
CIT 831
SOFTWARE ENGINEERING METHODOLOGIES

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 831 COURSE GUIDE

ii

COURSE
GUIDE

CIT 831
SOFTWARE ENGINEERING METHODOLOGIES

Course Developer/Writer Vivian Nwaocha

National Open University of Nigeria

Programme Leader Prof. Afolabi Adebanjo
National Open University of Nigeria

Course Coordinator Vivian Nwaocha

National Open University of Nigeria

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 831 COURSE GUIDE

iii

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by

National Open University of Nigeria

Printed 2008

ISBN: 978-058-977-5

All Rights Reserved

CIT 831 COURSE GUIDE

iv

CONTENTS PAGE

Introduction……………………………………………….… 1
What this You will Learn in this Course…………………… 1
Course Aims………………………………………………… 1
Course Objectives…………………………………………… 2
Working through this Course…………………………….… 2
Course Materials……………………………………….……. 2
Online Materials……………………………………………. 2
Equipment…………………………………………………… 2
Study Units …………………………………………………. 4
Assessment…………………………………………………. 5
Course Overview……………………………………………. 5
How to Get the Most from this Course……………………… 5
Facilitators/Tutors and Tutorials……………………….….. 6
Summary…………………………………………………… 7

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

i

Introduction

The course, Software Engineering Methodologies, is a core course for
students studying towards attaining the Master of Science in Information
Technology. In this course we will study the basic notions of software
engineering methodology. Various requirements engineering processes
as well as system models are discussed in this course. This course also
considers the software life-cycle models, software design, testing and
prototyping.

The overall aims of this course are to introduce you to various software
life-cycle models. Software design, testing, reuse and prototyping are
equally discussed.

In structuring this course, we commence with the basic notions of
software engineering methodology and move to the requirements
engineering and software life-cycle models, software design, testing and
prototyping.

There are six modules in this course, each module consists of 5 units of
topics that you are expected to complete in 3 hours. The six modules and
their units are listed below.

What You will Learn in this Course

The overall aims and objectives of this course is to provide guidance on
what you should be achieving in the course of your studies. Each unit
also has its own unit objectives which state specifically what you should
be achieving in the corresponding unit. To evaluate your progress
continuously, you are expected to refer to the overall course aims and
objectives as well as the corresponding unit objectives upon the
completion of each.

Course Aims

The overall aims and objectives of this course will help you to:

1. Develop your knowledge and understanding of the underlying

principles of software engineering methodology
2. Build up your capacity to evaluate software process models
3. Develop your competence in designing software
4. Build up your capacity to test and reuse software

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

iv

Course Objectives

Upon completion of the course, you should be able to:

1. Describe the basic concepts of software engineering methodology
2. Identify the software process models
3. Explain the software requirements
4. Describe the requirements validation
5. Discuss the system modelling
6. Explain the architectural design
7. Describe the software life-cycle models
8. Know the system models
9. Describe software design
10. Discuss the notion of software prototyping.

Working through this Course

We designed this course in a systematic way, so you need to work
through it from Module one, Unit 1 through to Module three, Unit 10.
This will enable you appreciate the course better.

Course Materials

Basically, we made use of textbooks and online materials. You are
expected to search for more literature and web references for further
understanding. Each unit has references and web references that were
used to develop them.

Online Materials

Feel free to refer to the web sites provided for all the online reference
materials required in this course.

The website is designed to integrate with the print-based course
materials. The structure follows the structure of the units and all the
reading and activity numbers are the same in both media.

Equipment

In order to get the most from this course, it is essential that you make
use of a computer system which has internet access.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

iii

Recommended System Specifications:

Processor

2.0 GHZ Intel compatible processor
1GB RAM
80 GB hard drive with 5 GB free disk
CD-RW drive
3.5” Floppy Disk Drive
TCP/IP (installed)

Operating System

Windows XP Professional (Service Pack)
Microsoft Office 2007
Norton Antivirus

Monitor*

19-inch
1024 X 768 resolution
16-bit high color
*Non Standard resolutions (for example, some laptops) are not
supported.

Hardware

Open Serial Port (for scanner)
120W Speakers
Mouse + pad
Windows keyboard
Laser printer

Hardware is constantly changing and improving, causing older
technology to become obsolete. An investment in newer, more efficient
technology will more than pay for itself in improved performance
results.

If your system does not meet the recommended specifications, you may
experience considerably slower processing when working in the
application.
Systems that exceed the recommended specifications will provide better
handling of database files and faster processing time, thereby
significantly increasing your
productivity.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

iv

Study Unit

Module 1 Introduction to Software Engineering Methodology

Unit 1 Software Engineering Methodology – Basic Notions
Unit 2 Software Process, Professional and Ethical Issues
Unit 3 Software Process- Model
Unit 4 Evolutionary and Incremental Development
Unit 5 Spiral Development and Process Activities

Module 2 Introduction to Software Engineering Methodology

Unit 1 Computer-Aided Software Engineering (CASE)
Unit 2 Software Requirements
Unit 3 Functional and Non-Functional Requirements
Unit 4 Requirements
Unit 5 Domain Requirements

Module 3 Requirements Engineering Processes

Unit 1 Concepts of Requirements Engineering
Unit 2 Viewpoints
Unit 3 Interviewing
Unit 4 Requirements Validation
Unit 5 System Modelling
Module 4 Requirements Engineering Processes

Unit 1 Formal Methods
Unit 2 Specification
Unit 3 Introduction to Architectural Design
Unit 4 Models
Unit 5 Sub-systems and Modules

Module 5 Software Engineering

Unit 1 Software Life-cycle Models
Unit 2 Requirements Engineering
Unit 3 Formal Specification
Unit 4 System Models
Unit 5 Software Design

Module 6 Software Engineering

Unit 1 Software Testing
Unit 2 Software Inspection
Unit 3 Software Reliability

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

v

Unit 4 Software Reuse
Unit 5 Software Prototyping

From the preceding, the content of the course can be divided into three
major blocks:

1. Introduction to Software Engineering Methodology
2. Requirements Engineering Processes
3. Software Engineering

Module 1 and 2 describes the basic notions of software engineering
methodology, Module 3 and 4 explains the processes involved in
requirements engineering and Module 5 and 6 discusses the software
life-cycle models, software design, reliability, reuse and prototyping.

Assessment

The course, Software Engineering Methodologies entails attending a
three-hour final examination which contributes 50% to your final
grading. The final examination covers materials from all parts of the
course with a style similar to the Tutor-marked assignments.

The examination aims at testing your ability to apply the knowledge you
have learned throughout the course, rather than your ability to memorise
the materials. In preparing for the examination, it is essential that you
receive the activities and Tutor-marked assignments you have completed
in each unit. The other 50% will account for all the TMAs at the end of
each unit.

Course Overview

This section proposes the number of weeks that you are expected to
spend on the three modules comprising of 30 units and the assignments
that follow each of the units.

We recommend that each unit with its associated TMA is completed in
one week, bringing your study period to a maximum of 30 weeks.

How to Get the Most from this Course

In order for you to learn various concepts in this course, it is essential to
practice. Independent activities and case activities which are based on a
particular scenario are presented in the units. The activities include open
questions to promote discussion on the relevant topics, questions with
standard answers and program demonstrations on the concepts. You
may try to delve into each unit adopting the following steps:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

vi

1. read the study unit
2. read the textbook, printed or online references
3. perform the activities
4. participate in group discussions
5. complete the tutor-marked assignments
6. participate in online discussions

This course makes intensive use of materials on the world-wide web.
Specific web addresses will be given for your reference. There are also
optional readings in the units. You may wish to read these to extend
your knowledge beyond the required materials. They will not be
assessed.

Facilitators/Tutors and Tutorials

About 20 hours of tutorials will be provided in support of this course.
You will be notified of the dates, time and location for these tutorials,
together with the name and phone number of your tutor as soon as you
are allotted a tutorial group.

Your tutor will mark and comment on your assignments, keep a close
watch on your progress and on any difficulties you might encounter and
provide assistance to you during the course. You must mail your TMAs
to your tutor well before the due date (at least two working days are
required). They will be marked by your tutor and returned to you as
soon as possible.

Do not hesitate to contact your tutor by phone, e-mail if you need help.
The following might be circumstances in which you would find help
necessary. You can also contact your tutor if:

i. you do not understand any part of the study units or the assigned

readings
ii. you have difficulty with the TMAs
iii. you have a question or problem with your tutor’s comments on

an assignment or with the grading of an assignment.

You should try your best to attend tutorials, since it is the only
opportunity to have an interaction with your tutor and to ask questions
which are answered instantly. You can raise any problem encountered in
the course of your study. To gain maximum benefit from the course
tutorials, you are advised to prepare a list of questions before attending
the tutorial. You will learn a lot from participating in discussions
actively.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

vii

Summary

The course, Software Engineering Methodologies is intended to develop
your understanding of the basic concepts of software engineering
methods, thus enabling you understand the requirements of engineering
processes. This course also provides you with hands-on experience in
designing, testing and reusing software.

We hope that you will find the course enlightening and that you will
find it both interesting and useful. In the longer term, we hope you will
get acquainted with the National Open University of Nigeria and we
wish you every success in your future.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

viii

MAIN
COURSE

Course Code CIT 831

Course Title Software Engineering Methodologies

Course Developer/Writer Vivian Nwaocha
National Open University of Nigeria

Programme Leader Prof. Afolabi Adebanjo

National Open University of Nigeria

Course Coordinator Vivian Nwaocha
National Open University of Nigeria

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

ix

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by

National Open University of Nigeria

Printed 2008

ISBN: 978-058-977-5

All Rights Reserved

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

x

CONTENTS PAGE

Module 1 ……………………………………………………… 1

Unit 1 Software Engineering Methodology
– Basic Notions.. 1

Unit 2 Software Process, Professional and Ethical Issues…. 6
Unit 3 Software Process – Model………………………….. 11
Unit 4 Evolutionary Incremental Development……………. 15
Unit 5 Spiral Development and Process Activities………… 19

Module 2 ……………………………………………………….. 24

Unit 1 Computer-Aided Software Engineering (CASE)…… 24
Unit 2 Software Requirements……………………………… 30
Unit 3 Functional and Non-Functional Requirements……… 35
Unit 4 Requirements………………………………………… 40
Unit 5 Domain Requirements………………………………. 45

Module 3 ………………………………………………………… 48

Unit 1 Concepts of Requirements Engineering…………….. 48
Unit 2 Viewpoints………………………………………….. 52
Unit 3 Interviewing………………………………………… 56
Unit 4 Requirements Validation…………………………… 60
Unit 5 System Modelling………………………………….. 64

Module 4 ………………………………………………………. 69

Unit 1 Formal Methods……………………………………. 69
Unit 2 Specification……………………………………….. 73
Unit 3 Introduction to Architectural Design………………. 75
Unit 4 Models……………………………………………… 81
Unit 5 Sub-Systems and Modules…………………………. 85

Module 5 ………………………………………………………. 88

Unit 1 Software Life-Cycle Models………………………. 88
Unit 2 Requirements Engineering………………………… 97
Unit 3 Formal Specification………………………………. 101
Unit 4 System Models…………………………………….. 105
Unit 5 Software Design…………………………………… 109

Module 6 …………………………………………………… 113

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

xi

Unit 1 Software Testing………………………………….. 113
Unit 2 Software Inspection………………………………. 118
Unit 3 Software Reliability………………………………. 122
Unit 4 Software Re-Use …………...……………………… 126
Unit 5 Software Prototyping…………………………..…… 130

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

1

MODULE 1 INTRODUCTION TO SOFTWARE

ENGINEERING METHODOLOGY

Unit 1 Software Engineering Methodology – Basic Notions
Unit 2 Software Process, Professional and Ethical Issues
Unit 3 Software Process – Model
Unit 4 Evolutionary Incremental Development
Unit 5 Spiral Development and Process Activities

UNIT 1 SOFTWARE ENGINEERING
METHODOLOGY-BASIC NOTIONS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Engineering Methodology
3.2 Software Costs
3.3 Software
3.4 Software Engineering

3.5 Software Engineering vs. Computer Science
3.6 Attributes of a Good Software

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings
1.0 INTRODUCTION

This unit introduces some basic concepts that the student needs to be
familiar with before attempting to develop any software. It describes
software and software engineering methodology, explaining the
attributes of good software. The unit introduces you to the fundamental
notions of software engineering methodology, thus guiding you through
and facilitating your understanding of the subsequent units.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

explain software engineering methodology
describe software engineering
explain what a software is
list the attributes of a good software.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

2

3.0 MAIN CONTENT

3.1 Software Engineering Methodology

The body of methods, rules, postulates, procedures, and processes that
are used to manage a software engineering project are collectively
referred to as a software engineering methodology.

