.2 The COMMON Statement 94

4.0 Conclusion 95

5.0 Summary 95

6.0 Tutor Marked Assignment 95

95

1.0 Introduction

As programs become more and more complex and involved, the immediate solution is the use

of subprograms. A subprogram is a complete and independent program which can be used by

the main program or other subprograms. A subprogram receives values (called arguments)

from a calling program, performs some processes and then sends back the result(s) to the

calling program.

2.0 Objectives

At the end of this unit, you will be able to:

Write program module

Create subroutines and functions

Use COMMON statements

3.0 Functions and Subroutine Programs

SUBROUTINEs and FUNCTIONs are used to aid program development and flexibility by

providing additional structure in the program layout and allowing encapsulation of significant

sections of code, which can then be easily reused many times. SUBROUTINEs and

FUNCTIONs can be particularly useful in large and complex programs. The main difference

between a SUBROUTINE and a FUNCTION is that a FUNCTION can only return a single

value, whereas a SUBROUTINE can do more complicated things, like alter the value of

many variables.

The examples below are designed to highlight particular features of the use of FUNCTIONs

and SUBROUTINEs. The first example shows how a FUNCTION command can be used to

calculate the quadratic x2-3x+4 for values of x ranging from 0.0 to 2.0 at intervals of 0.1, and

also, using the same FUNCTION, to approximately calculate the derivative at the points x.

PROGRAM quadratic

IMPLICIT none

REAL :: x, eps=1.0e-5

INTEGER :: i

DO i=0,20

x=REAL(i)*0.1

WRITE(6,'(3f12.5)') x, quad(x), (quad(x+eps)-quad(x-eps))/(2*eps)

END DO

96

CONTAINS

! And here is the function

REAL FUNCTION quad(xx)

IMPLICIT none

REAL :: xx

quad = xx**2 - 3.0*xx + 4.0

END FUNCTION quad

END PROGRAM quadratic

Notice the following points

The FUNCTION subprogram is contained within the main PROGRAM, following a

CONTAINS statement.

The FUNCTION subprogram mirrors the syntax of a main program in having its own

IMPLICIT NONE statement, and its own variable declarations.

The FUNCTION command is completed with END FUNCTION.

The FUNCTION is called several times from the main function with different

arguments. Whatever argument the function is called with gets associated with xx

inside the FUNCTION. xx is a local copy of the argument inside the FUNCTION and

is only accessible inside the FUNCTION.

In the main program, the value returned by the function is associated with quad(...)

In the FUNCTION, the value is associated with the function quad by the command

quad = ...

The FUNCTION contains no WRITE statements and does not refer to variables from

the PROGRAM. It only uses the arguments passed to it.

Now let us see how a similar program can be written using a SUBROUTINE. It evaluates the

quadratic function and its exact derivatives at various values of x.

PROGRAM quadratic

IMPLICIT none

REAL :: x, value, dvalue

INTEGER :: i

DO i=0,20

x=REAL(i)*0.1

97

CALL quad(x,value,dvalue)

WRITE(6,'(3f12.5)') x, value, dvalue

END DO

CONTAINS

! And here is the subroutine

SUBROUTINE quad(xx,val,dval)

IMPLICIT none

REAL, INTENT(IN) :: xx

REAL, INTENT(OUT) :: val, dval

val = xx**2 - 3.0*xx + 4.0

dval = 2*xx - 3.0

END SUBROUTINE quad

END PROGRAM quadratic

Notice the following points

The SUBROUTINE subprogram is contained within the man PROGRAM, following

a CONTAINS statement.

In the main program, the SUBROUTINE is called using the CALL command.

The SUBROUTINE is completed with END SUBROUTINE.

The SUBROUTINE subprogram mirrors the syntax of a main program in having its

own IMPLICIT NONE statement, and its own variable declarations.

The variable x in the main program and the results of the calculation, value and

dvalue, are arguments passed to and from the SUBROUTINE subprogram.

All arguments must have declarations matching in their data type between the

SUBROUTINE and calling program.

You should use the INTENT(IN) declaration to indicate arguments passed TO the

subroutine and INTENT(OUT) for arguments passed FROM the subroutine to the

calling program.

If you wish to use a subprogram to calculate a SINGLE quantity, you should consider using a

FUNCTION. If you wish to calculate more than a single quantity, you must use a

SUBROUTINE.

98

It is important to understand that functions and subroutines can be called many times from

the same program, or from other subprograms. The arguments from the calling program are

associated with the "dummy" arguments inside the SUBROUTINE or FUNCTION each time

it is called.

Self Assessment Exercise

Make sure you have read section 3.0 before attempting the following exercise.

You may have been told that the chance, or probability, of two or more people in a class of

30 having a birthday on the same day is surprisingly high. In fact, the chance of this

happening is about 70%.

In this exercise, your objective is to calculate the probability that two or more people in a

class of c people have a birthday on the same day.

This probability is given by the following equation.

P = 1 - n!/(n - c)! n^c

where n is the number of days in a year and c is the number of people in a class.

Clearly, you need to be able to calculate the factorial of a number. This is an ideal use of the

FUNCTION command, although you could use a SUBROUTINE if you preferred. A plan of

solving it might be

Write a FUNCTION which calculates the factorial of a given number m

Call your FUNCTION with arguments n and n-c to work out the factorials you need,

and hence work out the expression above.

You will almost certainly run into problems trying to generate numbers as big as the

factorials you need in this exercise. Check out for KIND to overcome these problems.

DOES YOUR PROGRAM WORK?

What is the probability that at least two students in the Level 1 group have birthdays on the

same day?

Practical Example: Using random numbers

Random number simulations are used widely in physics and in a range of other disciplines.

The Fortran 90/95 language possesses intrinsic subroutines RANDOM_NUMBER and

RANDOM_SEED which produce a pseudo-random number uniformly distributed between 0

and 1.

First, look at the program below which simply generates and prints 5 random numbers.

99

PROGRAM print_random

IMPLICIT none

REAL :: r

INTEGER :: i

CALL RANDOM_SEED

DO i=1,5

CALL RANDOM_NUMBER(r)

WRITE(6,'(f9.7)') r

END DO

END PROGRAM print_random

The 5 random numbers are printed to the screen (example below)

0.0505590

0.8959959

0.5748507

0.6094229

0.9629579

What happens if the program is run again? A different set of random numbers are produced.

This is because CALL RANDOM_SEED initiates with a different starting seed value each

time the program is run. Note that the RANDOM_SEED subroutine is called just once.

Now delete the CALL RANDOM_SEED command. What happens if the program is run

repeatedly? The same set of random numbers is produced. This is why CALL

RANDOM_NUMBER is called a "pseudo-random" number generator. Starting with the same

seed, it will always produce the same set of random numbers. Change the seed, and the

sequence of random numbers will change.

Self Assessment Exercise

Make sure you have read “Using Random Numbers” above before attempting the following

exercise.

In this exercise, your objective is, first, to test the quality of the Fortran 90/95 random

number generator and then, second, to produce a random number generator that produces a

normal distribution. First, produce a large number, n say, of random numbers using the

RANDOM_NUMBER intrinsic subroutine as described above.

100

Now, count the number of random numbers falling in the range 0.0000000-0.0999999, those

between 0.1000000-0.1999999, and so on.

Print the values to a file. The distribution should be uniform? Is it?

Second, generate a new random number by taking 12 random numbers generated using the

RANDOM_NUMBER intrinsic subroutine, adding them together, and subtracting 6. In other

words,

R = r1 + r2 + ... + r12 - 6

Generate a large number of random numbers R and perform same process. What does the

distribution look like?

