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Introduction 

The course, digital communication is one of the core courses for students. 

The overall aim of this course, is to present the basis principles that underline the analysis and design of 

digital communication systems. The subject of digital communication involves the transmission of 

information in digital form from a source that generates the information to one or more destinations. Of 

particular importance in the analysis and design of communication systems are the characteristics of the 

physical channels through which the information is transmitted. The characteristics of the channel generally 

affect the design of the basic building blocks of the communication system. 

It a background, we presume that the reader has a thorough understanding of basic calculus and 

elementary linear systems theory and prior knowledge of probability and stochastic processes. 

Course Aims 

The overall aims and objectives of this course will help you to: 

1. Design a signal for band limited channels, the optimum receiver for channels with intersymbol 

interference. 

2. Design basic elements of a digital communication system. 

3. Design basic building blocks of communication system. 
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4. Develop the capacity. 

Course Objectives 

Upon completion of the course, you should able to; 

1. Describe the elements of basic digital communication. 

2. Identify various linear block codes and their properties. 

3. Explain types of fading channel and their statistical model. 

4. Discuss multi-user communications. 

Course Materials 

Basically, we made use of textbooks and online materials. You are expected to search for web references 

and literature for further reading and understanding. Each unit has references and web references that here 

used to develops this material. 

Online Materials 

You are free to refer to the websites provided for all the online reference materials required in this course. 

Study Units 

Module 1: Digital modulation schemes.      1 

Unit 1 : Power spectrum of digitally modulated signals.    1 

Module 2: Linear block codes and graph based codes.    7 

Unit 1: Linear block codes         7 

Unit 2: Some specific linear block codes.       24 

Unit 3: Trellis and graph based codes.       54 

Module 3: Spread spectrum signals for digital communications and multi-user communication. 

       69 

Unit 1: Spread spectrum signals for digital communication.   69 

Unit 2: Multiple Antenna systems.       79 

Unit 3: Multi-user communication       98 
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Unit 4: Multi-channel and multi-carrier system             107 

Module 4: Digital communication through band-limited channels and adaptive equalization  

               112 

Unit 1: Adaptive Equalization                  112 

Unit 2: Digital communication through band-limited channels           118 

Unit 3: Carrier and symbol synchronization             124 

Unit 4: An introduction to information theory.             130 

Module 5: Fading Channel 1: Characterization and signaling           139 

Unit 1: Characterization of fading multipath channels            140 

Unit 2: The effect of signal characteristics on the choice of a channel model     

       146 

Unit 3: Diversity techniques for fading multipath channels            151 

Unit 4: Signaling over a frequency-selective, slowing fading channel: the Rake Demodulator 

                         156 

Unit 5: Multi-carrier Modulation (OFDM)                       163 

Module 6: Fading Channel II: Capacity and Coding              169 

Unit 1: Capacity of fading channels              170 

Unit 2: Ergodic and outage capacity                       177 

Unit 3: Coding for and performance of coded systems in fading channels.   186 

Unit 4: Trellis-coded modulation for fading channels.            195 

Unit 5: Bit-interleaved coded modulation.              203 

 

Assignment 

The course, digital communications, entails attending a 2-hour final examination which contributes 70% to 

your final grading. The final examination covers materials from all part of the course with a method identical 

to the tutor marked assignment (TMA). 
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The examination aims at testing your ability to apply the knowledge you have learned throughout the 

course. In preparing for the examination, it is important you receive the activities and tutor marked 

assignments you have completed in each unit. The other 30% will account for all the TMA’s at the end of 

each unit. 

Tutor Marked Assignment 

About 20 hours of tutorial will be provided in support of this course. You will be noticed of the dates, time 

and locations for these tutorials, together with the name and phone number of your tutor as soon as you 

are allotted a tutorial group. 

Your tutor will mark and comment on your assignment, keep a close watch on your progress and on any 

difficulties you mighty encounter and provide assistance to you during the course. You must mail your TMAs 

to your tutor well before the due date (at least two working days are required). They will be marked by your 

tutor and returned to you as soon as possible. 

Do not hesitate to contact your tutor by phone, e-mail if you need help. The following mighty be 

circumstances in which you would find help necessary. You can also contact your tutor if: 

- You do not understand any part of the study units or the assigned readings. 

- You have difficulty with the TMAs. 

- You have a question and problem with your tutors comments on an assignment or with the 

grading of an assignment or with the grading of an assignment. You should try your best to attend 

tutorials, since it is the only opportunity to have interaction with you. Tutor and to ask questions 

which are answered immediately. You can raise any problem encountered in the course of your 

study. To gain maximum benefit from the course tutorials, you are advised to prepare a list of 

questions before attending tutorial. You will learn a lot from participating in discussions actively. 

Course Overview 

This section proposes the number of weeks that you are expected to spend on the six modules comprising 

of 23 units and the assignment that follow each unit. We recommend that two units with its associated TMA 

be completed in one week, bringing your period to a maximum of 11 weeks. 

- How to get the most of this course 

In order for you to learn various concepts in this course, it is essential to practice. Independent and 

case activities which are based on a particular scenario are presented in the units. The activities 

include open questions to promote discussions on the relevant topics and questions with standard 

answers. 

You may try to go into each unit adopting the following steps; 
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1. Read the study unit. 

2. Read the text book, printed or online references 

3. Perform the activities. 

4. Participate in group discussions. 

5. Complete the tutor marked assignment. 

6. Participate in online discussion. 

Summary   

The course, digital communications is intended to present the basis principles that underline the analysis 

and design of digital communication systems as a text for self study and as a guide for the practicing 

engineer involved in the design and analysis of digital communications systems. 

It is also design to serve as a text for a first-year graduate level course for students in electrical engineering. 

We hope that you will find the course enlightening, interesting and useful. In the longer term, we also hope 

you will get acquainted with the National Open University of Nigeria. We wish you success in all your future 

endeavours. 
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MODULE 1: Digital modulation schemes 

Unit 1: Power Spectrum of Digitally Modulated Signals  

1.0 Introduction 

2.0 Objectives  

3.0 Main Content  

3.1 Power spectral Density of a digitally modulated signal with memory.  

3.2 Bandpass and low pas signals 

3.3 A comparison of digital signaling methods  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading  

 

1.0 Introduction 

In this unit, the information about the power spectral density helps us determine the 

required transmission bandwidth of these modulation schemes and the ir bandwidth 

efficiency. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Understand the power spectrum of digitally modulated signal  

- Explain power efficiency 

- Discuss positive spectrum with respect to pass band and low pass  signals. 
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3.1 Power spectral Density of a digitally Modulated Signal with Memory  

Power Spectrum of Digitally Modulated Signals 

In this section we study the power spectral density of digitally modulated signals. The 

information about the power spectral density helps us determine the required 

transmission bandwidth of these modulation schemes and their bandwidth efficiency. We 

start by considering a general modulation scheme with memory in which the current 

transmitted signal can depend on the entire history of the information sequence and 

then specialize this general formulation to the cases where the modulation system has a 

finite memory, the case where the modulation is linear, and when the modulated signal 

can be determined by the state of a Markov chain. We conclude this section with the 

spectral characteristics of CPM and CPFSK signals. 

Power Spectral Density of a Digitally Modulated Signal with Memory 

Here we assume that the bandpass modulated signal is denoted by v(t) with a lowpass 

equivalent signal of the form 

 

 

Here sl(t; In) E {s1l(t), s2a(t), . . . , SM1(t)} is one of the possible M lowpass equivalent 

signals determined by the information sequence up to time n, denoted by In = (. . . , In-

2, In-1, In). We assume that In is stationary process. Our goal here is to determine the 

power spectral density of vl(t). This is done by first deriving the power spectral density 

of v, (t) and using Equation 2.9-14 to obtain the power spectral density of v (t).  

We first determine the autocorrelation function of vl(t) 

 

 

 

Changing t to t + T does not change the mean and the autocorrelation function of v l(t), 

hence vl(t) is a cyclostationary process; to determine its power spectral density, we 
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have to average Rvl(t + r, t) over one period T. We have (with a change of variable of 

k=n-m) 

 

 

 

 

Where in (a) we have introduced a change of variable of the form u = t – mT and we 

have used the fact that the Narkov chain is in the steady state and the input process 

{In} is stationary. Defined 

 

 

 

 

The power spectral density of vl (t) which is the Fourier transform of Rvl (T), is therefore 

given by 

 

 

Where Gk (f) denotes the Fourier transform of gk(T).  

3.2 Bandpass and low pass signals Representation 

The process of communication consists of transmission of the output of an 

information source over a communication channel. In almost all cases, the spectral 

characteristics of the information sequence do not directly match the spectral 

characteristics of the communication channel, and hence the information signal 

cannot be directly transmitted over the channel. In many cases the information signal 

is a low frequency (baseband) signal, and the available spectrum of the 
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communication channel is at higher frequencies. Therefore, at the transmitter the 

information signal is translated to a higher frequency signal that matches the 

properties of the communication channel. This is the modulation process in which the 

baseband information signal is turned into a bandpass modulated signal. In this 

section we study the main properties of baseband and bandpass signals. 

Bandpass and Lowpass Signals 

In this section we will show that any real, narrowband, and high frequency signal -

called a bandpass signal can be represented in terms of a complex low 

frequencysignal, called the lowpass equivalent of the original bandpass signal. This 

result makes it possible to work with the lowpass equivalents of bandpass signals 

instead of directly working with them, thus greatly simplifying the handling of 

bandpass signals. That is so because applying signal processing algorithms to lowpass 

signals is much easier due to lower required sampling rates which in turn result in 

lower rates of the sampled data. 

The Fourier transform of a signal provides information about the frequency content, or 

spectrum, of the signal. The Fourier transform of a real signal x(t) has Hermitian 

symmetry, i.e., X (- f) = X *(f ), from which we conclude that I X (- f) l = X (f) j and LX 

* (f) = - LX(f ). In other words, for real x (t), the magnitude of X (f) is even and 

 

 

 

 

its phase is odd. Because of this symmetry, all information about the signal is in the 

positive (or negative) frequencies, and in particular x(t) can be perfectly 

reconstructed by specifying X(f) for f > 0. Based on this observation, for a real 

signal x(t), we define the bandwidth as the smallest range of positive frequencies 

such that X(f) = 0 when /f/ is outside this range. It is clear that the bandwidth of a 

real signal is one-half of its frequency support set. 
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A lowpass, or baseband, signal is a signal whose spectrum is located around the 

zero frequency. For instance, speech, music, and video signals are all lowpass 

signals, although they have different spectral characteristics and bandwidths. 

Usually lowpass signals are low frequency signals, which means that in the time 

domain, they are slowly varying signals with no jumps or sudden variations. The 

bandwidth of a real lowpass signal is the minimum positive W such that X(f) = 0 

outside [-W, +W]. For these signals the frequency support, i.e., the range of 

frequencies for which X (f)  0, is [-W, +W]. An example of the spectrum of a real-

valued lowpass signal is shown in Fig. 2.1-1. The solid line shows the magnitude 

spectrum /X(f)/, and the dashed line indicates the phase spectrum LX(f ). 

We also define the positive spectrum and the negative spectrum of a signal x (t) as 

 

 

3.3 A comparison of Digital Signaling Method  

The digital modulation methods described in the previous sections can be compared in 

a number of ways. For example, one can compare them on the basis of the SNR 

required to achieve a specified probability of error. However, such a comparison would 

not be very meaningful, unless it were made on the basis of some constraint, such as a 

fixed data rate of transmission or, equivalently, on the basis of a fixed bandwidth.  

The criterion for power efficiency of a signaling scheme is the SNR per bit that is 

required by that scheme to achieve a certain error probability. The error probability 

that is usually considered for comparison of various signaling schemes is Pe = 10-5. 

The yb = No required by a signaling scheme to achieve an error probability of 10-5 is a 

criterion for power efficiency of that scheme. Systems requiring lower yb to achieve 

this error probability are more power-efficient. 

To measure the bandwidth efficiency, we define a parameter r, called the spectral bit 

rate, or the bandwidth efficiency, as the ratio of bit rate of the signaling scheme to the 

bandwidth of it, i.e., 
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r = R/W b/s/Hz 

A system with larger r is a more bandwidth-efficient system since it can transmit at a 

higher bit rate in each hertz of bandwidth. The parameters r and yb defined above are 

the two criteria we use for comparison of power and bandwidth efficiency of different 

modulation schemes.  

4.0 Conclusion 

The spectral characteristics of the communication channel, and hence the information 

signal cannot be directly transmitted over the channel. In many cases, the information 

signal is a low frequency (base band) signal, and the available spectrum of 

communication channel is at higher frequencies. Therefore, at the transmitter the 

information signal is translated to a higher frequency signal that matches the properties 

of the communication channel. This is the modulation process in which the base band 

information signal is turned into a band pass modulated signal. 

5.0 Summary 

In this unit, we considered the spectral characteristics of continuous-phase modulation 

(CPM) and continuous-phase frequency-shift keying (CPFSK). Besides, we also 

considered the main properties of base-band and bandpass signals. 

6.0 Tutor Marked Assignment 

1. Let x (t) and y (t) denote two band pass signals, and let x (t) and Yi (t) denote 

their low pass equivalents with respect to some frequency fo. We know that in general 

Xi (t) and yi (t) are complex signals. 

i. Show that; 

 x(E)y (t) dt = 1/Z Re [I xi(t) yi (t)dt] 

ii. From this conclude that Y_ x = '/z Y-xc, i.e the energy in a bandpass signal is 

one-half the energy in its low pass equivalent 
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2. The information sequence {an) is a sequence taking the values -1, 2 and with 

probabilities 1/4, 
1/4 and 1/z. This information sequence is used to generate the 

baseband signal. 

V(t) = Z an Sinc (t-nT) 
      T 

i. Determine the power spectral density of v(t) 

ii. Define the sequence (bn) as b, = 9, + 9n _1 -9,_z and generate the base-

band signal. 

u(t) = Z a, Sinc (t-nT) 
T 

Determine the power spectral density of u(t). What are the possible values for the b n 

sequence? 

6.0 References/ Further Reading 

The linear representation of continuous phase modulation for binary modulation by 

Laurent (1986). 

 

MODULE 2: LINEAR BLOCK CODE AND GRAPH BASED CODES 

Unit 1: Linear Block Codes 

Unit 2: Some Specific Linear Block Codes 

Unit 3: Trellis and Graph Based Code  

Unit 1: Linear Block Codes 

1.0 Introduction  

2.0 Objective  

3.0 Main Contents  

3.1 Basic definitions  
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Channel codes can be classified into two major classes, block codes and 

convolutional codes. In block codes one of the M = 2k messages, each 

representing a binary sequence of length k, called the information sequence, is 

mapped to a binary sequence of length n, called the codeword, where n > k. The 

codeword is usually transmitted over the communication channel by sending a 

sequence of n binary symbols, for instance, by using BPSK. QPSK and BFSK are 

other types of signaling schemes frequently used for transmission of a codeword. 

Block coding schemes are memoryless. After a codeword is encoded and 

transmitted, the system receives a new set of k information bits and encodes them 

using the mapping defined by the coding scheme. The resulting codeword depends 

only on the current k information bits and is independent of all the codewords 

transmitted before. 

Convolutionalodes are described in terms of finite-state machines. In these codes, 

at each time instance i, k information bits enter the encoder, causing n binary 

symbols generated at the encoder output and changing the state of the encoder 

from i-1 to i. The set of possible states is finite and denoted by E. The n binary 

symbols generated at the encoder output and the next state 6l depend on the k 

input bits as well as i-1.  

At each time instance, k bits enter the encoder and the contents of the shift 

register are shifted to the right by k memory elements. The contents of the 

rightmost k elements of the shift register leave the encoder. After the k bits have 

entered the shift register, 

 

 

 

 

A convolutional encoder. 

the n adders add the contents of the memory elements they are connected to 

(modulo-2 addition) thus generating the code sequence of length n which is sent to 
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the modulator. The state of this convolutional code is given by the contents of the first 

(K - 1)k elements of the shift register. 

The code rate of a block or convolutional code is denoted by Rc and is given by 

 = Rc = k/n 

The rate of a code represents the number of information bits sent in transmission of a 

binary symbol over the channel. The unit of R, is information bits per transmission. 

Since generally n > k, we have R, < 1. 

Let us assume that a codeword of length n is transmitted using an N-dimensional 

constellation of size M, where M is assumed to be a power of 2 and L = n/log2M M is 

assumed to be an integer representing the number of M-ary symbol transmitted per 

codeword. If the symbol duration is TS, then the transmission time for k bits is Ts = L 

Ts and the transmission rate is given by 

 

 

The dimension of the space of the encoded and modulated signals is LN, and using the 

dimensionality theorem as stated in Equation,  we conclude that the minimum required 

transmission bandwidth is given by 

 

 

These equations indicate that compared with an uncoded system that uses the same 

modulation scheme, the bit rate is changed by a factor of R, and the bandwidth is 

changed by a factor of 1 /Rc i.e., there is a decrease in rate and an increase in 

bandwidth. 

If the average energy of the constellation is denoted by Eav, then the energy per 

codeword E, is given by 
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Modulation schemes frequently used with coding are BPSK, BFSK, and QPSK. The 

minimum required bandwidth and the resulting spectral bit rates for these modulation 

scheme† are given below: 

 

 

3.2 The Structure of Finite Fields 

To further explore properties of block codes, we need to introduce the notion of a 

finite field and its main properties. Simply stated, a field is a collection of objects that 

can be added, subtracted, multiplied, and divided. To define fields, we begin by 

defining Abelian groups. An Abelian group is a set with a binary operation that has the 

basic properties of addition. A set G and a binary operation denoted by + constitute an 

Abelian group if the following properties hold: 
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3. The operation + has an identity element denoted by 0 such that for any a E G, 

a -1 -0=0+a=a. 

4. For any a E G there exists an element -a E G such that a + (-a) = (-a) + a = 0. 

The element -a is called the (additive) inverse of a. 

An Abelian group is usually denoted by {G, +, 01}. 

A finite field or Galois field is a finite set F with two binary operations, addition and 

multiplication, denoted, respectively, by + and -, satisfying the following properties:  

1. {F, +, 0} is an Abelian group. 

2. {F – {0}, ., 1} is an Abelian group; i.e., the nonzero elements of the field 

constitute an Abelian group under multiplication with an identity element denoted by 

"1". The multiplicative inverse of a E F is denoted by a-l. 

3. Multiplication is distributive with respect to addition: a - (b + c) = (b + c) - a = 

a-b+a-c. 

A field is usually denoted by {F, +, .1. It is clear that IIB, the set of real numbers, is a 

field (but not a finite field) with ordinary addition and multiplication. The set F = {0, 

11 with modulo-2 addition and multiplication is an example of a Galois (finite) field. 

This field is called the binary field and is denoted by GF(2). The addition and 

multiplication tables for this field are given in table above. 

Characteristic of a Field and the Ground Field 

A fundamental theorem of algebra states that a Galois field with q elements, denoted 

by GF(q), exists if and only if q = pm, where p is a prime and m is a positive integer. It 

can also be proved that when GF(q) exists, it is unique up to isomorphism. This means 

that any two Galois fields of the same size can be obtained from each other after 

renaming the elements. For the case of q = p, the Galois field can be denoted by 

GF(p) = 10, 1, 2, . . ., p - 11 with modulo-p addition and multiplication. For instance 

GF(5) = {0, 1, 2, 3, 41 is a finite field with modulo-5 addition and multiplication. When 

q = pm, the resulting Galois field is called an extension field of GF(p). In this case 

GF(p) is called the ground field of GF(pm), and p is called the characteristic of GF(pm). 
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Polynomials over Finite Fields 

To study the structure of extension fields, we need to define polynomials over GF(p). A 

polynomial of degree m over GF(p) is a polynomial 

 

where gi , 0  i  m, are elements of GF(p) and gm  0. Addition and multiplication of 

polynomials follow standard addition and multiplication rules of ordinary polynomials 

except that addition and multiplication of the coefficients are done modulo-p. If gm = 

1, the polynomial is called monic. If a polynomial of degree m over GF(p) cannot be 

written as the product of two polynomials of lower degrees over the same Galois field, 

then the polynomial is called an irreducible polynomial. For instance, X2 + X + 1 is an 

irreducible polynomial over GF(2), whereas X2 + 1 is not irreducible over GF(2) 

because X2 + 1 = (X + 1)2. A polynomial that is both monic and irreducible is called a 

prime polynomial. A fundamental result of algebra states that a polynomial of degree 

m over GF(p) has m roots (some may be repeated), but the roots are not necessarily 

in GF(p). In general, the roots are in some extension field of GF(p). 

The Structure of Extension Fields 

From the above definitions it is clear that there exist pm polynomials of degree less 

than m; in particular these polynomials include two special polynomials g(X) = 0 and 

g(X) = 1. Now let us assume that g(X) is a prime (monic and irreducible) polynomial of 

degree m and consider the set of all polynomials of degree less than m over GF(p) 

with ordinary addition and with polynomial multiplication modulo-g(X). It can be shown 

that the set of these polynomials with the addition and multiplication operations 

defined above is a Galois field with pm elements. 

EXAMPLE 7.1-1. We know that X2 + X + 1 is prime over GF(2); therefore this poly-

nomial can be used to construct GF(22) = GF(4). Let us consider all polynomials of 

degree less than 2 over GF(2). These polynomials are 0, 1, X, and X -f- 1 with addition 

and multiplication tables given in table above. Note that the multiplication rule 

basically entails multiplying the two polynomials, dividing the product by g(X) = X2 + X 

+ 1, and finding the remainder. This is what is meant by multiplying modulo-g(X). It is 
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interesting to note that all nonzero elements of GF(4) can be written as powers of X; 

i.e,X=X1, X+1= X2, and 1=X3. 

 

 

 

 

 

 

 

 

 

 

To generate GF(23), we can use either of the two prime polynomials gl(X) = X3 + X + 

1 or 92(X) = X3 + XZ + 1. If g(X) = X3 + X -f- l is used, the multiplication table for 

GF(23) is given by Table above. The addition table has a trivial structure. Here again 

note that X1 = X, X2 = X2, X3 = X + l, X4 = XZ + X, XS = X2 + X + 1, X6 = X2 + 1, 

and X7 = 1. In other words, all nonzero elements of GF(8) can be written as powers of 

X. The nonzero elements of the field can be expressed either as polynomials of degree 

less than 3 or, equivalently, as X` for 1  i   7. A third method for representing the 

field elements is to write coefficients of the polynomial as a vector of length 3. The 

representation of the form X` is the appropriate representation when multiplying field 

elements since X - Xi = X'+j, where i + j should be reduced modulo-7 because X7 = 1. 

The polynomial and vector representations of field elements are more appropriate 

when adding field elements. A table of the three representations of field elements is 

given in Table 7.1-4. For instance, to multiply X2 + X + 1 and X2 + 1, we use their 

power representation as XS and X6 and we have (X2 + X +1)(X2+1)=X11 =X4=X2+X. 

 



 21 

 

3.3 General properties of linear block code  

A q-ary block code C consists of a set of M vectors of length n denoted by cm = (cm1, 

cm2, . . . , Cmn), 1  m  M, and called codewords whose components are selected from 

an alphabet of q symbols, or elements. When the alphabet consists of two symbols, 0 

and l, the code is a binary code. It is interesting to note that when q is a power of 2, 

i.e., q = 2b where b is a positive integer, each q-ary symbol has an equivalent binary 

representatioh consisting of b bits; thus, a nonbinary code of block length N can be 

mapped into a binary code of block length n = bN. 

There are 2n possible codewords in a binary block code of length n. From these 2' 

codewords, we may select M = 2k codewords (k < n) to form a code. Thus, a block of 

k information bits is mapped into a codeword of length n selected from the set of M = 

2k codewords. We refer to the resulting block code as an (n, k) code, with rate R, = 

k/n. More generally, in a code having q symbols, there are qn possible codewords. A 

subset of M = qk codewords may be selected to transmit k-symbol blocks of 

information. 

Besides the code rate parameter R, an important parameter of a codeword is its 

weight, which is simply the number of nonzero elements that it contains. In general, 

each codeword has its own weight. The set of all weights in a code constitutes the 

weight distribution of the code. When all the M codewords have equal weight, the 

code is called a fixed-weight code or a constant-weight code. 

A subset of block codes, called linear block codes, is particularly well studied during 

the last few decades. The reason for the popularity of linear block codes is that 

linearity guarantees easier implementation and analysis of these. codes. In addition, it 

is remarkable that the performance of the class of linear block codes is similar to the 

performance of the general class of block codes. Therefore, we can limit our study to 

the subclass of linear block codes without sacrificing system performance. 

A linear block code C is a k-dimensional subspace of an n -dimensional space which is 

usually called an (n, k) code. For binary codes, it follows from Problem 7.11 that a 

linear block code is a collection of 2k binary sequences of length n such that for any 
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two codewords cl, c2  C we have cl + c2 E C. Obviously, 0 is a codeword of any linear 

block code. 

Generator and Parity Check Matrices 

In a linear block code, the mapping from the set of M = 2k information sequences of 

length k to the corresponding 2k codewords of length n can be represented by a k x n 

matrix G called the generator matrix as; 

where um is a binary vector of length k denoting the information sequence and cm is 

the corresponding codeword. The rows of G and denoted by gi, 1  i  k, denoting the 

codewords corresponding to the information sequence (1, 0, …., 0), (0, 1, 0, …., 0), 

…, (0,….0,1). 

 

 

where the summation is in GF(2), i.e., modulo-2 summation. 

 Two linear block codes C l and C2 are called equivalent if the corresponding generator 

matrices have the same row space, possibly after a permutation of columns. 

If the generator matrix G has the following structure; 

G = ( Ik / P) 

where I k is a k x k identity matrix and P is a k x (n -k) matrix, the resulting linear 

block code is called systematic. In systematic codes the first k components of the 

codeword are equal to the information sequence, and the following n - k 

components, called the parity check bits, provide the redundancy for protection 

against errors.  

Since C is a k-dimensional subspace of the n-dimensional binary space, its orthog-

onal complement, i.e., the set of all n-dimensional binary vectors that are 

orthogonal to the the codewords of C, is an (n - k)-dimensional subspace of the n-

dimensional space, and therefore it defines an (n, n - k) code which is denoted by 

C' and is called the dual code of C. The generator matrix of the dual code is an (n - 
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k) x n matrix whose rows are orthogonal to the rows of G, the generator matrix of 

C. The generator matrix of the dual code is called the parity check matrix of the 

original code C and is denoted by H. Since any codeword of C is orthogonal to all 

rows of H, we concluded that for all c  C. 

   cHt = 0 

Also if for some binary n-dimensional vector c we have cHt = 0, then c belongs to 

the orthogonal complement of H, i.e., c  C. Therefore, a necessary and sufficient 

condition for c  (0,1)n  Since rows of G are codewords, we conclude that; 

GHt = 0 

In the special case of systematic codes, where G = [Ik / P], the parity check 

matrix is given by 

   H = [-Pt/ In-k] 

which obviously satisfies GHt = 0. For binary code Pt = Pt and H (Pt / In-k]   

 Consider a (7,4) linear block code with 

 

 

Obviously this is a systematic code. This parity check matric for this code is   

 

 

If u = (u1, u2, u3, u4) is an information sequence, the corresponding codeword c = 

(c1, c2,…., c7) is given by 
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Weight and Distance for Linear Block Codes 

The weight of a codeword c E C is denoted by w(c) and is the number of nonzero 

components of that codeword. Since 0 is a codeword of all linear block codes, we 

conclude that each linear block code has one codeword of weight zero. The Hamming 

distance between two codewords cl, c2 E C, denoted by d(cl, c2), is the number of 

components at which cl and c2 differ. It is clear that the weight of a codeword is its 

distance from 0. 

The distance between cl and c2 is the weight of cl - c2, and since in linear block codes 

cl - c2 is a codeword, then d(cl, c2) = w(cl - c2). We clearly see that in linear block 

codes there exists a one-to-one correspondence between weight and the distance 

between codewords. This means that the set of possible distances from any codeword 

c E C to all other codewords is equal to the set of weights of different codewords, and 

thus is independent of c. In other words, in a linear block code, looking from any 

codeword to all other codewords, one observes the same set of distance, regardless of 

the codeword one is looking from. Also note that in binary linear block codes we can 

substitute cl - c2 with cl + c2. 

The minimum distance of a code is the minimum of all possible distances between 

distinct codewords of the code, i.e., 

 

 

The minimum weight of a code is the minimum of the weights of all nonzero 

codewords which for linear block codes is equal to the minimum distance. 

 

 

There exists a close relation between the minimum weight of a linear block code and 

the columns of the parity check matrix H. We have previously seen that the necessary 

and sufficient condition for c E {0, lln to be a codeword is that cHt = 0. If we choose c 

to be a codeword of minimum weight, from this relation we conclude that w„,in (or 

drain) columns of H are linearly dependent. On the other hand, since there exists no 
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codeword of weight less than d nun, no fewer than d„,ir, columns of H can be linearly 

dependent. Therefore, dmi„ represents the minimum number of columns of H that can 

be linearly dependent. In other words the column space of H has dimension d,,-,in - 1. 

In certain modulation schemes there exists a close relation between Hamming 

distance and Euclidean distance of the codewords. In binary antipodal signaling-for 

instance, BPSK modulation-the 0 and 1 components of a codeword c E C are mapped 

to and +,I-Sc, respectively. Therefore if s is the vector corresponding to the 

modulated sequence of codeword c, we have 

 

 

where dsm, sm denotes the Euclidean distance between the modulate sequences 

and d(cm, cm) is the Hamming distance between the corresponding codewords. 

From the above we have 

 

where dEmin is the minimum Euclidean distance of the BPSK modulated sequences 

corresponding to the codewords. Using equation 7.1-8 we conclude that 

d2
Emin = 2Rcbdmin  

For the binary orthogonal modulations, e.g binary orthogonal FSK, we similarly 

have    

     d2
Emin = 2Rcbdmin  

The Distribution Polynomial 

An (n, k) code has 2k codewords that can have weights between 0 and n. In any 

linear block code there exists one codeword of weight 0, and the weights of nonzero 

codewords can be between d,nin and n. The weight distribution polynomial (WEP) or 

weight enumeration function (WEF) of a code is a polynomial that specifies the 

number of codewords of different weights in a code. The weight distribution 

polynomial or weight enumeration function is denoted by A(Z) and is defined by 
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where Ai denotes the number of codewords of weight i. The following properties of the 

weight enumeration function for linear block codes are straightforward. 

 

 

The weight enumeration function for many block codes is unknown. For low rate codes 

the weight enumeration function can be obtained by using a computer search. The 

MacWilliams identity expresses the weight enumeration function of a code in terms of 

the weight enumeration function of its dual code. By this identity, the weight 

enumeration function of a code A(Z) is related to the weight enumeration function of 

its dual code Ad (Z) by 

 

Note that for a linear block code, the set of distances seen from any codeword to 

other codewords is independent of the codeword from which these distances are seen. 

Therefore, in linear block codes the error bound is independent of the transmitted 

codeword, and thus, without loss of generality, w can always assume that the all-zero 

codewodrd 0 is transmitted.  

For orthogonal binary FSK modulation we have 

 

The distance enumerator function for BPSK is given by 

 

 

 

Another version of the weight enumeration function provides information about the 

weight of the codewords as well as weight of the responding information sequences. 
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The polynomial is called the input-output weight enumeration function (IOWEF), 

denoted by B (Y,Z) and is defined as 

 

 

Where Bij is the number of codewords is weight i that are generated by information 

sequences of weight j. clearly 

  

 

A third form of the weight enumeration function called the conditional weight 

enumeration function (CWEF) is defined by  

 

 

and it represents the weight enumeration function of all codewords corresponding to 

information sequences of weight j. from equations, it is easy to see that 

 

In the code discussed, there are 24 = 16 codewords with possible weights between 0 

and 7. Substituting all possible information sequences of the form u = (u l, u2, u3, u4) 

and generating the codewords, we can verify that for this code drain = 3 and there 

are 7 codewords of weight 3 and 7 codewords of weight 4. There exist one codeword 

of weight 7 and one codeword of weight 0. Therefore, 
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 Error Probability of Linear Block Codes 

Two types of error probability can be studied when linear block codes are employed. 

The block error probability or word error probability is defined as the probability of 

transmitting a codeword c,n and detecting a different codeword c,,,. The second type 

of error probability is the bit error probability, defined as the probability of receiving a 

transmitted information bit in error. 

Block Error Probability 

Linearity of the code guarantees that the distances from c,n to all other codewords are 

independent of the choice of c„2. Therefore, without loss of generality we can assume 

that the all-zero codeword 0 is transmitted. 

To determine the block (word) error probability Pe, we note that an error occurs if the 

receiver declares any codeword c,n :~L_ 0 as the transmitted codeword. The prob-

ability of this event is denoted by the pairwise error probability Po,m. 

  

 

Where in general P0cm depends on the Hamming distance between 0 and cm, which 

is equal w(cm), in a way that depends on the modulation scheme employed for 

transmission of the codewords. Since for codewords of equal weight we have the 

same P0---cm, we conclude that 

   

Where P2(i) denotes the pairwise error probability (PEP) between two codewords 

with Hamming distance i. 

From Equation, we know that; 
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Using this result in equation yields the simpler, but looser, bound 

 

Bit Error Probability 

In general, errors at different locations of an information sequence of length k can 

occur, with different probabilities. We define the average of these error probabilities 

as the bit error probability for a linear block code. We again assume that the all -zero 

sequence is transmitted; then the probability that a specific codeword of weight i will 

be decoded at the detector is equal to P2(i). The number of codewords of weight i 

that correspond to information sequences of weight j is denoted by Bid. Therefore, 

when 0 is transmitted, the expected number of information bits received in error is 

given by 
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The (average) bit error probability of the linear block code Pb is defined as the ratio 

of the expected number of bits received in error to the total numbe of transmited 

bits, i.e. 

 

 

 

 from equation, we see that the last sum is simply Bj (∆); therefore 

 

 

we can also express the bit error probability in terms of the IOWEF by using equation  

as  

 

 

4.0 Conclusion 

This unit is devoted to block codes whose construction is based on familiar algebraic 

structures such as groups, rings and fields. 

5.0 Summary 

We considered one of he channel codes named block code. Hard decision decoding 

of these codes results in a binary symmetric channel model consisting of the binary 

modulator, the waveform channel, and the optimum binary detector.  

6.0 Tutor Marked Assignment 

1. The generator matrix for a linear binary code is  

0011101 

G  = 0100111  

1001110 
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a. Express G in systematic [I/P] form. 

b. Determine the party check matrix H for the code. 

c. Construct the table of syndromes for the code. 

d. Determine the minimum distance of the code. 

e. Demonstrate that the codeword C corresponding to the information sequence 101 

satisfies cHt = 0. 

2. Prove that; 

i. Elements of the standard array of a linear block code are distinct. 

ii. Two element belonging to two distinct cosset of a standard array have distinct 

syndromes. 

7.0 References/ Further Reading 

Coding techniques for noisy channels by Elias (1954,1955) and Slepian (1956). 