3.2 Software Costs

Software costs often dominate computer system costs. The costs of
software on a PC are often greater than the hardware cost. Software
costs more to maintain than it does to develop. For systems with a long
life, maintenance costs may be several times development costs.
Software engineering is concerned with cost-effective software
development.

3.3 Software

Software simply refers to computer programs and associated
documentation such as requirements, design models and user manuals.
Software products may be developed for a particular customer or may
be developed for a general market. Software products may be

1. Generic - developed to be sold to a range of different customers
e.g. PC software such as Excel or Word.

2. Bespoke (custom) - developed for a single customer according to
their specification.

New software can be created by developing new programs, configuring
generic software systems or reusing existing software.

SELF ASSESSMENT EXERCISE 1

Define the term ‘software’.

3.4 Software Engineering

Software engineering is an engineering discipline that is concerned with
all aspects of software production. Software engineers should adopt a
systematic and organised approach to their work and use appropriate
tools and techniques depending on the problem to be solved, the
development constraints and the resources available.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

3

3.5 Software Engineering vs. Computer Science

Computer science is concerned with theory and fundamentals; software
engineering is concerned with the practicalities of developing and
delivering useful software. Computer science theories are still
insufficient to act as a complete underpinning for software engineering
(unlike e.g. physics and electrical engineering).

3.6 Attributes of a Good Software

The software should deliver the required functionality and performance
to the user and should be maintainable, dependable and usable.

a. Maintainability: Software must evolve to meet changing needs
b. Dependability: Software must be trustworthy
c. Efficiency: Software should not make wasteful use of system

resources
d. Usability: Software must be usable by the users for which it was

designed
e. Robustness: Software should fail only under extreme conditions
f. Portability: Should be possible to move from one environment

to another

SELF ASSESSMENT EXERCISE 2

What are the attributes of good software?

4.0 CONCLUSION

In this unit you have learned about software engineering methodology.
You have also been able to understand the difference between software
engineering and computer science. Finally, you have been able to
understand what software is and the attributes of a good software.

5.0 SUMMARY

What you have learned borders on the basic notions of software
engineering. The subsequent units shall build upon these fundamentals.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by methodology in software engineering?

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

4

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil,F., Pomberger,G.,

Pree,W., Stal,M. and Szyperski, C., (1998). “What Characterizes
a (Software) component?” Software – Concepts & Tools, vol. 19,
pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers: San Francisco, CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, no. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Editors), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp.
495-501, Arlington, VA.

Coleman, D., Arnold, P., Bodoff,S., Dollin, C., Gilchrist, H., Hayes,F.,

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Constantine L. L. and Lockwood, L. A, (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

5

Grogono, P. (1999). Software Engineering (2nd Edition). New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html
http://mail.svce.ac.in/~uvarajan/cn.html
http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

6

UNIT 2 SOFTWARE PROCESS, PROFESSIONAL AND
ETHICAL ISSUES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Process
3.2 What is a Software Process Model?
3.3 Software Engineering Methods
3.4 Professional and Ethical Responsibility
3.5 Issues of Professional Responsibility
3.6 What are CASE Tools

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about software process and software process
model. You will also learn about the professional and ethical
responsibilities as well as CASE tools.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

describe a software process
explain the term ‘software process model
outline the professional and ethical responsibilities of a software

engineer
describe CASE tools.

3.0 MAIN CONTENT

3.1 Software Process

A software process is a set of activities and associated results whose
goal is the development or evolution of software product Generic
activities in all software processes are:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

7

Specification - what the system should do and its development
constraints
Development - production of the software system
Validation - checking that the software is what the customer wants
Evolution - changing the software in response to changing demands

3.2 What is a Software Process Model?

A software process model is a simplified representation of a software
process, presented from a specific perspective. Examples of process
perspectives are:

1. Workflow perspective - sequence of activities
2. Data-flow perspective - information flow
3. Role/action perspective - who does what

Generic process models include:

Waterfall
Evolutionary development
Formal transformation
Integration from reusable components

3.3 Software Engineering Methods

Software engineering methods refer to structured approaches to software
development which include system models, notations, rules, design
advice and process guidance

Model descriptions: Descriptions of graphical models which should be
produced
Rules: Constraints applied to system models
Recommendations: Advice on good design practice
Process guidance: What activities to follow

SELF ASSESSMENT EXERCISE 1

Explain the concept of rules within the context of software engineering
methods.

3.4 Professional and Ethical Responsibilities

Software engineering involves wider responsibilities than simply the
application of technical skills.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

8

Software engineers must behave in an honest and ethically responsible
way if they are to be respected as professionals.
Ethical behaviour is more than simply upholding the law.

3.5 Issues of Professional Responsibility

Confidentiality: Engineers should normally respect the confidentiality
of their employers or clients irrespective of whether or not a formal
confidentiality agreement has been signed.
Competence: Engineers should not misrepresent their level of
competence. They should not knowingly accept work which is not
within their competence.

Intellectual property rights: Engineers should be aware of local laws
governing the use of intellectual property such as patents, copyright, etc.
They should be careful to ensure that the intellectual property of
employers and clients is protected.

Computer misuse: Software engineers should not use their technical
skills to misuse other people’s computers. Computer misuse ranges from
relatively trivial (game playing on an employer’s machine, say) to
extremely serious (dissemination of viruses).

3.6 What are CASE Tools?

CASE tools are software systems which are designed to support routine
activities in the software process such as editing design diagrams,
checking diagram consistency and keeping track of program tests which
have been run.

SELF ASSESSMENT EXERCISE 2

What are CASE tools?

4.0 CONCLUSION

In this unit you have learned about the software process and software
process model. You have also been able to understand the concept of
software engineering methods. Finally, you have become aware of the
professional and ethical responsibilities of a Software Engineer.

5.0 SUMMARY

What you have learned in this unit is focused on process and process
models as well as professional and ethical responsibilities of a software
engineer.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

9

6.0 TUTOR-MARKED ASSIGNMENT

Describe a software process model.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil,F., Pomberger,G.,

Pree, W., Stal,M. and Szyperski, C., (1998). “What
Characterizes a (Software) Component?” Software – Concepts &

Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers: San Francisco, CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice &
Experience, (John Wiley & Sons, Inc.), vol. 33, no. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (November 2006).

(Eds.), Special Issue on Biometrics: Algorithms and
Applications of Fingerprint, Iris, Face, Gait, and Multimodal
Recognition, Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington, VA.

Coleman, D., Arnold, P., Bodoff,S., Dollin, C., Gilchrist, H., Hayes,F.,

and Jeremaes, P., (1994). Oriented Development: The Fusion
Method, Prentice-Hall: Inc.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

10

Englewood Cliffs, N J, Constantine L. L. and Lockwood, L. A, (1999).
Software for Use: A Practical Guide to the Models and Methods
of Usage-Centered Design, Addison-Wesley Professional/ACM
Press, Reading, MA.

Grogono, P. (1999). Software Engineering, (2nd Edition). New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html
http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

11

UNIT 3 SOFTWARE PROCESS MODEL –

WATERFALL MODEL

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Process vs. Software Process Model
3.2 The Waterfall
3.3 The Waterfall Model Phases
3.4 The Waterfall Model Problems

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit borders on software process model,
basically the waterfall model.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

distinguish between software process and software process model
describe the waterfall model
outline the phases of a waterfall model
point out the problems of a waterfall model.

3.0 MAIN CONTENT

3.1 Software Process vs. Software Process Model

A software process refers to a structured set of activities required to
develop a software system

Specification
Design
Validation
Evolution.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

12

While a software process model is an abstract representation of a
process. It presents a description of a process from some particular
perspective.

3.2 The Waterfall Model

The waterfall model consists of separate and distinct phases of
specification and development.

Implementation

Operation and

Fig. 1.0: The waterfall model

SELF ASSESSMENT EXERCISE 1

What do you understand by a waterfall model?

3.3

a.

The Waterfall Model Phases

Requirements analysis and definition

b.
c.
d.
e.

System and software design
Implementation and unit testing
Integration and system testing
Operation and maintenance.

The

main drawback of the waterfall model is the difficulty of
accommodating change after the process is underway. One phase has to
be complete before moving onto the next phase.

SELF ASSESSMENT EXERCISE 2

Mention at least three problems of a waterfall model.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

13

3.4 Waterfall Model Problems

1. Inflexible partitioning of the project into distinct stages makes it

difficult to respond to changing customer requirements.
2. Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during the
design process.

3. Few business systems have stable requirements.
4. The waterfall model is mostly used for large systems engineering

projects where a system is developed at several sites.

4.0 CONCLUSION

In this unit you have learned about waterfall model. You have also been
able to identify the phases and problems of a waterfall model.

5.0 SUMMARY

What you have learned in this unit concerns the waterfall models, their
phases and drawbacks. In the next unit you shall learn about another
software process model.

6.0 TUTOR-MARKED ASSIGNMENT

Outline the phases of a waterfall model.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil,F., Pomberger,G.,

Pree, W., Stal, M. and Szyperski, C., (1998). “What
Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

14

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:
Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall,

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html
http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

15

UNIT 4 EVOLUTIONARY AND INCREMENTAL

DEVELOPMENT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Objective of Evolutionary Development
3.2 Problems of Evolutionary Development
3.3 Applicability of Evolutionary Development
3.4 Incremental Development
3.5 Advantages of Incremental Development

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit we will look at the objective and applicability of
evolutionary development. We will also consider the advantages of
incremental development.

2.0 OBJECTIVES

By the end of this unit, the student should be able to:

describe the objective of evolutionary development
problems of evolutionary development
outline the applications of evolutionary development
point out the advantages of incremental development.

3.0 MAIN CONTENT

3.1 Objective of Evolutionary Development

The main objective of the evolutionary development is to work with
customers and to evolve a final system from an initial outline
specification. This model starts with well-understood requirements and
adds new features as proposed by the customer.

SELF ASSESSMENT EXERCISE 1

By means of a diagram describe incremental development.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

16

Concurrent
activities

Intermediate
version

Validation

Fig 1.1: Evolutionary development

3.2 Problems of Evolutionary Development

a. Lack of process visibility;
b. Systems are often poorly structured
c. Special skills (e.g. in languages for rapid prototyping) may be

required.

SELF ASSESSMENT EXERCISE 2

List some problems of evolutionary development.

3.3 Applicability of Evolutionary Development

a. For small or medium-size interactive systems
b. For parts of large systems (e.g. the user interface)
c. For short-lifetime systems.

3.4 Incremental Development

In the incremental development rather than deliver the system as a
single delivery, the development and delivery is broken down into
increments with each increment delivering part of the required
functionality.

User requirements are prioritised and the highest priority requirements
are included in early increments. Once the development of an increment
is started, the requirements are frozen though requirements for later
increments can continue to evolve.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

17

D e fin e o u tlin e
re q u ire m e n ts

A ssig n req u ire m e nts
to in c re m e n ts

D e sig n sy ste m
a rc h itec tu r e

D e ve lo p sy ste m
in c re m e n t

V a lid a te in
c re m e n t

S y ste m in c o m p le te

In te g ra te
in c re m e n t

V a lid a te
sy ste m

F in a l
sy ste m

Fig. 1.2: Incremental Development

3.5 Advantages of Incremental Development

1. Customer value can be delivered with each increment so system

functionality is available earlier
2. Early increments act as a prototype to help elicit requirements for

later increments
3. Lower risk of overall project failure
4. The highest priority system services tend to receive the most

testing.

4.0 CONCLUSION

In this unit you have learned about evolutionary and incremental
development. You have also learned the advantages of incremental
development and the problems of evolutionary development.

5.0 SUMMARY

What you have learned in this unit concerns evolutionary and
incremental developments.

6.0 TUTOR-MARKED ASSIGNMENT

The evolutionary development is applicable in some fields. Discuss

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

18

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil,F., Pomberger,G.,
Pree, W., Stal, M. and Szyperski, C., (1998). “What
Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall,

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

19

UNIT 5 SPIRAL DEVELOPMENT AND PROCESS

ACTIVITIES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Spiral Development
3.2 Process Activities
3.3 Software Specification
3.4 Requirement Engineering Process
3.5 Software Design and Implementation

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit the student you will gain knowledge of spiral development as
well as process activities. You will also consider software specification,
design and implementation.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe spiral development
outline process activities
explain software specification
describe software design and implementation.