3.1 Categories of Subprograms

There are essentially four categories of subprograms namely:

Built-in library functions

Arithmetic statement functions

User defined functions

Subroutines

Arithmetic Function Statement: this is a single executable statement of the form

Function name (arguments) = arithmetic expression

Example: G(X) = X*X – 5.0*X + 2.0

Arithmetic functions always come before the first non-executable statement in a main

program of Fortran.

User-defined Function: is a complete block of statements usually located after the END

statement in a program. This is unlike arithmetic statement which is just one statement.

The format is

FUNCTION NAME (list of arguments separated by commas)

:

Declaration

:

Execution statements

RETURN

END function name

OR

101

TYPE FUNCTION NAME (list of arguments separated by commas)

:

Name = expression

:

RETURN

END function name

Where TYPE is any of the following types (INTEGER, REAL, COMPLEX, etc.)

Example

FUNCTION add(x, y, z)

Z = x + y

RETURN

END add

The function is invoked from the main program by using the arithmetic statement as follows:

sum = add(x, y, z), where the addition of x and y is stored in variable sum.

3.2 The COMMON Statement

This statement is used to share common storage location in the main program and

subprograms. The format is

COMMON list

It must appear at the beginning of the main program, subroutine and function subprograms.

Example

PROGRAM area

COMMON i, j, k, l

READ (*,*) i, k

j = i * k

CALL areaplus

WRITE (*,*) l

STOP

END

SUBROUTINE areaplus

COMMON i, m, n, q

Q = SQRT (I + m **n)

102

RETURN

END

Self Assessment Exercise

1. What is the difference between a subroutine and a function

4.0 Conclusion

Subprograms in program developments has a lot of advantages such as defined program

modules; re-usable statements; logical clarity; easy to debug and tested amongst others.

Problems of complex programs are alleviated by the use of the subprograms and they are

complete and independent.

5.0 Summary

Subprograms fall into two basic categories: functions and subroutines. The similarities and

differences were examined and the returning of a single value by FUNCTION seems the

main significant difference.

6.0 Tutor Marked Assignment

1. Write a subroutine subprogram with arguments and return statements that find the

sum, average and mean of three set of numbers.

2. Introduce COMMON statement to solve question 1 above.

103

CIT 736 - Computer Programming (2 Units)

Module 3 PASCAL Programming Language

Unit 1 Elements of Pascal Language

Unit 2 Data Input and Output

Unit 3 Control structures

Unit 4 Arrays

Unit 5 Sub-Programs

104

Module 3: PASCAL Programming Language

Unit 1: Elements of PASCAL Language

Page

1.0 Introduction 98

2.0 Objectives 98

3.0 Pascal Programming Basics 98

3.1 Character Set and Identifiers 100

3.2 Numbers and Strings 100

3.3 Variable, Constant and Assignment Statements 102

3.4 Data Types 103

3.5 Reserved Words 104

3.6 Standard Functions and Operator Precedence 106

4.0 Conclusion 108

5.0 Summary 108

6.0 Tutor Marked Assignment 108

7.0 Further Reading and Other Resources 108

105

1.0 Introduction

Pascal is a high-level language developed in the early 1970s by Niklaus Wirth, a computer

scientist at the Institute of Informatics, Technical University, Zurich, Switzerland. The

language was named in honour of Blaise Pascal (1623 -1662), the brilliant French scientist

and mathematician. Pascal is now widely used as programming language for a variety of

different applications.

2.0 Objectives

By the end of this unit, you should be able to:

Know the use of character set, variable and constants

Identify reserved words and standard functions

Differentiate various data types

The use of assignment statements and operators

3.0 Pascal Programming Basics

In a program, you must always obey the rules of the language, in this case, the Pascal

language. A natural language has its own grammar rules, spelling and sentence construction.

The Pascal programming language is a high level language that has its own syntax rules and

grammar rules. A very simple program is shown below:

Program Example1;

(* Program to print Hello World*)

Begin

Write ('Hello World. Prepare to learn PASCAL!!');

Readln; {comment}

End.

The program is written only to display the message: 'Hello World. Prepare to learn

PASCAL!!’. This is simply shown on the screen. So, to display any message on the screen,

you should use “write” (or “writeln”). When using these two terms, any text within the

brackets and the inverted commas '(' ')', is displayed on the screen. However, if a variable is

106

used instead of a text, without using the inverted commas, the CPU will display the stored

variable in the memory, on the screen. The “readln” statement is used to 'stop' the program

and wait until the user presses a key. If the 'readln' statement is missing in this program, then

the message is displayed on the screen without giving any chance for the user to read it.

A program in Pascal starts with the reserved word 'Program' (although it is not explicitly

required) and ends with 'End', followed by a full stop (this is required). A full-stop is never

used within the program, except when dealing with records. A program can be written in a

text file, save the text file as filename.pas and open it with Turbo Pascal. The .pas extension

is required.

After declaring all the variables which are required to be used later in the program, the main

program always starts with the reserved word 'Begin'. Without this word, the compiler will

display a diagnostic (error message). Another important thing which must be noticed is the

semi-colon (;). The semicolon is used after each statement in the program, except those that

you will learn later. The messages in between the braces ({ }) or (* *) are called comments or

in-line documentation. Comments within the braces are not read or compiled by the compiler/

interpreter.

Later in the course, you will also learn how to control input and output exceptions -

unexpected runtime errors. One last thing on errors is this: there are 2 major error types

which are - Runtime Errors and Compilation Errors. Runtime errors are those which occur

unexpectedly during the execution of the program, whereas a Compilation error is one which

is detected during the compilation process.

For example

Sum := Num1 + Num2;

The result of the above statement is the addition of the values stored in variables 'Num1' and

'Num2'. The important thing that you should know is that one cannot make the same

statement as follows:

Num1 + Num2 := Sum;

This is another syntax error. It is the fact that transfer of information is from left to right and

not from right to left. So, mind not to make this error. The ':=' is called the assignment

statement, and should be discussed later.

107

3.1 Character Set and Identifiers

Pascal uses the letters A to Z (both upper and lowercase), digits 0 to 9, and special symbols in

the building blocks of Pascal to form program elements.

The special symbols are listed below:

+ . < ((*

- : <=) *)

* ; > [(.

/ , >=] .)

:= ‘ <> { @

= ^ -- }

An identifier is a name such as constant, variable or procedure given to some program

element. They are comprised of sequence of letters or digits with the first character being a

letter. Examples of identifiers are B1, Product, Figure12 etc.

There are standard identifiers in Pascal with predefined meanings. They are:

abs dispose input ord read sin trune

arctan eof integer output readln sqr unpack

Boolean eoln in pack real sqrt write

char exp maxint page reset succ writeln

chr false new pred rewrite text

cos get odd put round true

Standard identifiers are used for their predefined purposes except otherwise declared or

redefined by programming procedures. For example sqrt is to find the square root of a value.

The meanings of the identifiers are in the compiler package help menu and the functions will

be treated in the subsequent course units.

3.2 Numbers and Strings

Numbers are bunch of numerical figures which can include signs, decimal point and exponent

or scale factor. Commas and blank spaces are not included in numbers but it can be preceded

by plus (+) or negative (-) signs. Numbers without any sign is assumed positive and they have

limits in size with respect to the type of number, the word size of computer and the compiler.

Example: integer is between (-32768 to 32767), word - 0 to 65535.

108

Numbers can be subdivided into two main categories:

Integer Numbers: an integer number has no decimal point. Examples are 67, -234, 900 etc.

Real Numbers: a real number must have a decimal point and the decimal point must appear

between two digits. Examples are 0.01, 11.94, -5.6 etc.

In some cases, exponent can be included to shift the location of the decimal points. Example

is 1.23 x 102 written in exponential form as 1.23E+2 or 0.123E+3. The latter is shifted by

one decimal place which reflected on the exponent by making it +3.