Unit 2: Some specific linear block codes  

1.0  Introduction 

2.0 Objectives  

3.0 Main Contents  

3.1 Specific linear block codes  

3.2 Optimum soft decision decoding of linear block codes 

3.3 Hard decision decoding of linear block codes 

3.4 Comparison of performance between hard decision and soft decision decoding 

3.5 Bounds on minimum distance of linear block codes  

4.0 Conclusion  
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5.0  Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Reading  

1.0 Introduction 

We are going to examine some linear block codes with their parameters. Besides, 

study some bounds on minimum distances of linear block codes. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Explain error detection and error correction capability of block codes. 

- Understanding the parameters of some specific linear codes. 

- Discus soft and hard decision decoding of linear block codes.  

3.1 Specific linear block codes.  

In this section, we briefly describe some linear block codes that are frequently encoun-

tered in practice and list their important parameters. Additional classes of linear codes 

are introduced in our study of cyclic codes.  

Repetition Codes 

A binary repetition code is an (n, 1) code with two code words of length n. One 

codeword is the all-zero codeword, and the other one is the all-one codeword. This 

code has a rate of R, = n and a minimum distance of dmin = n. The dual of a repetition 

code is an (n, n - 1) code consisting of all binary sequences of length n with even 

parity. The minimum distance of the dual code is clearly dmin = 2. 

Hamming Codes 

Hamming. codes are one of the earliest codes studied in coding theory. Hamming 

codes are linear block codes with parameters n = 2m - 1 and k = 2m - m - l, for m > 3. 

Hamming codes are best described in terms of their parity check matrix H which is an 
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(n - k) x n = m x (2m - 1) matrix. The 2m - 1 columns of H consist of all possible 

binary vectors of length m excluding the all-zero vector. The rate of a Hamming code 

is given by 

Rc = 2m-m - 1 
2m-1 

which is close to 1 for large values of m. 

Since the columns of H include all nonzero sequences of length m, the sum of any two 

columns is another column. In other words, there always exist three columns that are 

linearly dependent. Therefore, for Hamming codes, independent of the value of m, 

dmin = 3. 

The weight distribution polynomial for the class of Hamming (n, k) codes is known and 

is expressed as  

A(Z) = n + 1 [(I + Z)n + n(1 + Z) (n-1)/2 (1 - Z)(n+1)/2]  

To generate the H matrix for a (7, 4) Hamming code (corresponding to m - 3), we 

have to use all nonzero sequences of length 3 as columns of H. We can arrange these 

columns in such a way that the resulting code is systematic as 

 1 1 1 0 1 0 0 
H =   0 1 1 1 0 1 0  

1 1 0 1 0 0 1 

 

This is the parity check matrix derived in Example above. 

Maximum-Length Codes 

Maximum-length codes are duals of Hamming codes; therefore these are a family of 

(2'n - 1, m) codes for m >_ 3. The generator matrix of a maximum-length code is the 

parity check matrix of a Hamming code, and therefore its columns are all sequences of 

length m with the exception of the all-zero sequence. Therefore, the weight 

enumeration function for these codes is given by 

A(Z) - 1 + (2m - 1)Zm-1   
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Reed-Muller Codes 

Reed-Muller codes introduced by Reed (1954) and Muller (1954) are a class of linear 

block codes with flexible parameters that are particularly interesting due to the 

existence of simple decoding algorithms for them. 

A Reed-Muller code with block length n = 2m and order r < m is an (n, k) linear block 

code with 

n - 2n2 

k (7.3-5) i 

d - _r min 2m 

whose generator matrix is given by 

 

 

 

where Go is a 1 x n matrix of all is  

  Go = (1 1 1 ….. 1) 

And G1 is an m x n matrix whose columns are distinct binary sequences of length m 

put in natural binary order. 

 

 

G2 is an (m
2) x n matrix whose rows are obtained by bitwise multiplication of two row 

of G2 at a time. Similarly, Gi for 2 < i  r is a (m
r) x n matrix whose rows are obtained 

by bitwise multiplication got r rows of G2 at a time.  

 The first-order Reed-Muller code with block length 8 is an (8,4) code with generator 

matrix. 
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This code can be obtained from a (7,3) maximum-length code by adding one extra 

parity bit to make the overall weight of each codeword even. This code has a 

minimum distance of 4. The second-order Reed-Muller code with block length 8 has 

the generator matrix. 

 

 

 

and has a minimum  distance of 2. 

Hadamard Codes 

 A Hadamard code is obtained by selecting as codewords the rows of a Hadamard 

matrix. A Hadamard matrix Mn is an n x n matrix (n is an even integer) of 1 s and Os 

with the property that any row differs from any other row in exactly 2 positions.t One 

row of the matrix contains all zeros. The other rows each contain 2 zeros and 2 ones. 

or n = 2, the Hadamard matrix is 

M2 = [0 0] 

  0 1   

Furthermore, from Mn, we can generate the Hadamard matrix M2n according to the 

relation 

Mn Mn 

M2n =  Mn Mn  

Where Mn denotes the complement (Os replaced by is and vice versa) of Mn.  We 

obtain 
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Now the rows of M4 and M4 form a linear binary code of block length n = 4 having 2n 

= 8 code words. The minimum distance of the code is dmin = n/2 = 2. 

 we can generate Hadamard codes with block length n = 2m, k = log2 2n = log2 2
m+1= 

m + 1, and dmin = n/2 = 2m-1, where m is a positive integer. In addition to the 

important special cases where n = 2m, Hadamard codes of other block lengths are 

possible, but the resulting codes are not linear. 

 

Golay Code 

The Golay code (Golay (1949)) is a binary linear (23, 12) code with d,';" = 7. The 

extended Golay code is obtained by adding an overall parity bit to the (23, 12) Golay 

code such that each codeword has even parity. The resulting code is a binary linear 

(24, 12) code with dn,1n = 8. The weight distribution polynomials of Golay code and 

extended Golay code are known and are given by 

AG(Z) = 1 + 253Z7 + 506Z8 + 12882Z11+ 1288Z12 + 506Z15 + 253Z16 + Z23  

AEG(Z) = 1 + 759Z8 + 2576Z12 + 759Z16 + Z24 

We discuss the generation of the Golay code in Section 7.9-5. 7.4 

3.2 OPTIMUM SOFT DECISION DECODING OF LINEAR BLOCK CODES 

In this section, we derive the performance of linear binary block codes on an AWGN 

channel when optimum (unquantized) soft decision decoding is employed at the re-

ceiver. The bits of a codeword may be transmitted by any one of the binary signaling 

methods described  For our purposes, we consider binary (or quaternary) coherent 

PSK, which is the most efficient method, and binary orthogonal FSK with either 

coherent detection or noncoherent detection. 

 we know that the optimum receiver, in the sense of minimizing the average 

probability of a codeword error, for the AWGN channel can be realized as a parallel 

bank of M = 2k filters matched to the M possible transmitted waveforms. The outputs 

of the M matched filters at the end of each signaling interval, which encompasses the 

transmission of n binary symbols in the codeword, are compared, and the codeword 

corresponding to the largest matched filter output is selected. Alternatively, M cross-

correlators can be employed. In either case, the receiver implementation can be 

simplified. That is, an equivalent optimum receiver can be realized by use of a single 
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filter (or cross-correlator) matched to the binary PSK waveform used to transmit each 

bit in the codeword, followed by a decoder that forms the M decision variables 

corresponding to the M code words. 

To be specific, let rj , j = 1, 2, . . . , n, represent the n sampled outputs of the 

matched filter for any particular codeword. Since the signaling is binary coherent PSK, 

the output rj may be expressed either as 

rj = c+ nj  

 when the jth bit of a codeword is a 1, or as 

rj = - c + ni  

when the jth bit is a 0. The variables {nj} represent additive white Gaussian noise at 

the sampling instants. Each nj has zero mean and variance ½ No. From knowledge of 

the M possible transmitted code words and upon reception of {rj}, the optimum 

decoder forms the M correlation metrics. 

CM„, = C(r, e„,) = E(2c„,j - 1) rj, in = 1, 2, . . . , M (7.4-3) j=1 

 

 

 

where cmj denotes the bit in the jth position of the mth codeword. Thus, if cmj = 1, the 

weighting factor 2cmj - 1 = 1; and if cmj = 0, the weighting factor 2cmj - 1 = -1. In this 

manner, the weighting 2cmj - 1 aligns the signal components in {rj} such that the 

correlation metric corresponding to the actual transmitted codeword will have a mean 

value n c, while the other M - 1 metrics will have smaller mean values. 

Although the computations involved in forming the correlation metrics for soft decision 

decoding according to Equation 7.4-3 are relatively simple, it may still be impractical 

to compute Equation 7.4-3 for all the possible codewords when the number of 

codewords is large, e.g., M > 210. In such a case it is still possible to implement soft 

decision decoding using algorithms which employ techniques for discarding improbable 

codewords without computing their entire correlation metriC. Several different types of 

soft decision decoding algorithms have been described in the technical literature. The 
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interested reader is referred to the papers by Forney (1966b), Weldon (1971), Chase 

(1972), Wainberg and Wolf (1973), Wolf (1978), and Matis and Modestino (1982). 

Block and Bit Error Probability in Soft Decision Decoding 

We can use the general bounds on the block error probability derived in Equations to 

find bounds on the block error probability for soft decision decoding. The value of A 

defined by Equation has to be found under the specific modulation employed to 

transmit codeword components.  we obtain 

 

 

 

where A(Z) is the weight enumerating polynomial of the code. The simple bound of 

Equation  under soft decision decoding reduces to 

 

 

It is shown that for binary orthogonal signaling, for instance, orthogonal BFSK, we 

have ∆ = e-Ec/No. Using this result, we obtain the simple bound 

Pe < (2k - 1)e -Rcdmin-Eb/2No  

for orthogonal BFSK modulation. 

Using the inequality 2k - 1 < 2k = ek In2, we obtain 

 

 

 

 

 

Where as usual yb denotes Eb/No, the SNR per bit. 

When the upper bound in Equation  is compared with the performance of an uncoded 

binary PSK system, whish is upper-bounded as ½ exp (-yb), we find that coding yields 
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as gain of approximately 10log (Rcdmin – k 1n2/yb) dB. We may call this the coding 

gain. We note that its values depends on the code parameters and also on the SNR 

per bit yb. For large values of yb, the limit of the coding gain, i.e Rcdmin, is called the 

asymptotic coding gain. 

Similar to the block error probability, we can use equation  to bound the bit error 

probability for BFSK and orthogonal BFSK modulation. We obtain; 

 

 

 

Soft Decision Decoding with Noncoherent Detection 

In noncoherent detection of binary orthogonal FSK signaling, the performance is 

further degraded by the noncoherent loss. Here the input variables to the decoder are; 

 

 

for j = 1,2,……n, where (Noj) and (N1j) represent complex-valued mutually  statistically 

independent Gaussian random variables with zero mean and variable 2No. The 

correlation metric CM1 is given as; 

 

 

while the correlation metric corresponding to the codeword having weight wm is 

statistically equivalent to the correlation metric of a codeword in which cmj = 1 for 1  

j  wm and cmj = 0 for wm + 1  j  n. Hence, CMm may be expressed as 
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and the pairwise error probability (PEP) is simply probability that CM1 – CMm < 0. But 

this difference is a special case of the general quadratic form in complex-valued 

Gaussian random variables considered in Chapter 11 and in Appendix B. The 

expression for the probability of error in deciding between CM1 and CMm is  

 

 

 

 

The union bound obtained by summing P2(m) over 2 ≤m ≤ M provides us with an 

upper bound on the probability of a codeword error. 

As an alternative, we may use the minimum distance instead of the weight distribution 

to obtain the looser upper bound. 

 

 

As measure of the non-coherent combining loss inherent in the square-law detection 

and combining of the n elementary binary FSK waveforms in a codeword where dmin 

is used in place of L. The loss obtained is relative to the case in which the n 

elementary binary FSK waveforms are first detected coherently and combined, and 

then the sums are square-law-detected or envelope-detected to yield the M decision 

variables. The binary probability for the latter case is; 

 

 

 

If dmin is used instead of the weight distribution, the union bound for the codeword 

error probability in the latter case is; 
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We have previously seen in equation  that the channel bandwidth required to transmit 

the coded waveforms, when binary PSK is used to transmit each bit, is given by; 

 

 

From Equation, the bandwidth requirement for an uncoded BPSK scheme is R. 

Therefore, the bandwidth expansion factor Be for the coded waveforms is 

Be =  1/Rc 

Comparison with Orthogonal Signaling 

We are now in a position to compare the performance characteristics and bandwidth 

requirements of coded signaling with orthogonal signaling. Orthogonal signals are 

more power-efficient compared to BPSK signaling, but using them requires large 

bandwidth. We have also seen that using coded BPSK signals results in a moderate 

expansion in bandwidth and, at the same time, by providing the coding gain, improves 

the power efficiency of the system. 

Let us consider two systems, one employing orthogonal signaling and one employing 

coded BPSK signals to achieve the same performance. To have equal bounds on the 

error probability, we must have k = 2R,dmin. Under this condition, the dimensionality 

of the orthogonal signals, given by N = M = 2k, is given by N = 2R,dmin. The 

dimensionality of the BPSK code waveform is n = k/R, = 2dmin. Since dimensionality 

is proportional to the bandwidth, we conclude that 

Worthogonal  = 22Rcdmin  

Wcoded BPSK      2dmin 

For example, suppose we use a (63, 30) binary code that has a minimum distance 

dmin = 13.  

3.3 Hard Decision Decoding Of Linear Block Codes 

The bounds given on the performance of coded signaling waveforms on the AWGN 

channel are based on the premise that the samples from the matched filter or cross-

correlator are not quantized. Although this processing yields the best performance, the 

basic limitation is the computational burden of forming M correlation metrics and 
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comparing these to obtain the largest. The amount of computation becomes excessive 

when the number M of codewords is large. 

To reduce the computational burden, the analog samples can be quantized and the 

decoding operations are then performed digitally. In this section, we consider the 

extreme situation in which each sample corresponding to a single bit of a codeword is 

quantized to two levels: 0 and 1. That is, a hard decision is made as to whether each 

transmitted bit in a codeword is a 0 or a 1. The resulting discrete-time channel 

(consisting of the modulator, the AWGN channel, and the modulator/demodulator) 

constitutes a BSC with crossover probability p. If coherent PSK is employed in 

transmitting and receiving the bits in each codeword, then 

 

 

 

 

 

 

Minimum-Distance (Maximum-Likelihood) Decoding 

The n bits from the detector corresponding to a received codeword are passed to the 

decoder, which compares the received codeword with the M possible transmitted code-

words and decides in favor of the codeword that is closest in Hamming distance (num-

ber of bit positions in which two codewords differ) to the received codeword. This 

minimum-distance decoding rule is optimum in the sense that it results in a minimum 

probability of a codeword error for the binary symmetric channel. 

A conceptually simple, albeit computationally inefficient, method for decoding is to first 

add (modulo-2) the received codeword vector to all the M possible transmitted 

codewords cm to obtain the error vectors e,n. Hence, em represents the error event 

that must have occurred on the channel in order to transform the codeword cm to the 

particular received codeword. The number of errors in transforming cm into the 

received codeword is just equal to the number of 1 s in em. Thus, if we simply 

compute the weight of each of the M error vectors (em} and decide in favor of the 
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codeword that results in the smallest weight error vector, we have, in effect , a 

realization of the minimum-distance decoding rule. 

Syndrome and Standard Array 

A more efficient method for hard decision decoding makes use of the parity check 

matrix H. To elaborate, suppose that cm is the transmitted codeword and y is the 

received sequence at the output of the detector. In general, y may be expressed as 

  y = cm + e  

where e denotes an arbitrary error vector. The product yH t yields. 

  s = yHt 

  = cmHt + eHt 

  = eHt 

where the (n - k)-dimensional vector s is called the syndrome of the error pattern. 

In other words, the vector s has components that are zero for all parity check 

equations that are satisfied and nonzero for all parity check equations that are not 

satisfied. Thus, s contains the pattern of failures in the parity checks. 

We emphasize that the syndrome s is a characteristic of the error pattern and not 

of the transmitted codeword. If a syndrome is equal to zero, then the error pattern 

is equal to one of the codewords. In this case we have an undetected error. 

Therefore, an error pattern remains undetected if it is equal to one of the nonzero 

codewords. Hence, from the 2'2 - 1 error patterns (the all-zero sequence does not 

count as an error), 2k - 1 are not detectable; the remaining 2'2 - 2k nonzero error 

patterns can be detected, but not all can be corrected because there are only 2n-k 

syndromes and, consequently, different error patterns result in the same 

syndrome. For ML decoding we are looking for the error pattern of least weight 

among all possible error patterns. 

Suppose we construct a decoding table in which we list all the 2k possible code-

words in the first row, beginning with the all-zero codeword c 1 = 0 in the first 

(leftmost) column. This all-zero codeword also represents the all-zero error 

pattern. After com pleting the first row, we put a sequence of length n which has 

not been included in the first row (i.e., is not a codeword) and among all such 

sequences has the minimum weight in the first column of the second row, and we 
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call it e2. We complete the second row of the table by adding e2 to all codewords 

and putting the result in the column corresponding to that codeword. After the 

second row is complete, we look among all sequences of length n that have not 

been included in the first two rows and choose a sequence of minimum weight, call 

it e3, and put it in the first column of the third row; and complete the third row 

similar to the way we completed the second row. This process is continued until all 

sequences of length n are used in the table. We obtain an n x (n - k) table as 

follows: 

 C1 = 0 C2 C3 ... C2k 

e2 C2 + e2 C3 + e2 ... C2k + e2 

e3 C2 + e3 C3 + e3 ... C2k + e3 

e2n-k C2 + e2n-k C3 + e2n-k ... C2k .+ e2n-k 

This table is called a standard array. Each row, including the first, consists of k 

possible received sequences that would result from the corresponding error pattern in 

the first column. Each row is called a coset, and the first (leftmost) codeword (or error 

pattern) is called a coset leader. Therefore, a coset consists of all the possible received 

sequences resulting from a particular error pattern (coset leader). Also note that by 

construction the coset leader has the lowest weight among all coset members. 

Example: Let us construct the standard array for the (5, 2) systematic code with 

generator matrix given by 

   1 0 1 0 1 
G =  
  0 1 0 1 1 

 
The Standard Array for Example 7.5-1  
00000  01011  10101  11110 

00001  01010  10100  11111 
00010  01001  10111  11100 
00100  01111  10001  11010 

01000  00011  11101  10110 
10000  11011  00101  01110 
11000 10011  01101  00110 

10010  11001  00111  01100 
 
This code has a minimum distance dmin = 3. Note that in this code, the coset leaders 

consist of the all-zero error pattern, five error patterns of weight 1, and two error 
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patterns of weight 2. Although many more double error patterns exist, there is room 

for only two to complete the table. 

Now, suppose that ej is a coset leader and that cm was the transmitted codeword. 

Then the error pattern ej would result in the received sequence; 

y=cm+ei 

The syndrome is 

s = yHt = (cm + ei) Ht = cmHt + eiHt = ejHt 

Clearly, all received sequences in the same coset have the same syndrome, since the 

latter depends only on the error pattern. Furthermore, each coset has a different 

syndrome. This means that there exists a one-to-one correspondence between cosets 

(or coset leaders) and syndromes. 

The process of decoding the received sequence y basically involves finding the error 

sequence of the lowest weight et such that s = Y H' = ejHt. Since each syndrome s 

corresponds to a single coset, the error sequence ej is simply the lowest member of 

the coset, i.e., the coset leader. Therefore, after the syndrome is found, it is sufficient 

to find the coset leader corresponding to the syndrome and add the coset leader to y 

to obtain the most likely transmitted codeword. 

The above discussion makes it clear that coset leaders are the only error patterns that 

are correctable. To sum up the above discussion, from all possible 2k - 1 nonzero error 

patterns, 2k - 1 corresponding to nonzero codewords are not detectable, and 2' - 2k 

are detectable of which only 2n-k - 1 are correctable. 

Consider the (5, 2) code with the standard array. 

Now suppose the actual error vector on the channel is  

e=(1 0 1 0 0) 

The syndrome computed for the error is s = (0 0 1). Hence, the error 

determined from the table is e = (0 0 0 0 1). When e is added to y, the result is a 

decoding 

Syndromes and Coset Leaders for 

Syndrome    Error Pattern 

000      00000 

001      00001 

010      00010 

100      00100 
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011      01000 

101      10000 

110      11000 

111      10010 

error. In other words, the (5, 2) code corrects all single errors and only two double 

errors, namely, (1 1 0 0 0) and (1 0 0 1 0). 

Error Detection and Error Correction Capability of Block Codes 

It is clear from the discussion above that when the syndrome consists of all zeros, the 

received codeword is one of the 2k possible transmitted codewords. Since the 

minimum separation between a pair of codewords is dmin, it is possible for an error 

pattern of weight drain to transform one of these 2k codewords in the code to another 

codeword. When this happens, we have an undetected error. On the other hand, if the 

actual number of errors is less than dmin, the syndrome will have a nonzero weight. 

When this occurs, we have detected the presence of one or more errors on the 

channel. Clearly, the (n, k) block code is capable of detecting up to dmin - 1 errors. 

Error detection may be used in conjunction with an automatic repeat-request (ARQ) 

scheme for retransmission of the codeword. 

The error correction capability of a code also depends on the minimum distance. 

However, the number of correctable error patterns is limited by the number of possible 

syndromes or coset leaders in the standard array. To determine the error correction 

capability of an (n, k) code, it is convenient to view the 2k codewords as points in an 

n-dimensional space. If each codeword is viewed as the center of a sphere of radius 

(Hamming distance) t, the largest value that t may have without intersection (or tan-

gency) of any pair of the 2k spheres is t = [ z (d .,i„ - 1)], where Lx] denotes the 

largest integer contained in x. Within each sphere lie all the possible received 

codewords of distance less than or equal to t from the valid codeword. Consequently, 

any received code vector that falls within a sphere is decoded into the valid codeword 

at the center of the sphere. This implies that an (n, k) code with minimum distance 

dmin is capable of correcting t = L2(dmin - 1)J errors.  

As described above, a code may be used to detect dmin - 1 errors or to correct t = (½ 

(dmin - 1) errors. Clearly, to correct t errors implies that we have detected t errors. 
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However, it is also possible to detect more than t errors if we compromise in the error 

correction capability of the code. For example, a code with dmin = 7 can correct 

 

 

 

 

 

 

up to t = 3 errors. If we wish to detect four errors, we can do so by reducing the 

radius of the sphere around each codeword from 3 to 2. Thus, patterns with four 

errors are detectable, but only patterns of two errors are correctable. In other words, 

when only two errors occur, these are corrected; and when three or four errors occur, 

the receiver may ask for a retransmission. If more than four errors occur, they will go 

undetected if the codeword falls within a sphere of radius 2. Similarly, for din = 7, five 

errors can be detected and one error corrected. In general, a code with minimum 

distance dmin can detect ed errors and correct e, errors, where 

 

 

 

 

Block and Bit Error Probability for Hard Decision Decoding 

In this section we derive bounds on the probability of error for hard decision decoding 

of linear binary block codes based on error correction only. 

From the above discussion, it is clear that the optimum decoder for a binary symmetric 

channel will decode correctly if (but not necessarily only if) the number of errors in a 

codeword is less than one-half the minimum distance din of the code. That is, any 

number of errors up to 
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is always correctable. Since the binary symmetric channel is memoryless, the bit errors 

occur independently. Hence, the probability of m errors in a block of n bits is 

 

 

 

and, therefore, the probability of a codeword error is upper-bounded by the 

expression  

 

 

For high signal-to-noise ratios, i.e., small values of p, can be approximated by its first 

term, and we have 

 

 

This equation states that when 0 is transmitted, the probability of error almost entirely 

is equal to the probability of receiving sequences of weight t + 1. To derive an 

approximate bound on the error probability of each binary symbol in a codeword, we 

note that if 0 is sent and a sequence of weight t + 1 is received, the decoder will 

decode the received sequence of weight t + 1 to a codeword at a distance at most t 

from the received sequence and hence a distance of at most 2t + 1 from 0. But since 

the minimum weight of the code is 2t + 1, the decoded codeword has to be of weight 

2t + 1. This means that for each highly probable block error we have 2t + 1 bit errors 

in the codeword components. 

 

 

 

Equality holds if the linear block code is a perfect code. To describe the basic 

characteristics of a perfect code, suppose we place a sphere of radius t around each 

of the possible transmitted codewords. Each sphere around a codeword contains the 
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set of all codewords of Hamming distance less than or equal to t from the codeword. 

Now, the number of codewords in a sphere of radius t = ½ (dmin - 1)] is 

 

 

Since there are M = 2k possible transmitted codewords, there are 2k nonoverlapping 

spheres, each having a radius t. The total number of codewords enclosed in the 2k 

spheres cannot exceed the 2' possible received codewords. Thus, a t-error correcting 

code must satisfy the inequality 

 

 

 

 

 

A perfect code has the property that all spheres of Hamming distance t = ½ (dmin - 1)J 

around the M = 2k possible transmitted codewords are disjoint and every received 

codeword falls in one of the spheres. Thus, every received code word is at most at a 

distance t from one of the possible transmitted codeword For such a code, all error 

patterns of weight less than or equal to t are corrected by the optimum (minimum-

distance) decoder. On the other hand, any error pattern of weight t + 1 or greater 

cannot be corrected. The reader can easily verify that the Hamming codes, which have 

the parameters n = 2n-k - 1, drain = 3, and t = 1, are an example of perfect codes. 

The (23, 12) Golay code has parameters drain = 7 and t = 3. It can be easily verified 

that this code is also a perfect code. These two nontrivial codes and the trivial code 

consisting of two codewords of odd length n and dmin = n are the only perfect binary 

block codes. 

A quasi-perfect code is characterized by the property that all spheres of Hamming 

radius t around the M possible transmitted codewords are disjoint and every received 

codeword is at most at a distance t + 1 from one of the possible transmitted 

codewords. For such a code, all error patterns of weight less than or equal to t and 

some error patterns of weight t + 1 are correctable, but any error pattern of weight t 
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+ 2 or greater leads to incorrect decoding of the codeword. Clearly, Equation 7.5-6 is 

an upper bound on the error probability, and 

is a lower bound. 

A more precise measure of the performance for quasi-perfect codes can be obtained 

by making use of the inequality in Equation . That is, the total number of codewords 

outside the 2k spheres of radius t is 

 

 

If these codewords are equally subdivided into 2k sets and each set is associated with 

one of the 2k spheres, then each sphere is enlarged by the addition of 

 

 

codewords having distance t + 1 from the transmitted codeword. Consequently, of the 

(t+1) error patterns of distance t + 1 from each codeword, we can correct, Bt+i error 

patterns. Thus, the error probability for decoding the quasi- perfect code may be 

expressed as  

 

 

Another pair of upper and lower bounds is obtained by considering two codewords 

that differ by the minimum distance. First, we note that Pe cannot be less than the 

probability of erroneously decoding the transmitted codeword as its nearest neighbor, 

which is at a distance dmin from the transmitted codeword. That is 

 

 

On the other hand, Pe cannot be greater than 2k -1 times the probability of 

erroneously decoding the transmitted codeword as its nearest neighbor, which is at a 

distance d min from the transmitted codeword. That is a union bound, which is 

expressed as 

 



 51 

When M = 2k is large, the lower bound in Equation 7.5-15 and the upper bound in 

Equation 7.5-16 are very loose. 

General bounds on block and bit error probabilities under hard decision decoding are 

obtained by using relations derived in Equations 7.2-39, 7.2-43, and 7.2-48. The value 

of A for hard decision decoding was found in Example 6.8-1 and is given by 0 =

 √4p(1-p). The results are 

 

 

 

 

3.4 Comparison of Performance between Hard Decision And Soft Decision 

Decoding 

It is both interesting and instructive to compare the bounds on the error rate 

performance of linear block codes for soft decision decoding and hard decision 

decoding on an AWGN channel. For illustrative purposes, we use the Golay (23, 12) 

code, which has the relatively simple weight distribution given in Equation 7.3-15. As 

stated previously, this code has a minimum distance dmin = 7. 

First we compute and compare the bounds on the error probability for hard decision 

decoding. Since the Golay (23, 12) code is a perfect code, the exact error probability 

for hard decision decoding is given by equation as  

 

 

 

where p is the probability of a binary digit error for the binary symmetric channel. 

Binary (or four-phase) coherent PSK is assumed to be the modulation/demodulation 

technique for the transmission and reception of the binary digits contained in each 

codeword. Thus,  We observe that the lower bound is very loose. At Pe = 10-5, the 

lower bound is off by approximately 2 dB from the exact error probability. All three 

upper bounds are very loose for error rates above Pe = 10-Z. 
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It is also interesting to compare the performance between soft and hard decision 

decoding. For this comparison, we use the upper bounds on the error probability for 

soft decision decoding given by Equation and the exact error probability for hard 

decision decoding given illustrates these performance characteristics. We observe that 

the two bounds for soft decision decoding differ by approximately 0.5 dB at P e = 10-6 

and by approximately 1 dB at Pe = 10-2. We also 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

observe that the difference in performance between hard and soft decision decoding is 

approximately 2 dB in the range 10-2 < Pe < 10-6. In the range Pe > 10-2, the curve 

of the error probability for hard decision_ decoding crosses the curves for the bounds. 

This behavior indicates that the bounds for soft decision decoding are loose when Pe 

> 10-2. 
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 There exists a roughly 2-dB gap between the cutoff rates of a BPSK modulated 

scheme under soft and hard decision decoding. A similar gap also exits between the 

capacities in these two cases. This result can be shown directly by noting that the 

capacity of a BSC, corresponding to hard decision decoding, is given by Equation  

 

 

 

 

 

 

 and using the approximation. 

 

 

Now we set C = Rc. Thus, in the limit as Rc approaches zero, we obtain the result. 

  

 

The capacity of the binary-input AWGN channel wit soft decision decoding can be 

computed in a similar manner. The expression for the capacity in bits per code 

symbols, derived in equation to  can be approximately for low values of Rc as  
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 clearly shown that at low SNR values there exists roughly a 2-dB difference between 

the performance of hard and soft decision decoding. As seen, increasing SNR results in 

a decrease in the performance difference between hard and soft decision decoding. 

For example, at R, = 0.8, the difference reduces to about 1.5 dB. 

The curves  provide more information than just the difference in performance between 

soft and hard decision decoding. These curves also specify the minimum SNR per bit 

that is required for a given code rate. For example, a code rate of R, = 0.8 can 

provide arbitrarily small error probability at an SNR per bit of 2 dB, when soft decision 

decoding is used. By comparison, an uncoded binary PSK requires 9.6 dB to achieve an 

error probability of 10-5. Hence, a 7.6-dB gain is possible by employing a rate R, = s 

code. This gain is obtained by expanding the bandwidth by 25% since the bandwidth 

expansion factor of such a code is 1/R, = 1.25. To achieve such a large coding gain 

usually implies the use of an extremely long block length code, and generally a 

complex decoder. Nevertheless, the curves provide a benchmark for comparing the 

coding gains achieved by practically implementable codes with the ultimate limits for 

either soft or hard decision decoding. 

3.5 Bounds on minimum distance of linear block codes  

The expressions for the probability of error derived in this module for soft decision and 

hard decision decoding of linear binary block codes clearly indicate the importance of 

the minimum-distance parameter in the performance of the code. If we consider soft 

decision decoding, for example, the upper bound on the error probability given by 

Equation  indicates that, for a given code rate R, = k/n, the probability of error in an 

AWGN channel decreases exponentially with dmin. When this bound is used in 

conjunction with the lower bound on dmin given below, we obtain an upper bound on 

Pe, the probability of a codeword error. Similarly, we may use the upper bound given 

by Equation for the probability of error for hard decision decoding in conjunction with 

the lower bound on dmin to obtain an upper bound on the error probability for linear 

binary block codes on the binary symmetric channel. 

On the other hand, an upper bound on dmin can be used to determine a lower bound 

on the probability of error achieved by the best code. For example, suppose that hard 

decision decoding is employed.  In this section we study some bounds on minimum 

distance of linear block codes. 
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Singleton Bound 

The Singleton bound is obtained using the properties of the parity check matrix H. 

Recall  that the minimum distance of a linear block code is equal to the minimum 

number of columns of H, the parity check matrix, that are linearly dependent. From 

this we conclude that the rank of the parity check matrix is equal to dmin - 1. Since the 

parity check matrix is an (n - k) x n matrix, its rank is at most n - k. Hence, 

dmin - 1  n - k  

or 

dmin  n - k + 1   

The bound given in Equation is called the Singleton bound. Since dmin - 1 is 

approximately twice the number of errors that a code can correct, from this Equation, 

we conclude that the number of parity checks in a code must be at least equal to 

twice the number of errors a code can correct. Although the proof of the Singleton 

bound presented here was based on the linearity of the code, this bound applies to all 

block codes, linear and nonlinear, binary and nonbinary. 

Codes for which the Singleton bound is satisfied with equality, i.e., codes for which 

dmin = n - k + 1, are called maximum-distance separable, or MDS, codes. Repetition 

codes, and their duals are examples of MDS codes. In fact these codes are the only 

binary MDS codes.  

Dividing both sides of the Singleton bound by n, we have; 

 

 

 

 

 

 

Note that dmin/2 is roughly the number of errors that a code can correct.  Therefore; 
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i.e., ∂n/2 approximately represents the fraction of correctable errors in transmission of 

n bits. 

 

 

 

Hamming Bound 

The Hamming or sphere packing bound was previously developed in our study of the 

performance of hard decision decoding and is given by equation  as 

 

 

 

This relation gives an upper bound for dmin in terms of n and k, known as the 

Hamming bound. Note that the proof of the Hamming bound is independent of the 

linearity of the code; therefore this bound applies to all block codes. For the q-ary 

block codes the Hamming bound yields. 

 

 

It is shown that for large n the right-hand side of equation can be approximately by;   

 

 

Where Hb(.) is the binary entropy function. Using this approximately,  we see that the 

asymptotic form of the Hamming bound for binary codes becomes. 
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The hamming bound is tight for high-rate codes. 

Plotkin Bound 

The Plotkin bound due to Plotkin states that for any q-ary block code we have; 

 

 

 

 

 The proof is based on noting that the minimum distance of a code cannot exceed its 

average codeword weight. 

 Another version of the Plotkin bound, given in equation forbinary codes, is tighter for 

higher-rate codes: 

 

   

A simplified version of this bound, obtained by choosing j = 1 + log2dmin, result in  

 

 

 

Elias Bound 

The asymptotic form of the Elias bound states that for any binary code with δ  ½ we 

have  
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The Elias bound also applies to nonbinary codes. For nonbinary codes this bound 

states that for any q-ary code with δ  1 – 1/q we have; 

 

 

 

 

McEliece-Rodemich-Rumsey-Welch (MRRW) Bound 

McEliece-Rodemich-Rumsey-Welch (MRRW) Bound derived by McEliece et al (1977) is 

the tightest known bound for low to moderate rates. Thos bound has two forms; the 

simpler form has the asymptotic form given by  

for binary codes and for δ  ½. This bound is derived based on linear programming 

techniques. 