3.0 MAIN CONTENT

3.1 Spiral Development

In the spiral development, the process is represented as a spiral rather
than as a sequence of activities with backtracking. Each loop in the
spiral represents a phase in the process. There are no fixed phases such
as specification or design – loops. Risks are explicitly assessed and
resolved throughout the process.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

20

Determined objectives,
alternatives and

constraints

Risk
analysis

Risk

analysis

Risk
analysis

Evaluate alternatives,
identify, resolve risks

Operational

Prototype 3

Risk Prototype 2

REVIEW analysis
Proto-

type 1

Requirements plan
Life-cycle plan

Concept of
Operation

Simulations, models, benchmarks

S/W

Development
plan

requirements

Requirement
validation

Product
design

Detailed
design

Code

Integration

and test plan

Design
V&V

Unit test

Integration

Plan next phase

Fig. 1.0: Spiral development

3.2 Process Activities

Service

Acceptance
test

test
Develop, verify

next-level product

The Process activities include:

a. Software specification
b. Software design and implementation
c. Software validation
d. Software evolution.

3.3 Software Specification

This is the process of establishing what services are required and the
constraints on the system’s operation and development.

3.4 Requirements Engineering Process

The requirements engineering process include:

i. Feasibility study
ii. Requirements elicitation and analysis
iii. Requirements specification
iv. Requirements validation.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

21

Fe a sib ility
stu d y

Fe a sib ility
re p o r t

R e q u ir e m e n ts
e lic ita tio n a n d a

n a ly sis

S y ste m
m o d e ls

R e q u ir e m e n ts
sp e c ific a tio n

U se r a n d sy ste m

re q u ire m e n ts

R e q u ir e m e n ts

v a lid a tio n

R e q u ir e m e n ts

d o c u m e n t

Fig. 1.1: The Requirements Engineering Process

SELF ASSESSMENT EXERCISE 1

What are the requirements for an engineering process?

3.5 Software Design and Implementation

The process of converting the system specification into an executable
system is known as software design and implementation.
Software design involves designing a software structure that realises the
specification; while implementation involves translating this structure
into an executable program. The activities of design and implementation
are closely related and may be inter-leaved

SELF ASSESSMENT EXERCISE 2

Explain software design and implementation.

4.0 CONCLUSION

In this unit you have learned about the spiral development. Process
activities were equally considered. You should also have learned about
software specification, design and implementation.

5.0 SUMMARY

What you have learned in this unit concerns spiral development and
process activities. The units that follow shall build upon issues discussed
in this unit.

6.0 TUTOR-MARKED ASSIGNMENT

By means of a diagram describe the spiral development

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

22

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil,F., Pomberger,G.,

Pree, W., Stal, M. and Szyperski, C., (1998). “What
Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

23

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall,

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

24

MODULE 2 INTRODUCTION TO SOFTWARE
ENGINEERING METHODOLOGY

Unit 1 Computer-Aided Software Engineering (Case)
Unit 2 Software Requirements
Unit 3 Functional and Non-functional Requirements
Unit 4 Requirements
Unit 5 Domain Requirements

UNIT 1 COMPUTER-AIDED SOFTWARE
ENGINEERING (CASE)

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Computer-Aided Software Engineering
3.2 CASE Technology
3.3 CASE Classification

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit we examine computer-aided software engineering (CASE).
CASE technology and classification are equally described.

2.0 OBJECTIVES

After going through this unit, you should be able to:

explain the basic idea of computer-aided software engineering
describe the CASE technology
give the CASE classification.

3.0 MAIN CONTENT

3.1 Computer-Aided Software Engineering

Computer-aided software engineering (CASE) is software to support
software development and evolution processes.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

25

3.2 CASE Technology

Case technology has led to significant improvements in the software
process. However, these are not the order of magnitude of improvements
that were once predicted.

Indeed, software engineering requires creative thought - this is not
readily automated. Software engineering is a team activity and, for large
projects, much time is spent in team interactions. CASE technology does
not really support these.

3.3 CASE Classification

Classification helps us understand the different types of CASE tools and
their support for process activities. CASE can be classified as follows:

a. Functional perspective: Tools are classified according to their
specific function.

b. Process perspective: Tools are classified according to process
activities that are supported.

c. Integration perspective: Tools are classified according to their
organisation into integrated units.

SELF ASSESSMENT EXERCISE 1

List the CASE classification.

SELF ASSESSMENT EXERCISE 2

What does the acronym CASE refer to?

4.0 CONCLUSION

In this unit you have learned about the computer-aided software
engineering. You have also been able to understand CASE technology
and its classification.

5.0 SUMMARY

What you have learned borders on the basic concept of computer-aided
software engineering.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by CASE?

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

26

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil,F., Pomberger, G.,

Pree, W., Stal, M. and Szyperski, C., (1998). “What
Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

27

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall,

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

28

UNIT 2 SOFTWARE REQUIREMENTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Requirements Engineering
3.2 What is a Requirement?
3.3 Requirements Imprecision
3.4 Requirements Completeness and Consistency
3.5 Types of Requirements

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit we consider requirements engineering as well as
requirements. In addition, we consider requirements imprecision,
completeness and consistency.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

give a basic definition of a requirements engineering
describe a requirement
explain requirements imprecision
list the types of requirements.

3.0 MAIN CONTENT

3.1 Requirements Engineering

Requirements engineering refers to the process of establishing the
services that the customer requires from a system and the constraints
under which it operates and is developed.

The requirements themselves are the descriptions of the system services
and constraints that are generated during the requirements engineering
process.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

29

3.2 What is a Requirement?

A requirement may range from a high-level abstract statement of a
service or of a system constraint to a detailed mathematical functional
specification.

This is inevitable as requirements may serve a dual function. They may
be the basis for a bid for a contract - therefore must be open to
interpretation; OR may be the basis for the contract itself - therefore
must be defined in detail. Both these statements may be called
requirements.

SELF ASSESSMENT EXERCISE 1

What do you understand by requirements engineering?

3.3 Requirements Imprecision

Problems arise when requirements are not precisely stated. Ambiguous
requirements may be interpreted in different ways by developers and
users.

User intention - special purpose viewer for each different document
type;

Developer interpretation - Provide a text viewer that shows the
contents of the document.

SELF ASSESSMENT EXERCISE 2

What is the result of requirements imprecision?

3.4 Requirements Completeness and Consistency

In principle, requirements should be both complete and consistent.

Complete: They should include descriptions of all facilities required.
Consistent: There should be no conflicts or contradictions in the
descriptions of the system facilities.

In practice, it is impossible to produce a complete and consistent
requirements document.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

30

3.5 Types of Requirements

1. User Requirements

Statements in natural language plus diagrams of the services the
system provides and its operational constraints. Written for
customers.

2. System Requirements

A structured document setting out detailed descriptions of the
system’s functions, services and operational constraints. Defines
what should be implemented so may be part of a contract
between client and contractor.

3. Functional Requirements

Statements of services the system should provide how the system
should react to particular inputs and how the system should
behave in particular situations.

4. Non-Functional Requirements

Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development
process, standards, etc.

5. Domain Requirements

Requirements that come from the application domain of the
system and that reflect characteristics of that domain.

4.0 CONCLUSION

In this unit you have learned about requirements engineering. You have
also learned about requirements imprecision. Finally, you have been
able to learn about types of requirements.

5.0 SUMMARY

What you have learned in this unit is focused on requirements, the
common types and requirements imprecision.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

31

6.0 TUTOR-MARKED ASSIGNMENT

List four types of requirements.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

32

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A
Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall,

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

33

UNIT 3 FUNCTIONAL AND NON-FUNCTIONAL

REQUIREMENTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Functional Requirements
3.2 Examples of Functional Requirements
3.3 Non-Functional Requirements
3.4 Non-Functional Classifications
3.5 Non-Functional Requirement Types
3.6 Requirements Interaction

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes functional and non-functional requirements.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe functional requirements
give Examples of functional requirements
describe non-functional requirements
classify non-functional requirements.

3.0 MAIN CONTENT

3.1 Functional Requirements

Functional requirements are requirements that describe functionality or
system services. They depend on the type of software, expected users
and the type of system where the software is used.

Functional user requirements may be, high-level statements of what the
system should do but functional system requirements should describe
the system services in detail.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

34

3.2 Examples of Functional Requirements

1. The user shall be able to search either all of the initial set of
databases or select a subset from it.

2. The system shall provide appropriate viewers for the user to read
documents in the document store.

3. Every order shall be allocated a unique identifier (ORDER_ID)
which the user shall be able to copy to the account’s permanent
storage area.

3.3 Non-Functional Requirements

These define system properties and constraints e.g. reliability, response
time and storage requirements. Constraints are I/O device capability,
system representations, etc.

Process requirements may also be specified mandating a particular
CASE system, programming language or development method.
Non-functional requirements may be more critical than functional
requirements. If these are not met, the system is useless.

3.4 Non-Functional Classifications

1. Product Requirements

Requirements which specify that the delivered product must
behave in a particular way e.g. execution speed, reliability, etc.

2. Organisational Requirements

Requirements which are a consequence of organisational policies
and procedures e.g. process standards used, implementation
requirements, etc.

3. External Requirements

Requirements which arise from factors which are external to the
system and its development process e.g. interoperability
requirements, legislative requirements, etc.

3.5 Non-Functional Requirement Types

Non-functional requirements can be grouped into types as shown by the
figure below:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

35

SELF ASSESSMENT EXERCISE

Describe non-functional requirements

N o n -fu n ctio n al
req u ir em en ts

P ro d u ct
req u ir em en ts

O rg an isatio n al
req u ir em en ts

E x tern al
req u ir em en ts

E fficien cy
req u ir em en ts

R elia b ility
req u ir em en ts

P o rta b ility
req u ir em en ts

In ter o p er a b ility
req u ir em en ts

E th ical
req u ir em en ts

U sa b ility

req u ir em en ts

D elivery

req u ir em en ts

Im p lem en ta tio n

req u ir em en ts

S tan d ar d s

req u ir em en ts

L eg islativ e

req u ir em en ts

P erfo rm an ce
req u ir em en ts

S p ace req
u ir em en ts

P rivacy
req u ir em en ts

S afety req
u ir em en ts

Fig. 1.0: Non-functional requirement types

3.6 Requirements Interaction

Conflicts between different non-functional requirements are common in
complex systems.

Spacecraft System

To minimise weight, the number of separate chips in the system should
be minimised.

To minimise power consumption, lower power chips should be used.

However, using low power chips may mean that more chips have to be
used. Which is the most critical requirement?

4.0 CONCLUSION

In this unit you have learned about functional requirements. You have
also learned about non-functional requirements. Finally, you have been
able to learn about non-functional requirement types.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

36

5.0 SUMMARY

What you have learned in this unit is focused on functional and non-
functional requirements. Functional requirements set out services the
system should provide.

Non-functional requirements constrain the system being developed or
the development process.

6.0 TUTOR-MARKED ASSIGNMENT

Discuss product requirements.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

37

Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

38

UNIT 4 REQUIREMENTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Guidelines for Writing Requirements
3.2 System Requirements
3.3 Requirements and Design
3.4 The Requirements Document
3.5 Users of a Requirements Document
3.6 User Requirements
3.7 IEEE Requirements Standards

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes requirements. It states the guidelines for writing
requirements. You will learn about requirements document and the
IEEE requirements standards.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

list guidelines for writing requirements
explain system requirements
describe the requirement document
list user requirements
note the IEEE requirement standard.

3.0 MAIN CONTENT

3.1 Guidelines for Writing Requirements

i. Invent a standard format and use it for all requirements.
ii. Use language in a consistent way. Use “shall” for mandatory

requirements, “should” for desirable requirements.
iii. Use text highlighting to identify key parts of the requirement.
iv. Avoid the use of computer jargon.

3.2 System Requirements

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

39

System requirements are more detailed specifications of system
functions, services and constraints than user requirements. They are
intended to be a basis for designing the system. They may be
incorporated into the system contract.

3.3 Requirements and Design

In principle, requirements should state what the system should do and
the design should describe how it does this. In practice, requirements
and design are inseparable.