Note: a comma and spaces are not allowed within a number.

A string is a sequence of characters (i.e. letters, digits and special characters) enclosed by

apostrophe.

Examples are

‘OPEN UNIVERSITY’

’10 PASCAL STREET’ etc.

Soon, you should learn how to input text by the user using 'string variables'. The following

program is written showing an example of a string variable, prompting the user to input his

name, whatsoever:

Program Example2;
Var name, surname: String;

Begin

End.

write('Enter your name:');
readln(name);
write('Enter your surname:');
readln(surname);
writeln;{new line}
writeln('Your full name is: ',name,' ',surname);
Readln;

If we take a look at this program, we notice a new variable type: 'String'. Both the name and

surname variables are of type string. When the program is run and prompts the user to input

his name, the name which is keyed in by the user goes directly to its place in the memory

called 'name'. Same occurs to surname. You must note that the variables 'name' and 'surname'

are not reserved words, but are used by the programmer as his variables. The writeln is used

to move on for a new line. In this case, a line is created. The next message displays the full

name of the user using the above format. If a string variable is required to be displayed on

109

screen, it should be put in between inverted commas and commas if it is concatenated with

another message. Example:

writeln('Your name is: ',name);

or:

writeln('Your name is:',name,'. Your surname is ',surname,'.');

3.3 Variable, Constant and Assignment Statement

A variable is an identifier whose value can change during program execution. Every variable

must be individually defined before it can be used in a program.

The syntax for variable is:

VAR name : type OR

VAR name1, name2, … nameN : type

Apart from variables, there are also items in the program which are referred to as constants.

Unlike variables, constants keep their value or string unchanged for the whole program. Here

is a program, not so much different from the previous one:

Program Example3;
Var

surname: String;

Const {the reserved word 'const' is used to initialize constants}

name = 'Victor';

Begin

End.

write('Enter your surname:');
readln(surname);
writeln;
writeln;
writeln('Your full name is: ',name,' ',surname);
readln;

In the above program, the constant 'name' is assigned to as 'Victor' and is of type string.

However, in other cases, you might have used integer constants (whole numbers), i.e.:

Const

age = 15;

110

The constant 'age' is a value that could be used whenever it is required in a program.

Example:

age2 := age + 15;

The above example shows an addition of the value of the variable 'age' with the value 15. The

value of the constant 'age' remains 15, but the value of the variable 'age2' becomes 30. The

last example will take us to the assignment statement that is used for addition.

The assignment statement is used to assign entity or value to a variable: text if it is a string

variable or a numeric value if it is an integer variable.

The syntax is:

Variable := data item

Examples are:

name := 'victor';

age := 15; {also: "age:='15';" BUT in this case, 'age' is a string variable}

3.4 Data Types

Pascal supports different data types such as the simple data types, structured data types and

pointer data types. The data types are associated with identifiers to show the type of data to

be associated with.

The data types are summarized below:

Simple Data Type

o Standard data types

� Integer

� Real

� Char

� Boolean

o User-defined data types

� Enumerated

� Sub range

Structured Data Type

o Arrays

o Records

o Files

o Sets

111

Pointer Data Type

o A pointer has the POINTER attribute, and may point to (be an alias of)
another data object of the same type, which has the TARGET attribute, or an
area of dynamically allocated memory. At this level, emphasis will be on the
simple data type.

3.5 Reserved Words

Reserved words in Pascal have their standard and predefine meaning in writing programs.

Some of them are:

Array Begin Case Const End File

Function Goto Not Or And Until

If Do Else For Then Type

Clrscr GotoXy Textbackground Textcolor Readkey

Delay Halt Uses etc.

For example, to include a library in your program, one should use the reserved word 'uses',

because it is used to call a library of functions and procedures.

Here is the declaration part of an incomplete program:

Program Example4;

Uses Crt; {This make use of the crt library}

Var PD, Dname, Cmodel : String;
CostPD, TCostPD, Distance : Real; {real is a decimal (described later)}

Begin

End.

The 'Crt' (short for cathode-ray tube) library has a wide range of functions and procedures

that you will use so frequently. Some of them are listed below.

Reserved Word Description

Clrscr Clears screen

Gotoxy(int,int) Takes the cursor to the pre-defined position

Textbackground(word/int) Background colour

112

Textcolor(word/int) Colour of text

Readkey Reads a key; Could be assigned to a variable

Delay(int) Waits for the included time(milliseconds)

Halt(parameter) Program terminates

Examples of program segments:

Clrscr: (clear screen)

writeln('When you press enter, the screen would be cleared!');

readln;

clrscr;

Gotoxy(int,int): (Go to position x and y);

gotoxy(10,10);

Writeln('The position is 10 pixels from the left of the screen, and ten pixels');

Writeln('from the top of the screen.');

readln;

Textbackground(word/int): (Background colour);

Textbackground(red); {word - red}

Writeln('Note the difference');

Textbackground(5); {integer - 5}

ClrScr;

Writeln('Note the difference'); Readln;

Textcolor(word/int): (Text colour);

Textcolor(red); {word - red}

Writeln('Text colour');

Textcolor(5); {integer - 5}

Writeln('Text colour'); Readln;

Readkey: (Reads a key-press);

Writeln('Press ANY key!!!');

Readkey;

Delay(int): (Waits for some time);

113

Writeln('1');

Delay(1000);{1000 milliseconds}

Writeln('2');

Delay(1000);

Writeln('3');

Readln;

Halt(int): (Program terminates with an exit code);

writeln('Press enter and the program terminates!);

Readln;

Halt(0);

Note that instructions following 'halt' are not executed since the program terminates when

halt is encountered.

3.6 Standard Functions and Operator Precedence

Below are some of the standard functions in Pascal. Most of the functions are supplied with

parameters. Example is the use of x parameter in the functions below:

ABS(x) - Computes the absolute value of x

COS(x) - Computes the cosine of x (x in radians)

EXP(x) - Computes exponential of x

LN(x) - Computes natural logarithm of x where x > 0

ROUND(x) - rounds the value x to the nearest integer

SIN(x) - computes the sine of x (x in radians)

SQRT(x) - computes square root of x

SQR(x) - computes the square of x

EOLN - detects end-of-line

EOF - detects end-of-file

Example: SQRT(25) = 5

114

Operator Precedence: Operators generally have associated hierarchy that determines the

order of precedence for evaluating an expression. The operator hierarchy in Pascal is as

follows:

1. NOT

2. * / DIV MOD AND

3. + - OR

4. = <> < <= > >= IN

Relational Operators

= Equal to <> Not Equal to < Less than

<= Less than or equal to > Greater than >= Greater or equal to

Logical Operators

OR - expression will be true if either operand is true or both

AND - expression will be true only if both are true

NOT - a prefix that negates a Boolean expression

The operators are used in expressions. Expression is collection of operands (i.e. numbers,

constants, variables etc.) joined together by certain operators to for algebraic phrase that

represents a value. Expressions are evaluated by taking the operators with the highest priority

before the lower ones. Where operators are of the same priority, the expression is evaluated

from left to right with the exception of expression in parenthesis which are always evaluated

first before non-parenthesis expressions.

Example: if a = 8, b = 4 and c = 2, then the expression (a+b)/c = 6 because a+b is evaluated

first.

The two categories of expression in Pascal are numerical and Boolean expressions.

Numerical results to numerical value whereas Boolean results into either true or false.

Example: Numerical expression a + b = 12; Boolean expression b = c is false

Self Assessment Exercise

115

 1. Differentiate between a string and an integer variable using a Pascal expression

2.

What do you understand by the term identifier

3.

Give three categories of data types in Pascal

4.0

4.