 

Varshamov-Gilbert Bound 

All bounds stated so far give the necessary conditions that must be stratified by the 

three main parameters n, k, and d for a block code. the Varshamov-Gilbert bound due 

to Gilbert (1952) and Varshamov (1957) gives the sufficient condit ions for the 

existence of an (n, k) code with minimum distance dmin. The Varshamov-Gilbert bound 

in fact goes further to prove the existence of a linear block code with the given 

parameters.  

The Varshamov-Gilbert states that if the inequality; 

 

 

Is satisfied, the there exists a q-ary (n, k) linear block code with minimum distance 

dmin ≥ d. For the binary case the Varshamov-Gilbert bound becomes. 
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Where Hq(.) is given , then there exists a q-ary (n, Rcn) linear block code with 

minimum distance of at lease δn. 

A comparison of the asymptotic version of the bounds discussed above is shown in 

Figure below for the binary codes. As seen in the figure, the tightest asymptotic upper 

bounds are the Elias and the MRRW bounds. We add here that there exist a second 

 

 

 

 

 

 

 

version of the MRRW bound that is better than the Elias bound at higher rates. The 

ordering of the bounds shown on this plot is only an indication of how these bounds 

compare as n --> ∞. The region between the tightest upper bound and the 

Varshamov-Gilbert lower bound can still be a rather wide region for certain block 

lengths. For instance, for a (127, 33) code the best upper bound and lower bound 

yield dmin = 48 and dmin = 32, respectively. 
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4.0 Conclusion 

In this unit, we have considered linear block codes. These codes are mainly used with 

hard decision decoding that employs the built-in algebraic structure of the code based 

on the properties of finite fields. Hard decision decoding of these codes result in a 

binary symmetric channel model consisting of the binary modulator, the ware form 

channel and the optimum binary detector. 

5.0 Summary 

The decoder of these codes tries to find the code word at the minimum Hamming 

distance from the output of the BSC. The goal in designing good linear block codes is 

to find the code with highest minimum distance for a given n and k.  

6.0 Tutor Marked Assignment 

A code C consists of all binary sequences of length 6 and weight 3. 1.  Is this code a 

linear block? Why? 

2. What is the rate of this code? What is the minimum distance of this code? 

What is the minimum weight of this code? 

3. If the code is used for error detection, how many errors can it detect?  

4. If the code on a binary symmetric channel with crossover probability of P, 

what is the probability that an undetectable error occurs? 

5. Find the smallest linear block code C, such that C  C1 (by the smallest code 

we mean the code with the fewest code words). 

7.0 References and Further Reading 

Key/papers in the Development of Coding Theory by Berlekamp. Coding Techniques 

for Noisy Channel by Elias (1954, 1955) 



 61 

UNIT 3: TRELLIS AND GRAPH BASED CODES 

1.0 Introduction 

2.0 Objectives  

3.0 Main Content 

3.1 The Structure of Convolutional Codes 

3.2 Decoding of convolutional codes 

3.3 Distance properties of binary convolutional  

4.0 Conclusion  

5.0 Summary  

6.0 Tutor Marked Assignment 

7.0 References/Further Reading  

1.0 Introduction 

This is another class of codes whose structure is more conveniently described in terms 

of trellises or graphs. For this family of codes, soft decision decoding is possible, and in 

some cases performance very close to channel capacity is achievable. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Understand the structure of convolutional codes. 

- Explain decoding of convolutional codes; 

- Discuss punctured convolutional codes. 

3.1 The structure of convolutional codes 

A convolutional code is generated bypassing the information sequence to be transmitted 

through a linear finite-state shift register. In general, the shift register consists of K (k-
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bit) stages and n linear algebraic function generators. The input data to the encoder, 

which is assumed to be binary, is shifted into and along the shift register k bits at a 

time. The number of output bits for each k-bit input sequence is n bits. Consequently, 

the code rate is defined as R, = k/ n, consistent with the definition of the code rate for 

a block code. The parameter K is called the constraint length of the convolution code. 

 

 

 

 

 

 

Convolutional encoder 

One method for describing a convolutional code is to give its generator matrix, just as 

we did for block codes. In general, the generator matrix for a convolutional code is 

semi-infinite since the input sequence is semi-infinite in length. As an alternative to 

specifying the generator matrix, we shall use a functionally equivalent representation in 

which we specify a set of n vectors, one vector for each of the n modulo-2 adders. Each 

vector has Kk dimensions and contains the connections of the encoder to that modulo-2 

adder. A 1 in the ith position of the vector indicates that the corresponding stage in the 

shift register is connected to the modulo-2 adder, and a 0 in a given position indicates 

that no connection exists between that stage and the modulo-2 adder. 

To be specific, let us consider the binary convolutional encoder with constraint length K 

= 3, k = 1, and n = 3, which is shown in Figure 8.1-2. Initially, the shift register is 

assumed to be in the all-zeros state. Suppose the first input bit is a 1. Then the output 

sequence of 3 bits is 111. Suppose the second bit is a 0. The output sequence will then 

be 001. If the third bit is a l, the output will be 100, and so on. Now, suppose we 

number the outputs of the function generators that generate each 3-bit output sequence 

as 1, 2, and 3, from top to bottom, and similarly number each corresponding function 
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generator. Then, since only the first stage is connected to the first function generator 

(no modulo-2 adder is needed), the generator is 

 

 

 

Finally, 

G3 = (111) 

The generators for this code are more conveniently given in octal form as (4, 5, 7). We 

conclude that when k = 1, we require n generators, each of dimension K to specify the 

encoder. 

It is clear that g1, g2, and g3 are the impulse responses from the encoder input to the 

three outputs. Then if the input to the encoder is the information sequence u, the three 

outputs are given by; 

 

 

 

Where * denotes the convolution operation. The corresponding code sequence c is the 

result of interleaving c(1), c(2) and c(3) as   

 

The convolutional operation is equivalent to multiplication in the transform domain. We 

define the D transform of u as; 

 

 

and the transfor function for the three impulse responses g1, g2, and g3 as; 
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Let the sequence u = (100111) be the input sequence to the convolution encoder 

shown in figure 8.1-2. We have 

 

 

 

 

 

 

 

 

 

For a rate k/n binary convolutionary code with k > 1 and constraint length K, the n 

generators are Kk – dimensional vectors, as stated above. The following example 

illustrates the case in which k = 2 and n = 3. 

The generators are; 

 g1 = (1011),   g2 = (1101),  g3 = (1010) 
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In octal form, these generators are (13, 15, 12). 

The code shown above can be also realized by the diagram shown below. In this 

realization, instead a single shift register of length 4, two shift registers each of length 2 

are employed. The information sequence u is split into two substream u(1) and u(2) 

using serial-to-parallel converter. Each of the two substreams. 

 

 

 

 

is the input to one of the two shift registers. At the output, the three generated 

sequences, c(1), c(2) and c(3) are interleaved to generate the code sequence c. In 

general, instead of one shift register with length L = Kk, we can use a parallel 

implementation of k shift registers each of length K. 

In the implementation shown in figure above, the encoder has two input sequences u(1) 

and u(2) and three output sequences c(1), c(2) and c(3). The encoder thus can be 

described in terms of six impulse responses, and hence six transfer functions which are 

the D transforms of the impulse responses. If we denotes by g i
(j) the impulse response 

from input stream u(i) to the output stream c(j), in the encoder depicted in figure above 

we have; 

 

 

 

 

From the transfer functions and the D transform of the input sequences we obtain the D 

transform of the three output sequences as; 
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Equation  can be written in a more compact way by defining; 

In general, matrix G(D) is a k x n matrix whose elements are polynomials in D with 

degree at most K-1. This matrix is called the transform domain generator matrix of the 

convolutional code. For the code whose encoder is shown in figure 8.1-4. 
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Tree, Trellis, and State Diagrams 

There are three alternative methods that are often used to describe a convolutional 

code. These are the tree diagram, the trellis diagram, and the state diagram.  

Close observation of the tree that is generated by the convolutional encoder shown in 

Figure below reveals that the structure repeats itself after the third stage. This behavior 

is consistent with the fact that the constraint length K = 3. That is, the 3-bit output 

sequence at each stage is determined by the input bit and the 2 previous input bits, i.e., 

the 2 bits contained in the first two stages of the shift register. The bit in the last stage 

of the shift register is shifted out at the right and does not affect the output. Thus we 

may say that the 3-bit output sequence for each input bit is determined by the input bit 

and the four possible states of the shift register, denoted as a = 00, b = 01, c = 10, d = 

11. 
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Trellis diagram for rate 113, K = 3 convolutional code. 

If we label each node in the tree to correspond to the four possible states in the 

shift register, we find that at the third stage there are two nodes with label a, two 

with label b, two with label c, and two with label d. Now we observe that all 

branches emanating from two nodes having the same label (same state) are 

identical in the sense that they generate identical output sequence. 

Since the output of the encoder is determined by the input and the state of the 

encoder, an even more compact diagram than the trellis is the state diagram. The 

state diagram is simply a graph of the possible states of the encoder and the 

possible transitions from one state to another. For example, the state diagram for 

the encoder  

  shows that the possible transitions are 

 

 

where a 1  denotes the transition from state a to /3 when the input bit is a 1. The 

3 bits shown next to each branch in the state diagram represent the output bits. A 

dotted line in the graph indicates that the input bit is a l, while the solid line 

indicates that the input bit is a 0. 

Let us consider the k = 2, rate 2/3 convolutional code described in Example 8.1-2 and 

shown in Figure 8.1-3. The first two input bits may be 00, 01, 10, 

 

 

 

 

 

 



 69 

or 11. The corresponding output bits are 000, 010 111, 101. When the next pair of input 

bits enters the encoder, the first pair is shifted to the second stage.  

 

 Trellis and Graph Based Codes 

 

 

 

 

 

 

 

Trellis diagram for K = 2, k = 2, n = 3 convolutional code. 

Since the constraint length of the code is K = 2, the tree begins to repeat after the 

second stage.  

By merging the nodes having identical label the trellis, which is shown in Figure above. 

Finally, the state diagram for this code is shown in Figure below. To generalize, we state 

that a rate k/n, constraint length K, convolutional code is characterized by 2k branches 

emanating from each node of the tree diagram. The trellis and the state diagrams each 

have 2k(K-1) possible states.  

 Let us consider the convolutional code generated by the encoder . This code may be 

described as a binary convolutional code with parameters K = 2, k = 2, n = 4, R, = 1/2 

and having the generators 

g1= (110101) ,  g2= (101011), g3 = (1110), g4=(1001) 

Except for the difference in rate, this code is similar in form to the rate 2/3, k = 2 

convolutional code considered. Alternatively, the code generated by the encoder  may 



 70 

be described as a nonbinary (q = 4) code with one quaternary symbol as an input and 

two quaternary symbols as an output. In fact, if the output of the encoder is treated by 

the modulator and demodulator as q-ary (q =4). 

 

 

 

 

 

 

State diagram for K = 2, k = 2, n = 3 convolutional code. 

symbols that are transmitted over the channel by means of some M-ary (M = 4) 

modulation technique, the code is appropriately viewed as nonbinary. In any case, the 

tree, the trellis, and the state diagrams are independent of how we view the code.  

We have seen that the distance properties of block codes can be expressed in terms of 

the weight distribution, or weight enumeration polynomial of 

 

 

 

 

 

 

 

 



 71 

3.2 Decoding of convolutional codes 

There exist different methods for decoding, of convolutional codes. Similar to block 

codes, the decoding of convolutional codes can be done either by soft decision or by 

hard decision decoding. In addition, the optimal decoding of convolutional codes can 

employ the maximum-likelihood or the maximum a posteriori principle. For convolutional 

codes with high constraint lengths, optimal decoding algorithms become too complex. 

Suboptimal decoding algorithms are usually used in such cases. 

Maximum-Likelihood Decoding of Convolutional  

Codes-The Viterbi Algorithm 

In the decoding of a block code for a memoryless channel, we computed the distances 

(Hamming distance for hard-decision decoding and Euclidean distance for soft-decision 

decoding) between the received codeword and the 2k possible transmitted codewords. 

Then we selected the codeword that was closest in distance to the received codeword. 

This decision rule, which requires the computation of 2k metrics, is optimum in the 

sense that it results in a minimum probability of error for the binary symmetric channel 

with p < 1 and the additive white Gaussian noise channel. 

Unlike a block code, which has a fixed length n, a convolutional encoder is basically a 

finite-state machine. Therefore, optimum decoding of a convolutional code involves a 

search through the trellis for the most probable sequence. Depending on whether the 

detector following the demodulator performs hard or soft decisions, the corresponding 

metric in the trellis search may be either a Hamming metric or a Euclidean metric, 

respectively. 

A metric is defined for the jth branch of the ith path through the trellis as the logarithm 

of the joint probability of the sequence {rim, m = 1, 2, 31 conditioned on the 

transmitted sequence {c(i)
jm, m= 1, 2, 3) for the ith path. That is; 

 

Furthermore, a metric for the ith path consisting of B branches through the trellis is 

defined as 
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The criterion for deciding between two paths through the trellis is to select the one 

having the larger metric. This rule maximizes the probability of a correct decision, 

or, equivalently, it minimizes the probability of error for the sequence of information 

bits. The metrics for these two paths are 

 

 

where p is the probability of a bit error. Assuming that p < z, we find that the metric 

PM(O) is larger than the metric PM( 1). This result is consistent with the observation 

that the all-zero path is at Hamming distance d = 3 from the received sequence, 

while the i = 1 path is at Hamming distance d = 5 from the received path. Thus, the 

Hamming distance is an equivalent metric for hard decision decoding. 

 

Convolutional Codes 

In deriving the probability of error for convolutional codes, the linearity property for .his 

class of codes is employed to simplify the derivation. That is, we assume that the all-

zero sequence is transmitted, and we determine the probability of error in deciding n 

favor of another sequence. 

Since the convolutional code does not necessarily have a fixed length, we derive its 

performance from the probability of error for sequences that merge with the all-zero 

sequence for the first time at a given node in the trellis. In particular, we define the 

gist-event error probability as the probability that another path that merges with the all-

zero path at node B has a metric that exceeds the metric of the all-zero path for .he first 

time. 

The sequence error probability of a convolutional code is bounded by 
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Note that unlike equation , which states is linear block codes Pe  

 

 A (∆) – 1, here we do not need to subtract 1 from T (Z) since T (Z) does not include 

the all-zero path. Equation can be written as 

 

 

 

The bit error probability for a convolutional code follows from equation  as; 

 

 

 

From example, we know that ifthe modulation is BPSK (or QPSK) and the channel is an 

AWGN channel with soft decision decoding, then; 

∆ = e-RcYb 

and in case of hard decision decoding, where the channel model is a binary symetric 

channel with crossover probability of p, we have 

 

 

 

3.3 Distance Properties Of Binary Convolutional Codes 

In this subsection, we shall tabulate the minimum free distance and the generators for 

several binary, short-constraint-length convolutional codes for several code rates. These 

binary codes are optimal in the sense that, for a given rate and a given constraint 

length, they have the largest possible dfree. The generators and the corresponding 

values of dfree tabulated below have been obtained by Odenwalder (1970), Larsen 

(1973), Paaske (1974), and Daut et al. (1982) using computer search methods. 

Heller (1968) has derived a relatively simple upper bound on the minimum free distance 

of a rate l/n convolutional code. It is given by 
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where Lx] denotes the largest integer contained in x. For purposes of comparison, this 

upper bound is also given in the tables for the rate 1/n codes. For rate k/n convolutional 

codes, Daut et al. (1982) have given a modification to Heller's bound. The values 

obtained from this upper bound for k/n are also tabulated. 

 

Punctured Convolutional Codes 

In some practical applications, there is a need to employ high-rate convolutional codes, 

e.g., rates of (n - 1)/n. As we have observed, the trellis for such high-rate codes has 2n-

1 branches that enter each state. Consequently, there are 2n-1 metric computations per 

state that must be performed in implementing the Viterbi algorithm and as many 

 

 

 

 

 

 

 

comparisons of the updated metrics to select the best path at each state. Therefore, the 

implementation of the decoder of a high-rate code can be very complex. 

The computational complexity inherent in the implementation of the decoder of a high-

rate convolutional code can be avoided by designing the high-rate code from a lowrate 

code in which some of the coded bits are deleted from transmission. The deletion of 

selected coded bits at the output of a convolutional encoder is called puncturing. 

The puncturing process may be described as periodically deleting selected bits from the 

output of the encoder, thus creating a periodically time-varying trellis code. 
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Begin with a rate 1/n parent code and define a puncturing period P, corresponding to P 

input information bits to the encoder. Hence, in one period, the encoder outputs nP 

coded bits. Associated with the nP encoded bits is a puncturing matrix P of the form  

 

 

Where each column of P corresponds to the n possible output bits from the encoder for 

each input bit and each element of P is either 0 or 1. When ptij = 1, the corresponding 

output bit from the encoder is transmitted. When pig = 0, the corresponding output bit 

from the encoder is deleted. Thus, the code rate is determined by the period P and the 

number of bits deleted. 

If we delete N bits out of nP, the code rate is P/(nP - N), where N may take any integer 

value in the range 0 to (n - 1)P - 1. Hence, the achievable code rates are 

 

Let us construct a rate 4 code by puncturing the output of the rate 3 , K = 3 encoder 

shown in Figure 8.1-2. There are many choices for P and M in Equation 8.4-2 to achieve 

the desired rate. We may take the smallest value of P, namely, P = 3. Then out of every 

n P = 9 output bits, we delete N = 5 bits. Thus, we achieve a rate 4 punctured 

convolutional code. As the puncturing matrix, we may select P as 
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Figure above, illustrates the generation of the punctured code from the rates parent 

code.  

 

4.0 Conclusion  

We have considered coding schemes that are best represented in terms of graphs and 

trellises. Besides, trellis code were described for achieving coding gains of 3-4dB. 

5.0 Summary 

In summary, we have examined the structure of convolutional codes and different 

methods for decoding of convolutional codes. Besides, convolutional codes are 

described in terms of finite-state machines. 

6.0 Tutor Marked Assignment 

A convolutional code is described by g1 = (101), g2 = (111), g3 = (111). 

1. Draw the encoder corresponding to this code. 

2. Draw the state-transition diagram for this code. 

3. Draw the trellis diagram for this code. 

4. Find the transfer function and the free distance of this code. 

5. Very whether or not this code is catastrophic. 

7.0 References/Further Reading  

Key Papers in the Development of Coding Theory by Berlekamp (1974). 

Module 3: Spread Spectrum Signals for Digital Communications and Multi-

user Communication 

Unit 1: Spread Spectrum Signals for Digital Communication. 

Unit 2: Multiple Antenna Systems 

Unit 3: Multi-user Communication  
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Unit 4: Multichannel and Multicarrier Systems.  

Unit 1: Spread Spectrum Signals for Digital Communication 

1.0 Introduction 

2.0 Objectives  

3.0 Main Content  

3.1 Model spread spectrum digital communication system 

3.2 Direct sequence spread spectrum signals 

3.3 Frequency-hopped spread spectrum signals 

3.4 Other types of spread spectrum signals 

3.5 Synchronization of spread spectrum systems  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Reading  

1.0 Introduction 

Spread spectrum signal used for the transmission of digital information are distinguished 

by the characteristic that their bandwidth W is much greater than the information rate R 

in bits/s. That is, the bandwidth expansion factor Be = W/R for a spread spectrum 

signals is much greater than unity. The large redundancy inherent in spread spectrum 

signals is required to overcome the severe levels of interference that are encountered in 

the transmission of digital information over some radio and satellite channels. 

2.0 Objectives 

At the end of this' unit, you should be able to; 

- Understand the model of spread spectrum digital communication system. 

- Describe frequency-hopped spread spectrum signals. 

- Explain other types of spread spectrum signals. 
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3.1 Model spread spectrum digital communication system  

The block diagram shown in figure below-illustrates the basic elements of a spread 

spectrum digital communication system with a binary information sequence at its input at 

the transmitting end and its output at the receiving end. The channel encoder and 

decoder and the modulator and demodulator are basic elements of the system. 

 

 

 

 In addition to these elements, we have two identical pseudorandom pattern generators, 

one that interfaces with the modulator at the transmitting end and a second that 

interfaces with the demodulator at the receiving end. The generators generate a 

pseudorandom or pseudonoise (PN) binary-valued sequence which is impressed on the 

transmitted signal at the modulator and removed from the received signal at the 

demodulator. 

Synchronization of the PN sequence generated at the receiver with the PN sequence 

contained in the incoming received signal is required in order to demodulate the received 

signal. Initially, prior to the transmission of information, synchronization may be achieved 

by transmitting a fixed pseudorandom bit pattern that the receiver will recognize in the 

presence of interference with a high probability. After time synchronization of the 

generators is established, the transmission of information may commence. 

3.2 Direct Sequence Spread Spectrum Signals 

In the model shown, we assume that the information rate at the input to the encoder is R 

bits/s and the available channel bandwidth is W Hz. The modulation _s assumed to be 

binary PSK. In order to utilize the entire available channel bandwidth, _he phase of the 

carrier is shifted pseudorandomly according to the pattern from the PN ?enerator at a rate 

W times/s. The reciprocal of W, denoted by T, defines the duration of a pulse, which is 

called a chip; Tc is called the chip interval. The pulse is the basic element in a DS spread 

spectrum signal. 
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If we define Tb = 1/R to be the duration of a rectangular pulse corresponding to the 

transmission time of an information bit, the bandwidth expansion factor W/R may be 

expressed as 

 

 

which is the number of chips per information bit. That is, Lc is the number of phase shifts 

that can occur in the transmitted signal during the bit duration Tb = 1 / R. 

Suppose that the encoder takes k information bits at a time and generates a binary linear 

(n, k) block code. The time duration available for transmitting the n code elements is kTb 

seconds. The number of chips that occur in this time interval is kLc. Hence, eve may 

select the block length of the code as n = kLc. If the encoder generates a binary 

convolutional code of rate k/n, the number of chips in the time interval kTb is also n = 

kLc. Therefore, the following discussion applies to both block codes and onvolutional 

codes. We note that the code rate Rc = k/n = 1/Lc. 

One method for impressing the PN sequence on the transmitted signal is to alter directly 

the coded bits by modulo-2 addition with the PN sequence. Thus, each coded 

 

 

 

 

The PN and data signal (a) and QPSK modulator (b) for a DS spread spectrum system. 
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3.3 Frequency hopped spread spectrum signals 

In a frequency-hopped (FH) spread spectrum communication system the available chan-

nel bandwidth is subdivided into a large number of contiguous frequency slots. In any 

signaling interval, the transmitted signal occupies one or more of the available frequency 

slots. The selection of the frequency slot(s) in each signaling interval is made 

pseudorandomly according to the output from a PN generator. Figure 12.3-1 illustrates a 

particular FH pattern in the time-frequency plane. 

A block diagram of the transmitter and receiver for an FH spread spectrum system is 

shown in Figure 12.3-2. The modulation is usually either binary or M-ary FSK. For 

example, if binary FSK is employed, the modulator selects one of two frequencies 

corresponding to the transmission of either a 1 or a 0. The resulting FSK signal is 

translated in frequency by an amount that is determined by the output sequence from the 

PN generator, which, in turn, is used to select a frequency that is synthesized by the 

frequency synthesizer. This frequency is mixed with the output of the modulator and the 

resultant frequency-translated signal is transmitted over the channel. For example, n1 bits 

from the PN generator may be used to specify 2'n -1 possible frequency translations. 

At the receiver, we have an identical PN generator, synchronized with the receiver signal, 

which is used to control the output of the frequency synthesizer. Thus, the pseudorandom 

frequency translation introduced at the transmitter is removed at the receiver by mixing 

the synthesizer output with the received signal. The resultant signal is demodulated by 

means of an FSK demodulator. A signal for maintaining synchronism of the PN generator 

with the frequency-translated received signal is usually extracted from the received signal. 

Although PSK modulation gives better performance than FSK in an AWGN channel, it is 

sometimes difficult to maintain phase coherence in the synthesis of the frequencies used 

in the hopping pattern and, also, in the propagation of the signal over the channel as the 

signal is hopped from one frequency to another over a wide bandwidth Consequently, FSK 

modulation with noncoherent detection is often employed with Fl; spread spectrum 

signals. 
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Block diagram of an FH spread spectrum system. 

In the FH system depicted in Figure 12.3-2, the carrier frequency is pseudorandomly 

hopped in every signaling interval. The M information-bearing tones are contiguous and 

separated in frequency by 1/Tc, where T, is the signaling interval. This type of frequency 

hopping is called block hopping. 

Another type of frequency hopping that is less vulnerable to some jamming strategies is 

independent tone hopping. In this scheme, the M possible tones from the modulator are 

assigned widely dispersed frequency slots. One method for accomplishing this is illustrated 

in Figure 12.3-3. Here, the m bits from the PN generator and the k information bits are 

used to specify the frequency slots for the transmitted signal. The FH rate is usually 

selected to be either equal to the (coded or uncoiled) symbol rate or faster than that rate. 

If there are multiple hops per symbol, we have a fast-hopped signal. On the other hand, if 

the hopping is performed at the symbol rate, we have a slow-hopped signal. 

Fast frequency hopping is employed in AY applications when it is necessary to prevent a 

type of jammer, called a follower jammer from having sufficient time to intercept the 

frequency and retransmit it along with adjacent frequencies so as to create interfering 

signal components. However, there is a penalty incurred in subdividing a signal into 

several FH elements because the energy from these separate elements is 
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combined noncoherently. Consequently, the demodulator incurs a penalty in the form 

of a noncoherent combining loss as described in Section 11.1. 

FH spread spectrum signals are used primarily in digital communication systems that 

require AJ protection and in CDMA, where many users share a common bandwidth. In 

most cases, an FH signal is preferred over a DS spread spectrum signal because of 

the stringent synchronization requirements inherent in DS spread spectrum signals. 

Specifically, in a DS system, timing and synchronization must be established to within 

a fraction of the chip interval T, zt~ 1/ W. On the other hand, in an FH system, the 

chip interval is the time spent in transmitting a signal in a particular frequency slot of 

bandwidth B << W. But this interval is approximately I/ B, which is much larger than 

1/ W. Hence the timing requirements in an FH system are not as stringent as in a DS 

system. 

In Sections 12.3-2 and 12.3-3, we shall focus on the AJ and CDMA application of FH 

spread spectrum signals. First, we shall determine the error rate performance m an 

uncoded and a coded FH signal in the presence of broadband AWGN inteference Then we 

shall consider a more serious type of interference that arises in AJ and CDMA applications, 

called partial-band interference. The benefits obtained from coding fo_ this type of 

interference are determined. We conclude the discussion in Section 12.3--with an 

example of an FH CDMA system that was designed for use by mobile user_ with a 

satellite serving as the channel. 

3.4 Synchronization of Spread Spectrum Systems 

Time synchronization of the receiver to the received spread spectrum signal may be 

separated into two phases. There is an initial acquisition phase and a tracking phase =tier 

the signal has been initially acquired. 

Acquisition In a direct sequence spread spectrum system, the PN code must be time-

synchronized to within a small fraction of the chip interval T, ,^; 1 / W. The problem of 

initial synchronization may be viewed as one in which we attempt to synchronize in time 

the receiver clock to the transmitter clock. Usually, extremely accurate and stable time 

clocks are used in spread spectrum systems. Consequently, accurate time clocks result in 

a reduction of the time uncertainty between the receiver and the transmitter. However, 

there is always an initial timing uncertainty due to range uncertainty between the 
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transmitter and the receiver. This is especially a problem when communication is taking 

place between two mobile users. In any case, the usual procedure for establishing initial 

synchronization is for the transmitter to send a known pseudorandom data sequence to 

the receiver. The receiver is continuously in a search mode looking for this sequence in 

order to establish initial synchronization. 

Let us suppose that the initial timing uncertainty is Tu and the chip duration is T, If initial 

synchronization is to take place in the presence of additive noise and other interference, it 

is necessary to dwell for Td = NT, in order to test synchronism at each time instant. If we 

search over the time uncertainty interval in (coarse) time steps of 2 T, then the time 

required to establish initial synchronization is 

 

 

Clearly, the synchronization sequence transmitted to the receiver must be at least as long 

as 2NTu in order for the receiver to have sufficient time to perform the necessary search 

in a serial fashion. 

In principle, matched filtering or cross correlation are optimum methods for estab-

lishing initial synchronization. A filter matched to the known data waveform generated 

from the known pseudorandom sequence continuously looks for exceedence of a pre 

determined threshold. When this occurs, initial synchronization is established and the 

demodulator enters the "data receive" mode. 

Alternatively, we may use a sliding correlator as shown in Figure 12.5-1. The correlator 

cycles through the time uncertainty, usually in discrete time intervals of 2 Tc, and 

correlates the received signal with the known synchronization sequence. The cross 

correlation is performed over the time interval NT, (N chips) and the correlator output is 

compared with a threshold to determine if the known signal sequence is present. If the 

threshold is not exceeded, the known reference sequence is advanced in time by 
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½Tc, seconds and the correlation process is repeated. These operations are performed 

until a signal is detected or until the search has been performed over the time uncertainty 

interval Tu. In the latter case, the search process is then repeated. 

A similar process may also be used for FH signals. In this case, the problem is to 

synchronize the Ply code that controls the hopped frequency pattern. To accomplish this 

initial synchronization, a known FH signal is transmitted to the receiver. The initial 

acquisition system at the receiver looks for this known FH signal pattern. For example, a 

bank of matched filters tuned to the transmitted frequencies in the known pattern may be 

employed. Their outputs must be properly delayed, envelope- or square-lawdetected, 

weighted, if necessary, and added (noncoherent integration) to produce the signal output 

which is compared with a threshold. A signal present is declared when the threshold is 

exceeded. The search process is usually performed continuously in time until a threshold 

is exceeded. A block diagram illustrating this signal acquisition scheme is given in Figure 

12.5-2. As an alternative, a single matched-filter-envelope detector pair may be used, 

preceded by an FH pattern generator and followed by a postdetection integrator and a 

threshold detector. This configuration, shown in Figure 12.5-3, is based on a serial search 

and is akin to the sliding correlator for DS spread spectrum signals. 

The sliding correlator for the IBS signals or its counterpart shown in Figure 12.5-3 for FH 

signals basically perform a serial search that is generally time-consuming. As an 

alternative, one may introduce some degree of parallelism by having two or more such 

correlators operating in parallel and searching over non-overlapping time slots. In such a 

case, the search time is reduced at the expense of a more complex and costly 

implementation. 
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4.0 Conclusion 

Spread spectrum signals are used for combating or suppressing the detriment effects of 

interference due to jamming, interference arising from other users of the channel, and 

self-interference due to multipath propagation. It is also used for hiding a signal by 

transmitting it at low power and, this, making it difficult for an unintended listener to 

detect in the presence of background noise and achieving message privacy in the 

presence of other listeners. 

5.0 Summary 

Spread spectrum signals are used to obtain accurate range (time delay) and range rate 

(velocity) measurements in radar and navigation. Besides, the primary application of 

spread spectrum communications has been in the development of secure (AJ) digital 

communication system for military use. Expanding the bandwidth of the transmitted 

signal. Spatial diversity can also be achieved by using multiple antenna at the 

transmitter. 

In this unit, we have seen that multiple antennas at the transmitter and the receiver 

of a wireless communication system can be used to establish multiple parallel 

channels for simultaneous transmission of multiple data streams in the same 

frequency band (spatial multiplexing) and, thus result in extremely high bandwidth 

efficiency. 

6.0 Tutor Marked Assignment 

Consider a deterministic MISCO (NT, 1) channel with AWGN and channel rector h. 

The received signal in any signal internal may be expressed as: y=hs+n 

Where y and n are scalars 

a. If the channel rector h is known as the transmitter, demonstrate that the 

received SNR is maximized when the information is sent in the direction of the 

channel rector h, s is selected as; 

s=h/iihii 
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(The alignment of the transmit signal in the direction of the channel rector h is called 

transmit beam forming). 

b. hat is the capacity of the MISCD channel when h is known at the transmitter?  

c. Compare the capacity obtained in (b) with that of a SIMO channel, when the 

channel matrix h is identical for the two systems. 

 

7.0 References/ Further Reading 

Space time coding for MIMD channels by Taro kh et al (1998, 1999) 

6.0 Tutor Marked Assignment 

Ads binary PSK spread spectrum signals has a processing gain of 500. What is the 

interference margin against a continuous-tone interference if the desired error 

probability is 10-5? 

Consider the DS spread spectrum signal.  

c(t) = E cnp (t-nTc)  

Where Cn is a periodic M sequence with a period N = 127 and p(t) is a rectangular 

pulse of duration Tc = lds. Determine tehpower spectral density of the signal c(t).  

7.0 References/ Further Reading 

Unit 2: Multiple Antenna Systems 

1.0 Introduction  

2.0 Objectives 

3.0 Main Content 

3.1 Channel Models for Multiple-antenna systems 

3.2 Capacity of MIMO Channels 
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3.3 Spread spectrum signals and multimode transmission 

3.4 Coding for MIMO Channels  

1.0 Introduction  

Multiple transmitting antennas can be used to create multiple spatial channels and 

this provide the capacity to increase the data rate of a wireless communication 

system. This method is called spatial multiplexing. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Explain multiple transmitting antenna systems. 

- Describe the capacity of MIMO channels and its mathematical models. 

3.0 main Content 

3.1 Channel Models for Multiple Antenna System 

A communication system employing NT transmitting antennas and NR receiving an -

tennas is generally called a multiple-input, multiple-output (MIMO) system, and the 

resulting spatial channel in such a system is called a MIMO channel. The special case 

in which NT = NR = 1 is called a single-input, single-output (SISO) system, and the 

corresponding channel is called a SISO channel. A second special case is one in 

which NT = 1 and NR _> 2. The resulting system is called a single-input, multiple-

output (SIMO) system, and the corresponding channel is called a SIMO channel. 

Finally, a third special case is one in which NT > 2 and NR = 1. The resulting system 

is called a multiple-input, single-output (MISO) system, and the corresponding 

channel is called a IVIISO channel. 

In a MIMO system with NT transmit antennas and NR receive antennas, we denote 

the equivalent lowpass channel impulse response between the jth transmit antenna 

and the ith receive antenna as hij(;t), where z is the age or delay variable and t is 

the time variable. Thus, the randomly time-varying channel is characterized by the 

NR x NT 
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Suppose that the signal transmitted from the jth transmit antenna is sj (t), j = 1, 2, 

…. NT. Then the signal received at the ith antenna in the absence of noise may be 

expressed as; 

 

 

 

Where the asterisk denotes convolution. In matrix notation, Equation is expressed as  

  r(t) = H (;t) * s() 

where s(t) is an NT x 1 vector and r(t) is an NR x 1 vector. 