A system architecture may be designed to structure the requirements.
The system may inter-operate with other systems that generate design
requirements. The use of a specific design may be a domain
requirement.

SELF ASSESSMENT EXERCISE 1

List 4 users of a requirement document.

3.4 The Requirements Document

The requirements document is the official statement of what is required
of the system developers. It should include both a definition of user
requirements and a specification of the system requirements. It is NOT a
design document. As far as possible, it should set up WHAT the system
should do rather than HOW it should do it.

SELF ASSESSMENT EXERCISE 2

Requirements and design are separable. True or False?

3.5 Users of a Requirement Document

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

40

S y ste m c u

sto m e rs

S p e c ify th e re q u ire m e n ts a n d
re a d th e m to c h e c k th a t th e y

m e e t th e ir n e e d s. T h e y
sp e c ify c h a n g e s to th e

re q u ire m e n ts

M a n a g e rs

U se th e re q u ire m e n ts d
o c u m e n t to p la n a b id fo r
th e sy ste m a n d to p la n th e

sy ste m d e v e lo p m e n t p ro c e ss

S y ste m e n
g in e e rs

U se th e re q u ire m e n ts to u n d
e rsta n d w h a t sy ste m is to b e d

e v e lo p e d

S y ste m te st
e n g in e e rs

U se th e re q u ire m e n ts to d e v
e lo p v a lid a tio n te sts fo r th e

sy ste m

S y ste m
m a in te n a n c e

e n g in e e rs

U se th e re q u ire m e n ts to h e lp
u n d e rsta n d th e sy ste m a n d th

e re la tio n sh ip s b e tw e e n its
p a r ts

Fig. 1.0: Users of a requirement document

3.6 User Requirements

i. Should describe functional and non-functional requirements in
such a way that they are understandable by system users who
don’t have detailed technical knowledge.

ii. User requirements are defined using natural language, tables and
diagrams as these can be understood by all users.

3.7 IEEE Requirements Standards

Defines a generic structure for a requirements document that must be
instantiated for each specific system.

Introduction. General
description Specific
requirements
Appendices
Index.

4.0 CONCLUSION

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

41

Requirements set out what the system should do and define constraints
on its operation and implementation. User requirements are high-level
statements of what the system should do. User requirements should be
written using natural language, tables and diagrams. System
requirements are intended to communicate the functions that the system
should provide.

A software requirements document is an agreed statement of the system
requirements. The IEEE standard is a useful starting point for defining
more detailed specific requirements standards.

5.0 SUMMARY

What you have learned borders on requirements; user and system
requirements.

6.0 TUTOR-MARKED ASSIGNMENT

What are the guidelines for writing requirements?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

42

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November
2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

43

UNIT 5 DOMAIN REQUIREMENTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Domain Requirements
3.2 Library System Domain Requirements
3.3 Domain Requirements Problems

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings
1.0 INTRODUCTION

This unit describes domain requirements. Problems of domain
requirements are equally considered.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

explain domain requirements
list the library system domain requirements
state domain requirements problems.

3.0 MAIN CONTENT

3.1 Domain Requirements

Domain requirements are derived from the application domain and
describe system characteristics and features that reflect the domain.

Domain requirements can be new functional requirements, constraints
on existing requirements or define specific computations.

If domain requirements are not satisfied, the system may be unworkable.

3.2 Library System Domain Requirements

i. There shall be a standard user interface to all databases which

shall be based on the Z39.50 standard.
ii. Because of copyright restrictions, some documents must be

deleted immediately on arrival. Depending on the user’s
requirements, these documents will either be printed locally on
the system server for manually forwarding to the user or routed to
a network printer.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

44

SELF ASSESSMENT EXERCISE

State two problems of domain requirements.

3.3 Domain Requirement Problems

i. Understandability

a) Requirements are expressed in the language of the application
domain;

b) This is often not understood by software engineers developing
the system.

ii. Implicitness

Domain specialists understand the area so well that they do not think of
making the domain requirements explicit.

4.0 CONCLUSION

In this unit you have learned domain requirements. You have also been
able to learn about domain requirement problems.

5.0 SUMMARY

What you have learned borders on domain requirements.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by domain requirements?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

45

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

46

MODULE 3 REQUIREMENTS ENGINEERING
PROCESSES

Unit 1 Concepts of Requirements Engineering
Unit 2 Viewpoints

Unit 3 Interviewing
Unit 4 Requirements Validation
Unit 5 System Modelling

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

47

UNIT 1 CONCEPTS OF REQUIREMENTS
ENGINEERING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Requirements Engineering Processes
3.2 Feasibility Studies
3.3 Feasibility Study Implementation
3.4 Elicitation and Analysis

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit we will learn a few basic concepts of requirements
engineering processes. This unit will introduce you to feasibility studies
and implementation.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe requirements engineering processes
explain feasibility studies and its implementation
explain elicitation and analysis.

3.0 MAIN CONTENT

3.1 Requirements Engineering Processes

The processes used for requirements engineering (RE) vary widely
depending on the application domain, the people involved and the
organisation developing the requirements.
However, there are a number of generic activities common to all
processes:

A. Requirements elicitation

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

48

B. Requirements analysis
C. Requirements validation
D. Requirements management

F e a sib ility
stu d y

Fe a sib ility
re p o r t

R e q u ir e m e n ts
e lic ita tio n a n d

a n a ly sis

R e q u ir e m e n ts
sp e c ific a tio n

R e q u ir e m e n ts

v a lid a tio n

S y ste m
m o d e ls

U se r a n d sy ste m

re q u ire m e n ts

R e q u ir e m e n ts

d o c u m e n t

Fig 1.0: The requirements engineering process

3.2 Feasibility Studies

A feasibility study decides whether or not the proposed system is
worthwhile. A feasibility study is a short, focused study that checks

If the system contributes to organisational objectives;
If the system can be engineered using current technology and within

budget;
If the system can be integrated with other systems that are used.

SELF ASSESSMENT EXERCISE 1

Define a class.

3.3 Feasibility Study Implementation

The feasibility study implementation is based on information assessment
(what is required), information collection and report writing.

Questions for people in the organisation

What if the system wasn’t implemented?
What are current process problems?
How will the proposed system help?
What will be the integration problems?
Is new technology needed? What skills?
What facilities must be supported by the proposed system?

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

49

SELF ASSESSMENT EXERCISE 2

What is an inheritance?

3.4 Elicitation and Analysis

Elicitation and analysis are sometimes called requirements elicitation or
requirements discovery. This involves technical staff working with
customers to find out about the application domain, the services that the
system should provide and the system’s operational constraints.

It may involve end-users, managers, engineers involved in maintenance,
domain experts, trade unions, etc. These are called stakeholders.

4.0 CONCLUSION

In this unit you have learned about requirements engineering processes
and feasibility studies. You have also been able to understand elicitation
and analysis.

5.0 SUMMARY

What you have learned borders on the basic concepts of requirements
engineering processes.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by object-oriented programming?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

50

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

51

UNIT 2 VIEWPOINTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Viewpoints
3.2 Types of Viewpoints
3.3 Viewpoint Identification
3.4 LIBSYS Viewpoint Hierarchy

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about viewpoints, their identification and
types.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

explain the concept of viewpoints
list the types of viewpoints
identify viewpoints.

3.0 MAIN CONTENT

3.1 Viewpoints

Viewpoints are a way of structuring the requirements to represent the
perspectives of different stakeholders. Stakeholders may be classified
under different viewpoints.

This multi-perspective analysis is important as there is no single correct
way to analyse system requirements.

3.2 Types of Viewpoints

i. Interactor Viewpoints

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

52

People or other systems that interact directly with the system. In an
ATM, the customer’s and the account database are interactor VPs.

ii. Indirect Viewpoints

Stakeholders who do not use the system themselves but who influence
the requirements. In an ATM, management and security staff are
indirect viewpoints.

iii. Domain Viewpoints

Domain characteristics and constraints that influence the requirements.
In an ATM, an example would be standards for inter-bank
communications.

SELF ASSESSMENT EXERCISE

List the types of viewpoints.

3.3 Viewpoint Identification

Identify viewpoints using

Providers and receivers of system services;
Systems that interact directly with the system being specified;
Regulations and standards;
Sources of business and non-functional requirements.
Engineers who have to develop and maintain the system;
Marketing and other business viewpoints.

3.4 LIBSYS Viewpoint Hierarchy

All VPs

Indirect Interactor Domain

Library
manager

Finance Article
Provider

Users
Library
staff

UI
standard

Classification
system

Students
Staff External System Cataloguers

Fig. 1.0: LIBSYS viewpoint hierarchy
4.0 CONCLUSION

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

53

In this unit you have learned about viewpoints, types of viewpoints and
its identification.

5.0 SUMMARY

What you have learned in this unit is based on viewpoints and types of
viewpoints.

6.0 TUTOR-MARKED ASSIGNMENT

How are viewpoints identified?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

54

the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

55

UNIT 3 INTERVIEWING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Interviewing
3.2 Types of Interview
3.3 Interviews in Practice
3.4 Effective Interviewers

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit concerns interviewing. The types of
interview and attributes of an effective interviewer will equally be
discussed.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

explain the term ‘interviewing’
describe the 2 types of interview
explain interviews in practice
give the attributes of an effective interviewer.

3.0 MAIN CONTENT

3.1 Interviewing

In formal or informal interviewing, the requirements engineering team
puts questions to stakeholders about the system that they use and the
system to be developed.

3.2 Types of Interview

There are two types of interview:

Closed interviews where a pre-defined set of questions are answered.
Open interviews where there is no pre-defined agenda and a range of
issues are explored with stakeholders.
SELF ASSESSMENT EXERCISE

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

56

List the types of interviews.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

57

3.3 Interviews in Practice

In practice interviews are normally a mix of closed and open-ended
interviewing. Indeed, interviews are good for getting an overall
understanding of what stakeholders do and how they might interact with
the system.

Interviews are not good for understanding domain requirements

Requirements engineers cannot understand specific domain
terminology;
Some domain knowledge is so familiar that people find it hard to

articulate or think that it isn’t worth articulating.

3.4 Effective Interviewers

i. Interviewers should be open-minded, willing to listen to

stakeholders and should not have pre-conceived ideas about the
requirements.

ii. They should prompt the interviewee with a question or a proposal

and should not simply expect them to respond to a question such
as ‘what do you want’.

4.0 CONCLUSION

In this unit you have learned about interviewing. You have also been
able to identify the types of interview and the attributes of an effective
interviewer.

5.0 SUMMARY

What you have learned in this unit concerns interviewing and the
common types of interviews.

6.0 TUTOR-MARKED ASSIGNMENT

Explain the term ‘interviewing’.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

58

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.
Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

59

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

60

UNIT 4 REQUIREMENTS VALIDATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Requirements Validation
3.2 Requirements Checking
3.3 Requirements Validation Techniques
3.4 Requirements Reviews
3.5 Requirements Management

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Now that you understand what requirements are, it's time to learn about
requirements validation. You will equally learn about requirements
validation techniques and requirements management.

2.0 OBJECTIVES

By the end of this unit, the student should be able to:

explain requirements validation
describe requirements checking
discuss requirements management.

3.0 MAIN CONTENT

3.1 Requirements Validation

Requirements validation is concerned with demonstrating that the
requirements define the system that the customer really wants.
Requirements error costs are high, so validation is very important.

Fixing a requirements error after delivery may cost up to 100 times the
cost of fixing an implementation error.

3.2 Requirements Checking

i. Validity: Does the system provide the functions which best
support the customer’s needs?

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

61

ii. Consistency: Are there any requirements conflicts?
iii. Completeness: Are all functions required by the customer

included?
iv. Realism: Can the requirements be implemented giving the

available budget and technology
v. Verifiability: Can the requirements be checked?

SELF ASSESSMENT EXERCISE 1

Validity is essential in requirements checking. True or False? Discuss

3.3 Requirements Validation Techniques

i. Requirements reviews: Systematic manual analysis of the
requirements.

ii. Prototyping: Using an executable model of the system to check
requirements.

iii. Test-case generation: Developing tests for requirements to
check testability.

SELF ASSESSMENT EXERCISE 2

List 3 requirements validation techniques.

3.4 Requirements Reviews

Regular reviews should be held while the requirements definition is
being formulated. Both client and contractor staff should be involved in
reviews.