Code examples 1 through 4 above, run and execute them

Conclusion

Looking at the fundamentals, the lessons are concerned with the basic elements used to

construct Pascal statements. The elements include character set, identifiers, standard

functions, reserved words and data types. Pascal is a more structured language used for

general purpose programming development.

5.0 Summary

Pascal elements or statements use letters, digits and certain special symbols to construct the

basic elements. Such elements are declared by naming them as constants, variables or

procedures. Another interesting aspect is the ability of Pascal to support many different data

types which include simple data type, structured data type and pointer data type.

6.0 Tutor Marked Assignment

 4. Explain the following terms

a. String variable

5.

b. Constant variable

State five standard functions of Pascal language

6. By way of coding distinguish between a variable declared as constant and string

7. Show by way of programming example the use of relational operators

7.0

Further Reading and other Resources

Holmes, B. J. (1993) Pascal Programming, ELBS, DP Publications.

116

Module 3: PASCAL Programming Language

Unit 2: Data Input and Output

Page

1.0 Introduction 110

2.0 Objectives 110

3.0 Input and Output Routine 110

3.1 Input of Data 111

3.2 Output of Results 112

3.3 Formatted Output 113

4.0 Conclusion 113

5.0 Summary 114

6.0 Tutor Marked Assignments 114

117

1.0 Introduction

Pascal input and output environment is concerned with methods for reading data into the

computer and writing data out of the computer. The input and output used here is based on

interactive programming.

2.0 Objectives

By the end of this unit, you should be able to:

Understand the use of input and output routines

Know the input and output extensions

Add formatting features on output statements

3.0 Input and Output Routines

Pascal supports all standard input and output routines, plus the extensions listed below.

Routine Description

append Opens a file for writing at its end.

close Closes a file.

filesize Returns the current size of a file.

flush Writes the output buffer for the specified Pascal file into the associated

operating system file.

getfile Returns a pointer to the C standard I/O descriptor associated with the

specified Pascal file.

linelimit Terminates program execution after a specified number of lines has

been written into a text file.

message Writes the specified information to stderr.

open Associates an external file with a file variable.

read and readln Read in boolean, integer and floating-point variables, fixed- and

variable-length strings, enumerated types, and pointers.

remove Removes the specified file.

118

reset and rewrite Accepts an optional second argument.

seek Resets the current position of a file for random access I/O.

tell Returns the current position of a file.

write and writeln Outputs boolean integer and floating-point variables, fixed- and

variable-length strings, enumerated types, and pointers; output

expressions in octal or hexadecimal; allows negative field widths.

3.1 Input of Data

The following statements are used for input of data.

Read statement

Readln statement

The readln statement reads a new line of data whereas read statement continue on the same

line.

For example, consider the following program;

program input;

var

c : int;

begin

readln(c);

read(c);

end.

readln() and read() place user input into the assigned variable. In this case, if the user entered

a number then it would be stored in the variable c. readln() create a new line after the input is

entered while read() would cause the cursor to remain on the same line instead.

Both readln and read can be useful when programming in the Windows environment. If a

compiled application is executed outside of the command prompt, the application window

would close immediately after performing its task. The following code can be used to keep

the window open after finishing the programmed task:

119

program RemainOpen;

begin

writeln('Hello, world!');

readln;

end.

As you notice, readln statement will keep the window open and the parentheses are not

required when no parameters is needed.

3.2 Output of Results

The following statements are used to output results:

Write statement

Writeln statement

When writeln is used, the subsequent write statement will begin a new line of output. For

now, we will use console output. Here is an example of how output is done:

program output;

begin

writeln(1);

write('1')

end.

writeln() displays whatever is in the parentheses and prints a "new line character", making

newly displayed characters start on the next line. The ‘;’ symbol is just to separate the two

statements.

write() displays whatever is in the parentheses without printing a "new line character".

Do note that characters and strings must be placed within single quotation marks. You may

have noticed that write and writeln work for more than one type. You may also wonder how

write(1) and write('1') could do the same thing yet, 1 and '1' be represented in completely

different ways. The answer is that compiler always knows the data type and thus how it is

formatted.

120

Self Assessment Exercise

1. Show the difference between the followings

a. Read and Readln

b. Write and Writeln

2. Give five input and output data routine extensions

3.3 Formatted Output

Formatting output stream in Pascal make the results more legible and this is done by altering

the field widths associated with the data type and also adding certain format features within

the write and writeln statements.

For example

Write (‘The sum of A and B is’, sum : 3);

If the sum of A and B is 12, there will be a blank space preceding the number 12 since width

3 is declared in the write statement.

In case of output with decimal places: the number after the first colon indicates the total field

width followed by another colon and immediately with a number to show the number of

decimal places. For example:

Writelin (‘The Product is’, product : 10 : 2);

If the product is 25689.345, then the result will be 25689.35 preceded by two blank spaces to

justify the field width of 10.

4.0 Conclusion

The numerical input and output routine in Pascal reads in external data (input) and prints out

data (output). This is accomplished by the read, readln, write and writeln statements

respectively. They are called input/output operations or simply I/O operations. The read or

readln tells the computer to read in numerical or symbolic information from a console or file,

and a write or writeln statement tells the computer to print out information on the console or

printer.

5.0 Summary

121

The data input or output routine in Pascal as described showed the use of the read and write

statements to read in and print out information or data by using various extensions and

formatting features.

6.0 Tutor Marked Assignment

1. Find errors, if any, in the following unformatted I/O statements:

a. Read (a; b; c);

b. Write (“The sum is”, sum);

2. Suppose that we have data items; a = 12 and b = 44

a. Determine the output if the program segment is executed:

Read (a, b);
c = a ^ 2; d = 2
* b; Write (a,
c, d);

b. If the write statement is changed to:

Writeln (a, c);

Write (d);

3. Write a pascal program to read the values 2.34, 1.25, 3.25 and prints with formatted

output of one decimal place.

122

Module 3: PASCAL Programming Language

Unit 3: Control Structures

 Page

6.0

Introduction 116

7.0

Objectives 116

8.0

Program Control 116

8.1 The If Statements 117

8.2 The Repeat-until Loop 119

8.3 For Loop 120

8.4 While-Do Loop 121

8.5 The CASE-OF Statement 122

9.0 Conclusion 126

10.0 Summary 127

11.0 Tutor Marked Assignments 127

123

1.0 Introduction

A written Computer instructions are normally executed one after the other unless it is

instructed otherwise by a control structure within the program. A control structure alters the

sequential flow of the logic in a program by using branching (selection) and/or looping

(repetition) statements.

2.0 Objectives

By the end of this unit, you should be able to:

Understand the use of branching and looping statements

Distinguish between conditional and unconditional branching statements

Construct compound statements

3.0 Program Control

A computer program is normally executed starting from the first instruction, and continues in

that order of sequence until branching instruction is encountered. At that point, the control is

immediately transferred to another part of the program to execute some tasks, and thereafter

continue in the sequential execution to the end of the program except another branching

instruction is encountered. Some of the control statements and program loops include:

IF statement

Repeat-Until loop

For loop

WHILE-DO loop

CASE-OF statement

Now, it is time to learn the most important rules of programming: the IF statements - decision

making, for loops and the repeat-until loop. Almost, these three general programming

constructs are common in every programming language and you have to make sure that when

you have finished reading this unit, make sure that you have practiced them enough before

continuing with learning Pascal because they are of outmost importance.

124

3.1 The IF Statements

The “IF statement” executes the proceeding statement(s) conditionally. This means that if an

action comes to be true, then the statement(s) after the IF statement are executed, else these

statements are skipped. It works like this:

If this happens (action), then do this (reaction, if action is true).

OR:

If this happens (action), then do this (reaction, if action is true), else do this (reaction,

if action is false).