For a frequency=nonselective channel, the channel matrix H is expressed as  

 

 

 

 

 

Furthermore, if the time variations of the channel impulse response are very slow 

within a time interval 0  t  T, when T may be either the symbol interval or some 

general time interval, equation maybe simply expressed as;  

r(t) = Hs(t), 0  t  T 

where H is constant with the time interval 0  t  T. 
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The slowly time-variant frequency-nonselective channel model embodied in equation 

is the simplest model for signal transmission in a MIMO channel. In the following two 

subsections, we employ this model to illustrate the performance charac teristics of 

MIMO systems. At this point, we assume that the data to be transmitted are 

uncoiled. Coding for MIMO channels is treated in Section 15.4. 

Signal Transmission through a Slow Fading Frequency-Nonselective MIMO 

Channel 

Consider a wireless communication system that employs multiple transmitting and 

receiving antennas, as shown in Figure 15.1-1. We assume that there are NT 

transmitting antennas and NR receiving antennas. As illustrated in Figure 15.1-1, a 

block of NT symbols is converted from serial to parallel, and each symbol is fed to 

one of NT identical modulators, where each modulator is connected to a spatially 

separate antenna. Thus, the NT symbols are transmitted in parallel and are received 

on NR spatially separated receiving antennas. 

In this section, we assume that each signal from a transmitting antenna to a 

receiving antenna undergoes frequency-nonselective Rayleigh fading. We also 

assume that the differences in propagation times of the signals from the NT 

transmitting to the NR receiving antennas are small relative to the symbol duration T, 

so that for all practical purposes, the signals from the NT transmitting antennas to 

any receiving antenna are synchronous. Hence, we can represent the equivalent 

lowpass received signals at the receiving antennas in a signaling interval as  
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where g(t) is the pulse shape (impulse response) of the modulat ion filters; hmn is 

the complex-valued, circular zero-mean Gaussian channel gain between the nth 

transmitting antenna and the mth receiving antenna; sn is the symbol 

transmitted on the nth antenna; and z,n (t) is a sample function of an AWGN 

process. The channel gains {hmn} are identically distributed and statistically 

independent from channel to channel. The Gaussian sample functions {z,n(t)} are 

identically distributed and mutually statistically independent, each having zero 

mean and two-sided power spectral density 2No. The information symbols {s,} 

are drawn from either a binary or an M-ary PSK or QAM signal constellation. 

The demodulator for the signal at each of the NR receiving antennas consists of a 

matched filter to the pulse g(t), whose output is sampled at the end of each 

symbol interval. The output of the demodulator corresponding to the mth 

receiving antenna can be represented as 

 

 

where the energy of the signal pulse g(t) is normalized to unity and r]m is the 

additive Gaussian noise component. The NR soft outputs from the demodulators 

are passed to the signal detector. For mathematical convenience, Equation 15.1-9 

may be expressed in matrix form as 

y = Hs + n   

where y = (YI Y2 ... YNR]`, s = [s1 s2 ... SNT]r, n = [n1 n2 ... nNR]t, and H is 

the NR x NT matrix of channel gains. Figure 15.1-2 illustrates the discrete-time 

model for the multiple transmitter and receiver signals in each signaling interval.  

In the formulation of a MIMO system as described above, we observe that the 

transmitted symbols on the NT transmitting antennas overlap totally in both time 

and frequency. As a consequence, there is interchannel interference in the 

signals (ym, 1  m  NR} received from the spatial channel. In the following 

subsection, we consider three different detectors for recovering the transmitted 

data symbols in a MIMO system. 
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3.2 Capacity of MIMO Channels  

In this section, we evaluate the capacity of MIM® channel models. For mathematical 

convenience, we limit our treatment to frequency-nonselective channels which are 

assumed to be known to the receiver. Thus, the channel is characterized by an NR x 

NT channel matrix H with elements {hid }. In any signal interval, the elements {hi.1 

} are complex-valued random variables. In the special case of a Rayleigh fading 

channel, the (hij) are zero-mean complex-valued Gaussian random variables with 

uncorrelated real and imaginary components (circularly symmetric). When the {hij} 

are statistically -.dependent and identically distributed complex-valued Gaussian 

random variables, MIMQ channel is spatially white. 

Mathematical Preliminaries 

By using a singular value decomposition (SVD), the channel matrix H with rank r may 

-= expressed as  

H = U∑VH  

where U is an NR x r matrix, V is an NT x r matrix, and E' is an r x r diagonal matrix 

with diagonal elements the singular values σ1, σ2 …… σr, of the channel. The 

singular values {σi} are strictly positive and are ordered in decreasing order, i.e., of 

>_ of e column vectors of U and V are orthonormal. Hence UHU = I and VHV = IY, - 

here I,. is an r x r identity matrix. Therefore, the SVD of the channel matrix H may - 

expressed as 

 

 



 92 

where {ui } are the column vectors of U, which are called the left singular vectors 

of H, and (vi} are the column vectors of V, which are called the right singular 

vectors of H. We also consider the decomposition of the NR x NR square matrix 

HHH. This matrix may be decomposed as 

HHH = QλQH 

Where Q is the NR X NR modal matrix with orthonormal column vectors 

(eigenvectors), i.e., QHQ = INR, and  is an NR X NR diagonal elements (λi, i = 1, 

2, ….. NR), which are the eigenvalues of HHH. With the eigenvalues numbers in 

decreasing order (λi > λi + 1), it can be easily demonstrated that the eigenvalues 

of HHH are related to the singular values in the SVD of H as follows:  

 

 

 

 

We shall observed below that the squared Frobenius norm //H// 2
F is a parameter that 

determines the performance of MIMO communication systems. The statistical 

properties of //H//2
F can be determined for various fading channel conditions. For 

example, in the case of Rayleigh fading, /hij/2 is a chi-squared random variable with 

two degrees of freedom. When the {hij) are iid (spatially white MIMO channel) with 

unit variable, the probability density function of //H//2
F is chi-squared with 2NRNT 

degrees of freedom; i.e If X = //H//2
F,  
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Capacity of a Frequency-Non-selective Deterministic MIMO Channel 

Let us consider a frequency-nonselective AWGN MIMO channel characterized by the 

matrix H. Let s denote the NT X 1 transmitted signal vector, which is statistically 

stationary and has zero mean and autocovariance matrix Rss. In the presence of 

AWGN, the NR x 1 receive signal vector y may be expressed as; 

  y = Hs + n 

Where n is the NR x 1 zero-mean Gaussian noise vector covariance matrix Rnn = 

N0INR. Although H is a realization of a random matrix, in this section we treat H as 

deterministic and known to the receiver.  

To determine the capacity of the MIMO channel, we first compute the mutual 

information between the transmitted signal vector s and the received vector y, 

denoted as I (s;y) and then determine the probability distribution of the signal 

vector s that maximizes I (s;y). thus;  

C = max I (s;y) 
         p(s) 

Where C is the channel capacity in bits per second per hertz (bps/Hz). It can be 

shown (see Telatar (1999) and Neeser and Massey (1993) that I (s;y) is maximized 

when s is a zero-mean, circularly symmetric, complex Guassian vector; hence, C is 

only dependent on the covariance of the signal vector. the resulting capacity of the 

MIMO channel is  

 

Where tr(Rss) denotes the trace of the signal covariance Rss. This is the maximum 

rate per hertz that can be transmitted reliably (without errors) over the MIMO 

channel for any given realization of the channel matrix H. 

In the important practical case where the signals among the NT transmitters are 

statistically independent symbols with energy per symbols equal to Es/NT, the signal 

covariance matrix is diagonal, i.e  
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and trace (Rss) = Es. In this case, the expression for the capacity of the MIMO 

channel simplifies to  

 

The capacity formula in Equation can also be expressed in terms of the eigenvalues 

of HHH by using the decomposition HHH = QQH. Thus;  

 

 

 

 

 

Where r is the rank of the channel matrix H. 

3.3 Spread Spectrum Signals and Multicode Transmission 

In Section 15.1 we demonstrated that a MIMO system transmitting in a frequency 

nonselective fading channel can employ identical narrowband signals for data 

transmission. The signals from the NT transmit antennas were assumed to arrive 

at the NR receive antennas via NTNR independently fading propagation paths. By 

knowing the channel matrix H, the receiver is able to separate and detect the NT 

transmitted symbols in each signaling interval. Thus, the use of narrowband 

signals provided a data rate increase (spatial multiplexing gain) of NT relative to a 

single-antenna system and, simultaneously, a signal diversity of order NR, where 

NR > NT, when the maximum-likelihood detector is employed. 

In this section we consider a similar MIMO system with the exception that the 

transmitted signals on the NT transmit antennas will be wideband, i.e., spread 

spectrum signals. 
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Orthogonal Spreading Sequences 

The MIMO system under consideration is illustrated in Figure 15.3-1(a). The data 

symbols {sj, 1  j  NT} are each multiplied (spread) by a binary sequence f cjk, I  

k  Lc, 1  j  NT} consisting of Lc bits, where each bit takes a value of either -f-I or 

-1. These binary sequences are assumed to be orthogonal, i.e.,  

 

 

For example, the orthogonal sequences may be generated from NT Hadamard code-

words of block length L, where a 0 in the Hadamard codeword is mapped into a -1 

and a 1 is mapped into a +1. The resulting orthogonal sequences are usually called 

Walsh-Hadamard sequences. 

The transmitted signal on the jth transmit antenna may be expressed as; 

 

 

where Ss/NT is the energy per transmitted symbol, T is the symbol duration, Tc = 

T/L, and g(t) is a signal pulse of duration T, and energy 1/L, The pulse g(t) is usually 

called a chip, and Lc is the number of chips per information symbol. Thus, the 

bandwidth of the information symbols, which is approximately 1 / T, is expanded by 

the factor L, so that the transmitted signal on each antenna occupies a bandwidth of 

approximately 1/Tc. 

The MIMO channel is assumed to be frequency-nonselective and characterized by the 

matrix H, which is known to the receiver. At each receiving terminal, the received 

signal is passed through a chip matched filter and matched to the chip pulse g(t), 

and 
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its sampled output is fed to a bank of NT correlators whose outputs are sampled at 

the end of each signaling interval, as illustrated in Figure 15.3-1(b). Since the 

spreading sequences are orthogonal, the NT correlator outputs at the mth receive 

antenna are simply expressed as 

 

where {nmj} denote the additive noise components, which are assumed to be zero 

mean, complex-valued circularly symmetric Gaussian iid with variance E [nmj I
2] = σ2. 

It is convenient to express the NR correlator outputs corresponding to the same 

transmitted symbol sj in vector form as 

 

where yi = [ y1j y2j … yNRj]
t, hj = [h1j h2j …. hNRj]t, and = (n1j n2j … nNRj)

t. The 

optimum combiner is a maximal ratio combiner (MRC) for each of the transmitted 

symbols (sj). Thus, the output of the MRC for the jth signal is  
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The decision metrics {uj} are the inputs to the detector, which makes an 

independent decision on each symbol in the set {sj} of transmitted symbols. 

We observe that the use of orthogonal spreading sequences in a MIMO system 

transmitting over a frequency-nonselective channel significantly simplifies the 

detector and, for a spatially white channel, yields NR-order diversity for each of the 

transmitted symbols {sj}. The evaluation of the error rate performance of the 

detector for standard signal constellations such as PSK and QAM is relatively 

straightforward. Frequency-Selective Channel If the channel is frequency-selective, 

the orthogonality property of the spreading sequences no longer holds at the 

receiver. That is, the channel multipath results in multiple received signal 

components which are offset in time. Consequently, the correlator outputs at each of 

the antennas contain the desired symbol plus the other NT - 1 transmitted symbols, 

each scaled by the corresponding cross-correlations between pairs of sequences. Due 

to the presence of intersymbol interference, the MRC is no longer optimum. Instead, 

the optimum detector is a joint maximum-likelihood detector for the NT transmitted 

symbols received at the NR receive antennas. 

In general, the implementation complexity of the optimum detector in a frequency -

selective channel is extremely high. In such channels, a suboptimum receiver may be 

employed. A receiver structure that is readily implemented in a MINIO frequency 

selective channel employs adaptive equalizers at each of the NR receivers prior to 

despreading the spread spectrum signals. Figure 15.3-2 illustrates the basic receiver 
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structure. The received signal at each receive antenna is sampled at some multiple of 

the chip rate and fed to a parallel bank of NT fractionally spaced linear equalizers, 

whose outputs are sampled at the chip rate. After combining the respective NR 

equalizer outputs, the NT signals are despread and fed to the detector, as illustrated 

in Figure 15.3-2. Alternatively DFEs may be used, where the feedback filters are 

operated at the symbol rate. 

Training signals for the equalizers may be provided to the receiver by transmitting a 

pilot signal from each transmit antenna. These pilot signals may be spread spec trum 

signals that are simultaneously transmitted along with the information-bearing 

signals. Using the pilot signals, the equalizer coefficients can be adjusted recursively 

by employing a LMS- or RLS-type algorithm. 

3.4 Coding for MIMO Channel 

In this section we describe two different approaches to code design for MIMO 

channels and evaluate their performance for frequency-nonselective Rayleigh fading 

channels. The first approach is based on using conventional block or convolutional 

codes with interleaving to achieve signal diversity. The second approach is based on 

code design that is tailored for multiple-antenna systems. The resulting codes are 

called space-time codes. We begin by recapping the error rate performance of coded 

SISO systems in Rayleigh fading channels. 

Performance of Temporally Coded SISO Systems in Rayleigh Fading 

Channels 

Let us consider a SISO system, as shown in Figure 15.4-1, where the fading channel 

is frequency-nonselective and the fading process is Rayleigh-distributed. The encoder 

generates either an (n, k) linear binary block code or an (n, k) binary convolutional 

code. The interleaver is assumed to be sufficiently long that the transmitted signals 

conveying the coded bits fade independently. The modulation is binary PSK, DPSK, or 

FSK. 

The error probabilities for the coded SISO channel with Rayleigh fading are given in 

Sections 14.4 and 14.7. Let us consider linear block codes first. From Section 7.2-4, 

the union bound on the codeword error probability for soft decision decoding is  
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where P2(wm) is the pairwise error probability -given by the expression (see Section 

14.7-1) 

 

 

 

 

 

 

 

 

For simplicity, we will use the simpler (looser) upper bound obtained by assuming 

that yb >> 1 in the expression for P2 (dmin). thus, we obtain 

 

 

 

We observe that for soft decision decoding, the error probability decays exponentially 

as 1/ybRc, where the exponent is equal to dmin, the minimum Hamming distance of 

the block codes. 

For hard decision decoding, we employ the Chernov bound given in section 14.4, 

which may be expressed as; 
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And  is defined in equation 15.4-3. For yb >> 1, the Chernov bound simplifies to  

 

 

Where q is defined in equation 15.4-5. As in the case of soft decision decoding, the 

error probability decays exponentially as 1/ybRc; however, the exponent for hard 

decision decoding is dmin/2. Therefore, soft decision decoding provides twice the 

signal diversity that is obtained by hard decision decoding. 

For convolutional codes with soft decision decoding, we use the union bound derived 

in section 14.3, namely; 

 

 

where P2(d) is given by Equation 15.4-2 and  is defined by Equation 15.4-3. If pb 

>> 1, we obtain the simpler form for the pairwise error probability, i.e., 

 

 

where q is defined by Equation 15.4-5. We observe that the leading term in Equation 

15.4-9 has an exponent of d = dfree. Hence, for soft decision decoding, the leading 

term in the error probability decays exponentially as 1/pbR,, where the exponent is 

dfree, the free distance of the convolutional code. 

For hard decision decoding, we again use the Chemov bound for the pairwise error 

probability 

 

where p is defined by Equation 15.4-7 and * is defined by Equation 15.4-3. Hence, 

with Pb >>, P2(d) simplifies to 
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As in the case of block codes, we observe that with hard decision decoding, the 

signal diversity achieved by the code is reduced by a factor of 2 compared with soft 

decision decoding. 

With this background on the performance of coded SISO systems, we now consider 

the performance of coded MIMO systems. 

Bit-Interleaved Temporal Coding for MIMO Channels 

We consider the MIMO system as shown in Figure 15.4-2, which has NT transmit 

antennas and NR receive antennas (NR >_ NT). The encoder may generate either a 

binary block code or a convolutional code. The interleaver is selected to be suffi -

ciently long that the coded bits in a block of the block code or in several constraint 

lengths of the convolutional code fade independently. The MIMO channel is assumed 

to be frequency-nonselective with zero-mean, complex-valued, circularly symmetric 

Gaussian distributed coefficients (hlj), which are identically distributed and mutually 

statistically independent. The channel metrix H is assumed to have full rank. 

The demodulator output in each signal interval is the vector y given by Equation 

15.1-10. For hard decision decoding, the vector y is fed to the detector, which may 

employ any of the three detection algorithms (MLD, MMSE, ICD) described in Section 

15.1-2 to make the hard decisions on the transmitted bits. For soft decision 

decoding, the vector y, after deinterleaving, is fed to the decoder. Similarly, for hard  

 

 

 

 

 

 

decision decoding, the bits from the detector output are deinterleaved and fed to the 

decoder. 
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Let us consider the amount of signal diversity that is achieved in the MIMO sys tem 

that employs spatial multiplexing of NT. Recall from Section 15.1-2 that with hard 

decision detection in an uncoded system, we achieved (NR - NT + 1)-order signal 

diversity with linear detection and NR-order signal diversity with the optimum 

maximum-likelihood detector (MLD). From our discussion in Section 15.4-1, we ob-

served that the code provides a diversity of order dmi„/2 or dfree/2 . Therefore, in a 

coded MIMO system, the total signal diversity achieved with a linear detector and a 

hard decision decoder is (NR - NT + 1)dmin/2 or (NR - NT + I)dfree/2. On the other 

hand, if soft decision decoding is employed, the total diversity order is NRdmin or 

NRdfree. 

We demonstrate the additional diversity achieved with coding and bit -interleaving by 

computer simulation of the MIMO system shown in Figure 15.4-2 for a rate R, _ 1/2 

convolutional code with dfree = 5 and BPSK modulation. Figures 15.4-3 and 15.4-4 

illustrate the performance of the MIMO system for binary PSK with hard decision 

decoding and soft decision decoding, for (NT, NR) = (2, 2) and (NT, NR) = (2, 3). 

We observe that coding with interleaving improves the performance of the MIMO 

system relative to the performance of the uncoded system at the cost of a reduction 

in the data throughput rate by the reciprocal of the code rate. For (NT, NR) = (2, 3) 

and hard decision decoding, the MMSE detector with coding performs almost as well 

as the MLD 
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detector with coding. In this case, the signal diversity provided by the convolutional 

code enhances the performance of the MMSE detected data more than the 

performance of the MLD detected data. We also observe that maximum-likelihood, 

soft decision decoding is significantly better than MLD with hard decision decoding. 

For example, at 10-5, the difference in performance is more than 5 dB for (NT, NR) 

= (2, 3). This performance advantage is due to the factor of 2 difference in the order 

of diversity achieved by the two types of decoders. 

Also plotted in Figures 15.4-3 and 15.4-4 is the ideal performance of rate 1/2, dfree 

= 5 coded SIMO (NT, NR) = (l, 2) and (NT, NR) = (1, 3) systems. The signal 

diversity achieved by these two systems with soft decision decoding is 10 and 15, 

respectively. We observe that there is about a 2-dB degradation at Pb = 10-5 in the 

performance of the soft decision decoded (2, 2) and (2, 3) MIMO systems compared 

to the ideal performance of the corresponding SIMO systems. This loss in 

performance is attributed to the interference resulting from the use of multiple 

transmitting antennas. 

The simulation results shown in Figures 15.4-3 and 15.4-4 serve to reinforce our 

analytical results on the signal diversity provided by coding with bit interleaving in a 

MIMO system. The performance superiority of maximum-likelihood soft decision 

decoding over hard decision decoding is clearly evident in these simulation results.  

In this section we employed a single encoder and a single interleaver to generate the 

coded symbols for transmission on the NT antennas and a single deinterleaver and 

decoder at the receiver. An alternative approach that has been considered in the 

litera ture is to employ separate but identical encoding and interleaving on the 

dimultiplexed streams fed to each of the transmit antennas. This approach requires 

NT parallel encoders and interleavers at the transmitter and NT parallel decoders and 

deinterleavers at the receiver. It is especially suitable for situations where multiple 

data streams from different users are to be transmitted in parallel on multiple 

transmit antennas. 

Space-Time Block Codes for MIMO Channels 

Let us now consider the MIMO system illustrated in Figure 15.4-5. At the transmitter, 

the sequence of information bits is fed to a block encoder that maps a block of bits 
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into signal points selected from a signal constellation such as PAM, PSK, or QAM, 

consisting of M = 2b signal points. The signal points generated by the encoder as a 

block are fed to a parallel set of identical modulators which map the signal points 

into corresponding waveforms that are transmitted simultaneously on the NT 

antennas. 

A space-time block code (STBC) is defined by a generator matrix G, having N rows 

and NT columns, of the form 

 

 

 

In which the elements f gig } are signal points resulting from a mapping of 

information bits to corresponding signal points from a binary or M-ary signal 

constellation. By 

 

 

 

 

 

 

employing NT transmit antennas, each row of G consisting of NT signal po ints (sym-

bols) is transmitted on the NT antennas in a time slot. Thus, the first row of NT 

symbols is transmitted on the NT antennas in the first time slot, the second row of 

NT symbols is transmitted on the NT antennas in the second time slot, and the Nth 

row of NT symbols is transmitted on the NT antennas in the Nth time slot. Therefore, 

N time slots are used to transmit the symbols in the N rows of the generator matrix 

G. 
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In the design of the generator matrix of a STBC, it is desirable to focus on three  

principal objectives: (1) achieving the highest possible diversity of NT NR, (2) 

achieving the highest possible spatial rate, and (3) minimizing the complexity of the 

decoder. Our treatment considers these three objectives. 

The Alamouti STBC 

Alamouti (1998) devised a STBC for NT = 2 transmit antennas and NR = 1 receive 

antenna. The generator matrix for the Alamouti code is given as 

 

where sl and s2 are two signal points selected from an M-ary PAM, or PSK or QAM 

signal constellation with M = 2b signal points. Thus, 2b data bits are mapped into 

two signal points (symbols) sl and s2 from the M-ary signal constellation. The 

symbols sl and s2 are transmitted on the two antennas in the first time slot, and the 

symbols -s2 and si are transmitted on the two antennas in the second time slot. 

Thus, two symbols, sl and S2, are transmitted in two time slots. Consequently, the 

spatial code rate R,, = 1 for the Alamouti code. This is the highest possible rate for a 

(orthogonal) STBC. 

4.0 Conclusion 

The use of multiple antennas at the receiver of a communication system is a 

standard method for achieving spatial diversity to combat fading without. 

UNIT 3: MULTIUSER COMMUNICATION  
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3.3 Multiuser detection in CDMA systems  
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1.0 Introduction 

This unit focuses on multiple users and multiple communication links. We explore the 

various ways in which multiple users access a common channel to transmit 

information. The multiple access methods that are described in this unit form the basis 

for current and future wireless and wireless communication networks, such as sate llite 

networks, cellular and mobile communication networks and underwater acoustic 

networks. 

2.0 Objectives 

At the end of this unit, you should be able to; 

 - Explain the multiple access techniques.  

- Discuses multiuser detection in CDMA systems. 

- Understand the capacity of multiple access methods. 

3.1 Introduction to multiple access techniques 

It is instructive to distinguish among several types of multiuser communication 

systems. One type is a multiple access system in which a large number of users share 

a common communication channel to transmit information to a receiver. A model of 

such a system is depicted in Figure 16.1-1. The common channel may represent the 

uplink in either a cellular or a satellite communication system, or a cable to which are 

connected a number of terminals that access a central computer. For example, in a 

mobile cellular communication system, the users are the mobile terminals in any 

particular cell of the system, and the receiver resides in the base station of the 

particular cell. 
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A second type of multiuser communication system is a broadcast network in which a 

single transmitter sends information to multiple receivers, as depicted in Figure 16.1-2. 

Examples of broadcast systems include the common radio and TV broadcast systems 

as well as the downlinks in cellular and satellite communication systems. 

 

 

 

 

 

 

The multiple access and broadcast systems are the most common multiuser com-

munication systems. A third type of multiuser system is a store-and-forward network, 

as depicted in Figure 16.1-3. Yet a fourth type is the two-way communication system 

shown in Figure 16.1-4. 

In this chapter, we focus on multiple access and broadcast methods for multiuser 

communications. In a multiple access system, there are several different ways in which 

multiple users can send information through the communication channel to the 

receiver. One simple method is to subdivide the available channel bandwidth into a 

number, say K, of frequency non-overlapping subchannels, as shown in Figure 16.1-5, 

and to assign a subchannel to each user upon request by the users. This method is 

generally called frequency-division multiple access (FNMA) and is commonly used in 

wireline channels to accommodate multiple users for voice and data transmission. 

Another method for creating multiple subchannels for multiple access is to subdivide 

the duration T f, called the frame duration, into, say, K non-overlapping subintervals, 

each of duration Tf/K. Then each user who wishes to transmit information 
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3.2 Capacity of multiple access method 

It is interesting to compare FDMA, TDMA and CDMA in terms of the information rate 

that each multiple access method achieves in an ideal AWGN channel of bandwidth W. 

Let us compare the capacity of Y users, where each user has an average power Pi = P, 

for all 1  I  K. Recall that in an ideal band-limited AWGN channel of bandwidth w, 

the capacity of a single user is 

 

Where ½ No is the power spectral density of he additive noise. 

In FDMA, each user is allocated a bandwidth W/K. Hence, the capacity of each user is 

 

 

 

 

 

 

 

 

Therefore, the total capacity is equivalent to that of a single user with average power 

Pav = K P. 

It is interesting to note that for a fixed bandwidth W, the total capacity goes to infinity 

as the number of users increases linearly with K. One the other hand, as K increases, 

each user is allocated a smaller bandwidth (W/K) and, consequently, the capacity per 

user decreases. Figure 16.2-1 illustrates the capacity Ck per user normalized by the 

channel bandwidth W, as a function of Eb/No, with K as a parameter. This expression 

is given as 
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A more compact form of Equation 16.2-4 is obtained by defining the normalized total 

capacity Cn = KCk/W, which is the total bit rate for all K users per unit of bandwidth. 

Thus, equation 16-2-4 may be expressed as; 

 

 

 

The graph of Cn versus Eb/No is shown in figure 16-2-2. We observe that Cn increase 

as Eb/No increases above the minimum value of 1n2. 

In a TDMA system, each user transmits for 1/k of the time through the channel of 

bandwidth W, with average power KP. Therefore, the capacity per user is 

 

 

 

 

 

 

 

which is identical to the capacity of an FDMA system. However, from a practical stand-

point, we should emphasize that, in TDMA, it may not be possible for the transmitters 

to sustain a transmitter power of K P when K is very large. Hence, there is a practical 

limit beyond which the transmitter power cannot be increased as K is increased. 

In a CDMA system, each user transmits a pseudorandom signal of a bandwidth W and 

average power P. The capacity of the system depends on the level of cooperation 

among the K users. At one extreme is noncooperative CDMA, in which the receiver for 

each user signal does not know the codes and spreading waveforms of the other 

users, or chooses to ignore them in the demodulation process. Hence, the other users' 



 110 

signals appear as interference at the receiver of each user. In this case, the multiuser 

receiver consists of a bank of K single-user matched filters. This is called single-user 

detection. If we assume that each user's pseudorandom signal waveform is Gaussian, 

then each user signal is corrupted by Gaussian interference of power (K - 1) P and 

additive Gaussian noise of power W NO. Therefore, the capacity per user for single-

user detection is 

 

 

 

Figure 16.2-3 illustrates the graph of Ck/W versus Eb/No, with K as a parameter. 

For a large number of users, we may use the approximation 1n (1 + x)  x. Hence, 

 

 

 

 

 

3.3 Multiuser detection in CDMA systems 

As we have observed, TDMA and FDMA are multiple access methods in which the 

channel is partitioned into independent, single-user subchannels, i.e., non-overlapping 

time slots or frequency bands, respectively. In CDMA, each user is assigned a distinct 

signature sequence (or waveform), which the user employs to modulate and spread 

the information-bearing signal. The signature sequences also allow the receiver to 

demodulate the message transmitted by multiple users of the channel, who transmit 

simultaneously and, generally, asynchronously. 

In this section, we treat the demodulation and detection of multiuser uncoded CDMA 

signals. We shall see that the optimum maximum-likelihood detector has a 

computational complexity that grows exponentially with the number of users. Such a 
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high complexity serves as a motivation to devise suboptimum detectors having lower 

computational complexities. Finally, we consider the performance characteristics of the 

various detectors. 

CDMA Signal and Channel Models 

Let us consider a CDMA channel that is shared by K simultaneous users. Each user is 

assigned a signature waveform gk(t) of duration T, where T is the symbol interval. A 

signature waveform may be expressed as 

 

where {ak(n), 0 < n < L - 1} is a pseudonoise (PN) code sequence consisting of L 

chips that take values {fl}, p (t) is a pulse of duration T, and T, is the chip interval. 

Thus, we have L chips per symbol and T = LT, Without loss of generality, we assume 

that all K signature waveforms have unit energy, i.e., 

 

The cross correlations between pairs of signature waveforms play an important role in 

the metrics for the signal detector and on its performance. We define the following 

cross correlations, where 0  z   and i  j, 

 

 

The cross correlations in Equations 16.3-3 and 16.3-4 apply to asynchronous trans-

missions among the K users. For synchronous transmission, we need only pi j (0). 

For simplicity, we assume that binary antipodal signals are used to transmit the 

information from each user. Hence, let the information sequence of the kth user be 

denoted by {bk(In)}, where the value of each information bit may be ±1. It is 

convenient to consider the transmission of a block of bits of some arbitrary length, say 

N. Then, the data block from the kth user is 

bk = [bk(1) ... bk(N)t  

and the corresponding equivalent lowpass, transmitted waveform may be expressed as  
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where £k is the signal energy per bit. The composite transmitted signal for the K users 

may be expressed as 

 

 

 

4.0 Conclusion 

Frequency-division multiple access (FDMA) was the dominant multiple access scheme 

that has been used for decades in telephone communication systems for analog voice 

transmission. With the advent of digital speech transmission using PCM, DPCM and 

other speech coding methods, TDMA has replaced FDMA as the dominant multiple 

access scheme in telecommunications. CDMA and random access methods, in general, 

have been developed over the past three decades, primarily for use in wireless signal 

transmission and in local area wire line networks. 

5.0 Summary 

Multiuser information theory deals with basic information, theoretical limits in source 

coding for multiple sources and, channel coding and modulation for multiple access 

channels. 

6.0 Tutor Marked Assignment 

Consider a two-user, synchronous CDMA transmission system, where the received 

signal is; 

r(t) = 1big1(t) + 2b2g2(t) + n (t), o  t  T 

and (bl, b2) = (±1, ±1). The noise process n (t) is zero-mean 

Gaussian and white, with spectral density No/2. the demodulator for r (t) is shown in 

figure 6.1 below. 

a. Show that the correlator outputs rl and r2 at t = T may be expressed as; rl 

= c1bl + c2pb2 + n1 
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r2=F1b1p+c2b2+n2 

b. Determine the variance of nl and n2 and the covariance of nl and n2. 

c. Determine the joint PDF p(rl, r2/bl, b2). 

2. Consider the two-user, synchronous CDMA transmission system described in 

problem 6.1 P(bl =1) = P(b2 =1) = '/2 and P(bl, b2) = P(bl) P (b2). The jointly 

optimum detector makes decisions based on the maximum a posteriori probability 

(MAP) criterion. That is, the detector computes. 

Max P (bl, b2/r(t), o < t <_ T) 

a. For the equally likely information b its (bl, b2) show that the MAP criterion is 

equivalent to the maximum - likelihood (ML) criterion max P[r(t), o _< t <_/bl, b2] 

b. Show that the ML criterion in (a) leads to the jointly optimum detector that 

makes decisions on bl and b2 according to the following rule; 

Max (clblrl + c2b2r2 - clc2pblb2 

3. Consider the two0user, synchronous CDMA transmission system 

described in problem 6.1. the conventional single-user detector for the information 

bits bl and b2 gives the outputs. 

bl = sgn (rl) b2 = sgn (r2) Assuming that p (bl =1) = 1/2, and bl and b2 are 

statistically independent, determine the probability of error for this detector.  

7.0 References/ Further Reading 

Precoding and signal shaping for multichannel digital transmission by Fischer (2002) . 
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UNIT 4: MULTICHANNEL AND CARRIER SYSTEMS  

1.0 Introduction 

2.0 Objectives 

3.0 Main Content  

3.1 Multichannel digital communications in AWG channels 

3.2 Multicarrier Communications 4.0 Introduction 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading  

1.0 Introduction 

This mode of transmission is used primarily in situations where there is a high 

probability that one or more of the channels will be unreliable from time to time. 

Multichannel signaling is sometimes employed in wireless communication systems as 

a means of overcoming the effects of interference of the transmitted signal . 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Understand multichannel digital communications in AWGN channels 

- Explain multicarrier communications 

3.1 Multichannel digital communications in AWGN channels 

In this section, we confine our attention to multichannel signaling over fixed 

channels that differ only in attenuation and phase shift. The specific model for the 

multichannel digital signaling system is illustrated in Figure 11.1-1 and may be 

described as follows. The signal waveforms, in general, are expressed as  
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where L is the number of channels and M is the number of waveforms. The 

waveforms are assumed to have equal energy and to be equally probable a priori. 

The waveforms {s(n)
m)(t)} transmitted over the L channels are scaled by the 

attenuation factors {an}. phase-shifted by {n}, and corrupted by additive noise. The 

equivalent low-pass signals received from the L channels may be expressed as 

 

 

where {sl)(t)} are the equivalent lowpass transmitted waveforms and {zn(t)) 

represent the additive noise processes on the L channels. We assume that {zn(t)} 

are mutually statistically independent and identically distributed Gaussian noi se 

random processes. We consider two types of processing at the receiver, namely, 

coherent detection and noncoherent detection. The receiver for coherent detection 

estimates the channel parameters fan} and f wn} and uses the estimates in 

computing the decision variables. Suppose we define gn = anejn and let gn be the 

estimate of gn. The multichannel receiver correlates each of the L received signals 

with a replica of the corresponding transmitted signals, multiplies each of the 

correlator outputs by the corresponding estimates {g*
n}, and sums the resulting 

signals. Thus, the decision variables for coherent detection are the correlation 

metrics 

 

In noncoherent detection, no attempt is made to estimate the channel parameters. 

The demodulator may base its decision either on the sum of the envelopes (envelope 

detection) or the sum of the squared envelopes (square-law detection) of the 

matched filter outputs. In general, the performance obtained with envelope detection 
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differs little from the performance obtained with square-law detection in AWGN. 