Reviews may be formal (with completed documents) or informal. Good
communication between developers, customers and users can resolve
problems at an early stage

3.5 Requirements Management

Requirements management is the process of managing changing
requirements during the requirements engineering process and system
development.

Requirements are inevitably incomplete and inconsistent

New requirements emerge during the process as business needs change
and a better understanding of the system is developed;
Different viewpoints have different requirements and these are often

contradictory.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

62

4.0 CONCLUSION

In this unit you have learned about the requirements validation. You
have also been able to identify the requirements validation techniques.
You should also have learned about requirements reviews and
management.

5.0 SUMMARY

What you have learned in this unit concerns validation. In the next unit
you shall learn about system models.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by requirements management?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November
2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

63

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented
Paradigm: Component-oriented Simulation Architecture:

Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

64

UNIT 5 SYSTEM MODELLING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Relevance of System Modelling
3.2 Model Types
3.3 Context Models
3.4 Process Models
3.5 Behavioural Models
3.6 Data Processing Models
3.7 Application of Data Flow Diagrams

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit the student will gain knowledge of the relevance of system
modelling. The unit describes the context, process, behavioural and data
processing models.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

state the relevance of system modelling
list model types
explain the context, process, behavioural and data processing models.

3.0 MAIN CONTENT

3.1 Relevance of System Modelling

System modelling helps the analyst to understand the functionality of
the system and models are used to communicate with customers.
Different models present the system from different perspectives

External perspective showing the system’s context or environment;
Behavioural perspective showing the behaviour of the system;
Structural perspective showing the system or data architecture.

3.2 Model Types

a. Data processing model showing how the data is processed at

different stages.
b. Composition model showing how entities are composed of other

entities.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

65

c. Architectural model showing principal sub-systems.
d. Classification model showing how entities have common

characteristics.
e. Stimulus/response model showing the system’s reaction to

events.

3.3 Context Models

Context models are used to illustrate the operational context of a system
- they show what lies outside the system boundaries.

Social and organisational concerns may affect the decision on where to
position system boundaries. Architectural models show the system and
its relationship with other systems.

3.4 Process Models

i. Process models show the overall process and the processes that
are supported by the system.

ii. Data flow models may be used to show the processes and the
flow of information from one process to another.

3.5 Behavioural Model

Behavioural models are used to describe the overall behaviour of a
system.

A. Two types of behavioural model are:

a. Data processing models that show how data is processed as it

moves through the system;
b. State machine models that show the system’s response to events.

B. These models show different perspectives so both of them are

required to describe the system’s behaviour

3.6 Data Processing Models

Data flow diagrams (DFDs) may be used to model the system’s data
processing. These show the processing steps as data flows through a
system. Data flow diagrams are an intrinsic part of many analysis
methods. DFDs have simple and intuitive notation that customers can
understand. They show end-to-end processing of data.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

66

C h e c k e d a n d
C o m p le te d S ig n e d S ig n e d S e n d to sig n e d o r d e r
o rd e r fo r m o rd e r fo r m o rd e r fo rm su p p lie r + o r d e r

O rd e r
n o tific a tio n

d e ta ils + C o m p le te Va lid a te R e c o rd
b la n k o r d e r fo rm o rd e r o r d e r

o r d e r fo rm A d ju st

O rd e r S ig n e d
a va ila b le

d e ta ils o rd e r fo rm
b u d g e t

O rd e r
a m o u n t

+ a c c o u n t
d e ta ils

 O rd e rs
file B u d g e t

file

Fig. 1.0: Order processing data flow diagram

SELF ASSESSMENT EXERCISE 1

List the types of model.

3.7 Application of Data Flow Diagrams

DFDs model the system from a functional perspective.
Tracking and documenting how the data associated with a process is

helpful to develop an overall understanding of the system.
Data flow diagrams may also be used in showing the data exchange

between a system and other systems in its environment.

SELF ASSESSMENT EXERCISE 2

Give at least one application of context models.

4.0 CONCLUSION

A model is an abstract system view. Complementary types of model
provide different system information. Context models show the position
of a system in its environment with other systems and processes. Data
flow models may be used to model the data processing in a system.

5.0 SUMMARY

What you have learned in this unit concerns system modelling.

6.0 TUTOR-MARKED ASSIGNMENT

What is the relevance of system modelling?

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

67

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

68

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

MODULE 4 REQUIREMENTS ENGINEERING
PROCESSES

Unit 1 Formal Methods
Unit 2 Specification
Unit 3 Introduction to Architectural Design
Unit 4 Models
Unit 5 Sub-Systems and Modules

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

69

UNIT 1 FORMAL METHODS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Formal Methods
3.2 Formal Specification
3.3 Acceptance of Formal Methods
3.4 Use of Formal Methods

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will find information about formal methods. This unit
also covers acceptance and use of formal methods.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

enumerate formal methods
discuss the acceptance of formal methods
explain the use of formal methods.

3.0 MAIN CONTENT

3.1 Formal Methods

Formal methods include:

Formal specification;
Specification analysis and proof;
Transformational development;
Program verification.

3.2 Formal Specification

Formal specification is part of a more general collection of techniques
that are known as ‘formal methods’.

These are all based on mathematical representation and analysis of
software.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

70

SELF ASSESSMENT EXERCISE 1

Program verification is a formal method. True or False?

3.3 Acceptance of Formal Methods

Formal methods have not become mainstream software development
techniques as was once predicted. Other software engineering
techniques have been successful at increasing system quality. Hence the
need for formal methods has been reduced. Market changes have made
time-to-market rather than software with a low error count the key
factor. Formal methods do not reduce time to market and the scope of
formal methods is limited. They are not well-suited to specifying and
analysing user interfaces and user interaction. Formal methods are still
hard to scale up to large systems.

3.4 Use of Formal Methods

The principal benefits of formal methods are in reducing the number of
faults in systems. Consequently, their main area of applicability is in
critical systems engineering. There have been several successful projects
where formal methods have been used in this area.
In this area, the use of formal methods is most likely to be cost-effective
because high system failure costs must be avoided.

SELF ASSESSMENT EXERCISE 2

What is the principal benefit of formal methods?

4.0 CONCLUSION

In this unit you have learned about formal methods and their use.

5.0 SUMMARY

What you have learned borders on formal methods and their use.

6.0 TUTOR-MARKED ASSIGNMENT

Enumerate at least three formal methods.

7.0 REFERENCES/FURTHER READINGS

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

71

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

72

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

UNIT 2 SPECIFICATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

73

3.1 Specification in the Software Process
3.2 Use of Formal Specification
3.3 Specification Techniques
3.4 Systematic Algebraic Specification
3.5 Specification Operations

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit covers creating and using objects. You will learn how to
instantiate an object, and, once instantiated, how to use the dot operator
to access the object's instance variables and methods.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe how to create objects
write a program to create objects
explain how to initialise objects
describe the process of garbage collection.

3.0 MAIN CONTENT

3.1 Specification in the Software Process

Specification and design are inextricably intermingled.
Architectural design is essential to structure a specification and the
specification process.

Formal specifications are expressed in a mathematical notation with
precisely defined vocabulary, syntax and semantics.

S y ste m

U se r re q u ire
m e n ts d e fin

itio n

re q u ire m e n ts
sp e c ific a tio n

Fo rm a l
sp e c ific a tio n

H ig h -le v e l

d e sig n

S y ste m
m o d e lll in g

A rc h ite c tu ra l
d e sig n

Fig. 1.0: Specification in the software process

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

74

3.2 Use of Formal Specification

Formal specification involves investing more effort in the early phases
of software development.

This reduces requirements errors as it forces a detailed analysis of the
requirements. Incompleteness and inconsistencies can be discovered and
resolved. Hence, savings as made as the amount of rework due to
requirements problems is reduced.

SELF ASSESSMENT EXERCISE

Describe the model-based specification.

3.3 Specification Techniques

a. Algebraic specification: The system is specified in terms of its
operations and their relationships.

b. Model-based specification: The system is specified in terms of a
state model that is constructed using mathematical constructs
such as sets and sequences. Operations are defined by
modifications to the system’s state.

3.4 Systematic Algebraic Specification

Algebraic specifications of a system may be developed in a systematic
way:

Specification structuring
Specification naming
Operation selection
Informal operation specification
Syntax definition
Axiom definition.

3.5 Specification Operations

i. Constructor operations: Operations which create entities of the
type being specified.

ii. Inspection operations: Operations which evaluate entities of the
type being specified.

To specify behaviour, define the inspector operations for each
constructor operation.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

75

4.0 CONCLUSION

Formal system specification complements informal specification
techniques.

Formal specifications are precise and unambiguous. They remove areas
of doubt in a specification. Formal specification techniques are most
applicable in the development of critical systems and standards.
Algebraic techniques are suited to interface specification where the
interface is defined as a set of object classes.

5.0 SUMMARY

What you have learned in this unit is focused on formal specification.

6.0 TUTOR-MARKED ASSIGNMENT

Enumerate and explain the specification operations.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:
Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

76

of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

77

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

78

UNIT 3 INTRODUCTION TO ARCHITECTURAL
DESIGN

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Architectural Design
3.2 Software Architecture

3.3 Architectural Models
3.4 Architectural Design Decisions

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes the notion of architectural design. You will learn
about software architecture and the common architectural models. This
unit also covers architectural design decisions.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

explain the notion of architectural design
define software architecture
describe the common architectural models
list the architectural design decisions.

3.0 MAIN CONTENT

3.1 Architectural Design

The design process for identifying the sub-systems making up a system
and the framework for sub-system control and communication is
architectural design.

Architectural design is an early stage of the system design process. It
represents the link between specification and design processes.
Architectural design is often carried out in parallel with some
specification activities. It involves identifying major system components
and their communications.
3.2 Software Architecture

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

79

The software architecture is the fundamental framework for structuring
the system. It is the output of the architectural design process

SELF ASSESSMENT EXERCISE 1

What is the main use of architectural models?

3.3 Architectural Models

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

80

Architectural models are used to document an architectural design. They
include:

a. Static structural model which shows the major system components.
b. Dynamic process model which shows the process structure of the

system.
c. Interface model which defines sub-system interfaces.
d. Relationships model such as a data-flow model that shows

sub-system relationships.
e. Distribution model that shows how sub-systems are distributed

across computers.

3.4 Architectural Design Decisions

Architectural design is a creative process so the process differs
depending on the type of system being developed. Architectural design
decisions include decisions on the application architecture, the
distribution and the architectural styles to be used. However, a number
of common decisions span all design processes. These include:

i.Is there a generic application architecture that can be used?
ii.How will the system be distributed?
iii.What architectural styles are appropriate?
iv.What approach will be used to structure the system?
v.How will the system be decomposed into modules?
vi.What control strategy should be used?
vii.How will the architectural design be evaluated?
viii.How should the architecture be documented?

SELF ASSESSMENT EXERCISE 2

Describe at least 3 architectural models.

4.0 CONCLUSION

In this unit you have learned about architectural design. You have also
learned about architectural models and design decisions.

5.0 SUMMARY

What you have learned in this unit borders on architectural design.

6.0 TUTOR-MARKED ASSIGNMENT

Discuss the architectural design.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

81

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

82

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

83

UNIT 4 MODELS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Domain - Specific Models
3.2 Repository Models
3.3 Advantages of Repository Models
3.4 Disadvantages of Repository Models

4.0 Conclusion

5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit begins with a discussion of domain – specific models and
types. It also presents the repository models, stating the advantages and
disadvantages.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

define domain – specific models
explain 2 types of domain- specific models
describe the repository models.

3.0 MAIN CONTENT

3.1 Domain-Specific Model

Architectural models which are specific to some application domain are
known as domain-specific models.

Two types of domain-specific models are:

Generic models which are abstractions from a number of real systems

and which encapsulate the principal characteristics of these systems.
Generic models are usually bottom-up models
Reference models which are more abstract idealised model. They

provide a means of information about that class of system and of
comparing different architectures. Reference models are top-down
models.

SELF ASSESSMENT EXERCISE 1

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

84

Mention two types of domain-specific models

3.2 Repository Models

When large amounts of data are to be shared, the repository model of
sharing is most commonly used.

3.3 Advantages of Repository Model

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

85

i. Sub-systems need not be concerned with how data is produced by
centralised management e.g. backup, security, etc.

ii. Efficient way to share large amount of data
iii. Sharing model is published as repository schema

3.4 Disadvantages of Repository Model

i. Sub-systems must agree on a repository data model.
Inevitably a compromise

ii. Data evolution is difficult and expensive
iii. No scope for specific management policies
iv. Difficult to distribute efficiently.