In Pascal, the “IF statement” should be written as follows:

If conditional expression then code ... ; {if one action}

OR:

If conditional expression then Begin instructions ... End; {if more than one action is

required}

Note that you should not use an assignment statement in the “IF” construct, otherwise the

compiler will raise a syntax error. i.e.:

Wrong:

If x := 20 then x := x + 1; {the underlined character must be excluded}

Correct:

If x = 20 then x := x + 1; {only an equal sign is used for comparison}

3.1.1 Conditional Statements: If..Then..Else

The simplest control structure is the if..then..else statement. The following program segment

shows the use of the if.. then.. else statement.

if var1 = 0 then

writeln('var1 is 0!') (*No semicolon before an 'Else' keyword*)

else if var1 = 1 then

begin

writeln('var1 is 1!');

(*More code*)

end (*No semicolon before an 'Else' keyword*)

else if var1 = 2 then

begin

writeln('var1 is 2!');

125

(*More code*)

end (*No semicolon before an 'Else' keyword*)

else

begin

writeln('var1 is not 0, 1, or 2!');

(*More code*)

end; (*Semicolon used to indicate the end of the If-then-else*)

In a normal if statement, the 'reaction' cannot be performed if the condition is not true. But in

an if..then..else statement, there is at least one set of statements to be performed. Let's take a

look at the example below:

writeln('Who has discovered the land of America?');

Readln(ans);

If (ans = 'Christopher Colombus') then

score := score + 1 {if this is false,}

ELSE

writeln('sorry, you''ve got it wrong!'); {then this is true}

Note that if the 'else' term is included with an if statement, then there should be no semi-colon

before the 'else' term; just as seen in the above example.

3.1.2 Nested If statements

An example of nested if statements is shown below.

If Sel = '3' then

Begin

ClrScr;

Write('Are you sure?(Y/N)');

YN := Readkey;

If YN = 'y' then HALT; {Nested if statement}

If YN = 'n' then Goto 1;{Another Nested if statement}

End;

126

A nested if statement, is in the form:

If (this happens) then {if 1}

If (this happens) then {if 2}

(do this) etc...

Else (do this) {if 2}

Else (do this) etc... {if 1}

A nested IF statement is an IF statement within another IF statement, as shown above.

3.2 The Repeat-Until Loop

This loop is used to repeat the execution of a set of instructions for at least one time. It is

repeated until the conditional expression is obeyed. The following example shows the model

of the “repeat-until” loop:

Repeat

..(code)

..(code)

..(code)

Until conditional statement;

Here's an example:

Uses Crt;

Var YN : String;

Begin

Writeln('Y(YES) or N(NO)?');

Repeat {repeat the code for at least one time}

YN := Readkey ;

If YN = 'y' then Halt; {Halt - exit}

If YN = 'n' then Writeln('Why not? Exiting...');

Delay(1800); { wait a second plus 800 milliseconds }

Until (YN = 'y') OR (YN = 'n');

End.

127

3.3 The For Loop

The FOR loop is a sort of repeat-until loop. The FOR loop, repeats a set of instructions for a

number of times. The FOR loop is in the form:

- If used for only one action:

for {variable}* := {original value} to/downto {final value} do

{code...(for one action)}

- If used for more than one action:

for {variable}* := {original value} to/downto {final value} do Begin

{code...}

{code...}

End;

Generally, this variable is called the “loop counter”. Now, an example of the FOR loop is

shown below.

Program ForLoop;

Uses Crt;

Var Counter : Integer; {loop counter declared as integer}

Begin

For Counter := 1 to 7 do {it's easy and fast!}

writeln('for loop');

Readln;

End.

3.3.1 Nested for loops

A nested for loop is similar to that of the nested if statements. A nested for loop is in the

form:

for {loop counter} := {original value} to {final value} do {Begin-if required}

{code if any..begin should be included (i.e more than one action)}

for {loop counter} := {original value} to {final value} do {Begin-if required}

{code..if more than one action, include begin in the second for loop}

{End; - if begin is included in the second for loop)}

128

{code if any..begin should be included in the first for loop}

{End; - if begin is included in the first for loop)}

The nested for loop is rarely used and it may cause problems.

Self Assessment Exercise

1. Do the IF statement for K = 1 if A – B < 100, and sets K = 2 otherwise

2. Write a FOR statement to count from 1 to 100

3. What is the significant difference between FOR and Repeat-Until loop

3.4 While-Do Loop

This type of loop is executed while the condition is true. It is different from the 'Repeat-Until'

loop since the loop might not be executed for at least one time. The code works like this:

While <condition is true> do the following:

instruction 1;

instruction 2;

instruction 3;

etc...

End; {If while-do loop starts with a begin statement}

Example Program on the While-Do loop:

Program WhileDo;

Uses Crt;

Var Ch : Char;

Begin

Writeln('Press ''q'' to exit...');

Ch := Readkey;

While Ch <> 'q' do

Begin

Writeln('I told you press ''q'' to exit!!');

129

Ch := Readkey;

End;

End.

3.5 The CASE-OF Statement

So far, you have learned how to use an “IF statement”. But in some cases the 'case statement'

is preferred to the IF statement because it reduces some unnecessary code but the same

meaning is retained. The case statement is very similar to the IF statement, except in that it

does not accept literal conditional expressions (i.e.: strings) but surprisingly enough, it allows

single character conditional expressions. Here is how it works:

Case {variable of type: integer or character ONLY} of

{input statement- within inverted commas if of type char} : {code..}

{input statement- within inverted commas if of type char} : {code..}

...

End; {End Case}

Now you should note the difference and the intelligent use of the case statement over the IF

statement.

The Program is written using the IF statement:

Program CaseExample1;

Uses Crt;

Label Return; {used respectively with the

goto statement; beware of it}

Var SEL : Integer;

YN : Char;

Begin

Return: Clrscr;

Writeln('[1].PLAY GAME');

WRITELN('[2].LOAD GAME');

130

WRITELN('[3].MULTIPLAYER');

WRITELN('[4].EXIT GAME');

Writeln('note: Do note press anything except');

Writeln('numbers; otherwise an error occurs!');

Readln(SEL);

If SEL = 1 then

Begin

Writeln('Are you able to create a game');

Writeln('of yourself using pascal??');

Delay(2000);

Goto Return;

End;

If SEL = 2 then

Begin

Writeln('Ahhh... no saved games');

Delay(2000);

Goto Return;

End;

If SEL = 3 then

Begin

Writeln('networking or 2 players?');

Delay(2000);

Goto Return;

End;

If SEL = 4 then

Begin

Writeln('Exit?');

YN := Readkey;

If YN = 'y' then

Begin

Writeln('Nooooooooooooo...');

Delay(1000);

Halt; {EXIT PROGRAM}

End;

131

If YN = 'n' then

Goto Return;

End;

End.

Now, the next program is written using the case statement and the output is almost the same.

Program CaseExample2;

Uses Crt;

Label Return; {use of the goto statement is not recommended..avoid it}

Var SEL : Integer;

YN : Char;

Begin Return:Clrscr;

Writeln('[1].PLAY GAME');

WRITELN('[2].LOAD GAME');

WRITELN('[3].MULTIPLAYER');

WRITELN('[4].EXIT GAME');

Writeln('note: Do note press anything except');

Writeln('numbers; otherwise an error occurs!');

Readln(SEL);

Case SEL of

1 : Begin

Writeln('Are you able to create');

Writeln('a game of yourself using pascal??');

Delay(2000);

Goto Return;

End;

2 : Begin

Writeln('Ahhh... no saved games');

Delay(2000);

Goto Return;

End;

132

3 : Begin

Writeln('networking or 2 players?');

Delay(2000);

Goto Return;

End;

4 : Begin

Writeln('Exit?');

YN := Readkey;

Case YN of {a sort of a nested case statement}

'y' : Begin

Writeln('Nooooooooooooo...');

Delay(1000);

Halt;

End;

'n' : Goto Return;

End;{End Case2}

End;{Close Conditional Expression 4}

End; {End Case1}

End.