However, squarelaw detection of multichannel signaling in AWGN channels is 

considerably easier to analyze than envelope detection. Therefore, we confine our 

attention to squarelaw detection of the received signals of the L channels, which 

produces the decision variables 

 

 

Let us consider binary signaling first, and assume that sli)(t), n = 1, 2, . . . , L, are 

the L transmitted waveforms. Then an error is committed if C112 > CMI, or, 

equivalently, if the difference D = CM, - CMZ < 0. For noncoherent detection, this 

difference may be expressed as 

 

 

 

The {Xn} are mutually independent and identically distributed complex Gaussian ran-

dom variables. The same statement applies to the variables (Yn1. However, for any 

n, Xn and Yn may be correlated. For coherent detection, the difference D = CM, - 

CMZ may be expressed as 

 

 

 

 

If the estimates f gn1 are obtained from observation of the received signal over one 

or more signaling intervals, as described in Appendix C, their statistical characteristics 

are described by the Gaussian distribution. Then the f Yn I are characterized as 

mutually independent and identically distributed Gaussian random variables. The same 
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statement applies to the variables {Xn1. As in noncoherent detection, we allow for 

correlation between Xn and Yn, but not between X„z and Yn for m  n. 

3.2 Multicarrier Communications 

From our treatment of nonideal linear filter channels in Chapters 9 and 10, we have 

observed that such channels introduce ISI, which degrades performance compared 

with the ideal channel. The degree of performance degradation depends on the 

frequency response characteristics. Furthermore, the complexity of the receiver 

increases as the span of the ISI increases. 

In this section, we consider the transmission of information on multiple carriers 

contained within the allocated channel bandwidth. The primary motivation for 

transmitting the data on multiple carriers is to reduce ISI and, thus, eliminate the 

performance degradation that is incurred in single carrier modulation. 

Single-Carrier Versus Multicarrier Modulation 

Given a particular channel characteristic, the communication system designer must 

decide how to efficiently utilize the available channel bandwidth in order to transmit 

the information reliably within the transmitter power constraint and receiver 

complexity constraints. For a nonideal linear filter channel, one option is to employ a 

single-carrier system in which the information sequence is transmitted serially at some 

specified rate R symbols/s. In such a channel, the time dispersion is generally much 

greater than the reciprocal of the symbol rate, and, hence, ISI results from the 

nonideal frequencyresponse characteristics of the channel. As we have observed, an 

equalizer is necessary to compensate for the channel distortion. 

As an example of such an approach, we cite the modems designed to transmit data 

through voice-band channels in the switched telephone network, which are based on 

the International Telecommunications Union (ITU) standard V34. Such modems 

employ QAM impressed on a single carrier that is selected along with the symbol rate 

from a small set of specified values to obtain the maximum throughout at the desired 

level of performance (error rate). The channel frequency-response characteristics are 

measured upon initial setup of the telephone circuit, and the symbol rate and carrier 

frequency are selected based on this measurement. 
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An alternative approach to the design of a bandwidth-efficient communication system 

in the presence of channel distortion is to subdivide the available channel bandwidth 

into a number of subchannels, such that each subchannel is nearly ideal. To elaborate, 

suppose that C(f) is the frequency response of a nonideal, band-limited channel with a 

bandwidth W, and that the power spectral density of the additive Gaussian noise is 

Snn(f). Then we divide the bandwidth W into N = W/Af subbands of width Af, where A 

f is chosen sufficiently small that p f )1 Z/S"n(f) is approximately a constant within 

each subband. Furthermore, we select the transmitted signal power to be distributed 

in frequency as P (f ), subject to the constraint that 

W
P(f) df  Pav 

J W 

where PQU is the available average power of the transmitter. Then we transmit the 

data on these N subchannels. Before proceeding further with this approach, we 

evaluate the capacity of the nonideal additive Gaussian noise channel. 

4.0 Conclusion 

Apart from multichannel communication, we considered multiple carrier transmission, 

where the frequency band of the channel is sub-divided into a number of sub-

channels and information is transmitted on each of the channels.  

5.0 Summary 

In this unit, we considered both multichannel signal transmission and multicarrier 

transmission. The focus is on the performance of such systems in AWGN channels. 

Besides, multichannel signal transmission is commonly used on time-varying channels 

to overcome the effects of signal fading. 

6.0 Tutor Marked Assignment 

A binary communication system transmits the same information on two diversity 

channels. The two received signals are; 

rl = ± Fb + n1  

r2= F-b+n2  
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Where E (nl) = E (n2) = 0, E (n 21) = r21 and E (n2
2) = r2

2, and nl and nz are 

uncorrelated Gaussian variables. The detector bases its decision on the linear 

combination of r1 and rz, i.e r = rl + kr2 

a. Determine the values of k that minimizes the probability of error. 

b. Plot the probability of error for Y'21 = 1, y22, = 3 and either K = 1 or K is the 

optimum value found in (a). Compare the results. 

7.0 References/ Further Reading 

Application of Multicarrier Modulation for Digital Transmission on Digital Subscriber 

lines by Starr et al (1999) and Bingham (2000). 

Module 4: Digital Communication through band-limited channels and 

adaptive equalization 

Unit 1: Adaptive Equalization 

Unit 2: Digital Communication through Band-limited Channels 

Unit 3: Carrier and Symbol Synchronization 

Unit 4: An Introduction to Information Theory 

Unit 1: Adaptive Equalization  

1.0 Introduction 

2.0 Objectives  

3.0 Main Content  

3.1 Adaptive Linear Equalizer 

3.2 Adaptive Decision Feedback Equalizer 

3.3 Adaptive Equalization of Trellis-Coded Signals 

3.4 Self-recovering (blind) Equalization 
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 4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Reading  

1.0 Introduction 

In this unit, we present algorithms for automatically adjusting the equalizer co-

efficient to optimize a specified performance index and to adaptively compensate for 

time variations in the channel characteristics. 

2.0 Objectives 

At the end of this unit, you should be able to;  

- Explain adaptive linear equalizer 

- Discuss adaptive decision-feedback equalizer 

- Understand adaptive equalization of Trellis-Coded Signals  

3.0 Adaptive Linear equalizer 

In the case of the linear equalizer, recall that we considered two different criteria 

for determining the values of the equalizer coefficients {ck}. One criterion was 

based on the minimization of the peak distortion at the output of the equalizer, 

which is defined by Equation 9.4-22. The other criterion was based on the 

minimization of the mean square error at the output of the equalizer, which is 

defined by Equation 9.4-42. Below, we describe two algorithms for performing the 

optimization automatically and adaptively. 

The Zero-Forcing Algorithm 

In the peak-distortion criterion, the peak distortion D(c), given by Equation 9.4-22, 

is minimized by selecting the equalizer coefficients {ck}. In general, there is no 

simple computational algorithm for performing this optimization, except in the 

special case where the peak distortion at the input to the equalizer, defined as Do 
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in Equation 9.4-23, is less than unity. When Do < 1, the distortion D(c) at the 

output of the equalizer is minimized by forcing the equalizer response qn = 0, for 1 

<_ In I <_ K, and qo = 1. In this case, there is a simple computational algorithm, 

called the zero-forcing algorithm, that achieves these conditions. 

The zero-forcing solution is achieved by forcing the cross correlation between the error 

sequence Ek = Ik - Ik and the desired information sequence {Ik} to be zero for shifts 

in the range 0 <_ In I <_ K. The demonstration that this leads to the desired solution 

is quite simple. We have 

 

We assume that the information symbols are uncorrelated, i.e., E (IkIj*) = Skj, and 

that the information sequence {Ik} is uncorrelated with the additive noise sequence 

NJFor 1k, we use the expression given in Equation 9.4-41. Then, after taking the 

expected values in Equation 10.1-1, we obtain 

 

When the channel response is unknown, the cross correlations given by Equation 10.1-

1 are also unknown. This difficulty can be circumvented by transmitting a known 

training sequence {Ik) to the receiver, which can be used to estimate the cross 

correlation by substituting time averages for the ensemble averages given in Equation 

10.1-1. After the initial training, which will require the transmission of a training se-

quence of some predetermined length that equals or exceeds the equalizer length, the 

equalizer coefficients that satisfy Equation 10.1-3 can be determined. 

A simple recursive algorithm for adjusting the equalizer coefficients is 

 

where c(k)
j is the value of the j th coefficient at time t = kT , Ek = Ik - I k is the error 

signal at time t = kT, and 0 is a scale factor that controls the rate of adjustment, as 

will be explained later in this section. This is the zero forcing algorithm. The term kI*
k 

-j 
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is an estimate of the cross correlation (ensemble average) E(Ek1k j). The 

averaging operation of the cross correlation is accomplished by means of the 

recursive first-order difference equation algorithm in Equation 10.1-4, which 

represents a simple discretetime integrator. 

3.1 Adaptive Decision-Feedback Equalizer 

As in the case of the linear adaptive equalizer, the coefficients of the feedforward filter 

and the feedback filter in a decision-feedback equalizer (DFE) may be adjusted 

recursively, instead of inverting a matrix as implied by Equation 9.5-3. Based on the 

minimization of the MSE at the output of the DFE, the steepest-descent algorithm 

takes the form 

 

where Ck is the vector of equalizer coefficients in the kth signal interval, E (EkV k) is 

the cross correlation of the error signal Ek = Ik -I k with V k = [vk+x, ... vk Ik-1 ... Ik-

x2l `, representing the signal values in the feedforward and feedback filters at time t = 

kT. The MSE is minimized when the cross-correlation vector E (£kV k) = 0 as k ---> oc. 

Since the exact cross-correlation vector is unknown at any time instant, we use as an 

estimate the vector Sk Vk and average out the noise in the estimate through the 

recursive equation. 
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As in the case of a linear equalizer, we may use a training sequence to adjust the 

coefficients of the DFE initially. Upon convergence to the (near-) optimum coefficients 

decisions at the output of the detector are used in forming the error signal '-k and fed to 

the feedback filter. This is the adaptive mode of the DFE, which is illustrated in Figure 10.2-

1. In this case, the recursive equation for adjusting the equalizer coefficient is  

 

 

The performance characteristics of the LMS algorithm for the DFE are basically the same as 

the development given in Sections 10. 1-3 and 10. 1-4 for the linear adaptive  

3.2 Adaptive Equalization of Trellis-Coded Signals 

Bandwidth efficient trellis-coded modulation that was described in Section 8.12 is freSNR 

per bit for achieving a specified error rate. Channel distortion of the trellis-coded signal 

forces us to use adaptive equalization in order to reduce the intersymbol interference. The 

output of the equalizer is then fed to the Viterbi decoder, which performs a soft-decision 

decoding of the trellis-coded signal. 

 

 

 

 

The question that arises regarding such a receiver is, how do we adapt the equalizer in 

a data transmission mode? One possibility is to have the equalizer make its own 

decisions at its output solely for the purpose of generating an error signal for adjusting 

its tap coefficients, as shown in the block diagram in Figure 10.3-1. The problem with 

this approach is that such decisions are generally unreliable, since the pre-decoding 

coded symbol SNR is relatively low. A high error rate would cause a significant 

degradation in the operation of the equalizer, which would ultimately affect the 

reliability of the decisions at the output of the decoder. The more desirable alternative 

is to use the post-decoding decisions from the Viterbi decoder, which are much more 
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reliable, to continuously adapt the equalizer. This approach is certainly preferable and 

viable when a linear equalizer is used prior to the Viterbi decoder. The decoding delay 

inherent in the Viterbi decoder can be overcome by introducing an identical delay in 

the tap weight adjustment of the equalizer coefficients as shown in Figure 10.3-2. The 

major price that must be paid for the added delay is that the step-size parameter in 

the LMS algorithm must be reduced, as described by Long et al. (1987, 1989), in order 

to achieve stability in the algorithm. 

In channels with severe ISI, the linear equalizer is no longer adequate for com-

pensating the channel intersymbol interference. Instead, we would like to use a DFE. 

But the DFE requires reliable decisions in its feedback filter in order to cancel out the 

intersymbol interference from previously detected symbols. Tentative decisions prior to 

decoding would be highly unreliable and, hence, inappropriate.  

4.0 Conclusion 

In conclusion, we have provided an overviewed of three classes of blind equalization 

algorithms that find applications in digital communications of the there families of 

algorithms described, those based on the maximumlikelihood criterion for jointly 

estimating the channel impulse response and the data sequence are optional and 

require relatively few received signal samples for performing channel estimation.  

5.0 Summary 

Adaptive equalization for digital communications was developed by Lucky between 

1965-1966. His algorithms was based on the peak distortion criterion and led to the 

zero-forcing algorithm. 

6.0 Tutor Marked Assignment 

1. Show that the gradient vector in the minimization of the MSE may be 

expressed as: 

Gk = - E (EK Vk) 

Where the error £K = Ik - IR, and the estimate of Gk, i.e, Gk = - £K VR 

Satieties the condition that E (Gk) = Gk  
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7.0 References/ Further Reading 

PLS Lattice Algorithms for general signal estimation application by Morf (1977), 

Morfand Lee (1978) 

Unit 2: Digital Communication through band-limited Channel  

1.0 Introduction 

2.0 Objectives  

3.0 Main Contents  

3.1 Characterization- of band-limited channels 

3.2 Signals design for band-limited channels 

3.3 Optimum receiver for channels with ISI and AWGN  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Reading  

1.0 Introduction 

In this unit, we consider the problem of signal design when the channel is band limited 

to some specified bandwidth of W Hz. Under this condition, the channel may be 

modeled as a linear filter having an equivalent low pass t frequency response (ff) that is 

zero for /f/ > w. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Explain the characteristics of band limited channel. 

- Understand signal design for band limited channels 
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- Explain optimum receiver for channels with ISI and AWGN 

3.1 Characteristics of Band-Limited channel  

Of the various channels available for digital communications, telephone channels are by 

far the most widely used. Such channels are characterized as band-limited linear filters. 

This is certainly the proper characterization when frequency-division multiplexing (FDM) 

is used as a means for establishing channels in the telephone network. Modern 

telephone networks employ pulse-code modulation (PCM) for digitizing and encoding 

the analog signal and time-division multiplexing (TDM) for establishing multiple 

channels. Nevertheless, filtering is still used on the analog signal prior to sampling and 

encoding. Consequently, even though the present telephone network employs a mixture 

of FDM and TDM for transmission, the linear filter model for telephone channels is still 

appropriate. 

For our purposes, a bandlimited channel such as a telephone channel will be charac-

terized as a linear filter having an equivalent lowpass frequency-response characteristic 

C(f ). Its equivalent lowpass impulse response is denoted by c(t). Then, if a signal of the 

form 

 

is transmitted over a bandpass telephone channel, the equivalent low-pass received 

signal is 

 

where the integral represents the convolution of c(t) with v(t), and z(t) denotes the 

additive noise. Alternatively, the signal term can be represented in the frequency 

domain as V (f)C(f), where V (f) is the Fourier transform of v(t). 

If the channel is band-limited to W Hz, then C(f ) = 0 for I f I > W. As a consequence, 

any frequency components in V (f ) above I f I = W will not be passed by the channel. 

For this reason, we limit the bandwidth of the transmitted signal to W Hz also. Within 

the bandwidth of the channel, we may express the frequency response C(f) as 
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where /C(f)/ I is the amplitude-response characteristic and θ(f) is the phase-response 

characteristic. Furthermore, the envelope delay characteristic is defined as 

 

A channel is said to be nondistorting or ideal if the amplitude response /C(f) I is 

constant for all /f/  W and 0(f ) is a linear function of frequency, i.e., r (f ) is a constant 

for all /f/  W. On the other hand, if I C (f ) I is not constant for all I f I < W, we say 

that the channel distorts the transmitted signal V (f ) in amplitude, and, if r (f ) is not 

constant for all /f/  W, we say that the channel distorts the signal V(f) in delay. 

As a result of the amplitude and delay distortion caused by the nonideal channel 

frequency-response characteristic C(f), a succession of pulses transmitted through the 

channel at rates comparable to the bandwidth W are smeared to the point that they are 

 

 

 

 

 

 

no longer distinguishable as well-defined pulses at the receiving terminal. Instead, 

they overlap, and, thus, we have intersymbol interference. As an example of the 

effect of delay distortion on a transmitted pulse, Figure 9.1-1a illustrates a band-

limited pulse having zeros periodically spaced in time at points labeled ::LT, ::L2T, 

etc. If information is conveyed by the pulse amplitude, as in PAM, for example, then 

one can transmit a sequence of pulses, each of which has a peak at the periodic 

zeros of the other pulses. However, transmission of the pulse through a channel 

modeled as having a linear envelope delay characteristic -c (f ) (quadratic phase B(f 

)) results in the received pulse shown in Figure 9.1-lb having zero-crossings that are 

no longer periodically spaced. Consequently, a sequence of successive pulses would 

be smeared into one another and the peaks of the pulses would no longer be 
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distinguishable. Thus, the channel delay distortion results in intesymbol interference. 

As will be discussed in this chapter, it is possible to compensate for the nonideal 

frequency-response characteristic of the channel by use of a filter or equalizer at the 

demodulator. Figure 9.1-1c illustrates the output of a linear equalizer that 

compensates for the linear distortion in the channel. 

The extent of the intersymbol interference on a telephone channel can be appreciated 

by observing a frequency-response characteristic of the channel. Figure 9.1-2 illustrates 

the measured average amplitude and delay as functions of frequency for a medium-

range (180-725 mi) telephone channel of the switched telecommunications network as 

given by Duffy and Tratcher (1971). We observe that the usable band of the channel 

extends from about 300 Hz to about 3000 Hz. The corresponding impulse response of 

this average channel is shown in Figure 9.1-3. Its duration is about 10 ms. In 

comparison, the transmitted symbol rates on such a channel may be of the order 

 

 

 

 

 

Average amplitude and delay characteristics of medium-range telephone channel. 

of 2500 pulses or symbols per second. Hence, intersymbol interference might extend 

over 20-30 symbols. 

In addition to linear distortion, signals transmitted through telephone channels are 

subject to other impairments, specifically non-linear distortion, frequency offset, phase 

jitter, impulse noise, and thermal noise. 

Non-linear distortion in telephone channels arises from non-linearities in amplifiers and 

compandors used in the telephone system. This type of distortion is usually small and it 

is very difficult to correct. 
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A small frequency offset, usually less than 5 Hz, results from the use of carrier 

equipment in the telephone channel. Such an offset cannot be tolerated in high-speed 

digital transmission systems that use synchronous phase-coherent demodulation. The 

offset is usually compensated for by the carrier recovery loop in the demodulator. 

Phase fitter is basically a low-index frequency modulation of the transmitted signal with 

the low-frequency harmonics of the power line frequency (50-60 Hz). Phase jitter poses 

a serious problem in digital transmission at high rates. However, it can be tracked and 

compensated for, to some extent, at the demodulator. 

3.2 Optimum receiver for channels with ISI and AWGN 

In this section, we derive the structure of the optimum demodulator and detector for 

digital transmission through a nonideal band-limited channel with additive Gaussian 

noise. We begin with the transmitted (equivalent lowpass) signal given by Equation 9.2-

1. The received (equivalent lowpass) signal is expressed as 

 

 

where h(t) represents the response of the channel to the input signal pulse g(t) and z(t) 

represents the additive white Gaussian noise. 

First we demonstrate that the optimum demodulator can be realized as a filter matched 

to h (t), followed by a sampler operating at the symbol rate 1/T and a subsequent 

processing algorithm for estimating the information sequence {In} from the sample 

values. Consequently, the samples at the output of the matched filter are sufficient for 

the estimation of the sequence {In}. 

Optimum Maximum-Likelihood Receiver 

Using the Karhunen-Loeve expansion, we expand the received signal r1(t) in the series  
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where {5k(t)1 is a complete set of orthonormal functions and Irk} are the observable 

random variables obtained by projecting r1(t) onto the set {k(t)}. It is easily shown 

that 

 

where hkn is the value obtained from projecting h(t - nT) onto 6k(t), and zk is the value 

obtained from projecting z(t) onto Ok(t). The sequence tzkI is Gaussian with zero-mean 

and covariance 

 

The joint probability density function of the random variables rN - [r1 r2 ... rN] 

conditioned on the transmitted sequence Ip - [I1 I2 ... Ip], where p  N, is  

 

 

4.0 Conclusion 

We treated the design of the signal pulse g(t) in a linearly modulated signal, 

represented as; 

V(t) = ∑Ing (t-nT) 

that efficiently utilizes the total available channel bandwidth w. lastly, we considered the 

of the receiver in the presence of inter-symbol interference and AWGN. 

5.0 Summary 

In this unit, we saw that when the channel is ideal for /f/ s w, a signal pulse could be 

designed that allow us to transmit at symbol rates comparable to or exceeding the 

channel bandwidth W. On the other hand, when the channel is not ideal, signal 

transmission at a symbol rate equal to or exceeding W results in inter-symbol 

interference (ISI) among a number of adjacent symbols. 
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6.0 Tutor Marked Assignment 

1. What is inter-symbol interference? 

2. A channel is said to be distortionless if the response y(t) to an input x (t) is Kx (t-

to), where K and to are constants. Show that if the frequency response of the channel is 

A(f) ejo(f), where A (f) and t(f) are real, the necessary and sufficient conditions for 

distortionless transmission are A(f) = K and t (f) = 2nfto ± nTc, n = 0, 1, 2. 

7.0 References/ Further Reading 

Turbo Equalization by Raphaeli and Zarai (1998) and Douillard et al (1995).  

Unit 3: Carrier and Symbol Synchronization 

1.0 Introduction  

2.0 Objectives  

3.0 Main Content  

3.1 Signal Parameter Estimation  

3.2 Carrier Phase Estimation 

3.3 Symbol Timing Estimation 

3.4 Joint Estimation of Carrier Phase and Symbol timing 

3.5 Performance characteristics of ML Estimator  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading 
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1.0 Introduction 

We have observed that in a digital communication system, the output of the 

demodulator must be sampled periodically, once para-symbol internal, in order to 

recover the transmitted information. Since the propagation delay from the 

transmitter to the receiver is generally unknown at the receiver, symbol timing must 

be derived from the received signal in order to synchronously sample the output of 

the demodulator. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Explain signal parameter estimation. - Discuss carrier phase and symbol timing 

estimation. 

- Understanding the performance characteristics of ML estimators 

3.1 Signal parameter estimation  

We have observed that in a digital communication system, the output of the demod-

ulator must be sampled periodically, once per symbol interval, in order to recover the 

transmitted information. Since the propagation delay from the transmitter to the 

receiver is generally unknown at the receiver. symbol timing must be derived from 

the received signal in order to synchronously sample the output of the demodulator. 

The propagation delay in the transmitted signal also results in a carrier offset, which 

must be estimated at the receiver if the detector is phase-coherent. In this chapter, 

we consider methods for deriving carrier and symbol synchronization at the receiver.  

Signal Parameter Estimation 

Let us begin by developing a mathematical model for the signal at the input to the 

receiver. We assume that the channel delays the signals transmitted through it and 

corrupts them by the addition of Gaussian noise. Hence, the received signal may be 

expressed as  
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and where r is the propagation delay and s, (t) is the equivalent low-pass signal. The 

received signal may be expressed as 

 

where the carrier phase 0, due to the propagation delay t, is 0 = -2n f,z. Now, from 

this formulation, it may appear that there is only one signal parameter to be 

estimated, namely, the propagation delay, since one can determine  from 

knowledge of f, and i. However, this is not the case. First of all, the oscillator that 

generates the carrier signal for demodulation at the receiver is generally not 

synchronous in phase with that at the transmitter. Furthermore, the two oscillators 

may be drifting slowly with time, perhaps in different directions. Consequently, the 

received carrier phase is not only dependent on the time delay T. Furthermore, the 

precision to which one must synchronize in time for the purpose of demodulating the 

received signal depends on the symbol interval T. Usually, the estimation error in 

estimating T must be a relatively small fraction of T. For example, ± 1 percent of T is 

adequate for practical applications. However, this level of precision is generally 

inadequate for estimating the carrier phase, even if 0 depends only on T. This is due 

to the fact that f, is generally large, and, hence, a small estimation error in T causes 

a large phase error. 

In effect, we must estimate both parameters T and 0 in order to demodulate and 

coherently detect the received signal. Hence, we may express the received signal as  

 

where 0 and T represent the signal parameters to be estimated. To simplify the 

notation, we let 8 denote the parameter vector {o, T}, so that s(t; 4, T) is simply 

denoted by s(t; B). 

There are basically two criteria that are widely applied to signal parameter esti-

mation: the maximum-likelihood (ML) criterion and the maximum a posteriori proba-

bility (MAP) criterion. In the MAP criterion, the signal parameter vector 9 is modeled 

as random and characterized by an a priori probability density function p(e). In the 

maximum-likelihood criterion, the signal parameter vector 8 is treated as 

deterministic but unknown. 
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By performing an orthonormal expansion of r(t) using N orthonormal functions 

{0,z(t)}, we may represent r (t) by the vector of coefficients (rl r2 . .. rN) =__ r. The 

joint PDF of the random variables (rl r2 ... rN) in the expansion can be expressed as 

p (r 10). Then, the ML estimate of ® is the value that maximizes p(r I B). On the 

other hand, the MAP estimate is the value of 9 that maximizes the a posteriori 

probability density function 

 

 

We note that if there is no prior knowledge of the parameter vector θ, we may 

assume that p(θ) is uniform (constant) over the range of values of the parameters. 

In such a case, the value of B that maximizes p (r/θ) also maximizes p(r/θ). 

Therefore, the MAP and ML estimates are identical.  

In our treatment of parameter estimation given below, we view the parameters 4 

and T as unknown, but deterministic. Hence, we adopt the ML criterion for 

estimating them. In the ML estimation of signal parameters, we require that the 

receiver extract the estimate by observing the received signal over a time interval To 

 T, which is called the observation interval. Estimates obtained from a single 

observation interval are sometimes called one-shot estimates. In practice, however, 

the estimation is performed on a continuous basis by using tracking loops (either 

analog or digital) that continuously update the estimates. Nevertheless, one-shot 

estimates yield insight for tracking loop implementation. In addition, they prove 

useful in the analysis of the performance of ML estimation, and their performance 

can be related to that obtained with a tracking loop. 

3.2 Symbol timing estimation 

In a digital communication system, the output of the demodulator must be sampled 

periodically at the symbol rate, at the precise sampling time instants tm = mT +r, 

where T is the symbol interval and r is a nominal time delay that accounts for the 

propagation time of the signal from the transmitter to the receiver. To perform this 

periodic sampling, we require a clock signal at the receiver. The process of extracting 
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such a clock signal at the receiver is usually called symbol synchronization or timing 

recovery. 

Timing recovery is one of the most critical functions that is performed at the receiver 

of a synchronous digital communication system. We should note that the rece iver 

must know not only the frequency (1/T) at which the outputs of the matched filters 

or correlators are sampled, but also where to take the samples within each symbol 

interval. The choice of sampling instant within the symbol interval of duration T is 

called the timing phase. 

Symbol synchronization can be accomplished in one of several ways. In some 

communication systems, the transmitter and receiver clocks are synchronized to a 

master clock, which provides a very precise timing signal. In this case, the receiver 

must estimate and compensate for the relative time delay between the transmitted 

and received signals. Such may be the case for radio communication systems that 

operate in the very low frequency (VLF) band (below 30 kHz), where precise clock 

signals are transmitted from a master radio station. 

Another method for achieving symbol synchronization is for the transmitter to 

simultaneously transmit the clock frequency 1/T or a multiple of 1/T along with the 

information signal. The receiver may simply employ a narrowband filter tuned to the 

transmitted clock frequency and, thus, extract the clock signal for sampling. This 

approach has the advantage of being simple to implement. There are several 

disadvantages, however. One is that the transmitter must allocate some of its 

available power to the transmission of the clock signal. Another is that some small 

fraction of the available channel bandwidth must be allocated for the transmission of 

the clock signal. In spite of these disadvantages, this method is frequently used in 

telephone transmission systems that employ large bandwidths to transmit the signals 

of many users. In such a case, the transmission of a clock signal is shared in the 

demodulation of the signals among the many users. Through this shared use of the 

clock signal, the penalty in the transmitter power and in bandwidth allocation is 

reduced proportionally by the number of users. A clock signal can also be extracted 

from the received data signal. There are a number of different methods that can be 

used at the receiver to achieve self-synchronization. In this section, we treat both 

decision-directed and non-decision-directed methods. 
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Maximum-Likelihood Timing Estimation 

Let us begin by obtaining the ML estimate of the time delay r. If the signal is a base 

band PAM waveform, it is represented as 

 

 

As in the case of ML phase estimation, we distinguish between two types of timing 

estimators, decision-directed timing estimators and non-decision-directed estimators. 

In the former, the information symbols from the output of the demodulator are 

treated as the known transmitted sequence. In this case, the log-likelihood function 

has the form  

 

 

 

 

 

 

 

3.3 Conclusion 

This unit considered the methods of deriving carrier and symbol synchronization at 

the receiver. Besides, the propagation delay in the transmitted signal result in carrier 

offset, which be estimated at the receiver if the detector is phase-coherent. 

5.0 Summary 

In this unit, we considered the mathematics model for the signal at the input to the 

receiver. Besides, the ML method for signal parameter estimation was presented and 
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applied to the estimator of the carrier phase and symbol timing. Furthermore, 

described their performance characteristics. 

6.0 Tutor Marked Assignment 

1. Sketch the equivalent realization of the binary PSK receiver in unit 1 that 

employs a matched filter instead of a correlator. 

2. Determine the joint ML estimate of r and 0 for PAM signal.  

7.0 References/ Further Reading 

Carrier Phase Recovery and Time Synchronization Techniques by Stiffler (1971), 

Meyret et al (1998). 

Unit 4: An Introduction to Information Theory  

1.0 Introduction 

2.0 Objectives  

3.0 Main Contents  

3.1 Mathematical Models of Information Sources  

3.2 A Logarithmic Measure of Information 

3.3 Lossless Coding of Information Sources 

3.4 Channel Models and Channel Capacity 

3.5 Channel Reliability fun function 

3.6 The Channel Cutoff Rate  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor marked Assignment 

7.0 References/Further Reading  
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1.0 Introduction 

This unit deals with fundamental limits on communication by fundamental limits we 

means the study of conditions under which the two fundamental tasks in communications 

- compression and transmission are possible for some important source and channel 

models, we can precisely state the limits for compression and transmission of information. 

2.0 Objectives 

At the end of this unit, you should be able to: 

- Understand the mathematics models for information sources 

- Explain logarithmic measure of information. 

- Explain lossless coding of information sources 

3.1 Mathematics models for information sources 

Any information source produces an output that is random; i.e., the source output is 

characterized in statistical terms. Otherwise, if the source output were known exactly, 

there would be no need to transmit it. In this section, we consider both discrete and ana-

log information sources, and we postulate mathematical models for each type of source. 

The simplest type of a discrete source is one that emits a sequence of letters selected 

from a finite alphabet. For example, a binary source emits a binary sequence of the form 

100101110 - - - , where the alphabet consists of the two letters {0, 1}. More generally, a 

discrete information source with an alphabet of L possible letters, say {x1, x2, . . . , xL}, 

emits a sequence of letters selected from the alphabet. 

To construct a mathematical model for a discrete source, we assume that each letter in 

the alphabet {x1, x2, . . . , XLI has a given probability Pk of occurrence. That is,  

 

 

We consider two mathematical models of discrete sources. In the first, we assume that 

the output sequence from the source is statistically independent. That is, the current 
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output letter is statistically independent of all past and future outputs. A source whose 

output satisfies the condition of statistical independence among output letters is said to 

be memoryless. If the source is discrete, it is called a discrete memoryless source (DMS). 

The mathematical model for a DMS is a sequence of iid random variables {Xi}. 

If the output of the discrete source is statistically dependent, such as English text, we 

may construct a mathematical model based on statistical stationarity. By definition, a 

discrete source is said to be stationary if the joint probabilities of two sequences of length 

n, say, a1, a2, . . . , an and a1+m, a2+m, . . . , an+m, are identical for all n > 1 and for 

all shifts m. In other words, the joint probabilities for any arbitrary length sequence of 

source outputs are invariant under a shift in the time origin. 

An analog source has an output waveform x(t) that is a sample function of a stochastic 

process X(t). We assume that X(t) is a stationary stochastic process with autocorrelation 

function Rx(r) and power spectral density Sx(f ). When X(t) is a band-limited stochastic 

process, i.e., Sx(f) = 0 for I f I > W, the sampling theorem may be used to represent X(t) 

as 

 

 

where {X(n/2W)} denote the samples of the process X(t) taken at the sampling (Nyquist) 

rate of f = 2W samples/s. Thus, by applying the sampling theorem, we may convert the 

output of an analog source to an equivalent discrete-time source. Then the source output 

is characterized statistically by the joint PBF P(xi, x2, . . . , x") for all m > 1, where Xn = 

X(n/2W), 1 < n _< m, are the random variables corresponding to the samples of X(t). 

We note that the output samples {X(n/2W)} from the stationary sources are generally 

continuous, and hence they cannot be represented in digital form without some loss in 

precision. For example, we may quantize each sample to a set of discrete values, but the 

quantization process results in loss of precision, and consequently the original signal 

cannot be reconstructed exactly from the quantized sample values. Later in this chapter, 

we shall consider_ the distortion resulting from quantization of the samples from an 

analog source. 
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3.2 Lossless coding of information sources 

The goal of data compression is to represent a source with the fewest bits such that best 

recovery of the source from the compressed data is possible. Data compression can be 

broadly classified into lossless and lossy compression. In lossless compression the goal is 

to minimize the number of bits in such a way that perfect (lossless) reconstruction of the 

source from compressed data is possible. In lossy data compression the data are 

compressed subject to a maximum tolerable distortion. In this section we study the 

fundamental bounds for lossless compression as well as some common lossless 

compression algorithms. 

Let us assume that a DMS is represented by independent replicas of random variable X 

taking values in the set d' = f al , a2, . . . , aN] with corresponding probabilities P1, p2, . . 

. , PN. Let x denote an output sequence of length n for this source, where n is assumed 

to be large. We call this sequence a typical sequence if the number of occurrences of 

each ai in x is roughly npi for 1 <_ i <_ N. The set of typical sequences is denoted by .A. 

The law of large numbers, reviewed in Section 2.5, states that with high probability 

approaching 1 as n -+ oc, outputs of any DMS will be typical. Since the number of 

occurrences of ai in x is roughly npi and the source is memoryless, we have 

 

 

 

 

This states that all typical sequences have roughly the same probability, and this common 

probability is 2-nH(X). 

Since the probability of the typical sequences, for large n, is very close to 1, we conclude 

that the number of typical sequences, i.e., the cardinality of .A, is roughly 
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This discussion shows that for large n, a subset of all possible sequences, called the 

typical sequences, is almost certain to occur. Therefore, for transmission of source 

outputs it is sufficient to consider only this subset. Since the number of typical sequences 

is 2nH(X), for their transmission nH(X) bits are sufficient, and therefore the number of 

required bits per source output, i.e., the transmission rate, is given by 

 

 

The informal argument given above can be made rigorous (see the books by Cover and 

Thomas (2006) and Callager (1968)) in the following theorem first stated by Shannon 

(1948). 

SHANNON'S FIRST THEOREM (LOSSLESS SOURCE CODING THEOREM) Let X denote a 

DMS with entropy X. There exists a lossless source code for this source at any rate R if R 

> H(X). There exists no lossless code for this source at rates less than H(X). This theorem 

sets a fundamental limit on lossless-source coding and shows that the entropy of a DMS, 

which was defined previously based on intuitive reasoning, plays a fundamental role in 

lossless compression of information sources. 