SELF ASSESSMENT EXERCISE 2

State two advantages of repository models

4.0 CONCLUSION

In this unit you have learned about domain – specific models as well as
repository models.

5.0 SUMMARY

What you have learned in this unit borders on models.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by domain-specific models?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

86

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

87

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

88

UNIT 5 SUB-SYSTEMS AND MODULES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 What is a Sub-System?
3.2 What is a Module?
3.3 Modular Decomposition
3.4 Modular Decomposition Models

4.0 Conclusion
5.0 Summary

6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will focus primarily on sub-systems and modules. You will
also learn about modular decomposition.

2.0 OBJECTIVES

By the end of this unit, you should be able to describe:

a sub-system
a module
modular decomposition
modular decomposition models.

3.0 MAIN CONTENT

3.1 What is a Sub-System?

A sub-system is a system in its own right whose operation is
independent of the services provided by other sub-systems.

3.2 What is a Module?

A module is a system component that provides services to other
components but would not normally be considered as a separate system

3.3 Modular Decomposition

Modular decomposition refers to the process whereby sub-systems are
decomposed into modules.
3.4 Modular Decomposition Models

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

89

There are two modular decomposition models covered in this unit:

An object model where the system is decomposed into interacting
object;
A pipeline or data-flow model where the system is decomposed into

functional modules which transform inputs to outputs.

SELF ASSESSMENT EXERCISE

List the modular decomposition models.

4.0 CONCLUSION

Specifically, you learned about sub – systems and modules. You also
learned about modular decomposition.

5.0 SUMMARY

What you have learned in this unit concerns sub-systems and modules.

6.0 TUTOR-MARKED ASSIGNMENT

What is a module?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

90

(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November
2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

91

the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

92

MODULE 5 SOFTWARE ENGINEERING

Unit 1 Software Life-Cycle Models
Unit 2 Requirements Engineering
Unit 3 Formal Specification
Unit 4 System Models
Unit 5 Software Design

UNIT 1 SOFTWARE LIFE-CYCLE MODELS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

93

3.1 Software Life-Cycle Models
3.2 Waterfall Model
3.3 Prototyping Model
3.4 Spiral Model

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers software life-cycle models. You will consider the
most commonly used models, their benefits and drawbacks.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe the concept of software life-cycle model
list the factors which determine the suitable life-cycle models
explain the waterfall model
describe the prototyping model
explain the spiral model.

3.0 MAIN CONTENT

3.1 Software Life-Cycle Models

A software product usually begins as a vague concept. Once the need
for a software product has been established, the product goes through a
series of development phases. Typically, the product is specified,
designed, and then implemented. If the client is satisfied, the product is
installed, and while it is operational it is maintained. When the product
finally comes to the end of its useful life, it is decommissioned. The
series of steps through which a product progresses is called the life-
cycle model.

The best life-cycle model for a given product may be different. The
factors which determine the appropriate model include the size of the
project, the complexity, the required development time, the degree of
risk, the degree of certainty as to what the customer wants, and the
degree to which the customer requirements may change.

The two most widely used life-cycle models are the waterfall model and
the prototyping model. In addition, the spiral model is now receiving

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

94

considerable attention. The strengths and weaknesses of these models
will be examined here.

3.2 Waterfall Model

The following activities occur during the waterfall life cycle paradigm:

Requirements analysis and definition. The system's services,
constraints and goals are established by consultation with the customers
and users. These are then defined in a manner which is understandable
by both customers/users and development staff.
Specification Phase. From the requirements, a specifications document

is produced which states exactly what the product is to do (but not how
it will be done).
System and Software Design. The systems design process partitions

the requirements to either hardware or software systems. Software
design is actually a multi-step process which focuses on four distinct
attributes of a program: data structure, software architecture, interface
representations, and procedural (algorithmic) detail. In contrast to the
specifications document that specifies what requirements will be met,
the design documents contain representations that describe how the
product will meet them.
Implementation and unit testing. During this stage, the software design

is realized as a set of programs or modules. Unit testing involves
verifying that each unit meets its specification.
Integration and system testing. The individual program units are

integrated and tested as a complete system to ensure that the software
requirements have been met.
Acceptance testing. The purpose of acceptance testing is for the client

to determine whether the product satisfies its specifications as claimed
by the developer. During acceptance testing, the product is evaluated for
its correctness, robustness, performance, and documentation.
Operations and maintenance. The operations and maintenance phase

involves the re-application of each of the preceding activities for
existing software. The re-application may be required to correct an error
in the original software, to adapt the software to changes in its external
environment (e.g., new hardware, operating system), or to provide
enhancement to function or performance requested by the customer.
This is generally the longest life-cycle phase.

These stages are shown diagrammatically below. Normal development
is shown by the solid green arrows. Maintenance occurs along the path
of the dashed arrows.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

95

Fig. 1.0: The waterfall model

The waterfall model is the most widely used in software engineering. It
leads to systematic, rational software development, but like any generic
model, the life-cycle paradigm can be problematic for the following
reasons:

1. The rigid sequential flow of the model is rarely encountered in

real life. Iteration can occur causing the sequence of steps to
become muddled.

2. It is often difficult for the customer to provide a detailed

specification of what is required early in the process. Yet this
model requires a definite specification as a necessary building
block for subsequent steps.

3. Much time can pass before any operational elements of the

system are available for customer evaluation. If a major error in
implementation is made, it may not be uncovered until much
later.

Do these potential problems mean that the life-cycle paradigm should be
avoided? Absolutely not! They do mean, however, that the application
of this software engineering paradigm must be carefully managed to
ensure successful results.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

96

SELF ASSESSMENT EXERCISE 1

Describe the two most widely used life-cycle models.

3.3 Prototyping Model

A prototyping moves the developer and customer toward a "quick"
implementation. Prototyping begins with requirements gathering.
Meetings between developer and customer are conducted to determine
overall system objectives and functional and performance requirements.
The developer then applies a set of tools to develop a quick design and
build a working model (the "prototype") of some element(s) of the
system. The customer or user "test drives" the prototype, evaluating its
function and recommending changes to better meet customer needs.
Iteration occurs as this process is repeated, and an acceptable model is
derived. The developer then moves to "productize" the prototype by
applying many of the steps described for the classic life cycle.

Fig. 1.1: The prototyping model
In object-oriented programming a library of reusable objects (data
structures and associated procedures) the software engineer can rapidly
create prototypes and production programs.
The benefits of prototyping are:

1. a working model is provided to the customer/user early in the

process, enabling early assessment and bolstering confidence,
2. the developer gains experience and insight by building the model,

thereby resulting in a more solid implementation of "the real thing"
3. the prototype serves to clarify otherwise vague requirements,

reducing ambiguity and improving communication between
developer and user.

But prototyping also has a set of inherent problems:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

97

1. The user sees what appears to be a fully working system (in
actuality, it is a partially working model) and believes that the
prototype (a model) can be easily transformed into a production
system. This is rarely the case. Yet many users have pressured
developers into releasing prototypes for production use that have
been unreliable, and worse, virtually unmaintainable.

2. The developer often makes technical compromises to build a

"quick and dirty" model. Sometimes these compromises are
propagated into the production system, resulting in
implementation and maintenance problems.

3. Prototyping is applicable only to a limited class of problems. In

general, a prototype is valuable when heavy human-machine
interaction occurs, when complex output is to be produced or
when new or untested algorithms are to be applied. It is far less
beneficial for large, batch-oriented processing or embedded
process control applications.

SELF ASSESSMENT EXERCISE 2

What are the benefits of prototyping?

3.4 Spiral Model

There is almost always risk involved in the development of software.
For example:

key personnel may resign before the product has been adequately
documented,
the manufacturer of hardware on which the product is critically

dependent may go bankrupt,
too little (or too much) time may be invested in testing,
technological breakthroughs may render the product obsolete,
a lower-priced, functionally equivalent product may come to market.

For obvious reasons, software developers try to minimize risks
whenever possible. A product built using the waterfall model may be
subject to substantial risk because of its linear development cycle. The
prototyping model is quite effective at minimising risk, allowing a
periodic reassessment of the requirements.

The idea of minimising risks via the use of prototypes and other means
is the underlying concept of the spiral model [8]. A simplistic way of
looking at the spiral model is as a series of waterfall models, each
preceded by a risk analysis. Before commencing each phase, an attempt

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

98

is made to control (or resolve) the risks. If it is impossible to adequately
resolve all the significant risks at a given stage, the project is
immediately terminated. Prototypes can be used to provide information
about certain classes of risk. For example, timing constraints can be
tested by constructing a prototype and measuring whether the prototype
can achieve the necessary performance.

The spiral model is shown in the figure below. The radial dimension
represents cumulative cost to date, the angular dimension represents
progress through the spiral. Each cycle of the spiral corresponds to a
development phase.

Fig. 1.2: The spiral model
A phase begins (in the top left quadrant) by determining objectives of
that phase, alternatives for achieving those objectives, and constraints
imposed on those alternatives. Next, that strategy is analyzed from the
viewpoint of risk. Attempts are made to resolve every potential risk, in
some cases by building a prototype. If certain risks cannot be resolved,
the project may be terminated or scaled down. If all risks are resolved,
the next development step is started. This quadrant of the spiral model
corresponds to the pure waterfall model. Finally, the results of that
phase are evaluated and the next phase is planned.

The advantages of the spiral model are:

The primary advantage is that the spiral model has a wide range of

options to accommodate the good features of other life-cycle models. It
becomes equivalent to another lifecycle model in appropriate situations.
Also the risk-avoidance approach keeps from having additional
difficulties.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

99

The spiral model focuses its early attention on the option of reusing
existing software.
It prepares for life-cycle evolution, growth, and changes of the software

product. Major sources of this change are included in the product
objectives.
It incorporates software quality objectives into software product

development. Emphasis is placed on identifying all objectives and
constraints during each round.
The risk analysis and validation steps eliminate errors early on.

Maintenance is included as another cycle of the spiral; there is
essentially no distinction between maintenance and development. This
helps to avoid underestimation of resources needed for maintenance.

The weaknesses include:

The risk-driven model is dependent on the developers' ability to

identify project risk. The entire product depends on the risk assessment
skills of the developer. If those skills are weak then the product could be
a disaster. A design produced by an expert may be implemented by non-
experts. In a case such as this, the expert does not need a great deal of
detailed documentation, but must provide enough additional
documentation to keep the non-experts from going astray.

The process steps need to be further elaborated to make sure that the
software developers are consistent in their production. It is still fairly
new compared to other models, so it has not been used significantly and
therefore the problems associated with it haven't been widely tested and
solved.

4.0 CONCLUSION

In this unit you have learned about the software life-cycle models. You
have also been able to understand the factors that determine the
appropriate life-cycle model. You would have learned of the waterfall,
prototyping and spiral models

5.0 SUMMARY

What you have learned borders on software life-cycle models.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by the software life-cycle model?

7.0 REFERENCES/FURTHER READINGS

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

100

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

101

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

UNIT 2 REQUIREMENTS ENGINEERING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Requirements Engineering
3.2 The Requirements Documents
3.3 Requirements Document Structure
3.4 Writing Requirements
3.5 User Requirements

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

102

In this unit, you will learn about requirements engineering.
Requirements documents and user requirements will also be considered.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

explain requirements engineering
define the requirements document
discuss the requirements document structure
describe the user requirements.

3.0 MAIN CONTENT

3.1 Requirements Engineering

Requirements engineering entails establishing what the customer
requires from a software system. It is the process of establishing the:

services that the customer requires from a system
constraints under which the system operates
constraints under which the system is developed.

3.2 The Requirements Documents

The requirements document is the official statement of what is required
of the system developers.

It should include both a definition and a specification of requirements. It
is NOT a design document. As far as possible, it should set out WHAT
the system should do rather than HOW it should do it.

SELF ASSESSMENT EXERCISE

Explain the notion of ‘requirements engineering’.