3.5.1 The Case-Else Statement

Again this is similar to the if..then..else statement. Study the program below to learn how to

use the 'else' term following the 'case statement':

Program CaseExample3;

Uses Crt;

Label Return; { avoid it }

Var YN : Char;

Begin

Return:ClrScr;

Writeln('Exiting?');

YN := Readkey;

133

Case YN of

'y' : Halt;

'n' : Begin

Writeln('What are you going to do here, anyway?');

Delay(2000);

Halt;

End;

Else

Begin

Writeln('Either press ''y'' for yes');

Writeln('or ''n'' for no.. please try again..');

Delay(3500);

ClrScr;

Goto Return;

End;

End; {CASE}

End. {PROGRAM}

Self Assessment Exercise

1. What is the significant difference between CASE and IF statement

2. Write the syntax for CASE-OF statement

4.0 Conclusion

The order of execution in a program can be controlled through control structures. In a normal

sequence of program instructions, the instructions are executed one after the other unless

otherwise stated by a control. Basically, there are two types of transfer of control:

unconditional and conditional.

5.0 Summary

134

The control structures combine the use of control statements and program loops to plan,

design and structure programs in more compact form. Some of these control statements are

the IF, CASE, While-Do, and For statements.

6.0 Tutor Marked Assignment

1. Write a program that calculates the squares of numbers 1 to 100.

2. Suppose a1, a2, a3 are denoted by test scores. Write a Pascal program which find and

print the number of these scores greater than 70

135

Module 3: PASCAL Programming Language

Unit 4: Arrays

Page

1.0 Introduction 129

2.0 Objectives 129

3.0 Arrays 129

3.1 Static Size Arrays 131

3.2 Dynamic Arrays 132

3.3 User Defined Data Type 133

3.4 2 Dimensional and Multi-Dimensional Arrays 135

4.0 Conclusion 137

5.0 Summary 137

6.0 Tutor Marked Assignment 138

136

1.0 Introduction

The uses of subscripted notations are very much used in science and engineering problems.

The variables that are used so far are also called unsubscripted variables or scalar variables.

Very frequently, one may want to use a named variable to refer to a list of values having the

same common attributes, e.g. student identification numbers, scores, and so on. This is done

by the use of arrays or subscripted variables. For example, s1, s2, …, s20 may be used to

denote the scores of a class of 20 students.

2.0 Objectives

By the end of this unit, you should be able to:

Differentiate between static and dynamic array

Use One and Multi-dimensional array

Declare user-defined data type

3.0 Arrays

What are Arrays?

An Array is a powerful data structure that stores variable data having the same data type. It is

just like a small fixed number of boxes linked together one after the other storing things that

are related to each other. An array is said to be a static data structure because, once declared,

its original size that is specified by the programmer will remain the same throughout the

whole program and cannot be changed.

Up until now, we have used single variables only as a tool to store data. Now we will be

using the array data structure and here is how it is declared:

Var

myArray : Array[1..20] of Integer;

<arrayName> : Array[n..m] of <Data Type>;

An array data structure defines the size of the array and the data type that it will use for

storing data. In the above example, the array stores up to 20 integers however I may have

used 30 integers or more. This size depends on your program requirements.

Arrays are used just like ordinary variables. They are used to store typed data just like the

ordinary variables. You will now learn how to assign data to arrays and read data from arrays.

In the example above, 20 integers were declared and they can be accessed as follows:

137

To assign values to a particular integer of an array, we do it like this:

myArray[5] := 10;

myArray[1] := 25;

<arrayName>[index] := <relevant data>

You just take the array in subject, specify the index of the variable of the array and assign it a

value relevant to the data type of the array itself.

Reading a value from an array is done as follows:

Var

myVar : Integer;

myArray : Array[1..5] of Integer;

Begin

myArray[2] := 25;

myVar := myArray[2];

End.

Just like ordinary variables, arrays should be initialized; otherwise scrap data will remain

stored in them. If we want to initialise 2 whole 20-sized integer and boolean arrays to 0 and

false respectively, we do it like this:

Var

i : Integer;

myIntArray : Array[1..20] of Integer;

myBoolArray : Array[1..20] of Boolean;

Begin

For i := 1 to 20 do

Begin

myIntArray[i] := 0;

myBoolArray[i] := false;

End;

End.

3.1 Static Size Arrays

138

Examples of static size array such as lists and are defined in syntax of:

type MyArray1 = array[0..100] of integer;

type MyArray2 = array[0..5] of array[0..10] of char;

{or}

type MyArray2 = array[0..5,0..10] of char;

Examples of this would be having a list of different types or records.

type my_list_of_names = array[0..7] of string;

var the_list: my_list_of_names;

begin

the_list[5] := 'John';

the_list[0] := 'Titi';

end;

This would create an array of ['Titi','','','','','John','','']. We can access these variables the same

way as we have set them:

begin

writeln('Name 0: ', the_list[0]);

writeln('Name 5: ', the_list[5]);

end;

The following example shows an array with indices of chars.

var

a: array['A'..'Z'] of integer;

s: string;

i: byte;

begin

readln(s); {reads the string}

for i := 1 to length(s) do {executes the code for each letter in the string}

if upcase(s[i]) in['A'..'Z'] then

inc(a[upcase(s[i])]);

139

{counts the number the times a letter is counted. the case doesn't count}

writeln('The number of times the letter A appears in the string is ',a['A']);

{returns 5 if the string is 'Abracadabra'}

end.

3.2 Dynamic Arrays

Lists also can contain unlimited number of items, depending on the amount of computer

memory. This is achieved by dynamic arrays, which appeared with Delphi (not available with

Turbo Pascal). To declare a dynamic array, simply declare an array without bounds:

var a: array of <element_type>;

Then, define the size at any moment with the function SetLength

SetLength(a, <New_Length>);

The indices of the array will from 0 to length(a)-1.

You can get the current length with the Length function, as for String type. To go through the

array, you can write for example:

var

i: integer;

a: array of integer;

begin

randomize;

setlength(a, 10); { a will contain 10 random numbers }

for i := 0 to length(a)-1 do

a[i] := random(10)+1;

end;

The memory is freed automatically when the array is not used anymore, but you can free it

before by assigning nil value to the variable which is the same as defining a length of 0.

Self Assessment Exercise

1. What do you understand by subscripted and unsubscripted variables

2. Arrays should be initialized. Why?

3.3 User-Defined Data Types

140

Now that we have used various built-in data types, we have arrived at a point where we want

to use our defined data types. Built-in data types are the ones we used lately, such as Integer,

Boolean and String. Now we will learn how to specify our own customised data types and

this is just how it is done:

Type

<myDataType> = <particularDataType>;

The "Type" keyword is a reserved Pascal word used to define our own data types. So you

start defining your own data types by using this keyword. After defining your own data types,

you may start using them just like the other built-in data types as follows:

Var

<myVar> : <myDataType>;

Below is a new simple data type and note how it will be used in the program below:

Type

nameType = String[50];

ageType = 0..150; { age range: from 0 to 150 }

Var

name : nameType;

age : ageType;

Begin

Write('Enter your name: ');

Readln(name);

Write('Enter your age: ');

Readln(age);

Writeln;

Writeln('Your name:', name);

Writeln('Your age :', age);

Readln;

End.

In the above example we defined a String[50] and a 0..150 data type. The nameType only

stores strings up to 50 characters long and the ageType stores numbers only from 0 to 150.