3.3 Channel models and channel capacity 

In the model of a digital communication system described in Chapter l, we recall that the 

transmitter building blocks consist of the discrete-input, discrete-output channel encoder 

followed by the modulator. The function of the discrete channel encoder is to introduce, 

in a controlled manner, some redundancy in the binary information sequence, which can 

be used at the receiver to overcome the effects of noise and interference encountered in 

the transmission of the signal through the channel. The encoding process generally 

involves taking k information bits at a time and mapping each k-bit sequence into a 

unique n-bit sequence, called a codeword. The amount of redundancy introduced by the 

encoding of the data in this manner is measured by the ratio n/ k. The reciprocal of the 

ratio, namely k/n, is called the code rate and denoted by Rc. 

The binary sequence at the output of the channel encoder is fed to the modulator, which 

serves as the interface to the communication channel. As we have discussed, the 
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modulator may simply map each binary digit into one of two possible waveforms; i.e., a 0 

is mapped into sl (t) and a 1 is mapped into SAO. Alternatively, the modulator may 

transmit q -bit blocks at a time by using M = 2q possible waveforms. 

At the receiving end of the digital communication system, the demodulator processes the 

channel-corrupted waveform and reduces each waveform to a scalar or a vector that 

represents an estimate of the transmitted data symbol (binary or M-ary). The detector, 

which follows the demodulator, may decide whether the transmitted bit is a 0 or a 1. In 

such a case, the detector has made a hard decision. If we view the decision process at 

the detector as a form of quantization, we observe that a hard decision corresponds to 

binary quantization of the demodulator output. More generally, we may consider a 

detector that quantizes to Q > 2 levels, i.e., a Q-ary detector. If M-ary signals are used, 

then Q > M. In the extreme case when no quantization is performed, Q = cc. In the case 

where Q > M, we say that the detector has made a soft decision. 

The quantized output from the detector is then fed to the channel decoder, which exploits 

the available redundancy to correct for channel disturbances. 

In the following sections, we describe three channel models that will be used to establish 

the maximum achievable bit rate for the channel. 

Channel Models 

In this section we describe channel models that will be useful in the design of codes. A 

general communication channel is described in terms of its set of possible inputs, denoted 

by 3' and called the input alphabet; the set of possible channel outputs, denoted by and 

called the output alphabet; and the conditional probability that relates the input and 

output sequences of any length n, which is denoted by P [yi, y2, . . . , yn Ixl, x2, . . . , xn 

1, where x = (XI, x2, . . . , xn) and y = (yl, y2, . . . , yn) represent input and output 

sequences of length n, respectively. A channel is called memoryless if we have 

 

 

In other words, a channel is memoryless if the output at time i depends only on the input 

at time i. 
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The simplest channel model is the binary symmetric channel, which corresponds to the 

case with R= ~J = {0, 11. This is an appropriate channel model for binary modulation 

and hard decisions at the detector. 

The Binary Symmetric Channel (BSC) Model 

Let us consider an additive noise channel and let the modulator and the demodu-

lator/detector be included as parts of the channel. If the modulator employs binary 

waveforms and the detector makes hard decisions, then the composite channel, shown in 

Figure 6.5-1, has a discrete-time binary input sequence and a discrete-time binary output 

sequence. Such a composite channel is characterized by the set X = {0, 1} of 

 

 

 

A composite discrete input, discrete output channel formed by including the modulator 

and the demodulator as part of the channel. 

possible inputs, the set of Gf = {0, 1] of possible outputs, and a set of conditional 

probabilities that relate the possible outputs to the possible inputs. If the channel noise 

and other disturbances cause statistically independent errors in the transmitted binary 

sequence with average probability p, then 

 

 

Thus, we have reduced the cascade of the binary modulator, the waveform channel, and 

the binary demodulator and detector to an equivalent discrete-time channel which is 

represented by the diagram shown in Figure 6.5-2. This binary input, binary output, 

symmetric channel is simply called a binary symmetric channel (BSC). Since each output 

bit from the channel depends only on the corresponding input bit, we say that the 

channel is memoryless. 
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The Discrete memoryless Channel (DMC) 

The BSC is a special case of a more general discrete input, discrete output channel. The 

discrete memoryless channel is a channel model in which the input and output alphabets 

X and Y are discrete sets and the channel is memoryless. For instance, this is the case 

when the channel uses an M-ary memoryless modulation scheme and the output of the 

detector consists of Q-ary symbols. The composite channel consists of modulatorchannel-

detector as shown in Figure 6.5-1, and its input-output characteristics are described by a 

set of MQ conditional probabilities 

 

 

 

 

 

 

 

 

 

 

In general, the conditional probabilities {P [y Ix ]} that characterize a DMC can be 

arranged in an 19' I x 14' I matrix of the form P = [pij], 1 < i < I X I,1 < j < 19 I, P is 

called the probability transition matrix for the channel. 

The Discrete-Input, Continuous-Output Channel 

Now, suppose that the input to the modulator comprises symbols selected from a finite 

and discrete input alphabet X, with /x/ = M, and the output of the detector is 

unquantized, i.e., y = R. This leads us to define a composite discrete-time memoryless 
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channel that is characterized by the discrete input X, the continuous output Y, and the set 

of conditional probability density functions 

The most important channel of this type is the additive white Gaussian noise (AWGN) 

channel, for which 

Y=X+N   

where N is a zero-mean Gaussian random variable with variance 62. For a given X = x, it 

follows that Y is Gaussian with mean x and variance 62. That is, 

 

 

For any given input sequence Xi, i = l, 2, . . . , n, there is a corresponding output 

sequence 

 

The condition that the channel is memoryless may be expressed as 

 

4.0 Conclusion 

Conclusively, this unit begins with a study of information sources and source coding 

communication systems are designed to transmit the information generated by a source 

to some destination. Information sources may take a variety of different forms. For 

example, in radio broadcasting, the source is generally an audio voice (voice or music). In 

TV broadcasting, the information source is a video source whose output is a moving 

image. The output of these sources are analog signals and, hence, the sources are called 

analog sources. In contrast, computers and storage device, such as magnetic or optional 

disks, produce discrete outputs (usually binary or ASCII characters) and hence, are called 

discrete sources. 
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5.0 Summary 

Whether a source is analog or discrete, a digital communication system is designed to 

transmit information in digital form. Consequently, the outputs of the source must be 

converted to a format that can be transmitted digitally. Besides, we focus on 

communication channels and transmission of information, develop mathematical models 

for important channels and introduce two important parameters for communication 

channels-channel capacity and channel cutoff rate and elaborate on their meaning and 

significance. 

6.0 Tutor Marked Assignment 

1. X and Y are two discrete random variables with probabilities p(X= x, Y = y) = 

P(x,y) 

Show that I (X,Y) 0, with equality if and only if X and Y are statistically independent. 

Hint: use the inequality In U <_ U-1, for 0 < U < 1, to show that - I (X,Y) <_ 0 

2. Prove that In U <_ U-1 and also demonstrate the validity of this inequality by 

plotting in U and u-1 on the same graph. 

7.0 References/ Further Reading 

Treatment of Rate Distortion Theory by Blahut (1987) and Gray (1990)  
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UNIT 1: CHARACTERIZATION OF FADING MULTIPATH CHANNELS  

1.0 Introduction 

In this unit, we shall consider the signal design, receiver structure and receiver 

performance for more complex channels, namely, channels, having randomly time 

variant impulse responses. This characterization serves as a model for signal 

transmission over many radio channels; such as short ware ionospheric radio 

communication in the 3-30 MHz frequency band (Hf), tropospheric scatter (beyond - 

the horizon) radio communications in the 3003000 MHz frequency band (UHf) and 

3000-30,000) MHz frequency bend (SHf) and ionosphere forward scatter in the 30-300 

MHz frequency and (VHf). 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Explain the characterization of fading multipath channels; 

- Explain the effect signal characteristics on the choice of channel model. 

- Understanding the diversity techniques for fading multpath channels. 

3.1 Channel correlation functions and power spactra. 

We shall now develop a number of useful correlation functions and power spectral 

density functions that define the characteristics of a fading multipath channel. Our 

starting point is the equivalent lowpass impulse response c(-c; t), which is 

characterized as a complex-valued random process in the t variable. We assume 

that c(T; t) is widesense-stationary. Then we define the autocorrelation function of 

c(T; t) as 
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In most radio transmission media, the attentuation and phase shift of the channel 

associated with path delay Tl is uncorrelated with the attenuation and phase shift 

associated with path delay T2. This is usually called uncorrelated scattering. We make 

the assumption that the scattering at two different delays is uncorrelated and 

incorporate it into Equation 13.1-10 to obtain 

 

If we let t = 0, the resulting autocorrelation function RJT; 0) - Rjr) is simply the 

average power output of the channel as a function of the time delay t. For this reason, 

RjT) is called the multipath intensity profile or the delay power spectrum of the 

channel. In general, R,(T; At) gives the average power output as a function of the 

time delay T and the difference At in observation time. 

In practice, the function Rc(; t) is measured by transmitting very narrow pulses or, 

equivalently, a wideband signal and cross-correlating the received signal with a 

delayed version of itself. Typically, the measured function R,(t) may appear as shown 

in Figure 13.1-2. The range of values of T over which Rc(;t) is essentially nonzero is 

called the multipath spread of the channel and is denoted by Tm. 

A completely analogous characterization of the time-variant multipath channel begins 

in the frequency domain. By taking the Fourier transform of c(T; t), we obtain the 

time-variant transfer function C(f;t), where f is the frequency variable. Thus, 

 

 

If c(T; t) is modeled as a complex-valued zero-mean Gaussian random process in the 

variable, it follows that C (f ; t) also has the same statistics. Under the assumption 

that the channel is wide-sense-stationary, we define the autocorrelation function 
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3.2 Statistical models for fading channels. 

There are several probability distributions that can be considered in attempting to 

model the statistical characteristics of the fading channel. When there are a large 

number of scatters in the channel that contribute to the signal at the receiver, as is 

the case in  

 

 

 

 

 

 

 

 

 

 

 

Ionospheric or tropospheric signal propagation, application of the central limit theorem 

leads to a Guassian process model for the channel impulse response. If the process is 

zero-mean, then the envelop of the channel response at any time instance has a 

Rayleigh probability distribution and the phase is uniformly distributed in the internal 

(0.2). 
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We observe that the Rayleigh distribution is characterized by the single parameter 

E(R2). 

An alternative statistical model for the envelope of the channel response is the 

Nakagami-m distribution given by the PDF in Equation 2.3-67. In contrast to the 

Rayleigh distribution, which has a single parameter that can be used to match the 

fad ing channel statistics, the Nakagami-m is a two-parameter distribution, involving 

the parameter m and the second moment SZ = E(R2). As a consequence, this 

distribution provides more flexibility and accuracy in matching the observed signal 

statistics. The Nakagami-m distribution can be used to model fading channel 

conditions that are either more or less severe than the Rayleigh distribution, and it 

includes the Rayleigh distribution as a special case (m = 1). For example, Turin et 

al. (1972) and Suzuki (1977) have shown that the Nakagami-m distribution provides 

the best fit for data signals received in urban radio multipath channels. 

The Rice distribution is also a two-parameter distribution. It may be expressed by 

the PDF given in Equation 2.3-56, where the parameters are s and a2, where s2 is 

called the noncentrality parameter in the equivalent chi-square distribution. It 

represents the power in the nonfading signal components, sometimes called 

specular components, of the received signal. 

There are many radio channels in which fading is encountered that are basically 

lineof-sight (LOS) communication links with multipath components arising from 

secondary reflections, or signal paths, from surrounding terrain. In such channels, 

the number of multipath components is small, and, hence, the channel may be 

modeled in a somewhat simpler form. We cite two channel models as examples. 

As the first example, let us consider an airplane to ground communication link in 

which there is the direct path and a single multipath component at a delay to 

relative to the direct path. The impulse response of such a channel may be modeled 

as 

 

where a is the attenuation factor of the direct path and ,B(t) represents the time-

variant multipath signal component resulting from terrain reflections. Often, ,B (t) can 
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be characterized as a zero-mean Gaussian random process. The transfer function for 

this channel model may be expressed as 

This channel fits the Ricean fading model defined previously. The direct path with 

attenuation a represents the specular component and P (t) represents the Rayleigh 

fading component. 

3.3 Propagation models for mobile radio channels. 

In the link budget calculations that were described in section 4.10-2, we had 

characterized the path loss of radio waves propagating through free space as being 

inversely proportional to d2, where d is the distance between the transmitter and the 

receiver. However, in a mobile radio 

 

 

  

 

channel, propagation is generally neither free space nor line of sight. The mean path 

loss encountered in mobile radio channels may be characterized as being inversely 

proportional to dp, where 2 _< p < 4, with d4 being a worst-case model. 

Consequently, the path loss is usually much more severe compared to that of free 

space. 

There are a number of factors affecting the path loss in mobile radio communications. 

Among these factors are base station antenna height, mobile antenna height, 

operating frequency, atmospheric conditions, and presence or absence of buildings 

and trees. Various mean path loss models have been developed that incorporate such 

factors. For example, a model for a large city in an urban area is the Hata model, in 

which the mean path loss is expressed as 
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where f is the operating frequency in MHz (150 < f < 1500), ht is the transmitter 

antenna height in meters (30 < ht < 200), h, is the receiver antenna height in meters 

(1 < h, < 10), d is the distance between transmitter and receiver in km (1 < d < 20), 

and 

 

Another problem with mobile radio propagation is the effect of shadowing of the signal 

due to large obstructions, such as large buildings, trees, and hilly terrain between the 

transmitter and the receiver. Shadowing is usually modeled as a multiplicative and, 

generally, slowly time varying random process. That is, the received signal may be 

characterized mathematically as 

 

where AO represents the mean path loss, s(t) is the transmitted signal, and g(t) is a 

random process that represents the shadowing effect. At any time instant, the 

shadowing process is modeled statistically as lognormally distributed. The probability 

density function for the lognormal distribution is 

 

 

 

The random variable X represents the path loss measured in dB, /t is the mean path 

loss in dB, and o is the standard deviation of the path loss in dB. For typical cellular 

and microcellular environments, 6 is in the range of 5-12 dB. 

4.0 Conclusion 

We began the treatment of digital significantly over fading multipath channel by first 

developing a statistical characterization of the channel. Besides, evaluated the 

performance of several basic digital signaling techniques for communication over such 

channels. 
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5.0 Summary 

One characteristics of a multipath medium is the time spread introduced in the signal 

that is transmitted through the channel. Besides, we examined the effects of the 

channel and transmitted signal. 

6.0 Tutor Marked Assignment 

Explain the meaning of the following; 

i. The channel is frequency-non selective 

ii. The channel is slowly fading. 

iii. The channel is frequency selective 

7.0 References/ Further Reading 

A General Treatment of Wireless Communication by Rapport (1996) and Stuber 

(2000). 

Unit 2: The Effect of Signal Characteristics on the Choice of a Channel Model 

1.0 Introduction  

2.0 Objectives  
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3.1 Effect of Signal Characteristics on the Selection of a Channel Model  

3.2 Frequency Non-Selective, Slowly Fading Channel  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Reading  

 



 154 

1.0 Introduction 

In this unit, we shall consider the effect of signal characteristics on the selection of a 

channel model that is appropriate for the specified signal. The effect of the channel 

on the transmitted signal is a function of our choice of signal bandwidth and signal 

duration.  

2.0 Objectives 

At the end of this unit, you should be able to; 

- Explain the effect of signal characteristic on the selection of a channel model.  

- Explain frequency non-selective, slowly fading channel. 

3.1 Effects of signal characteristics on the selection of a channel model.  

Having discussed the statistical characterization of time-variant multipath channels 

generally in terms of the correlation functions describe in Section 13.1, we now 

consider the effect of signal characteristics on the selection of a channel model that is 

appropriate for the specified signal. Thus, let s, (t) be the equivalent lowpass signal 

transmitted over the channel and let Sl(f) denote its frequency content. Then the 

equivalent lowpass received signal, exclusive of additive noise, may be expressed 

either in terms of the time-domain variables c(;t) and sl(t) as 

 

 

 

Suppose we are transmitting digital information over the channel by modulating 

(either in amplitude, or in phase, or both) the basic pulse sl (t) at a rate 1/T, where T 

is the signaling interval. It is apparent from Equation 13.2-2 that the time-variant 

channel characterized by the transfer function C(;t) distorts the signal SI(f ). If SI (f) 

has a bandwidth W greater than the coherence bandwidth (f)c of the channel, SI(f) is 

subjected to different gains and phase shifts across the band. In such a case, the 

channel is said to be frequency-selective. Additional distortion is caused by the time 
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variations in C(f ; t). This type of distortion is evidenced as a variation in the received 

signal strength, and has been termed fading. It should be emphasized that the 

frequency selectivity and fading are viewed as two different types of distortion. The 

former depends on the multipath spread or, equivalently, on the coherence bandwidth 

of the channel relative to the transmitted signal bandwidth W. The latter depends on 

the time variations of the channel, which are grossly characterized by the coherence 

time (At), or, equivalently, by the Doppler spread Bd. 

The effect of the channel on the transmitted signal s, (t) is a function of our choice of 

signal bandwidth and signal duration. For example, if we select the signaling interval T 

to satisfy the condition T >> Tm, the channel introduces a negligible amount of 

intersymbol interference. If the bandwidth of the signal pulse s, (t) is W ~ 1/T, the 

condition T >> Tm implies that 

 

 

That is, the signal bandwidth W is much smaller than the coherence bandwidth of the 

channel. Hence, the channel is frequency-nonselective. In other words, all the 

frequency components in SI(f) undergo the same attenuation and phase shift in 

transmission through the channel. But this implies that, within the bandwidth occupied 

by Sl(f), the time-variant transfer function C(f ; t) of the channel is a complex-valued 

constant in the frequency variable. Since Sl (f) has its frequency content concentrated 

in the vicinity of f = 0, C(f ; t) = C(0; t). Consequently, Equation 13.2-2 reduces to 

 

 

Thus, when the signal bandwidth W is much smaller than the coherence bandwidth (Af 

)c of the channel, the received signal is simply the transmitted signal multiplied by a 

complex-valued random process C(0; t), which represents the time-variant character-

istics of the channel. In this case, we say that the multipath components in the 

received are not resolvable because W << (Af )c. 
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The transfer function C(0; t) for a frequency-nonselective channel may be expressed 

in the form 

where a(t) represents the envelope and q5(t) represents the phase of the equivalent 

lowpass channel. When C(0; t) is modeled as a zero-mean complex-valued Gaussian 

random process, the envelope a (t) is Rayleigh-distributed for any fixed value of t and 

0(t) is uniformly distributed over the interval (-.7,,7). The rapidity of the fading on the 

frequency-nonselective channel is determined either from the correlation function RC 

(At) or from the Doppler power spectrum Sc(;,). Alternatively, either of the channel 

parameters (At), or Bd can be used to characterize the rapidity of the fading. 

For example, suppose it is possible to select the signal bandwidth W to satisfy the 

condition W << (Af ), and the signaling interval T to satisfy the condition T << (At)c. 

Since T is smaller than the coherence time of the channel, the channel attenuation and 

phase shift are essentially fixed for the duration of at least one signaling interval. 

When this condition holds, we call the channel a slowly fading channel. Furthermore, 

when W  1 / T, the conditions that the channel be frequency-nonselective and slowly 

fading imply that the product of Tm and Bd must satisfy the condition TmBd < l. 

The product TmBd is called the spread factor of the channel. If TmBd < 1, the channel 

is said to be underspread; otherwise, it is overspread. The multipath spread, the 

Doppler spread, and the spread factor are listed in Table 13.2-1 for several channels. 

3.2 Frequency nonselective, slowly fading channel 

In this section, we derive the error rate performance of binary PSK and binary FSK 

when these signals are transmitted over a frequency-nonselective, slowly fading 

channel. As described in Section 13.2, the frequency-nonselective channel results in 

multiplicative distortion of the transmitted signal sl(t). Furthermore, the condition that 

the channel fades slowly implies that the multiplicative process may be regarded as a 

constant during at least one signaling interval. Consequently, if the transmitted signal 

is sl(t), the received equivalent lowpass signal in one signaling interval is 
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where z(t) represents the complex-valued white Gaussian noise process corrupting 

the signal. 

Let us assume that the channel fading is sufficiently slow that the phase shift q5 

can be estimated from the received signal without error. In that case, we can 

achieve ideal coherent detection of the received signal. Thus, the received signal 

can be processed by passing it through a matched filter in the case of binary PSK 

or through a pair of matched filters in the case of binary FSK. One method that we 

can use to determine the performance of the binary communication systems is to 

evaluate the decision variables and from these determine the probability of error. 

However, we have already done this for a fixed (time-invariant) channel. That is, 

for a fixed attenuation a, we know the probability of error for binary PSK and 

binary FSK. From Equation 4.3-13, the 

4.0 Conclusion 

We have considered a number of number subtopic concerned with digital 

communications over a fading multipath channel. We began with a statistical 

characterization of the channel and then described the ramifications of the channel 

characteristics on the design of digital signals and on their performance. 

5.0 Summary 

The treatment of digital communication over fading channels focused primarily on the 

Rayleigh fading channel model. Although, other statistical models, such as the Ricean 

fading model of the Nakagami fading models may be more appropriate for 

characterizing fading on some real channels. 

6.0 Tutor Marked Assignment 

1. Consider a binary communication system for transmitting a binary sequence 

over a fading channel. The modulation is orthogonal FSK with third-order frequency 

diversity (L=3). The demodulator consists of matched fitters followed by square-law 

detectors. Assume that the FSK carrierss fade independently and identically according 

to a Rayleigh envelop distribution. The additive noises on the diversity signals are 
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zero-mean Gaussian with autocorrelation functions E [zk (t)zk (t + [ ) = 2NS(T). the 

noise processes are mutually statistically independent.  

a. Evaluate Pbh for = 100 and 1000. 

b. Evaluate the error rate lbs 'for Yc = 100 and 1000 if the decoder employs soft 

decision coding. 

7.0 References/ Further Reading 

A General treatment of Winder Communications by Rappaport (1996) and Stuber 

(2000). 
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5.0 Summary 
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1.0 Introduction 

In this unit, we will consider errors that occur in reception when the channel 

attenuation is large. Besides, determine the error rate performance for a binary 

digital communication system with diversity. 

2.0 Objectives 

At the end of this unit, you should be able to;  

- Discuss diversity techniques. 

- Explain binary signals and multiphase signals  

3.1 Diversity Techniques for Fading Multipath Channels 

Diversity techniques are based on the notion that errors occur in reception when the 

channel attenuation is large, i.e., when the channel is in a deep fade. If we can sup -

ply to the receiver several replicas of the same information signal transmitted over 

independently fading channels, the probability that all the signal components will 

fade simultaneously is reduced considerably. That is, if p is the probability that any 

one signal will fade below some critical value, then p' is the probability that all L 

independently fading replicas of the same signal,will fade below the critical value. 

There are several ways in which we can provide the receiver with L independently 

fading replicas of the same information-bearing signal. 

One method is to employ frequency diversity. That is, the same information-

bearing signal is transmitted on L carriers, where the separation between 

successive carriers equals or exceeds the coherence bandwidth (Af ), of the 

channel. 

A second method for achieving L independently fading versions of the same 

information-bearing signal is to transmit the signal in L different time slots, where 

the separation between successive time slots equals or exceeds the coherence time 

(At), of the channel. This method is called time diversity.  

Note that the fading channel fits the model of a bursty error channel. Furthermore, 

we may view the transmission of the same information either at different frequencies 
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or in difference time slots (or both) as a simple form of repetition coding. The 

separation of the diversity transmissions in time by (At), or in frequency by (Af ), is 

basically a form of block-interleaving the bits in the repetition code in an attempt to 

break up the error bursts and, thus, to obtain independent errors. Later in the 

chapter, we shall demonstrate that, in general, repetition coding is wasteful of 

bandwidth when compared with nontrivial coding. 

Another commonly used method for achieving diversity employs multiple antennas. 

For example, we may employ a single transmitting antenna and multiple receiving 

antennas. The latter must be spaced sufficiently far apart that the multipath 

components in the signal have significantly different propagation delays at the 

antennas. Usually a separation of a few wavelengths is required between two 

antennas in order to obtain signals that fade independently. 

A more sophisticated method for obtaining diversity is based on the use of a signal 

having a bandwidth much greater than the coherence bandwidth (Af ), of the 

channel. Such a signal with bandwidth W will resolve the multipath components and, 

thus, provide the receiver with several independently fading signal paths. The time 

resolution is 11W. Consequently, with a multipath spread of T,, seconds, there are 

TmW resolvable signal components. Since T„, = 1/(Af),,  the number of resolvable 

signal components may also be expressed as W/(Af ),. Thus, the use of a wideband 

signal may be viewed as just another method for obtaining frequency diversity of 

order L ;:~, W/(Af ),. The optimum demodulator for processing the wideband signal 

will be derived in Section 13.5. It is called a RAKE correlator or a RAKE matched filter 

and was invented by Price and Green (1958). 

There are other diversity techniques that have received some consideration in prac -

tice, such as angle-of-arrival diversity and polarization diversity. However, these 

have not been as widely used as those described above. 

3.2 Binary Signals 

We shall now determine the error rate performance for a binary digital 

communication system with diversity. We begin by describing the mathematical 

model for the communication system with diversity. First of all, we assume that 

there are L diversity channels, carrying the same information-bearing signal. Each 
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channel is assumed to be frequency-nonselective and slowly fading with Rayleigh-

distributed envelope statistics. The fading processes among the L diversity channels 

are assumed to be mutually statistically independent. The signal in each channel is 

corrupted by an additive zero-mean white Gaussian noise process. The noise 

processes in the L channels are assumed to be mutually statistically independent, 

with identical autocorrelation functions. Thus, the equivalent low-pass received 

signals for the L channels can be expressed in the form 

rlk(t) = kejkskm(t) + zk(t), k = 1, 2, …… L, m = 1, 2  

where {akei0k} represent the attenuation factors and phase shifts for the L channels, 

skm(t) denotes the mth signal transmitted on the kth channel, and zk(t) denotes the 

additive white Gaussian noise on the kth channel. All signals in the set {skm(t)} have 

the same energy. 

The optimum demodulator for the signal received from the kth channel consists of 

two matched filters, one having the impulse response 

 

 

Of course, if binary PSK is the modulation method used to transmit the information, 

then sk1(t) = -sk2(t). Consequently, only a single matched filter is required for 

binary PSK. Following the matched filters is a combiner that forms the two decision 

variables. The combiner that achieves the best performance is one in which each 

matched filter output is multiplied by the corresponding complex-valued (conjugate) 

channel gain ake-Iok. The effect of this multiplication is to compensate for the phase 

shift in the channel and to weight the signal by a factor that is proportional to the 

signal strength. Thus, a strong signal carries a larger weight than a weak signal. 

After the complex-valued weighting operation is performed, two sums are formed. 

One consists of the real parts of the weighted outputs from the matched filters 

corresponding to a transmitted 0. The second consists of the real part of the outputs 

from the matched filters corresponding to a transmitted 1. This optimum combiner is 

called a maximal ratio combiner by Brennan (1959). Of course, the realization of this 

optimum combiner is based on the assumption that the channel attenuations {ak} 
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and the phase shifts {q5kl are known perfectly. That is, the estimates of the 

parameters {ak} and l0kl contain no noise. (The effect of noisy estimates on the 

error rate performance of multiphase PSK is considered in Appendix C.) 

A block diagram illustrating the model for the binary digital communication system 

described above is shown in Figure 13.4-1. 

Let us first consider the performance of binary PSK with Lth-order diversity. The 

output of the maximal ratio combiner can be expressed as a single decision variable 

in the form 

 

 

 

 

4.0 Conclusion 

In this unit, we have considered diversity techniques as a troll that enhances the 

reliability of communication system. Besides, we examine the error rate performance 

for a binary digital communication that the performance of M-ary Orthogonal signals 

transmitted over a Rayleigh fading channel. 

5.0 Summary 

We have examine or seen the general approach in two design of reliable 

communication presented in this unit. Furthermore, have presented a unified 

approach to evaluating the error rate performance of digital communication systems 

for various fading channel models. 

6.0 Tutor Marked Assignment 

1. Suppose that we have a frequency allocation (bandwidth) of 10 KHz and we 

wish to transmit at a rate of 100 bits over this channel design a binary 

communication system with frequency diversity. In particular, specify;  
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i. The type of modulation 

ii. The number of sub-channels. 

iii. The frequency separation between adjacent carriers. 

iv. The signaling interval used in your design. Justify your choice of parameters.  

7.0 References/ Further Reading 

Diversity transmission and diversity combing techniques of different channel 

conditions by Lindsey (1964) and Pierie and Stein (1960). 

Unit 4: Signaling over a Frequency Selective, Slowly Fading Channel: 

The Rake Demodulator 

1.0 Introduction  

2.0 Objectives  

3.0 Main Content  

3.1 A tapped-Delay-Line Channel Model 

3.2 The Rake Demodulator 

3.3 Performance of Rake Demodulator 

3.4 Generalized Rake Demodulator 

3.5 Receiver Structures for Channels with Inter-symbol Interference  

4.0 Conclusion 

5.0 Summary  

6.0 Tutor Marked Assignment 

7.0 Reference/ Further Reading  
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1.0 Introduction 

When the spread factor of the channel satisfies the condition TmBd << 1, it is possible to 

select signals having a bandwidth W <<(f)c and a signal duration T<<(At)c. Thus, the 

channel is frequency nonselective and slowly fading. In such a channel, diversity 

techniques can be employed to overcome the severe consequence of fading. 

2.0 At the end of this unit, you should be able to; 

- Illustrate a tapped-delay-line channel model. 

- Explain the Rake Demodulator 

- Discuss the performances of Rake Demodulator 

3.1 A Tapped-Delay-Line Channel Model 

As we shall now demonstrate, a more direct method for achieving basically the same 

results is to employ a wideband signal covering the bandwidth W. The channel is still 

assumed to be slowly fading by virtue of the assumption that T << (t)c. Now suppose 

that W is the bandwidth occupied by the band-pass signal. Then the band occupancy of 

the equivalent low-pass signal sl(t) is /f/  ½W. Since sl(t) is band-limited to /f/ ½W, 

application of the sampling theorem results in the ignal representation 
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Where C (f;t) is the time-variant transfer function. Substitution for Sl(f) from equation 

13.5-2 into 13.5-3 yields. 

 

 

 

where c(;t) is the time-variant impulse response. We observe that equation 13.5-4 has 

the form of a convolution sum. Hence, it can also be expressed in the alternative form 

 

 

 

then equation 13.5-5 expressed in terms of these channel coefficients becomes 

 

the form for the received signal in equation 13.5-7 implies that the time-variant 

frequency-selective channel can be modeled or represented as a tapped delay line with 

tap spacing 1/w and tap weight coefficients {cn(t)}. In fact, we deduce from equation 

13.5-7 that the low-pass impulse response for the channel is 

 

 

 

 

thus, with an equivalent low-pas-signal having a bandwidth ½ W, where W >> (f)c, we 

achieve a resolution of 1/W in the multipath delay profile. Since the total multipath spread 

is Tm, for all practical purposes the tapped delay line model for the channel can be 

truncated at L= [TmW] + taps. Then, the noiseless received signal can be expressed in 

the form 
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3.2 The Rake Demodulator 

We now consider the problem of digital signaling over a frequency-selective channel that 

is modeled by a tapped delay line with statistically independent time-variant tap weights 

{c,(t)}. It is apparent at the outset, however, that the tapped delay line model with 

statistically independent tap weights provides us with L replicas of the same transmitted 

signal at the receiver. Hence, a receiver that processes the received signal in an optimum 

manner will achieve the performance of an equivalent Lth-order diversity communication 

system. 

Let us consider binary signaling over the channel. We have two equal-energy signals sll 

(t) and sl2(t), which are either antipodal or orthogonal. Their time duration T is selected 

to satisfy the condition T >> T, Thus, we may neglect any intersymbol interference due 

to multipath. Since the bandwidth of the signal exceeds the coherent bandwidth of the 

channel, the received signal is expressed as  

 

 

where z(t) is a complex-valued zero-mean white Gaussian noise process. Assume for the 

moment that the channel tap weights are known. Then the optimum demodulator 

consists of two filters matched to vl (t) and V2 (t). The demodulator output is sampled at 

the symbol rate and the samples are passed to a decision circuit that selects the signal 

corresponding to the largest output. An equivalent optimum demodulator employs cross 

correlation instead of matched filtering. In either case, the decision variables for coherent 

detection of the binary signals can be expressed as 
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Figure 13.5-2 illustrates the operations involved in the computation of the decision 

variables. In this realization of the optimum receiver, the two reference signals are 

delayed and correlated with the received signal rl(t). 

An alternative realization of the optimum demodulator employs a single delay line through 

which is passed the received signal rl(t). The signal at each tap is correlated with 

ck(t)sim(t), where k = l, 2, . . ., L and m = 1, 2. This receiver structure is shown in Figure 

13.5-3. In effect, the tapped delay line demodulator attempts to collect the signal energy 

from all the received signal paths that fall within the span of the delay line and carry the 

same information. Its action is somewhat analogous to an ordinary garden rake and, 

consequently, the name "RAKE demodulator" has been coined for this demodulator 

structure by Price and Green (1958). The taps on the RAKE demodulator are often called 

"RAKE fingers." 

3.3 Generalized Rake Demodulator 

The RAKE demodulator described above is the optimum demodulator when the additive 

noise is white and Gaussian. However, there are communication scenarios in which additive 

interference from other users of the channel results in colored additive noise. This is the 

case, for example, in the downlink of a cellular communication system employing CDMA as 

a multiple access method. In this case, the spread spectrum signals transmitted from a 

base station to the mobile receivers carry information on synchronously transmitted 

orthogonal spreading codes. However, in transmission over a frequency-selective channel, 

the orthogonality of the code sequences is destroyed by the channel time dispersion due to 

multipath. As a consequence, the RAKE demodulator for any given mobile receiver must 

demodulate its desired signal in the presence of additional additive interference resulting 

from the cross-correlations of its desired spreading code sequence with the multipath 

corrupted code sequences that are assigned to the other mobile users. This additional 

interference is generally characterized as colored Gaussian noise, as shown by 

Bottomley,(1993) and Klein (1997). 

A model for the downlink transmission in a CDMA cellular communication system is 

illustrated in Figure 13.5-8. The base station transmits the combined signal. 
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to the K mobile terminals, where each sk(t) is a spread spectrum signal intended for the kth 

user and the corresponding spreading code for the kth user is orthogonal with each of the 

spreading codes of the other K - 1 users. We assume that the signals propagate through a 

channel characterized by the baseband equivalent lowpass, time-invariant 

 

 

3.4 Receiver Structure for Channels with Intersymbol Interference 

As described above, the wideband signal waveforms that are transmitted through the 

multipath channels resolve the multipath components with a time resolution of 1/ W, 

where W is the signal bandwidth. Usually, such wideband signals are generated as direct 

sequence spread spectrum signals, in which the PN spreading sequences are the outputs 

of linear feedback shift registers, e.g., maximum-length linear feedback shift registers. 