3.3 Requirements Document Structure

The requirements document structure consists of 6 parts:

i. Introduction (Requirements Definition)

Describe need for the system and how it fits with business objectives.

ii. Functional Requirements

Describe the services to be provided in detail.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

103

iii. Non-functional Requirements

Define constraints on the system and the development process.

iv. System Evolution

Define fundamental assumptions on which the system is based and
anticipated changes.

v. Glossary

Define technical terms used.

vi. Index

3.4 Writing Requirements

Natural language is typically used when writing requirements
definitions. This is universally understandable but three types of
problems can arise:

Lack of clarity. Precision is difficult without making the document
difficult to read.
Requirements confusion. Functional and non-functional requirements
tend to be mixed-up
Requirements amalgamation. Several different requirements may be
expressed together.

3.5 User Requirements

Should describe functional and non-functional requirements so that they
are understandable by system users who don’t have detailed technical
knowledge.

User requirements are defined using natural language, tables and
diagrams.

4.0 CONCLUSON

In this unit you have learned about requirements engineering. You have
also learned about requirements documents and requirements documents
structure as well as user requirements.

5.0 SUMMARY

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

104

You have considered requirements engineering as well as requirements
documents and user requirements.

6.0 TUTOR-MARKED ASSIGNMENT

What is a requirements document?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:
Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

105

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A
Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

UNIT 3 FORMAL SPECIFICATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Formal Specification
3.2 Advantages of Formal Specification
3.3 Specification Development
3.4 Formal Specification Approaches

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings
1.0 INTRODUCTION

What you will learn in this unit borders on formal specification. The
advantages of formal specification as well as formal specification
approaches will equally be discussed.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

106

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe the term ‘formal specification’ list
the advantages of formal specification
explain the formal specification approaches.

3.0 MAIN CONTENT

3.1 Formal Specification

Formal specification refers to techniques for the unambiguous
specification of software.

Formal specifications are expressed in a mathematical notation with
precisely defined vocabulary, syntax and semantics.

3.2 Advantages of Formal Specification

i. It provides insights into the software requirements and the design.
ii. Formal specifications may be analysed mathematically for

consistency.
iii. It may be possible to prove that the implementation satisfies the

specification.
iv. Formal specifications may be used to guide the tester of the

component in identifying appropriate test cases.
v. Formal specifications may be processed using

software tools. It may be possible to animate the specification to
provide a software prototype.

SELF ASSESSMENT EXERCISE 1

List the steps in developing a specification.

3.3 Specification Development

The following steps are taken in developing a specification:

1. Establish the bounds of the input parameters. Specify this as a
predicate.

2. Specify a predicate defining the condition which must hold on the
result of the function if it computes correctly.

3. Establish what changes are made to the input parameters by the
function and specify these as a predicate.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

107

4. Combine the predicates into pre and post conditions.

3.4 Formal Specification Approaches

i. Algebraic Approach

The system is described in terms of interface operations and their
relationships.

ii. Model-based Approach

A model of the system acts as a specification. This model is
constructed using well-understood mathematical entities such as
sets and sequences.

SELF ASSESSMENT EXERCISE 2

State the two formal specification approaches.

4.0 CONCLUSION

In this unit you have learned about formal specification. You have also
been able to identify the advantages of formal specification as well as
the steps to be adopted in developing a specification.
5.0 SUMMARY

What you have learned in this unit concerns formal specification.

6.0 TUTOR-MARKED ASSIGNMENT

Describe the term ‘formal specification’.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

108

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

109

UNIT 4 SYSTEM MODELS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 What are System Models?
3.2 System Modelling
3.3 Structured Methods
3.4 The Unified Modelling Language

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces the divide-and-conquer algorithm as a design
technique. It explains the phases involved in this technique of design.

2.0 OBJECTIVES

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

110

By the end of this unit, the student should be able to:

explain what system models are
state the usefulness of system modelling to a system analyst
discuss the unified modelling language.

3.0 MAIN CONTENT

3.1 What are System Models?

System models are abstract descriptions of systems whose requirements
are being analysed.

3.2 System Modelling

System modelling helps the system analyst to understand the
functionality of the system and models are used to communicate with
customers.

Different models present the system from different perspectives

External perspective showing the system’s context or environment
Behavioural perspective showing the behaviour of the system
Structural perspective showing the system or data architecture

SELF ASSESSMENT EXERCISE

Describe at least one application of system modelling.

3.3 Structured Methods

Structured methods incorporate system modelling as an inherent part of
the method. Methods define a set of models, a process for deriving these
models and rules and guidelines that should apply to the models.
CASE tools support system modelling as part of a structured method

3.4 The Unified Modelling Language (UML)

The unified modelling language was devised by the developers of
widely used object-oriented analysis and design methods. It has become
an effective standard for object-oriented modelling.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

111

Notation

Object classes are rectangles with the name at the top, attributes in the
middle section and operations in the bottom section
Relationships between object classes (known as associations) are

shown as lines linking objects
Inheritance is referred to as generalisation and is shown ‘upwards’

rather than ‘downwards’ in a hierarchy.

4.0 CONCLUSION

In this unit you have learned about divide-and-conquer algorithm. You
have also gained knowledge of binary and sequential search.

5.0 SUMMARY

What you have learned in this unit concerns divide-and-conquer
algorithm.

6.0 TUTOR-MARKED ASSIGNMENT

What are system models?
7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

112

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

113

UNIT 5 SOFTWARE DESIGN

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Design
3.2 Stages of Design
3.3 Design Phases
3.4 Top-Down Design Technique
3.5 Design Strategies

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces you to software design. It explains the design stages
and phases and describes the top-down design technique.

2.0 OBJECTIVES

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

114

By the end of this unit, the student should be able to:

describe software design
identify the design stages
state the design phases
explain the concept of top-down design technique
identify the design strategies.

3.0 MAIN CONTENT

3.1 Software Design

Software design is a process of problem-solving and planning for a
software solution. It entails deriving a solution which satisfies
software requirements.

3.2 Stages of Design

A. Problem understanding

Look at the problem from different angles to discover the design
requirements.

B. Identify one or more solutions

Evaluate possible solutions and choose the most appropriate
depending on the designer's experience and available resources.

C. Describe solution abstractions

Use graphical, formal or other descriptive notations to describe the
components of the design.

D. Repeat process for each identified abstraction

3.3 Design Phases

i. The Architectural design: Identify sub-systems.
ii. Abstract specification: Specify sub-systems.
iii. Interface design: Describe sub-system interfaces.
iv. Component design: Decompose sub-systems into components.
v. Data structure design: Design data structures to hold problem

data.
vi. Algorithm design: Design algorithms for problem functions

3.4 Top-Down Design Technique

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

115

In principle, top-down design involves starting at the uppermost
components in the hierarchy and working down the hierarchy level by
level.

In practice, large systems design is never truly top-down. Some
branches are designed before others. Designers reuse experience (and
sometimes components) during the design process.

SELF ASSESSMENT EXERCISE 1

Describe the top-down design technique.

3.5 Design Strategies

i. Functional Design

The system is designed from a functional viewpoint. The system
state is centralized and shared between the functions operating on
that state.

ii. Object-Oriented Design

The system is viewed as a collection of interacting objects. The
system state is decentralized and each object manages its own state.
Objects may be instances of an object class and communicate by
exchanging methods.

SELF ASSESSMENT EXERCISE 2

State the design phases.

4.0 CONCLUSION

In this unit you have learned about software design. You have also
gained insight of design phases as well as top-down design technique.

5.0 SUMMARY

What you have learned in this unit concerns software design and design
strategies.

6.0 TUTOR-MARKED ASSIGNMENT

Explain the concept of software design.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

116

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for
Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.

and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

117

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

MODULE 6 SOFTWARE ENGINEERING

Unit 1 Software Testing
Unit 2 Software Inspection
Unit 3 Software Reliability
Unit 4 Software Re-use
Unit 5 Software Prototyping

UNIT 1 SOFTWARE TESTING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Verification and Validation
3.2 Verification and Validation Process
3.3 Software Inspection
3.4 Testing and Debugging
3.5 Testing Stages

4.0 Conclusion
5.0 Summary

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

118

6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit the student will be equipped with the knowledge of
verification and validation and its principal objectives. The unit
describes testing and debugging as well.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe the terms verification and validation
understand the principal objective of verification and validation
distinguish between verification and validation
distinguish between testing and debugging
list the testing stages.

3.0 MAIN CONTENT

3.1 Verification and Validation

In software testing, and software engineering, Verification and
Validation (V&V) entail the process of checking that a software system
meets specifications and that it fulfils its intended purpose.

Verification ensures that the final product satisfies or matches the
original design (low-level checking) – i.e., you built the product right.
This is done through static testing.

Validation checks that the product design satisfies or fits the intended
usage (high-level checking) – i.e., you built the right product. This is
done through dynamic testing and other forms of review.

3.2 Verification and Validation Process

Verification and validation process is a whole life-cycle process which
must be applied at each stage in the software process.

Verification and validation has two principal objectives:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

119

i. The discovery of defects in a system.
ii. The assessment of whether or not the system is usable in an

operational situation.

3.3 Software Inspections

Software inspections involve people examining the source
representation with the aim of discovering anomalies and defects.
Software inspections do not require execution of a system so may be
used before implementation. They may be applied to any representation
of the system (requirements, design, test data, etc.). It is a very effective
technique for discovering errors.

3.4 Testing and Debugging

Defect testing and debugging are distinct processes. Defect testing is
concerned with confirming the presence of errors, while debugging is
concerned with locating and repairing these errors.
Debugging involves formulating hypotheses about program behaviour
then testing these hypotheses to find the system error.

SELF ASSESSMENT EXERCISE 1

Distinguish between testing and debugging.

3.5 Testing Stages

i. Unit testing

testing of individual components

ii. Module testing

testing of collections of dependent components

iii. Sub-system testing

testing collections of modules integrated into sub-systems

iv. System testing

testing the complete system prior to delivery

v. Acceptance testing

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

120

testing by users to check that the system satisfies requirements. It is
sometimes called alpha testing.

SELF ASSESSMENT EXERCISE 2

List the testing stages.

4.0 CONCLUSION

Verification and validation were considered in this unit. You have also
learned about testing and debugging.

5.0 SUMMARY

What you have learned in this unit concerns verification, validation,
testing and debugging.

6.0 TUTOR-MARKED ASSIGNMENT

What are the principal objectives of verification and validation?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

121

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for
Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

122

UNIT 2 SOFTWARE INSPECTION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Inspections
3.2 Inspections and Testing
3.3 Inspection Pre-conditions
3.4 Inspection Checklists

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers software inspections. It delves into the inspection
pre-conditions and inspection checklists.

2.0 OBJECTIVES

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

123

By the end of this unit, you should be able to:

explain the aim of software inspections
identify inspection pre-conditions
enumerate inspection checklists.

3.0 MAIN CONTENT

3.1 Software Inspections

Software inspections involve people examining the source
representation with the aim of discovering anomalies and defects.
Software inspections do not require execution of a system so may be
used before implementation.

This may be applied to any representation of the system (requirements,
design, test data, etc.). It is a very effective technique for discovering
errors.

3.2 Inspections and Testing

Inspections and testing are complementary and not opposing verification
techniques. Both should be used during the verification and validation
process.
Inspections can check conformance with a specification but not
conformance with the customer’s real requirements. Inspections cannot
check non-functional characteristics such as performance, usability etc.

SELF ASSESSMENT EXERCISE 1

When are inspection and testing required?

3.3 Inspection Pre-conditions

A precise specification must be available
Team members must be familiar with the organisation’s standards
Syntactically correct code must be available
An error checklist should be prepared
Management must accept that inspection will increase costs early in the

software process
Management must not use inspections for staff appraisal.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

124

3.4 Inspection Procedure

System overview presented to inspection team
Code and associated documents are distributed to inspection team in

advance
Inspection takes place and discovered errors are noted
Modifications are made to repair discovered errors
Re-inspection may or may not be required.

3.5 Inspection Checklists

Checklist of common errors should be used to drive the inspection
Error checklist is programming language dependent
The 'weaker' the type of checking, the larger the checklist
Examples: Initialisation, Constant naming, loop termination, array

bounds, etc.

SELF ASSESSMENT EXERCISE 2

Enumerate the inspections checklists.
4.0 CONCLUSION

In this unit you have learned about software inspection. You have also
been able to identify inspection pre-conditions and checklists.

5.0 SUMMARY

What you have learned borders on software inspection.

6.0 TUTOR-MARKED ASSIGNMENT

What is the aim of software inspection?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

125

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

126

UNIT 3 SOFTWARE RELIABILITY

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Dependability
3.2 Fault Minimisation
3.3 Fault-Free Software Development
3.4 Reliable Software Process

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit covers software dependability and fault minimisation.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

127

explain the notion of software dependability
describe fault minimisation
discuss the reliable software processes.