141

We can define more complex user-defined data types. Here is an example of more complex

user-defined data types:

Type

i = 1..5;

myArrayDataType = Array[1..5] of Byte;

byteFile = File of Byte; { binary file }

Var

myArrayVar : myArrayDataType;

myFile : byteFile;

Begin

Writeln('Please enter 5 number from (0..255): ');

For i := 1 to 5 do

Readln(myArrayVar[i]);

Writeln('You have entered the following numbers: ');

For i := 1 to 5 do

Writeln('Number ',i,': ',myArrayVar[i]);

Writeln('Now writing them to file...');

{store the numbers in a file}

Assign(myFile, 'example.dat');

ReWrite(byteFile);

Write(myFile, myArrayVar[i]);

Close(myFile);

Writeln('Done, you may exit..');

Readln;

End.

In the above example I showed you how to incorporate arrays as user-defined data types.

Note that you may use user-defined data types more than once.

142

3.4 2 Dimensional and Multi-Dimensional Arrays

2 Dimensional arrays (2D) and multi-dimensional are arrays which store variables in a

second or nth dimension having n x m storage locations. Multi-dimensional arrays including

the 2 dimensional arrays are declared by using multiple square brackets placed near each

other or using commas with one square bracket as an alternative. Here is how multi-

dimensional are declared:

my2DArray : Array[i..j][k..l] of <DataType>;

myMultiDimArray : Array[m..n][o..p][q..r][s..t]... of <DataType>;

Let us have the 2 dimensional array defined first. Think of a grid where each box is located

by using horizontal and vertical coordinates just in the example below:

1 2 3 4 5

2

3 3,4

4

5 5,3

An example of a 5 by 5 2D array illustrated on a grid

Let us declare an array having 3 by 5 dimensions, assign a value to a particular variable in the

array and illustrate this on a grid just like the one above:

Var

my2DArray : Array[1..3][1..5] of Byte;

Begin

my2DArray[2][4] := 10;

End.

Having the vertical axis as the 1st dimension and the horizontal one as the 2nd dimension, the

above example is illustrated as follows:

1 2 3 4 5

143

2 10

3

Multi-dimensional arrays are rare and are not important. The single and 2D dimensional

arrays are the 2 most frequent dimensions.

The following example is a bit more complex example than the previous examples and it also

uses a 2 dimensional array to illustrate their use.

Uses Crt;

Type

myRange = 1..5;

arrayIntType = Array[myRange] of Integer;

myFileType = File of arrayIntType;

Var

i : myRange;

myFile : myFileType;

{ the next array is 2 dimensional }

arrayInt : Array[1..2] of arrayIntType;

Begin Clrscr;

Randomize;

For i := 1 to 5 do

Begin

arrayInt[1][i] := Random(1000);

Writeln('rand num: ',arrayInt[1][i]);

End;

Assign(myFile, 'test.dat');

ReWrite(myFile);

Write(myFile, arrayInt[1]);

Close(myFile);

144

ReSet(myFile);

Read(myFile, arrayInt[2]);

Close(myFile);

For i := 1 to 5 do

Writeln(i,': ', arrayInt[2][i]);

Readln;

End.

Self Assessment Exercise

1. Give examples of Built-in data types

2. Show by example the difference between one and two-dimensional arrays

4.0 Conclusion

An array is a set (or collection) of related quantities of the same type with the same symbolic

name. Each array elements of data items is referred to by specifying the array name followed

by appropriate values for the subscripts enclosed in square brackets [] and separated by

commas. Array referenced by one subscript is called one-dimensional array and more than

one subscript are known as two-, three-, dimensional array or in general multi-dimensional

array.

5.0 Summary

Arrays are very powerful tools for manipulating data and performing calculations with

individual elements with individual elements of arrays one by one, with whole arrays at once

or with various subsets of arrays.

6.0 Tutor Marked Assignment

1. Write a program that inserts an element D in the 4th position of the array A(1),

A(2), .., A(N).

2. Write a program that will read 25 scores and compute the followings:

145

a. Mean

b. The largest score

146

Module 3: PASCAL Programming Language

Unit 5: Sub-programs

Page

1.0 Introduction 140

2.0 Objectives 140

3.0 Modular Programming 140

3.1 Procedure 141

3.2 Procedure with Parameters 142

3.3 Functions 145

4.0 Conclusion 146

5.0 Summary 146

6.0 Tutor Marked Assignment 146

147

1.0 Introduction

As programs become more and more complex and involved, the immediate solution is the use

of subprograms. A subprogram is a complete and independent program which can be used by

the main program or other subprograms. A subprogram receives values (called arguments)

from a calling program, performs some processes and then sends back the result(s) to the

calling program.

2.0 Objectives

At the end of this unit, you will be able to:

Write program module

Create procedures and functions

Indentify the difference between value and variable parameters

3.0 Modular Programming

Modular programming is a way of dividing a more involved program into areas or modules

that perform specific tasks. This module is sometimes referred to as subprogram. The

subprogram which is small program can also be referred to as procedure.

Before we begin, let us first clarify the key difference between functions and procedures. A

procedure is set of instructions to be executed, with no return value. A function is a procedure

with a return value.

The definition of function/procedures is thus:

Function Func_Name(params...) : Return_Value;

Procedure Proc_Name(params...);

The function/procedure definition is usually followed by the local variables and the body.

However, to provide prototypes, simply add a forward keyword behind the definition instead

of the local variables and the body. Of course, the whole function must be defined

somewhere else in the program. The following example illustrates the use of this:

Function Add(A, B : Integer): Integer; Forward;

Function Bad(A, B, C : Integer) : Integer;

Begin

Bad := Add(Add(A,B),C);

End;

148

Function Add(A, B : Integer) : Integer;

Begin

Add := A + B;

End;

In this example, Add is first defined as a function taking two integer variables and returning

an integer, but it is defined as a forward definition (prototype), and thus no statement body is

written. Later, we see that Add is defined with a body. Note that the two definitions of Add

must be congruent with each other, or the compiler will complain.

From the above example, we can also gather that in Pascal, a function's return value is given

by the value of the variable with the function's name (or by the variable named result), when

the function returns. As you can see in the Bad function, an undefined variable named "Bad"

has been assigned a value. That is the return value for the Bad function. Similarly, in Add, the

variable named "Add" has been assigned a value, which is its return value.

3.1 Procedures

Procedures are just like small programs. Sometimes they are called subprograms. They help

the programmer to avoid repetitions. A procedure starts off with a “begin” statement and ends

up with an “end” statement. It can also have its own variables, which cannot be used with the

main-program.

Now have a look at the program which uses a procedure:

Program ProcedureExample1;

Uses Crt;

Procedure DrawLine;

{This procedure helps me to avoid the repetition of steps [1]..[3]}

Var Counter : Integer;

Begin

textcolor(green);

For Counter := 1 to 10 do

149

Begin {Step [1]}

write(chr(196)); {Step [2]}

End; {Step [3]}

End;

Begin

End.

GotoXy(10,5);

DrawLine;

GotoXy(10,6);

DrawLine;

GotoXy(10,7);

DrawLine;

GotoXy(10,10);

DrawLine;

Readkey;

When you are required to debug the program, bugs could be much more easier to find out as

the program is sliced into smaller chunks. You may run the program and notice a mistake at a

certain point and which is located in a particular procedure/function. It would be much more

difficult to find a mistake in a program if it would be one whole piece of code.

Self Assessment Exercise

1. Is procedure and function interrelated? How?

2. Which one returns value? Procedures or Functions

3.2 Procedures with Parameters

The use of parameters offers a better approach to the exchange of information between a

procedure and its reference point. The manner the information is exchanged depends,

however, on the manner in which the parameters are defined and utilized.