The modulation impressed on the sequences may be binary PSK, QPSK, DPSK, or binary 

orthogonal. The desired bit rate determines the bit interval or symbol interval. 

The RAKE demodulator that we described above is the optimum demodulator based on 

the condition that the bit interval Tb >> T„ Z, i.e., there is negligible ISI. When this 

condition is not satisfied, the RAKE demodulator output is corrupted by ISI. In such a 

case, an equalizer is required to suppress the ISI. 

To be specific, we assume that binary PSK modulation is used and spread by a PN 

sequence. The bandwidth of the transmitted signal is sufficiently broad to resolve two or 

more multipath components. At the receiver, after the signal is demodulated to baseband, 

it may be processed by the RAKE, which is the matched filter to the channel response, 

followed by an equalizer to suppress the ISI. The RAKE output is sampled at the bit rate, 

and these samples are passed to the equalizer. An appropriate equalizer, in this case, 

would be a maximum-likelihood sequence estimator implemented by use 
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of the Viterbi algorithm or a decision feedback equalizer (DFE). This demodulator 

structure is shown in Figure 13.5-10. 

Other receiver structures are also possible. If the period of the PN sequence is equal to 

the bit interval, i.e., LT, = Tb, where T, is the chip interval and L is the number of chips 

per bit, a fixed filter matched to the spreading sequence may be used to process the 

received signal and followed by an adaptive equalizer, such as a fractionally spaced DFE, 

as shown in Figure 13.5-11. In this case, the matched filter output is sampled at some 

multiple of the chip rate, e.g., twice the chip rate, and fed to the fractionally spaced DFE. 

The feedback filter in the DFE would have taps spaced at the bit interval. The adaptive 

DFE would require a training sequence for adjustment of its coefficients to the channel 

multipath structure. 

An even simpler receiver structure is one in which the spread spectrum matched filter is 

replaced by a low-pass filter whose bandwidth is matched to the transmitted signal 

bandwidth. The output of such a filter may be sampled at an integer multiple of the chip 

rate and the samples are passed to an adaptive fractionally spaced DFE. In this case, the 

coefficients of the feedback filter in the DFE, with the aid of a training sequence, will 

adapt to the combination of the spreading sequence and the channel multipath. 

Abdulrahman et al. (1994) consider the use of a DFE to suppress ISI in a CDMA system in 

which each user employs a wideband direct sequence spread spectrum signal. 

The paper by Taylor et al. (1998) provides a broad survey of equalization techniques and 

their performance for wireless channels. 
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4.0 Conclusion 

We considered the signal representation of a Tapped-Delay-Line Channel Model. Besides, 

have examined the Rake Demodulator and its performance under the conditions that the 

fading is sufficiency slow to allow us to estimate perfectly (without noise). 

5.0 Summary 

We have considered the transmission of digital information through timedispersive 

channels and described the Rake demodulator, which is the matched fitter for the 

channel. 

6.0 Tutor Marked Assignment 

A multipath fading channel has a multipath spread of Tm = 1s and a Dappler spread 

Bd = 0.01 Hz. The total channel bandwidth at bandpass available for signal 

transmission is W = 5 Hz. To reduce the effects of intersymbol interference, the signal 

designer selects a pulse duration T = 10s. 

1. Determine the coherence bandwidth and the coherence time. 

2. Is the channel frequency selective? Explain 

3. Is the channel fading slowly or rapidly? Explain 

7.0 References/ Further Reading 

The Effect of ICT in Orthogonal-Division Multiplexing (OFDM) for Mobile 

Communication by Robertson and Kaiser (1999) and Wang et al (2006). 

UNIT 5: MULTICARRIER MODULATION (OFDM) 

1.0 Introduction  

2.0 Objectives  

3.0 Main Content  

3.1 Performance Degradation of an OFDM System Due to Perplex Spreading 
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3.2 Suppression of ICI in OFDM System  

4.0 Conclusion 

5.0 Summary  

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading  

1.0 Introduction 

In this unit, we consider the use of OFDM for digital transmission on fading multipath 

channels. OFDM is an attraction alternative to single-carrier modulation for use in time-

dispersioe channels. we shall also consider the use of OFDM for mobile communications 

and on the performance of an OFDM system. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Discuss the performance degradation of an OFDM system due to Doppler 

spreading. 

- Explain suppression of ICI in OFDM systems 

3.1 Performance Degradation of an OFDM System due to Doppler Spreading

  

Let us consider an ®FDM system with N subcarriers {ei2nfkt}, where each subcarrier 

employs either M-ary QAM or PSK modulation. The subcarriers are orthogonal over the 

symbol duration T, i.e., fk = k/T, k = 1, 2, . . ., N, so that 

 

The channel is modeled as a frequency-selective randomly varying channel with impulse 

response c(i; t). Within the frequency band of each subcarrier, the channel is modeled 

as a frequency-nonselective Rayleigh fading channel with impulse response. 
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It is assumed that the processes {ak(t), k = 0, 1, . . . , N - 1} are complex-valued, 

jointly stationary, and jointly Gaussian with zero means and cross-covariance function 

 

For each fixed k, the real and imaginary parts of the process ak(t) are assumed 

independent with identical covariance function. It is further assumed that the covariance 

function Rki (-c) has the following factorable form 

 

which is sufficient to represent the frequency selectivity and the time-varying effects of 

the channel. RI(r) represents the temporal correlation of the process k(t), which is 

identical for all k = 0, 1, . . . , N - 1, and R2(k) represents the correlation in frequency 

across subcarriers. 

To obtain numerical results, we assume that the power spectral density corresponding 

to R1 (r) is modeled as in lakes (1974) and given by (see Figure 13.1-8) 

 

 

 

 

where J0() is the zero-order Bessel function of the first kind. To specify the correlation 

in frequency across the subcarriers, we model the multipath power intensity profile as 

an exponential of the form 

 

where  is a parameter that controls the coherence bandwidth of the channel. The 

Fourier transform of RJr) yields 
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which provides a measure of the correlation of the fading across the subcarriers, as 

shown in Figure 13.6-1. Hence, R2(k) = Rc (k/ T) is the frequency separation between 

two adjacent subcarriers. The 3-dB bandwidth of RC (f) maybe defined as the coherence 

bandwidth of the channel and is easily shown to be 3/2. 

The channel model described above is suitable for modeling OFDM signal transmission 

in mobile radio systems, such as cellular systems and radio broadcasting systems. Since 

the symbol duration T is usually selected to be much larger than the channel multipath 

spread, it is reasonable to model the signal fading as flat over each subcarrier. 

However, compared with the entire OFDM system bandwidth W, the coherence 

bandwidth of the channel is usually smaller. Hence, the channel is frequency-selective 

over the entire OFDM signal bandwidth. 

Let us now model the time variations of the channel within an OFDM symbol interval T. 

For mobile radio channels of practical interest, the channel coherence time is 

significantly larger than T. For such slow fading channels, we may use the two-term 

Taylor series expansion, first introduced by Bello (1963), to represent the time-varying 

channel variations ak(t) as 

 

 

3.2 Suppression of ICI in OFDM Systems 

The distortion caused by ICI in an OFDM system is akin to the distortion caused by ISI 

in a single-carrier system. Recall that a linear time-domain equalizer based on the 

minimum mean-square-error (MMSE) criterion is an effective method for suppressing 

ISI. In a similar manner, we may apply the MMSE criterion to suppress the ICI in the 

frequency domain. Thus, we begin with the N frequency samples at the output of the 

discrete Fourier transform (DFT) processor, which we denote by the vector R(m) for the 

mth frame. Then we form the estimate of the symbol sk(m) as 

where bk(m) is the coefficient vector of size N x 1. This vector is selected to minimize 

the MSE 

 



 174 

where the expectation is taken with respect to the signal and noise statistics. By 

applying the orthogonality principle, the optimum coefficient vector is obtained as 

 

 

 

and G(m) is related to the channel impulse response matrix H(m) through the DFT 

relation (see Problem 13.16) 

 

where W is the orthonormal (IDFT) transformation matrix. The vector 9k(M) is the kth 

column of the matrix G(m), and Q.2 is the variance of the additive noise component. 

It is easily shown that the minimum MSE for the signal on the kth subcarrier may be 

expressed as 

 

We observe that the optimum weight vectors {bk(m)) require knowledge of the 

channel impulse response. In practice, the channel response may be estimated by pe-

riodically transmitting pilot signals on each of the subcarriers and by employing a 

decision-directed method when data are transmitted on the N subcarriers. In a slowly 

fading channel, the coefficient vectors {bk(m)} may also be adjusted recursively by 

employing either an LMS- or an RLS-type algorithm, as previously described in the 

context of equalization for suppression of ISI. 

4.0 Conclusion 

By selecting the symbol duration in an OFDM system to be significantly larger than the 

channel dispersion, intersymbol interference (ISI) can be rendered negligible and 

completely eliminated by use of a time guard band, or equivalently, by the use of a 

cyclic prefix embedded in the OFDM signal. The elimination of ISI due to multipath 

dispersion without the use of complex equalizers, is a basic motivation for use of OFDM 

for digital communication in fading multipath channels. 
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5.0 Summary 

We have considered the transmission of digital information through time-dispersive 

channels and described the Rake demodulator, which is the matched fitter for the 

channel. 

6.0 Tutor Marked Assignment 

A multipath fading channel has a multipath spread of Tm = 1s and a Dappler spread Bd 

= 0.01 Hz. The total channel bandwith at bandpass available for signal transmission is 

W = 5 Hz. To reduce the effects of intersymbol interference, the signal designer selects 

a pulse duration T = 10s. 

1. Determine the coherence bandwidth and the coherence time. 

2. Is the channel frequency selective? Explain 

3. Is the channel fading slowly or rapidly? Explain 

7.0 References/ Further Reading 

The effect of ICT in Orthogonal-Division Multiplexing (OFDM) for Mobile Communication 

by Robertson and Kaiser (1999) and Wang et al (2006). 
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5.0 Summary 
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We considered that the OFDM is especially vulnerable to Doppler spread resulting from 

time variations in the channel impulse response, as in the case in mobile communication 

systems. The Doppler spreading destroys the orthogonality of the OFDM subcarriers and 

results in intercarrier interference (ICI) which can severely degrade the performance of 

OFDM system. Lastly, we evaluate the effect of a Doppler spread on the performance of 

OFDM. 

6.0 Tutor Marked Assignment 

1. The scattering function S(T;0) for a fading multipath channel is nonzero for the 

range of values OT1 ms and -0.1Hz    0.1Hz. Assume that the scattering function 

is appropriately uniform in the two variables; 

 i. The multipath spread  of the channel. 

 ii. The Doppler spread of the channel. 

iv. The coherence time of the channel. 

v. The spread factor of the channel. 

7.0 References/Further Reading 

Diversity Transmission Diversity Community Techniques Under a variety of Channel 

Conditions by Lindsey (1964). 

MODULE 6: FADING CHANNELS CAPACITY AND CODING 

Unit 1: Capacity of Fading Channels 

Unit 2: Ergodic and Outage Capacity 

Unit 3: Coding for and Performance of Code Systems in fading Channel 

Unit 4: Trellis-Coded Modulation for Fading Channels 

Unit 5: Bit-Interleaved Coded Modulation 
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Unit 1: Capacity of Fading Channels  

1.0 Introduction  

2.0 Objectives  

3.0 Main Contents  

3.1 The Capacity of a Channel 

3.2 Capacity of Finite-State Channels  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading  

1.0 Introduction 

This unit focuses on capacity and coding aspects of fading channels and opportunities 

that are different from the standard additive white Gaussian noise channels. besides, 

the metrics that determine the performance of coding schemes over fading channels are 

different from the standard metrics used to compare the performance of difference 

coding schemes over additive white Gaussian noise channels. 

2.0 Objectives 

At the end of this unit, you should be able to;  

- Explain capacity of fading channels.  

- Explain the parameters that affect the capacity of fading channels. 

3.1 The capacity of a channel 

The capacity of a channel is defined as the supremum of the rates at which reliable 

communication over the channel is possible. Reliable communication at rate R is 

possible if there exists a sequence of codes with rate R for which the average error 
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probability tends to zero as the block length of the code increases. In other words, at 

any rate less than capacity we can find a code whose error probability is less than any 

specified,5 > 0. In Chapter 6 we gave a general expression for the capacity of a discrete 

memoryless channel in the form 

 

where the maximum is taken over all channel input probability density functions. For a 

power-constrained discrete-time AWGN channel, the capacity can be expressed as  

 

where P is the signal power, N is the noise power, and C is the capacity in bits per 

transmission, or bits per (real) dimension. For a complex-input complex-output channel 

with circular complex Gaussian noiset with noise variance No, or No/2 per real and 

imaginary components, the capacity is given by 

 

bits per complex dimension. 

The capacity of an ideal band-limited, power-limited additive white Gaussian waveform 

channel is given by 

 

 

where W denotes the bandwidth, P denotes the signal power, and No/2 is the noise 

power spectral density. The capacity C in this case is given in bits per second. For an 

infinite-bandwidth channel in which the signal-to-noise ratio P/(NOW) tends to zero, the 

capacity is given in Equation 6.5-44 as 

 

The capacity in bits/sec/Hz (or bits per complex dimension) which determines the 

highest achievable spectral bit rate is given by 
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Note that since W ^Ts , where T,r is the symbol duration, the above expression for 

SNR can be written as SNR = PTs/N0 = Es/N0 = where Es indicates energy per symbol. 

In an AWGN channel the capacity is achieved by using a Gaussian input probability 

density function. At low values of SNR we have 

 

The notion of capacity for a band-limited additive white Gaussian noise channel can be 

extended to a nonideal channel in which the channel frequency response is denoted by 

C(f ). In this case the channel is described by the input-output relation of the form 

 

where c(t) denotes the channel impulse response and C(f) = C-,~T[c(t)] is the channel 

frequency response. The noise is Gaussian with a power spectral density of S,(f). It was 

shown in Chapter 11 that the capacity of this channel is given by 

 

 

 

 

 

 

The water-filling interpretation of this result states that the input power should be 

allocated to different frequencies in such a way that more power is transmitted at those 

frequencies of which the channel exhibits a higher signal-to-noise ratio and less power 

is sent at the frequencies with poor signal-to-noise ratio. A graphical interpretation of 

the water-filling process is shown in Figure 14.1-1. 

The water-filling argument can be also applied to communication over parallel channels. 

If N parallel discrete-time AWGN channels have noise powers Ni, 1 <_ i <_ N, and an 

overall power constraint of P, then the  
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total capacity of the parallel channels is given by 

 

 

 

 

 

In addition to frequency selectivity which can be treated through water-filling argu-

ments, a fading channel is characterized with time variations in channel characteristics, 

 

 

 

 

 

 

i.e., time selectivity. Since the capacity is defined in the limiting sense as the block 

length of the code tends to infinity, we can always argue that even in a slowly fading 

channel the block length can be selected large enough that in any block the channel 

experiences all possible states, and hence the time averages over one block are equal 

to the statistical averages. However, from a practical point of view, this would 

introduce a large delay which is not acceptable in many applications, for instance, 

speech communication on cellular phones. Therefore, for a delay-constrained system 

on a slowly fading channel, the ergodicity assumption is not valid. 

A common practice to break the inherent memory in fading channels is to employ long 

interleavers that spread a code sequence across a long period of time, thus making 

individual symbols experience independent fading. However, employing long 

interleavers would also introduce unacceptable delay in many applications. These ob-
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servations make it clear that the notion of capacity is more subtle in the study of 

fading channels, and depending on the coherence time of the channel and the 

maximum delay acceptable in the application under study, different channel models 

and different notions of channel capacity need to be considered. Since fading channels 

can be modeled as channels whose state changes, we first study the capacity of these 

channels. 

3.2 Capacity of Finite-State Channels 

A finite-state channel is a channel model for a communication environment that varies 

with time. We assume that in each transmission interval the state of the channel is 

selected independently from a set of possible states according to some probability  

 

 

 

distribution on the space of channel states. The model for a finite-state channel is 

shown in Figure 14.1-2. 

In this channel model, in each transmission the output y E 41 depends on the input x E 

Xand the state of the channel s E d5" through the conditional PDF p(yIx, s). The sets 

'd; c_Y, and HY denote the input, the output, and the state alphabets, respectively, 

and are assumed to be discrete sets. The state of the channel is generated 

independent of the channel input according to 

 

 

 

The encoder and the decoder have access to noisy versions of the state denoted by u 

E W and v E h respectively. Based on an original idea of Shannon (1958), Salehi 

(1992), and Caire and Shamai (1999) have shown that the capacity of this channel can 

be given as 
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In this expression the maximization is over p(t), the set of all probability mass 

functions on ~ where c7 denotes the set of all vectors of length 1,~l 1 with 

components from 0" The cardinality of the set c~is I X I and the set ~ is called the set 

of input strategies. 

In the study of fading channels, certain cases of this channel model are of particular 

interest. The special case where C = S and V is a degenerate random variable 

corresponds to the case when complete channel state information (CSI) is available at 

the receiver and no channel state information is available at the transmitter. In this 

case the capacity reduces to 

 

 

 

the capacity can be interpreted as the maximum over all input distributions of the 

average of the mutual information over all channel states. A second interesting case 

occurs when the state information is available at both the transmitter and the receiver. 

In this case 

 

 

Clearly since in this case the state information is available at the transmitter, the 

encoder can choose the input distribution based on the knowledge of the state. Since 

for each state of the channel the input distribution is selected to maximize the mutual 

information in that state, the channel capacity is the expected value of the capacities. 

A third interesting case occurs when complete channel information is available at the 

receiver but the receiver transmits only a deterministic function of it to the transmitter. 

In this case v = s and u = g(s), where g(.) denotes a deterministic function. In this 

case the capacity is given by [see Caire and Shamai (1999)] 

 



 183 

This case corresponds to when the receiver can estimate the channel state but due to 

communication constraints over the feedback channel can transmit only a quantized 

version of the state information to the transmitter. 

The underlying memoryless assumption in these cases makes these models appro-

priate for a fully interleaved fading channel. 

4.0 Conclusion 

Coding system techniques introduce redundancy through transmission of the party 

check codes, the extra transmissions provide diversity that improves the performance of 

coded system over fading channels. 

5.0 Summary 

This unit, we distinguish two different possibilities in dealing with capacity and coding 

for fading channels. In one case, the characteristics of the channels change fast enough 

with respect to the transmission duration of a block that a single block of information 

experiences all possible realizations of the channel frequently. The time average during 

the transmission duration of a single block are equal to the statistical (ensemble) 

averages over all possible channel realizations. Another possibility is that the block 

duration is short and each block experiences only a cross section of channel 

characteristics. Furthermore, the availability of state information at the receiver that is 

usually measured by transmitting tones over the channel at different frequencies help 

the receiver in increasing the channel capacity since the state of the channel can be 

interpreted as an auxiliary channel output. 

6.0 Tutor Marked Assignment 

1. Using Equation 14.1-19, determine the capacity of a finite-state channel in which 

state information is only available at the receiver. 

2. Using equation 14.1-19, determine the capacity of a finite-sate channel in which 

the same state information is available at the transmitter and the receiver. 

7.0 References/ Further Reading 

Coding for Fading Channels by Biglieri (2005) 
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Unit 2: Ergodic and Outage Capacity  

1.0 Introduction 

2.0 Objectives  

3.0 Main Contents  

3.1 The Ergodic Capacity of Channel Model 

3.2 The Ergodic Capacity of the Rayleigh Fading Model 

3.3 The Outage Capacity of Rayleigh Fading Channel 

3.4 Effect of Diversity on Outage Capacity  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

1.0 Introduction 

In this first channel model, since all channel realizations one experienced during a block, 

an ergodic channel model is appropriate and ergodic capacity can be defined as the 

ensemble average of channel capacity overall possible channel realization. In the second 

channel model, where in each block different channel realization are experienced, for 

each block the capacity will be different. Thus, the capacity can best be modeled as a 

random variable. This is case, another notion of capacity known as outage capacity is 

more appropriate. 

2.0 Objectives 

At the end of this unit, you should be able to;  

- Explain the Ergodic capacity of channel model and Rayleigh fading model. 

- Discuss the outage capacity of Rayleigh fading models and the effect of diversity 

 on outage capacity. 
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3.1 The Ergodic capacity of channel model 

To study the difference between ergodic and outage capacity, consider the two-state 

channel shown in Figure 14.2-1. In this figure two binary symmetric channels, one with 

crossover probability p = 0 and one with crossover probability p = 1/2, are shown. We 

consider two different channel models based on this figure. 

1. In channel model 1 the input and output switches choose the top channel (BSC 1) 

with probability 8 and the bottom channel (BSC 2) with probability 1 - 6, independently 

for each transmission. In this channel model each symbol is transmitted independently 

of the previous symbols, and the state of the channel is also selected independently for 

each symbol. 

2. In channel model 2 the top and the bottom channels are selected at the 

beginning of the transmission with probabilities S and 1 - 6, respectively; but once a 

channel is selected, it will not change for the entire transmission period. 

 

 

From Chapter 6 we know that the capacities of the top and bottom channels are Cl = 

1 and CZ = 0 bits per transmission, respectively. To find the capacity of the first 

channel model, we note that since in this case for transmission of each symbol the 

channel is selected independently over a long block, the channel will experience both 

BSC component channels according to their corresponding probabilities. In this case 

time and_ ensemble averages can be interchanged, the notion of ergodic capacity, 

denoted by C, applies, and the results of the preceding section can be used. The 

capacity of this channel model depends on the availability of the state information. 

We distinguish three cases for the first channel model. 

1. Case 1: No channel state information is available at the transmitter or receiver. 

In this case it is easy to verify that the average channel is a binary symmetric channel 

with crossover probability of 125, and hence the ergodic capacity is 

 



 186 

2. Case 2: Channel state information available at the receiver. Using Equation 14.1-

22, we observe that in this case we maximize the mutual-information with a fixed input 

distribution. But since regardless of the state of the channel a uniform input distribution 

maximizes the mutual information, the ergodic capacity of the channel is the average of 

the two capacities, i.e., 

3.  Case 3: Channel state information is available at the transmitter and the receiver. 

Here we use Equation 14.1-23 to find the channel capacity. In this case we can 

maximize the mutual information individually for each state, and the capacity is the 

average of the capacities as given in Equation 14.2-2. 

A plot of the two capacities as a function of 8 is given in Figure 14.2-2. Note that in this 

particular channel since the capacity achieving input distribution for the two channels 

states is the same, the results of cases 2 and 3 are the same. In general the capacities 

in these cases are different, as shown in Problem 14.7. 

In the second channel model where one of the two channels BSC 1 or BSC 2 is selected 

only once and then used for the entire communication situation, the capacity in the 

Shannon sense is zero. In fact it is not possible to communicate reliably over this 

channel model at any positive rate. The reason is that if we transmit at a rate R > 0 and 

channel BSC 2 is selected, the error probability cannot be set arbitrarily small. Since 

channel BSC 2 is selected with a probability of 1 - 8 > 0, reliable communication at any 

rate R > 0 is impossible. In fact in this case the channel capacity is a binary random 

variable which takes values of 1 and 0 with probabilities 8 and 1 - 8, respectively. This is 

a case for which ergodic capacity is not applicable and a new notion of capacity called 

outage capacity is more appropriate (Ozarow et al. (1994)). 

We note that since the channel capacity in this case is a random variable, if we transmit 

at a rate R > 0, there is a certain probability that the rate exceeds the capacity and the 

channel will be in outage. The probability of this event is called the outage probability 

and is given by 

Pout(R) = P [C < R] = Fc(R-) 

where FC(c) denotes the CDF of the random variable C and FC(R-) is the limit-fromleft 

of FC(c) at point c = R. 
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For any 0 <_ E < 1 we can define CE, the E-outage capacity of the channel, as the 

highest transmission rate that keeps the outage probability under E, i.e., 

 

 

3.2 The Ergodic Capacity of the Rayleigh Fading Channel 

In this section we study the ergodic capacity of the Rayleigh fading channel. The 

underlying assumption is that the channel coherence time and the delay restrictions of 

the channel are such that perfect interleaving is possible and the discrete-time 

equivalent of the channel can be modeled as a memoryless AWGN channel with 

independent Rayleigh channel coefficients. The lowpass discrete-time equivalent of this 

channel is described by an input-output relation of the form 

  yi = Rixi + ni 

where xi and yi are the complex input and output of the channel, Ri is a complex iid 

random variable with Rayleigh distributed magnitude and uniform phase, and ni's are iid 

random variables drawn according to CN(0, No). The PDF of the magnitude of Ri is 

given by 

 

 

We know from Chapter 2, Equations 2.3-45 and 2.3-27, that R2 is an exponential 

random variable with expected value E[R2] = 202. Therefore, if p = IRi 12, then from 

Equation 2.3-27 we have 
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where Pt and Pr denote the transmitted and the received power, respectively. In the 

following discussion we assume that 202 = 1, thus Pt = Pr = P. The extension of the 

results to the general case is straightforward. 

Depending on the availability of channel state information at the transmitter and 

receiver, we study the ergodic channel capacity in three cases. 

No Channel State Information In this case the receiver knows neither the magnitude nor 

the phase of the fading coefficients Ri ; hence no information can be transmitted on the 

phase of the input signal. The input-output relation for the channel is given by 

y = Rx + n 

where R and n are independent circular complex Gaussian random variables drawn 

according to CAr(0, 202) and CA/(0, No), respectively. To determine the capacity of the 

channel in this case, we need to derive an expression for p(yIx) which can be written as 

 

 

 

It can be shown (see Problem 14.8) that Equation 14.2-11 simplifies to  

 

 

This relation clearly shows that all the phase information is lost. It has been shown by 

Abou-Faycal et al. (2001) that when an input power constraint is imposed, the capacity 

achieving input distribution for this case has a discrete iid amplitude and an irrelevant 

phase. However, there exists no closed-form expression for the capacity in this case. 

Moreover, in the same work it has been shown that for relatively low average signal-to-
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noise ratios, when PING is less than 8 dB, only two signal levels, one of them at zero, 

are sufficient to achieve capacity; i.e., in this case on-off signaling is optimal. As the 

signal-to-noise ratio decreases, the amplitude of the nonzero input in the optimal on-

off signaling increases, and in the limit for P/No -->. 0 we obtain 

 

 

By comparing this result with Equation" 14.1-8 it is seen that for low signal-to-noise 

ratios the capacity is equal to the capacity of an AWGN channel; but at high signal-to-

noise ratios the capacity is much lower than the capacity of an AWGN channel. 

Although no closed form for the capacity exists, a parametric expression for the 

capacity is derived in Taricco and Elia (1997). The parametric form of the capacity is 

given by 

 

 

and y = -  (1)  0.5772156 is Euler's constant. 

A plot of capacity in this case is shown in Figure 14.2-3. The capacity of AWGN is also 

given for reference. It is clearly seen that lack of information about the channel state is 

particularly harmful at high signal-to-noise ratios. 

3.3 The outage capacity of Rayleigh fading channels 

The outage capacity is considered when due to strict delay restrictions ideal inter-

leaving is impossible and the channel capacity cannot be expressed as the average of 

the capacities for all possible channel realizations, as was done in the case of the 

Capacity of Gaussians and Rayleigh fading channel with CSI at both sides. 

ergodic capacity.  We assume at rates less than capacity ideal coding is employed to 

make transmission effectively error-free. With this assumption, errors occur only when 

the rate exceeds capacity, i.e., when the channel is in outage. 
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Capacity of Gaussian and Rayleigh fading channel with different CSI. 

For a Rayleigh fading channel the outage E-capacity is derived by using Equations 14.2-

3 and 14.2-4 as 

 

 

where FC(-) is the CDF of the random variable representing the channel capacity. For a 

Rayleigh fading channel with normalized channel gain, we have 

C = log (1 + p SNR)  

where p is an exponential random variable with expected value equal to l. The outage 

probability in this case is given by 
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Note that for high signal-to-noise ratios, i.e., for low outage probabilities, this 

expression can be approximated by 

 

 

 

 

We consider the cases of low and high signal-to-noise ratios separately. For low SNR 

values we have 

 

Since the capacity of an AWGN at low SNR values is 112 SNR, we conclude that the 

outage capacity is a fraction of the capacity of an AWGN channel. In fact the capacity of 

an AWGN channel is scaled by a factor of In T-1-. For instance, for E = 0.1 this value is 

equal to 0.105, and the outage capacity of the Rayleigh fading channel is only one-tenth 

of the capacity of an AWGN channel with the same power. For very small E, this factor 

tends to E and we have 

 

3.4 Effect of diversity on outage capacity.  

If a communication system over a Raleigh fading channel employs L-order diversity, 

then the random variable p = /R/2 has a X2 PDF with 2L degrees of freedom. In the 

special case of L = 1 we have a X2 random variable with two degrees of freedom which 

is an exponential random variable studied so far. For L-order diversity we use 
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The CDF of a X2 random variable given by equation 2.3-24. we obtain 

 

 

 

Equating Pout (R) to E and solving for R give the E-outage capacity CE for a channel with 

L-order diversity. The resulting CE is obtained by solving the equation. 

 

 

 

 

No close-form solution for CE exists for arbitrary L/ Plots of C0.01 for different diversity 

orders as well as the capacity of an AWGN channel are given in figure 14.2-8. The 

noticeable improvement due to diversity is clear from this figure.  

 

 

 

 

 

 

4.0 Conclusion 

In this unit, we examined Ergodic capacity of channel model, Ergodic capacity of the 

Rayleigh fading channel. Beside, the outage capacity of the Rayleigh fading channels 

and the effect of diversity on outage capacity. 
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5.0 Summary 

The channel capacity is a binary random variable which takes values of 1 and 0 with 

probabilities 8 and 1-8, respectively. This is a case for which Ergodic capacity is not 

applicable and a new notion of capacity called outage capacity is more appropriate. 

6.0 Tutor Marked Assignment 

1. Consider the BSC in which the channel can be in three states. In state S = 0 the 

output of the channel is always 0, regardless of the channel input, in state S = 2 the 

channel is noiseless, i.e the output is always equal to the input. We assume that P 

(S=0) = P (S=1) = P/2. 

2. Determine the capacity of this channel, assuming no state information is available 

to the transmitter or the receiver.  

3. Determine the capacity of the channel, assuming that channel state information S 

is available at both sides. 

7.0 References/ Further Reading 

The Importance of Coding for Digital Communication over a Fading Channel by Chase 

(1976). 

Unit 3: Coding for and Performance of Coded Systems in Fading Channels 

1.0 Introduction  

2.0 Objectives  

3.0 Main Content  

3.1 Coding for Fading Channel 

3.2 Performance of Coded Systems in Fading Channels 

3.3 Performance of Fully Interleaved Fading Channels with CSI at the Receivers  

4.0 Conclusion 
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5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading  

1.0 Introduction 

In this unit, we will consider coding for fading channel and its performance. The 

capacity of a fading channel depends on the dynamics of the fading process. 

2.0 Objectives  

At the end of the unit, you should be able to;  

- Explain coding for fading channel 

- Explain performance of coded systems in fading channel 

- Discuss performance by fully interleaved fading channels with CSI at the 

receivers. 

3.1 Coding for fading channel  

In Chapter 13 we have demonstrated that diversity techniques are very effective in 

overcoming the detrimental effects of fading caused by the time-variant dispersive 

characteristics of the channel. Time and/or frequency diversity techniques may be 

viewed as a form of repetition (block) coding of the information sequence. From this 

point of view, the combining techniques described in Chapter 13 represent soft decision 

decoding of the repetition code. Since a repetition code is a trivial form of coding, we 

now consider the additional benefits derived from more efficient types of codes. In 

particular, we demonstrate that coding provides an efficient means of obtaining diversity 

on a fading channel. The amount of diversity provided by a code is directly related to its 

minimum distance. 

As explained in Section 13.4, time diversity is obtained by transmitting the signal 

components carrying the same information in multiple time intervals mutually separated 

by an amount equal to or exceeding the coherence time (At), of the channel. Similarly, 

frequency diversity is obtained by transmitting the signal components carrying the same 
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information in multiple frequency slots mutually separated by an amount at least equal 

to the coherence bandwidth (A f ), of the channel. Thus, the signal components carrying 

the same information undergo statistically independent fading. 

To extend these notions to a coded information sequence, we simply require that the 

signal waveform corresponding to a particular code bit or code symbol fade indepen-

dently of the signal waveform corresponding to any other code bit or code symbol. This 

requirement may result in inefficient utilization of the available time-frequency space, 

with the existence of large unused portions in this two-dimensional signaling space. To 

reduce the inefficiency, a number of codewords may be interleaved in time or in 

frequency or both, in such a manner that the waveforms corresponding to the bits or 

symbols of a given codeword fade independently. Thus, we assume that the time-

frequency signaling space is partitioned into nonoverlapping time-frequency cells. A 

signal waveform corresponding to a code bit or code symbol is transmitted within such a 

cell. 

In addition to the assumption of statistically independent fading of the signal com-

ponents of a given codeword, we assume that the additive noise components corrupting 

the received signals are white Gaussian processes that are statistically independent and 

identically distributed among the cells in the time-frequency space. Also, we assume 

that there is sufficient separation between adjacent cells that intercell interference is 

negligible. 

An important issue is the modulation technique that is used to transmit the coded 

information sequence. If the channel fades slowly enough to allow the establishment of 

a phase reference, then PSK or DPSK may be employed. In the case where channel 

state information (CSI) is available at the receiver, knowledge of the phase makes co-

herent detection possible. If this is not possible, then FSK modulation with noncoherent 

detection at the receiver is appropriate. 

A model of the digital communication system for which the error rate performance will 

be evaluated is shown in Figure 14.3-1. The encoder may be binary, nonbinary, or a 

concatenation of a nonbinary encoder with a binary encoder. Furthermore, the code 
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Mode of communications system with modulation/ demodulation and 

encoding/decoding. 

generated by the encoder may be a block code a convolutional code, or, in the case of 

concatenation, a mixture of a block code and a convolutional code. 

To explain the modulation, demodulation, and decoding, consider a linear binary block 

code in which k information bits are encoded into a block of n bits. For simplicity and 

without loss of generality, let us assume that all n bits of a codeword are transmitted 

simultaneously over the channel on multiple frequency/time cells. A codeword ci having 

bits {cij} is mapped into signal waveforms and interleaved in time and/or frequency and 

transmitted. The dimensionality of the signal space depends on the modulation system. 

For instance, if FSK modulation is employed, each transmitted symbol is a point in the 

two-dimensional space, hence the dimensionality of the encoded/modulated signal is 2n. 

Since each codeword conveys k bits of information, the bandwidth expansion factor for 

FSK is Be = 2n/ k. 

The demodulator demodulates the signal components transmitted in independently 

faded frequency/ time cells, providing the sufficient statistics to the decoder which 

appropriately combines them for each codeword to form the M = 2k decision variables. 