3.0 MAIN CONTENT

3.1 Software Dependability

In general, software customers expect all software to be dependable.
However, for non-critical applications, they may be willing to accept
some system failures. Some applications, however, have very high
dependability requirements and special programming techniques must
be used to achieve this.

3.2 Fault Minimisation

Current methods of software engineering now allow for the production
of fault-free software. Fault-free software means software which
conforms to its specification. It does NOT mean software which will
always perform correctly as there may be specification errors. The cost
of producing fault-free software is very high. It is only cost-effective in
exceptional situations.
SELF ASSESSMENT EXERCISE 1

When is software said to be fault-free?

3.3 Fault-Free Software Development

i.Fault-free software development needs a precise (preferably formal)
specification.

ii.It requires an organisational commitment to quality.
iii.Information hiding and encapsulation in software design is essential
iv.A programming language with strict typing and run-time checking

should be used
v.Error-prone constructs should be avoided
vi.Dependable and repeatable development process

3.4 Reliable Software Processes

To ensure a minimal number of software faults, it is important to have a
well-defined, repeatable software process. A well-defined repeatable
process is one that does not depend entirely on individual skills; rather
can be enacted by different people. For fault minimisation, it is clear that
the process should include significant verification and validation.

SELF ASSESSMENT EXERCISE 2

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

128

What must be put in place to ensure minimal software faults.

4.0 CONCLUSION

In this unit you have learned about software dependability. You have
also learned about fault minimisation and fault-free software
development.

5.0 SUMMARY

What you have learned in this unit borders on software reliability and
fault-free software development.

6.0 TUTOR-MARKED ASSIGNMENT

Explain the notion of ‘software dependability’.

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

129

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November
2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

130

UNIT 4 SOFTWARE RE-USE

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Re-use
3.2 Benefits of Re-use
3.3 Requirements for Re-use
3.4 Software Development with Re-use
3.5 Software Development for Re-use

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers the concept of software re-use. You will equally
learn about the benefits and the requirements for re-use.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

131

describe the concept of software re-use
enumerate the benefits of re-use
explain software development with re-use
list the requirements for re-use.

3.0 MAIN CONTENT

3.1 Software Re-use

In most engineering disciplines, systems are designed by composing
existing components that have been used in other systems. Software
engineering has been more focused on original development but it is
now recognised that to achieve better software, more quickly and at
lower cost, we need to adopt a design process that is based on systematic
re-use.

3.2 Benefits of Re-use

i. Increased reliability

Components exercised in working systems

ii. Reduced process risk

Less uncertainty in development costs

iii. Effective use of specialists

Re-use components instead of people

iv. Standards compliance

Embed standards in reusable components

v. Accelerated development

Avoid original development and hence speed-up production

SELF ASSESSMENT EXERCISE 1

What are the benefits of re-use?

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

132

3.3 Software Development with Re-use

Software development with re-use attempts to maximise the use of
existing components. These components may have to be adapted in a
new application.

Fewer components need be specified, designed and coded. Overall
development costs should therefore be reduced.

3.4 Requirements for Re-use

i.It must be possible to find appropriate reusable components in a

component data base.
ii.Component re-users must be able to understand components and must

have confidence that they will meet their needs.
iii.The components must have associated documentation discussing

HOW they can be re-used and the potential costs of re-use.

SELF ASSESSMENT EXERCISE 2

Enumerate the requirements for re-use.

3.5 Software Development for Re-use

Software components are not automatically reusable. They must be
modified to make them usable across a range of applications. Software
development for re-use is a development process which takes existing
components and aims to generalize and document them for re-use.

4.0 CONCLUSION

In this unit you have learned about software re-use. You have also
learned about the benefits of re-use and the requirements for re-use.

5.0 SUMMARY

What you have learned in this unit borders on software re-use, its
benefits and requirements for re-use.

6.0 TUTOR-MARKED ASSIGNMENT

Describe the concept of software re-use.

7.0 REFERENCES/FURTHER READINGS

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

133

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill
(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for
Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:

Prentice Hall.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

134

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

UNIT 5 SOFTWARE PROTOTYPING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Software Prototyping
3.2 Prototyping Steps
3.3 Types of Prototyping

3.3.1 Throwaway Prototyping
3.3.2 Evolutionary Prototyping

3.4 Advantages of Prototyping
3.5 Disadvantages of Prototyping

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will focus primarily on software prototyping. It gives an
outline of steps involved in the prototyping process. We will also
consider types of prototyping as well as the advantages and
disadvantages of prototyping.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

135

2.0 OBJECTIVES

By the end of this unit, you should be able to:

describe software prototyping
list the prototyping steps
identify and explain the types of prototyping
state the advantages and disadvantages of prototyping.

3.0 MAIN CONTENT

3.1 Software Prototyping

Software prototyping is the creation of prototypes, i.e., incomplete
versions of the software program being developed
The purpose of a prototype is to allow users of the software to evaluate
proposals for the design of the eventual product by actually trying them
out, rather than having to interpret and evaluate the design based on
descriptions.
3.2 Prototyping Steps

The process of prototyping involves the following steps

1. Identify Basic Requirements

Determine basic requirements including the input and output
information desired. Details, such as security, can typically be ignored.

2. Develop Initial Prototype

The initial prototype is developed that includes only user interfaces.

3. Review

The customers, including end-users, examine the prototype and provide
feedback on additions or changes.

4. Revise and Enhancing the Prototype

Using the feedback both the specifications and the prototype can be
improved. Negotiation about what is within the scope of the
contract/product may be necessary.

SELF ASSESSMENT EXERCISE 1

List the prototyping steps.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

136

3.3 Types of Prototyping

Software prototyping has many variants. However, all the methods are
in some way based on two major types of prototyping: Throwaway
Prototyping and Evolutionary Prototyping.

3.3.1 Throwaway Prototyping

Throwaway or Rapid Prototyping refers to the creation of a model that
will eventually be discarded rather than becoming part of the finally
delivered software. After preliminary requirements gathering is
accomplished, a simple working model of the system is constructed to
visually show the users what their requirements may look like when
they are implemented into a finished system.

The most obvious reason for using Throwaway Prototyping is that it can
be done quickly. If the users can get quick feedback on their
requirements, they may be able to refine them early in the development
of the software. Another strength of Throwaway Prototyping is its
ability to construct interfaces that the users can test. The user interface is
what the user sees as the system, and by seeing it in front of them, it is
much easier to grasp how the system will work.

3.3.2 Evolutionary Prototyping

Evolutionary Prototyping (also known as breadboard prototyping) is
quite different from Throwaway Prototyping. The main goal when using
Evolutionary Prototyping is to build a very robust prototype in a
structured manner and constantly refine it. "The reason for this is that
the Evolutionary prototype, when built, forms the heart of the new
system, and the improvements and further requirements will be built.
When developing a system using Evolutionary Prototyping, the system
is continually refined and rebuilt.”

Evolutionary Prototyping have an advantage over Throwaway
Prototyping in that they are functional systems. Although they may not
have all the features the users have planned, they may be used on an
interim basis until the final system is delivered. Evolutionary
Prototyping have an advantage over Throwaway Prototyping in that they
are functional systems. Although they may not have all the features the
users have planned, they may be used on an interim basis until the final
system is delivered.

3.4 Advantages of Prototyping

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

137

i. Reduced time and costs: Prototyping can improve the quality of
requirements and specifications provided to developers. Because
changes cost exponentially more to implement as they are
detected later in development, the early determination of what the
user really wants can result in faster and less expensive software.

ii. Improved and increased user involvement: Prototyping

requires user involvement and allows them to see and interact
with a prototype allowing them to provide better and more
complete feedback and specifications. The presence of the
prototype being examined by the user prevents many
misunderstandings and miscommunications that occur when each
side believes the other understands what they said. Since users
know the problem domain better than anyone on the development
team does, increased interaction can result in final product that
has greater tangible and intangible quality. The final product is
more likely to satisfy the user’s desire for look, feel and
performance.

SELF ASSESSMENT EXERCISE 2

What is the advantage of evolutionary prototyping over throwaway
prototyping.

3.5 Disadvantages of Prototyping

i. Evolutionary insufficient analysis: The focus on a limited

prototype can distract developers from properly analysing the
complete project. This can lead to overlooking better solutions,
preparation of incomplete specifications or the conversion of
limited prototypes into poorly engineered final projects that are
hard to maintain. Further, since a prototype is limited in
functionality it may not scale well if the prototype is used as the
basis of a final deliverable, which may not be noticed if
developers are too focused on building a prototype as a model.

ii. User confusion of prototype and finished system: Users can

begin to think that a prototype, intended to be thrown away, is
actually a final system that merely needs to be finished or
polished. (They are, for example, often unaware of the effort
needed to add error-checking and security features which a
prototype may not have). This can lead them to expect the
prototype to accurately model the performance of the final system
when this is not the intent of the developers. Users can also
become attached to features that were included in a prototype for
consideration and then removed from the specification for a final

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

138

system. If users are able to require all proposed features be
included in the final system this can lead to feature creep.

iii. Developer attachment to prototype: Developers can also

become attached to prototypes they have spent a great deal of
effort producing; this can lead to problems like attempting to
convert a limited prototype into a final system when it does not
have an appropriate underlying architecture. (This may suggest
that throwaway prototyping, rather than evolutionary prototyping,
should be used.)

iv. Excessive development time of the prototype: A key property

to prototyping is the fact that it is supposed to be done quickly. If
the developers lose sight of this fact, they very well may try to
develop a prototype that is too complex. When the prototype is
thrown away the precisely developed requirements that it
provides may not yield a sufficient increase in productivity to
make up for the time spent developing the prototype. Users can
become stuck in debates over details of the prototype, holding up
the development team and delaying the final product.

4.0 CONCLUSION

Specifically, you learned about software prototyping. You would have
also learned about steps involved in the prototyping process. The types
of prototyping as well as the advantages and disadvantages of
prototyping were equally considered.

5.0 SUMMARY

What you have learned in this unit is focused on software prototyping.

6.0 TUTOR-MARKED ASSIGNMENT

What is the main goal of evolutionary prototyping?

7.0 REFERENCES/FURTHER READINGS

Somerville, I. (2002). Software Engineering Methodology, McGraw-Hill

(5th Edition).

Brooks, F. P., (1995). The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley Inc.:
Reading, MA.

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

139

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger,
G., Pree, W., Stal, M. and Szyperski, C., (1998). “What

Characterizes a (Software) Component?” Software – Concepts
& Tools, vol. 19, pp. 49-56.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.,

(1996). Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, Inc.: New York.

Calvert, K. L. and Donahoo, M. J., (2002). TCP/IP Sockets in Java:

Practical Guide for Programmers, Morgan Kaufmann
Publishers, San Francisco: CA.

Caromel, D. and Vayssière, J., (July 2003). “A Security Framework for

Reflective Java Applications,” Software – Practice & Experience
(John Wiley & Sons, Inc.), vol. 33, No. 9, 821-846.

Chellappa, R., Phillips, P. J. and Reynolds, D., (Eds.), (November

2006). Special Issue on Biometrics: Algorithms and Applications
of Fingerprint, Iris, Face, Gait, and Multimodal Recognition,
Proceedings of the IEEE, vol. 94, no. 11.

Chen, G., and Szymanski, B. K., (December 2001). “Object-oriented

Paradigm: Component-oriented Simulation Architecture:
Toward Interoperability and Interchangeability,” Proceedings of
the 2001 Winter Simulation Conference (WSC 2001), pp. 495-501,

Arlington: VA.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.
and Jeremaes, P., (1994). Object-Oriented Development: The
Fusion Method, Prentice-Hall, Inc., Englewood Cliffs: NJ.

Constantine L. L. and Lockwood, L. A. (1999). Software for Use: A

Practical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional/ACM Press: Reading, MA.

Grogono, P. (1999). Software Engineering (2nd Edition), New Jersey:
Prentice Hall.

Online Resources

http://www.cs.nmsu.edu/~jeffery/courses/371/lecture.html

http://mail.svce.ac.in/~uvarajan/cn.html

CIT 831 SOFTWARE ENGINEERING METHODOLOGIES

140

http://www.freetechbooks.com/software-engineering-methodology-the-
watersluice-t573.html#754.