The new program using parameters from the previous one is as follows:

150

Program ProcedureExample2;

Uses Crt;

Procedure DrawLine(X : Integer; Y : Integer);

{the decleration of the variables in brackets are called parameters or arguments}

Var Counter : Integer; {normally this is called a local variable}

Begin

GotoXy(X,Y); {here the parameters is used}

textcolor(green);

For Counter := 1 to 10 do

Begin

write(chr(196));

End;

End;

Begin

DrawLine(10,5);

DrawLine(10,6);

DrawLine(10,7);

DrawLine(10,10);

Readkey;

End.

Now, this program includes a procedure which uses parameters. Every time it is called, the

parameters can be variable, so that the position of the line could be changed. This time, we

have also eliminated the gotoxy statement before every DrawLine statement. The numbers in

the brackets of the DrawLine are the parameters which state the position of the line. They

also serve as a gotoxy statement.

When you apply parameters to a procedure, variables should be declared on their own, and

must be separated by a semi-colon ";". They are put in between the brackets, following the

procedure name. The variables (known as the parameters) should be used by the

procedure/sub-program only.

The use of parameters in procedure can have value and variable parameters. These are

discussed in the subsequent sections.

151

3.2.1 The Variable Parameter

Parameters of procedures may be variable. In this case, you can pass data and get data

through the procedure using a variable parameter. Here is a declaration of a variable

parameter:

Procedure <PROCEDURE_NAME(Var Variable_Name : Type);>

Here is an example of how to use a variable parameter and its purpose:

Program VAR_PARAM_EXAMPLE;

Procedure Square(Index : Integer; Var Result : Integer);

Begin

Result := Index * Index;

End;

Var

Res : Integer;

Begin

Writeln('The square of 5 is: ');

Square(5, Res);

Writeln(Res);

End.

3.2.2 Value Parameters

They are very simple to use and are declared simply by including their names and

corresponding data types within the procedure header without the prefix “VAR”. It is found

in the previous examples on procedures.

3.3 Functions

The second type of sub-program is called a function. The only difference from the procedure

is that the function returns a value at the end. Note that a procedure cannot return a value. A

152

function start and end in a similar way to that of a procedure. If more than one value is

required to be returned by a module, you should make use of the variable parameter. A

function can have parameters too. If you change the sub-program from procedure to a

function, of the previous program, there will be no difference in the output of the program.

Just make sure which one is best when you can to implement a module. For example, if you

don't need to return any values, a procedure is better. However if a value should be returned

after the module is executed, function should be used instead.

Example of a program using a function is seen below:

Program FunctionExample;

Uses Crt;

Var SizeA, sizeB : Real;

YN : Char;

unitS : String[2];

Function PythagorasFunc(A:Real; B:Real) : Real;

{The pythagoras theorem}

Begin

PythagorasFunc := SQRT(A*A + B*B);

{Output: Assign the procedure name to the value. If you forget to assign the function

to the value, you will get a trash value from the memory}

End;

Begin

Repeat

Writeln;

Write ('Enter the size of side A : ');

Readln(sizeA);

Write('Enter the size of side B : ');

Readln(sizeB);

Repeat

Write('metres or centimetres? Enter : [m or cm] ');

153

Readln(unitS);

Until (unitS = 'm') or (unitS = 'cm');

Writeln(PythagorasFunc(sizeA,sizeB),' ',unitS);

Writeln;

Write('Repeat? ');

YN := Readkey;

Until (YN in ['N','n']);

End.

Self Assessment Exercise

1. Distinguish between value and variable parameters

2. State one reason why modular programming is better.

4.0 Conclusion

Subprograms in program developments has a lot of advantages such as defined program

modules; re-usable statements; logical clarity; easy to debug and tested amongst others.

Problems of complex programs are alleviated by the use of the subprograms and they are

complete and independent.

5.0 Summary

Subprograms fall into two basic categories: functions and procedures. The similarities and

differences were examined and the returning of value seems the main significant difference.

6.0 Tutor Marked Assignment

1. Write a program with reference to procedure that reads in three integer numbers and

then determine the largest.

2. Write a program with the use of function subprogram to calculate the factorial of an

integer.

154

CIT 736 – Computer Programming

Answers to Tutor Marked Assignments

Module 1 Unit 1 – Basic Concepts in Programming

1. (a) The Programming Language is the language through which we can pass instructions to

user and the system. A Computer Language (Programming Language) is composed of a set of

characters, words and rules that can be used to write a computer program. Examples of some

of the programming languages are BASIC, FORTRAN, COBOL, C, C++ etc. that the user

and the computer must understand it.

(b) Machine dependence is when a language depends on the machine model which require

more of machine involvement and details.

(c) Object Code is the generated machine code when source code is read and translated.

(d) Source code is the supplied code in user understandable form ready to be translated to

object code

2. Properties of a good program are as follows:

Program Correctness: a good program must be able to solve the intended problem

with relevant results. The output (result) must be readily available for testing with

assumed or calculated results using real or dummy data.

Documentation: every module or procedure must be preceded with comments on

brief explanation of the module in the program. These make programs easy to read

and understand by other users that may want to modify or improve on the program.

Complete documentation of the whole program is also necessary to give details of the

input, output, processing tasks and manual guide.

Robustness and Scalability: programs that can survive various unexpected events

are said to be robust and those that can easily be upgraded are scalable. They are

sometimes called safe or defensive programs because of the way they are written, the

choice of variable names, surviving incorrect data etc.

User Interface: a good look or design of the medium of interaction of the user and

the program must be well taken care so as to have a good user interface. This is the

part of the program that performs the dialog aspect of the program with the user and

must be easy and friendly to use.

155

Program Style: the programming language rules are to be adapted in writing

programs. You should not do what is not to be done with the programming language

in question.

Program correctness is what I considered as most important since the correctness of the result

is to show well completed task.

3. Possible errors encountered during program compilation are:

5. Syntax Error: errors due to misspelled (spelling errors) statements or instructions or

wrong use or non use of punctuation marks (such as commas, colon etc.) where

necessary. When such errors are detected, the programmer should look at the program

for possible spelling errors or omission of punctuation marks.

6. Run-time Error: this error occurs when the translator come across wrong

mathematical operation during program execution. This could occur, as an example,

when a number is divided by zero.

4. The machine language is a low level interface and the instructions are usually represented

by binary numbers while Symbolic language is a middle level language between the machine

language and high level languages.

Module 1 Unit 2 – Debugging Program Codes

1. Desk checking is important debugging an application during the design of the program to

see the flow. This allows the developer to walk through the program to make sure it works as

you intended. To desk check an algorithm, you supply sample values and walk through the

algorithm, performing the calculations.

Module 1 Unit 3 – Algorithm and Flowcharts

1. The flowchart is

Module 1 Unit 4 – Internal Representation of Data

1. Binary numbers from decimal numbers 20 to 30

Decimal

20

Binary

10100
21 10101
22 10110
23 10111
24 11000
25 11001

156

26 11010
27 11011
28 11100
29 11101
30 11110

2. A bit is represented by a binary digit 0 or 1 while a unit of information is a sequence or

collection of bits.

Module 1 Unit 5 – Programming Techniques

1. (a) Caching is relevant in reading operations (from a slow medium) using the following

guidelines:

3 Whenever a read operation from the slower media is needed we read a data block

containing the required item.

4 The data block is kept on the faster media, if there is no available place, older

blocks are discarded.

5 When a data item is needed the faster storage is first checked to see if it contains

the required item.

(b) Buffering utilizes an array, large enough to hold a chunk of data of the required size, and

a few procedures that are used to put and get data from the buffer.

2. Object Oriented Programming partitions program to logical entities communicating by

passing messages instead of functional units as in the modular paradigm.