The codeword corresponding to the maximum of the decision variables is selected. If 

hard decision decoding is employed, the optimum maximum-likelihood decoder selects 

the codeword having the smallest Hamming distance relative to the received codeword. 

Although the discussion above assumed the use of a block code, a convolutional encoder 

can be easily accommodated in the block diagram shown in Figure 14.3-1. For this case 

the maximum-likelihood soft decision decoding criterion for the convolutional code can 

be efficiently implemented by means of the Viterbi algorithm. On the other hand, if hard 

decision decoding is employed, the Viterbi algorithm is implemented with Hamming 

distance as the metric. 
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3.2 Performance of coded systems in fading channels 

In studying the capacity of fading channels in Section 14.2 we noted that the notion of 

capacity in fading channels is more involved that the notion of capacity for a standard 

memoryless channel. The capacity of a fading channel depends on the dynamics of the 

fading process and how the coherence time of the channels compares with the code 

length as well as the availability of channel state information at the transmitter and the 

receiver. In this section we study the performance of a coded system on a fading 

channel, and we observe that the same factors affect the code performance. 

We assume that a coding scheme followed by modulation, or a coded modulation 

scheme, is employed for data transmission over the fading channel. Our treatment at 

this point is quite general and includes block and convolutional codes as well as 

concatenated coding schemes followed by a general signaling (modulation) scheme. 

This treatment also includes block or trellis-coded modulation schemes. 

We assume that M signal space coded sequences fx1, x2, . . . ,xM} are employed to 

transmit one of the equiprobable messages 1 _< m <_ M. Each codeword xi is a 

sequence of n symbols of the form 

 

where each xii is a point in the signal constellation. We assume that the signal constel-

lation is two-dimensional, hence xij's are complex numbers.  

Depending on the dynamics of fading and availability of channel state information, we 

can study the effect of fading and derive bounds on the performance of the coding 

scheme just described. 

Coding for Fully Interleaved Channel Model 

In this model we assume a very long interleaver is employed and the codeword com-

ponents are spread over a long interval, much longer than the channel coherence time. 

As a result, we can assume that the components of the transmitted codeword undergo 

independent fading. The channel output for this model, when xi is sent, is given by 
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where the Rj represents the fading effect of the channel and the nj is the noise. In this 

model due to the interleaving, Rd's are independent and no's are iid samples drawn 

according to CV(0, No). The vector input-output relation for this channel is given by  

 

 

 

 

and n is a vector with independent no's as its components. The Rd's are in general 

complex, denoting the magnitude and the phase of the fading process. 

The maximum-likelihood decoder, having received y, uses the rule 

 

to detect the transmitted message rn. By the independence of fading and noise compo-

nents we have 

 

The value of p(yj/x,nj) depends on the availability of channel state information at the 

receiver. 

CSI Available at the Receiver In this case the output of the channel consists of the 

output vector y and the channel state sequence (ri, r2, . . . , rn) which are 

realizations of random variables R1, R2, .. ., Rn, or equivalently the realization of 

matrix R. Therefore, the maximum-likelihood rule, P[observed Iinput], becomes 

 

 

Substituting Equation 14.4-7 into 14.4-5 and dropping the common positive factor rjn=1 

p(rj) result in 
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3.3 Performance of fully interleaved fading channels with CSI at the 

receivers.  

A bound on error probability can be obtained by using an approach similar to the one 

used in Section 6.8-1. Using Equation 6.8-2, we have 

 

 

 

 

where Pmm, is the pairwise error probability (PEP), i.e., the probability of error in a 

binary communication system consisting of two signals x,n and xm, when xm is 

transmitted. Here we derive an upper bound on the pairwise error probability by 

using the Chernov bounding technique. For other methods of studying the pairwise 

error probability, the reader is referred to Biglieri et al. (1995, 1996, 1998a). 

A Bound on the Pairwise Error Probability To compute a bound on the PEP, we note 

that since in this case CSI is available at the receiver, according to Equation 14.4-8, 

the channel conditional probabilities are p(y j I xml , r j) and hence 
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Since we are assuming xn is transmitted, we have yj = rjxmj + n j. Substituting this 

into Equation 14.4-15 and simplifying yield  

 

 

where Nj is a real zero-mean Gaussian random variable with variance 2 1 r j I2dm,n, j 

No and d,n,n, j is the Euclidean distance between the constellation points 

representing the j th components of xm and xm. 

Substituting Equation 14.4-16 into Equation 14.4-13 yields 1 n 

 

 Using this result, equation 14.4-13. 

 

 

Apply the Chernov bounding technique discussed in section 2.4 give   

 

 

 

Where/Rj/ denotes the envelop of the fading process. Substituting this result into 

equation. 14.4-12 gives 

 

 

Ricean Fading Here we assume that /Rj/, the envelope of the fading process, has a 

Ricean PDF as given by equation 2.3-56. we can directly apply the result of example 

2.4-2 in section 2.4 and in particular equation 2.4-25 to obtained 
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In equation 14.4-21 and 14.4-22, 2 and s are the parameters of the Ricean random 

variable determining the envelope of the fading process. The pairwise error probability 

can also be expressed in terms of the Rice factor K as (see equation 2.4-26) 

    

 

 

4.0 Conclusion 

In this unit, it is a crystal clear that the factors affecting the performance of a coded 

system on a Rayleigh fading channel are quite different from the factors affecting the 

performance on Gaussian channels. 

5.0 Summary 

We study the performance of a coded system on a fading channel, and observe that the 

same factors affect the code performance. 

6.0 Tutor Marked Assignment 

A fading channel model that is flat in both time and frequency can be modeled as y = 

Rx + n, where then fading factor R remains constant for the entire duration of the 

transmission of the codeword. Determine the optional decision rule for this channel for 

Ricean fading when the slate information is available at the receiver and when it is not 

available. 
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7.0 References/ Further Reading 

Coding for Fading Channel by Biglieri (2005)  

UNIT 4: TRELLIS-CODED MODULATION FOR FADING CHANNEL  

1.0 Introduction 

2.0 Objectives  

3.0 Main Content  

3.1 TCM Systems for Fading Channels 

3.2 Multiple Trellis-Coded Modulation (MTCM) 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading  

1.0 Introduction 

For code design on Gaussian channels, when soft decision decoding is employed, two 

parameters determine the performance of the code. These parameters are the minimum 

Euclidean distance of the code and the multiplicity of the code. 

2.0 Objectives 

At the end of this unit, you should be able to; 

- Describe TCM systems for fading channels. 

- Explain Multiple Trellis-coded Modulation 

3.1 TCM Systems for Fading Channel 

Trellis-coded modulation was described in Section 8.12 as a means for achieving a 

coding gain on bandwidth-constrained channels, where we wish to transmit at a bit 
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rate-to-bandwidth ratio R/ W > 1. For such channels, the digital communication system 

is designed to use bandwidth-efficient multilevel or multiphase modulation (PAM, PSK, 

DPSK, or QAM), which allows us to achieve an RI W > 1. When coding is applied in 

signal design for a bandwidth-constrained channel, a coding gain is desired without 

expanding the signal bandwidth. This goal can be achieved, as described in Section 

8.12, by increasing the number of signal points in the constellation over the cor-

responding uncoded system, to compensate for the redundancy introduced by the code, 

and designing the trellis code so that the Euclidean distance in a sequence of 

transmitted symbols corresponding to paths that merge at any node in the trellis is 

larger than the Euclidean distance per symbol in an uncoded system. In contrast, 

traditional coding schemes used on fading channels in conjunction with FSK or PSK 

modulation expand the bandwidth of the modulated signal for the purpose of achieving 

signal diversity. 

In designing trellis-coded signal waveforms for fading channels, we may use the same 

basic principles that we have learned and applied in the design of conventional coding 

schemes. In particular, the most important objective in any coded signal design for 

fading channels is to achieve as large a diversity order as possible. 

As indicated above, the candidate modulation methods that achieve high bandwidth 

efficiency are M-ary PSK, DPSK, QAM, and PAM. The choice depends to a large extent 

on the channel characteristics. If there are rapid amplitude variations in the received 

signal, QAM and PAM may be particularly vulnerable, because a wideband automatic 

gain control (AGC) must be used to compensate for the channel variations. In such a 

case, PSK or DPSK is more suitable, since the information is conveyed by the signal 

phase and not by the signal amplitude. DPSK provides the additional benefit that carrier 

phase coherence is required only over two successive symbols. However, there is an 

SNR degradation in DPSK relative to PSK. 

The discussion and the design criteria provided in Section 14.5 show that a good TCM 

code for the Gaussian channel is not necessarily a good code for the fading channel. It 

is quite possible that a trellis code has a large Euclidean distance but has a low effective 

code length or product distance. In particular some of the good codes designed by 

Ungerboeck for the Gaussian channel (Ungerboeck (1983)) have parallel branches in 

their trellises. The existence of parallel branches in TCM codes is due to the existence of 
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uncoded bits, as explained in Chapter 8. Obviously, two paths in the trellis that are 

similar on all branches but correspond to different branches on a parallel branch have a 

minimum distance of 1 and provide a diversity order of unity. Such codes are not 

desirable for transmission over fading channels due to their low diversity order and 

should be avoided. This is not, however, a problem with the Gaussian channel, and in 

fact many good TCM schemes that work satisfactorily on Gaussian channels have 

parallel branches in their trellis representation. 

To design TCM schemes with high diversity order, we have to make sure that the paths 

in the trellis corresponding to different code sequences have long runs of different 

branches, and the branches are labeled by different symbols from the code 

constellation. In order for two code sequences to have a diversity order of L, the 

corresponding paths in the code trellis must remerge at least L branches after diverging, 

and the two paths on these L branches must have different labels. This clearly indicates 

that for L > 1 parallel transitions have to be excluded. 

Let us consider an (n, k, K) convolutional code as shown in Figure 8.1-1. The number of 

memory elements in this code is Kk, the number of states in the trellis representing this 

code is 2k(x_i), and 2k branches enter and leave each state of the trellis. Without loss 

of generality we consider the all-zero path and a path diverging from it. The diverging 

path from the all-zero path corresponds to an input of k bits that contains at least one l. 

Since the number of memory elements of the code is Kk, it takes K sequences of k-bit 

inputs, all equal to zero, to move the 1 (or Is) out of the kK memory units, thus bringing 

back the code to the all-zero state and remerging the path with the all-zero path. This 

shows that the two paths that have emerged from one state can remerge after at least 

K branches, and hence this code can potentially provide a diversity order of K. 

Therefore, the diversity order that a convolutional code can provide is equal to K, the 

constraint length of the convolutional code. To employ this potential diversity order, we 

need to have enough points in the signal constellation to assign different signal points 

to different branches of the trellis. 

Let us consider the following trellis code studied by Wilson and Leung (1987). The trellis 

diagram and the constellation for this TCM scheme are shown in Figure 14.5-1 As seen 

in the figure, the trellis corresponding to this code is a fully connected trellis, and there 

are no parallel branches on it, i.e., each branch of the trellis corresponds to a single 
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point in the constellation. The diversity order for this trellis is 2; therefore the error 

probability is inversely proportional to the square of the signal-to-noise-ratio. The 

product distance provided by this code is 1.172. It can be easily verified that the 

squared free Euclidean distance for this code is d2
free = 2.586; therefore the coding 

 

 

 

 

 

gain of the TCM scheme in Figure 14.5-1, when used for transmission over an AWGN 

channel, is 1.1 dB which is 1.9 dB inferior to the coding gain of the Ungerboeck code of 

comparable complexity given in Section 8.12. 

In Schlegel and Costello (1989) a class of 8-PSK rate 2/3 TCM codes for various 

constraint lengths is introduced. The search for good codes in this work is done among 

all codes that can be designed by employing a systematic convolutional code followed 

by mapping to the 8-PSK signal constellation. It turns out that the advantage of this 

design procedure is more noticeable at higher constraint lengths. In particular, this 

design approach results in the same codes obtained by Ungerboeck (1983) when the 

constraint length is small. At high constraint lengths these codes are capable of 

providing both higher diversity orders and higher product distances compared to the 

codes designed by Ungerboeck. For example, for a trellis with 1024 states, these codes 

can provide a diversity order of 5 and a (normalized) product distance of 128. For 

comparison, the Ungerboeck code with the same complexity can provide a diversity 

order of 4 and a product distance of 32. 

In Du and Vucetic (1990), Gray coding is employed in the mapping from a convolutional 

code output to the signal constellation. An exhaustive search is performed on 8-PSK 

TCM schemes, and it is shown that, particularly at lower constraint lengths, these codes 

have a better performance compared to those designed in Schlegel and Costello (1989). 

As the number of states increases, the performance of the codes designed in Schlegel 
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and Costello (1989) is better. As an example for a 32-state trellis code, the approach of 

Du and Vucetic (1990) results in a diversity order of 3 and a normalized product 

distance of 32, whereas the corresponding figures for the code designed in Schlegel and 

Costello (1989) are 3 and 16, respectively. 

In Jamali and Le-Ngoc (1991), not only is the design problem of good 4-state 8-PSK 

trellis codes addressed, but also general design rules are formulated for the Rayleigh 

fading channel. These design principles can be viewed as the generalization of the 

design rules formulated in Ungerboeck (1983) for the Gaussian channel. Application of 

these rules results in improved performance. As an example, by applying these rules 

one obtains the signal constellation and the trellis shown in Figure 14.5-2. 

 

 

 

 

It is easy to verify that the coding gain of this code over an AWGN channel (as 

expressed by the free Euclidean distance) is 2 dB, which is 0.9 dB superior to the code 

designed in Wilson and Leung (1987) and shown in Figure 14.5-1, and only 1 dB inferior 

to the Ungerboeck code with a comparable complexity. It is also easy to see that the 

product distance of this code is twice the product distance of the code shown in Figure 

14.5-1, and therefore the performance of this code over a fading channel is superior to 

the performance of the code designed in Wilson and Leung (1987). Since the squared 

product distance of this code can be shown to be twice the squared product distance of 

the code shown in Figure 14.5-1, the asymptotic performance improvement of this code 

compared to the one designed in Wilson and Leung (1987), when used over fading 

channels, is 10 log /2- = 1.5 dB. The encoder for this code can be realized by a 

convolutional encoder followed by a natural mapping to the 8-PSK signal set. 
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3.2 Multiple Trellis-Coded Modulations  

We have seen that the performance of trellis code modulation schemes on fading 

channels is primarily determined by their diversity order and product distance. In 

particular, we saw that trellises with parallel branches are to be avoided in 

transmission over fading channels due to their low (unity) diversity order. In cases 

where high bit rates are to be transmitted under severe bandwidth restrictions, the 

signal constellation consists of many signal points. In such cases, to avoid parallel 

paths in the code trellis, the number of trellis states should be very large, resulting in 

a very complex decoding scheme. 

An innovative approach to avoid parallel branches and at the same time to avoid a 

very large number of states is to employ multiple trellis-coded modulation (MTCM) as 

first formulated in Divsalar and Simon (1988c). The block diagram for a multiple 

trellis-coded modulation is shown in Figure 14.5-3. 

In the multiple trellis-coded modulation depicted in Figure 14.5-3, at each instance of 

time K = km information bits enter the trellis encoder and are mapped into N = nm 

bits, which correspond to m signals from a signal constellation with a total of 2' signal 

points, and these m signals are transmitted over the channel. The important fact is 

that, unlike the standard TCM, here each branch of the trellis is labeled with m signals 

from the constellation and not only one signal. The existence of more than one 

 

 

 

signal corresponding to each trellis branch results in higher diversity order and 

therefore improved performance when used over fading channels. In fact, MTCM 

schemes can have a relatively small number of states and at the same time avoid a 

reduced diversity order. The throughput (or spectral bit rate, defined as the ratio of 

the bit rate to the bandwidth) for this system is k, which is equivalent to an uncoded 

(and a conventional TCM) system. In most implementations of MTCM, the value of n 
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is selected to be k + 1. Note that with this choice, the case m = 1 is equivalent to 

conventional TCM. The rate of the MTCM code is R = KIN = k/n. 

In the following example we give a specific TCM scheme and discuss its performance in 

a fading environment. The signal constellation and the trellis for this example are shown 

in Figure 14.5-4. For this code we assume m = 2, k = 2, and n = 3. Therefore, the rate 

of this code is 2/3, and the trellis selected for the code is a two-state trellis. At each 

instant of time K = km = 4 information bits enter the encoder. This means that there 

are 2K = 16 branches leaving each state of the trellis. Due to the symmetry in the 

structure of the trellis, there exist eight parallel branches connecting any two states of 

the trellis. The difference, however, with conventional trellis-coded modulation is that 

here we assign two signals in the signal space to each branch of the trellis. In fact, 

corresponding to the K = 4 information bits that enter the encoder, N = nm = 6 binary 

symbols leave the encoder. These six binary symbols are used to select two signals from 

the 8-PSK constellation shown in Figure 14.5-4 (each signal 

 

 

 

 

 

 

requires three binary symbols). The mappings of the branches to the binary symbols 

are also shown in Figure 14.5-4. Close examination of the mappings suggested in this 

figure shows that although there exist parallel branches in the trellis for this code, the 

diversity order provided by this code is equal to 2. 

It is seen from the above example that multiple trellis-coded modulation can achieve 

good diversity, which is essential for transmission through the fading channel, without 

requiring complex trellises with a large number of states. It can also be shown (see 

Divsalar and Simon (1988c)), that this same technique can provide all the benefits of 

using the asymmetric signal sets, as described in Divsalar et al. (1987), without the dif-
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ficulties encountered with time jitter and catastrophic trellis codes. Optimum set parti-

tioning rules for multiple trellis-coded modulation schemes are investigated in Divsalar 

and Simon (1988b) (see also Biglieri et al. (1991)). It is important to note that the 

signal set assignments to the trellis branches shown in Figure 14.5-4 are not the best 

possible signal assignments if this code is to be used over an AWGN channel. In fact, 

the signal set assignment shown in Figure 14.5-5 provides a performance 1.315 dB 

superior to the signal set assignment of Figure 14.5-4 when used over an AWGN 

channel. However, obviously the signal assignment of Figure 14.5-5 can only provide a 

diversity order equal to unity as opposed to the diversity order of 2 provided by the 

signal assignment of Figure 14.5-4. This means that on fading channels the 

performance of the code shown in Figure 14.5-4 is superior to the performance of the 

code shown in Figure 14.5-5. 

 

 

 

 

 

4.0 Conclusion 

For fading channels the code parameters with highest impact on code performance are 

the code diversity or effective length, given by the minimum Hamming distance of the 

code and lastly, the product distance of the code. This parameter results in a shift in the 

error probability plot of the code and has the same effect at all signal-to-noise ratio. 

Besides, the multiplicity of the mode N min is another parameter. 
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5.0 Summary 

Trellis-coded modulation for fading channels has been considered in this unit, we also 

examine the performance of Trellis code modulation which primarily determined by their 

diversity order and product distance. 

6.0 Tutor Marked Assignment 

Explain briefly why multiple Trellis coded modulation can achieve god diversity. 

7.0 References/ Further Reading 

Trellis-Coded Modulation for Fading Channels by Biglieri et al (1991) and LeNgoc (1994) 

UNIT 5: BIT-INTERLEAVED CODED MODULATION  

1.0 Introduction 

2.0 Objectives  

3.0 Main Content  

3.1 Bit-Interleaved Modulation 

3.2 Coding in the Frequency Domain 

3.3 Use of Constant-Weights Codes and Concatenated Codes for a Fading Channel 

4.0 Conclusion  

5.0 Summary  

6.0 Tutor Marked Assignment 

7.0 References/ Further Reading  
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1.0 Introduction 

In the unit, we consider Bit-interleaved coded modulation which makes the diversity 

order of the code equal to the minimum number of distinct bits (rather than channel 

symbols) by which two Trellis paths differ. 

2.0 Objectives 

At the end of this unit, we should be able to; 

- Explain bit interleaved modulation  

- Discuss coding in the frequency domain 

- Understand the use of constant-weight code and concatenated codes for a fading 

 channel 

3.1 Bit-Interleaved Modulation 

In Section 8.12 we have seen that a coded modulation system in which coding and 

modulation are jointly designed as a single entity provides good coding gain over 

Gaussian channels with no expansion in bandwidth. These codes employ labeling by set 

partitioning on the code trellis rather than common labeling techniques such as Gray 

labeling, and these codes achieve their good performance over Gaussian channels by 

providing large Euclidian distance between trellis paths corresponding to different coded 

sequences. On the other hand, a code has good performance on a fading channel if it 

can provide high diversity order, which depends on the minimum Hamming distance of 

the code, as was seen in Section 14.4-1. For a code to have good performance under 

both channel models, it has to provide high Euclidean and high Hamming distances. We 

have previously seen in Chapter 7 that for BPSK and BFSK modulation schemes the 

relation between Euclidean and Hamming distances is a simple relation given by 

Equations 7.2-15 and 7.2-17, respectively. These equations indicate that for these 

modulation schemes Euclidean and Hamming distances are optimized simultaneously. 

For coded modulation where expanded signal sets are employed, the relation between 

Euclidean and Hamming distances is not as simple as the corresponding relations for 

BPSK and BFSK. In fact, in many coded modulation schemes, where the performance is 
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optimized through labeling the trellis branches by set partitioning using the 

Ungerboeck's rules (Ungerboeck (1983)), optimal Euclidean distance, and hence optimal 

performance on the AWGN channels model, is achieved with TCM schemes that have 

parallel branches and thus have a Hamming distance, and consequently diversity order, 

equal to unity. These codes obviously cannot perform well on fading channels. In 

Section 14.5 we gave examples of coded modulation schemes designed for fading 

channels that achieve good diversity gain on these channels. The underlying assumption 

in designing these codes was that similar to Ungerboeck's coded modulation approach, 

the modulation and coding have to be considered as a single entity, and the symbols 

have to be interleaved by a symbol interleaver of depth usually many times the coher-

ence time of the channel to guarantee maximum diversity. Using symbol interleavers 

results in the diversity order of the code being equal to the minimum number of distinct 

symbols between the codewords; and as we have seen in Section 14.5-1, this can be 

done by eliminating parallel transitions and increasing the constraint length of the code. 

However, there is no guarantee that the codes using this approach perform well when 

transmitted over an AWGN channel model. In this section we introduce a coded mod-

ulation scheme, called bit-interleaved coded modulation (BICM), that achieves robust 

performance under both fading and AWGN channel models. 

Bit-interleaved coded modulation was first introduced by Zehavi (1992), who introduced 

a bit interleaver instead of a symbol interleaver at the output of the channel encoder 

and before the modulator. The idea of introducing a bit interleaver is to make the 

diversity order of the code equal to the minimum number of distinct bits (rather than 

channel symbols) by which two trellis paths differ. Using this scheme results in a new 

soft decision decoding metric for optimal decoding that is different from the metric used 

in standard coded modulation. A consequence of this approach is that coding and 

modulation can be done separately. Separate coding and modulation results in a system 

that is not optimal in terms of achieving the highest minimum Euclidean distance, and 

therefore the resulting code is not optimal when used on an AWGN channel. However, 

the diversity order provided by these codes is generally higher than the diversity order 

of codes obtained by set partitioned labeling and thus provides improved performance 

over fading channels. A block diagram of a standard TCM system and a bit-interleaved 

coded modulation system are shown in Figure 14.6-1. In both systems a rate 2/3 convo-

lutional code with an 8-PSK constellation is employed. In the TCM system, the symbol 
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outputs of the encoder are interleaved and then modulated using the 8-PSK 

constellation and transmitted over the fading channel, in which p and n denote the 

fading and noise processes. In the BICM system, instead of the symbol interleaver we 

are using three independent bit interleavers that individually interleave the three bit 

streams. In both systems deinterleavers (at symbol and bit level, respectively) are used 

at the receiver to undo the effect of interleaving. Note that the fading process (CSI) is 

available at the receiver in both systems. 

Bit-interleaved coded modulation was extensively studied in Caire et al. (1998). This 

comprehensive study generalized the system introduced by Zehavi (1992), which used 

multiple bit interleavers at the output of the encoder, and instead used a single bit 

 

 

 

 

 

 

 

 

interleaver that operates on the entire encoder output. The block diagram of the 

system studied in Caire et al. (1998) is shown in Figure 14.6-2. The encoder output is 

applied to to an interleaver denoted by .  The output of the interleaver is modulated 

by the modulator consisting of a label map /,t  followed by a signal set X. The channel 

model is a state channel with state s which is assumed to be a stationary, finite-

memory vector channel whose input and output symbols x and y are N-tuples of 

complex numbers. The state s is independent of the channel input x, and conditioned 

on s, the channel is memoryless, i.e., 
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The state sequence s is assumed to be a stationary finite-memory random process; 

i.e., there exists some integer v >_ 0 such that for all integers r and s and all integers 

v < kl < k2 < ... < kr and jl < j2 < ... < js < 0, the sequences (sk...... sk,) and (s i...... sj,) are 

independent. The integer v represents the maximum memory length of the state 

process. The output of the channel enters the demodulator that computes the branch 

metrics which after deinterleaving are supplied to the decoder for final decision. 

Both coded modulation and BICM systems can be described as special cases of the 

block diagram of Figure 14.6-2. A coded modulation system results when the encoder 

is defined over the label alphabet A and A and X  CN have the same cardinality, i.e., 

when IAI = I X l = M. The labeling map E.t : A --> X acts on symbol interleaved 

encoder outputs individually. For Ungerboeck codes the encoder is a rate k/n 

convolutional code, and A is the set of binary sequences of length n. The labeling 

function it  is obtained through applying the set partitioning rules to X. 

In BICM, a binary code is employed and its output is bit-interleaved. After interleaving 

the bit sequence is broken into subsequences of length n, and each is mapped onto a 

constellation X C CN of size I X I = M = 2n using a mapping u:  {0, 1}n  X. 

Let 'x  X and let ei (x) denote the ith bit of the label x; obviously ei (x) E {0, 1] . We 

define 

 

where Xb denotes the set of all points in the constellation whose label is equal to b E 

{0, 1} at position i. It can be easily seen that if P [b = 0] = P [b = 1] = 1/2, then 

 

 

The computation of the bit metrics at the demodulator depends on the availability of the 

channel state information. If CSI is available at the receiver, then the bit metric for the 

ith bit of the symbol at time k is given by the log-likelihood 
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where b E (0,1) and 1  i  n. In the bit metric calculation for the no CSI case, we have 

 

Finally, the decoder uses the ML bit metrics to decode the codeword c E C according to 

 

which can be implemented using the Viterbi algorithm. 

A simpler version of bit metrics can be found using the approximation 

 

 

which is similar to Equation 8.8-33. With this approximation we have the approximate 

bit metric 

 

It turns out that BICM performs better when it is used with Gray labeling as opposed to 

labeling induced by the set partitioning rules. The Gray and set partitioning labeling for 

16-QAM constellation is shown in Figure 14.6-3. Gray labeling is possible for certain 

constellations. For instance, Gray labeling is not possible for a 32-QAM constellation. In 

such cases a quasi-Gray labeling achieves good performance. 

The channel model for BICM, when ideal interleaving is employed, is a set of n 

independent memoryless parallel channels with binary inputs that are connected via a 

random switch to the encoder output. Each channel corresponds to one particular bit 

position from the total n bits. The capacity and the cutoff rate for this channel model 

under the assumption of full CSI at the receiver and no CSI are computed in Caire et al. 

(1998). Figure 14.6-4 shows the cutoff rate for different BICM systems for different 

QAM signaling schemes over AWGN and Rayleigh fading channels. 

3.2 Coding in the Frequency Domain 

Instead of bitwise or symbolwise interleaving in the time domain to increase diversity of 

a coded system and improve the performance over a fading channel, we can achieve 
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similar diversity order by spreading the transmitted signal components in the frequency 

domain. A candidate modulation scheme for this case is FSK which can be demodulated 

noncoherently when tracking the channel phase is not possible. 

A model for this communication scheme is shown in Figure 14.3-1 where each bit {cij} is 

mapped into FSK signal waveforms in the following way. If cij = 0, the tone foi is 

transmitted; and if cii = l, the tone fly is transmitted. This means that 2n tones or cells 

are available to transmit the n bits of the codeword, but only n tones are transmitted in 

any signaling interval. 

The demodulator for the received signal separates the signal into 2n spectral com-

ponents corresponding to the available tone frequencies at the transmitter. Thus, the 

demodulator can be realized as a bank of 2n filters, where each filter is matched to one 

of the possible transmitted tones. The outputs of the 2n filters are detected nonco-

herently. Since the Rayleigh fading and the additive white Gaussian noises in the 2n 

frequency cells are mutually statistically independent and identically distributed random 

processes, the optimum maximum-likelihood soft decision decoding criterion requires 

that these filter responses be square-law-detected and appropriately combined for each 

codeword to form the M = 2k decision variables. The codeword corresponding to the 

maximum of the decision variables is selected. If hard decision decoding is employed, 

the optimum maximum-likelihood decoder selects the codeword having the smallest 

Hamming distance relative to the received codeword. Either a block or a convolutional 

code can be employed as the underlying code in this system. 

 Probability of Error for Soft Decision Decoding of Linear Binary Block Codes 

Consider the decoding of a linear binary (n, k) code transmitted over a Rayleigh fading 

channel, as described above. The optimum soft-decision decoder, based on the 

maximum-likelihood criterion, forms the M = 2k decision variables. 
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where /yrj/
2, j = 1, 2, . . . , n, and r = 0, 1 represent the squared envelopes at the 

outputs of the 2n filters that are tuned to the 2n possible transmitted tones. A decision 

is made in favor of the code word corresponding to the largest decision variable of the 

set {Ui} 

Our objective in this section is the determination of the error rate performance of the 

soft-decision decoder. Toward this end, let us assume that the all-zero code word cl is 

transmitted. The average received signal-to-noise ratio per tone (cell) is denoted by p~. 

The total received SNR for the n tones in np, and, hence, the average SNR per bit is  

 

 

where R, is the code rate. 

The decision variable Ul corresponding to the code word cl is given by Equation 14.7-1 

with clj = 0 for all j. The probability that a decision is made in favor of the mth code 

word is just 

 

 

 

where wn is the weight of the mth code word. But the probability in Equation 14.7-3 is 

just the probability of error for square-law combining of binary orthogonal FSK with 

w,nth-order diversity. That is, 

 

 

 

where 
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As an alternative, we may use the Chernov upper bound derived in Section 13.4, which 

in the present notation is 

 

The sum of the binary error events over the M - 1 nonzero-weight code words gives an 

upper bound on the probability of error. Thus, 

 

 

Since the minimum distance of the linear code is equal to the minimum weight, it 

follows that 

 

The use of this relation is conjunction with Equations 14.7-5 and 14.7-8 yields a simple, 

albeit looser, upper bound that may be expressed in the form 

 

 

 

This simple bound indicates that the code provides an effective order of diversity equal 

to dmin. An even simpler bound is the union bound 

 

which is obtained from the Chernov bound given in Equation 14.7-7. As an example 

serving to illustrate the benefits of coding for a Rayleigh fading channel, we have 

plotted in Figure 14.7-1 the performance obtained with the extended Golay (24,12) code 

and the performance of binary FSK and quaternary FSK each with dual diversity. Since 

the extended Golay code requires a total of 48 cells and k = 12, the bandwidth 

expansion factor Be = 4. This is also the bandwidth expansion factor for binary and 

quaternary FSK with L = 2. Thus, the three types of waveforms are compared on the 

basis of the same bandwidth expansion factor. Note that at Pb = 10-4, the Golay code 
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outperforms quaternary FSK by more than 6 dB, and at Pb = 10-5, the difference is 

approximately 10 dB. 

The reason for the superior performanc of the Golay code is its large minimum distance 

(dtnin = 8), which translates into an equivalent eighth-order (L = 8) diversity. In 

contrast, the binary and quaternary FSK signals have only second-order diversity. 

Hence, the code makes more efficient use of the available channel bandwidth. The price 

that we must pay for the superior performance of the code is the increase in decoding 

complexity. 

3.3 Use of Constant-weight Codes and Concatenated Codes for a Fading 

Channel  

Our treatment of coding for a Rayleigh channel to this point was based on the use of 

binary FSK as the modulation technique for transmitting each of the binary digits in a 

code word. For this modulation technique, all the 2k code words in the (n, k) code have 

identical transmitted energy. Furthermore, under the condition that the fading on the n 

transmitted tones is mutually statistically independent and identically distributed, the 

average received signal energy for the M = 2k possible code words is also identical. 

Consequently, in a soft-decision decoder, the decision is made in favor of the code word 

having the largest decision variable. 

The condition that the received code words have identical average SNR has an 

important ramification in the implementation of the receiver. If the received code words 

do not have identical average SNR, the receiver must provide bias compensation for 

each received code word so as to render it equal energy. In general, the determination 

of the appropriate bias terms is difficult to implement because it requires the estimation 

of the average received signal power; hence, the equal-energy condition on the received 

code words considerably simplifies the receiver processing. 

There is an alternative modulation method for generating equal-energy waveforms from 

code words when the code is constant-weight, i.e., when every code word has the same 

number of Is. Note that such a code is non-linear. Nevertheless, suppose we assign a 

single tone or cell to each bit position of the 2k code words. Thus, an (n, k) binary block 

code has n tones assigned. Waveforms are constructed by transmitting the tone 

corresponding to a particular bit in a code word if that bit is a 1; otherwise, that tone is 
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not transmitted for the duration of the interval. This modulation technique for 

transmitting the coded bits is called on-off keying (OOK). Since the code is constant-

weight, say, w, every coded waveform consists of w transmitted tones that depend on 

the positions of the is in each of the code words. 

As in FSK, all tones in the OOK signal that are transmitted over the channel are 

assumed to fade independently across the frequency band and in time from one code 

word to another. The received signal envelope for each tone is described statistically by 

the Rayleigh distribution. Statistically independent additive white Gaussian noise is 

assumed to be present in each frequency cell. 

The receiver employs maximum-likelihood (soft-decision) decoding to map the received 

waveform into one of the M possible transmitted code words. For this purpose, n 

matched filters are employed, each matched to one of the n frequency tones. For the 

assumed statistical independence of the signal fading for the n frequency cells and 

additive white Gaussian noise, the envelopes of the matched filter outputs are squared 

and combined to form the M decision variables 

 

 

where /y/2 corresponds to the squared envelope of the filter corresponding to the jth 

frequency, where j = l, 2, . . . , n. 

4.0 Conclusion 

The performance gains due to code concatenation are still significant, but not 

impressive because the hadamard codes alone yield a large diversity, so that the 

increased diversity arising from concatenation does not result in as large as gain 

performance for the range of error rates covered. 

5.0 Summary  

In this unit, we summarized that the important parameter in the selection of both the 

outer and the inner codes is the minimum distance of the resultant concatenate code 
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required to achieve a specified level of performance. The ultimate choice is made on the 

basis of decoding complexity and bandwidth requirements. 

6.0 Tutor Marked Assignment 

Show that the pariwise error probability for a fully interleaved Rayleigh fading channel 

with fading process Ri can be bounded by; 

Where the expectation is taken with respect to Ri’s. From above conclude the following 

bound in the pairwise error probability. 
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