NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE CODE: CIT 844

COURSE TITLE:

ADVANCED DATABASE MANAGEMENT SYSTEM

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

COURSE
GIUDE

ADVANCED DATABASE MANAGEMENT SYSTEM

Course Developer/Writer Dr. Olusegun Folorunso
Department of Computer Science
University of Agriculture
Abeokuta

Programme Leader Prof. Afolabi Adebanjo
National Open University of Nigeria

Course Coordinator National Open University of Nigeria

Page | ii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM

National Open University of Nigeria
Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse I, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by

National Open University of Nigeria
Printed 2009

ISBN: XXX-XXX-XXX-X

All Rights Reserved

Page | iii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

CONTENTS PAGE

0T 18T o] Y
What you Will Learn in this COUISEovieiieiie it e e Y%
(@011 65T [1 Vi
COUISE OB JBCTIVES. .. ettt ittt et et e e e e e e e e e e e e e e enaas Vi
Working through this COUrSE ... e vi
CoUrse MaterialS.cv et e e e e e Vi
ONIINE MAtEITAIS. .. . v et e e e eas vii
SHUAY UNIES. et e e vii
EQUIPIMENTS. ..o e e viii
ASSBSSIMENT . . ettt et e e e e e IX
Tutor-Marked ASSIgNMENT. e e e e e e e e IX
COUISE OVEIVIEBW ...t ettt et et et et et et et et et et et e e e e e e e e eeeens X
How to Get the Most from thisS COUISeovvviiii i e, X
SUMMIBIY . e ettt e e e e e e e e e et et et et e e e e e e Xi

Page | iv

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Introduction

The course, Advanced Database Management System, is a core course for students
studying towards acquiring the Master of Science in Information Technology. In this
course we will study about the Database Management System as a key role in
Information Management. Various principles of database management system (DBMS)
as well as its advanced features are discussed in this course. This course also considers

distributed databases and emerging trends in database system.

The overall aim of this course is to introduce you to various ways of designing and
implementing database systems, features and distributed databases. In structuring this

course, we commence with the basic design and implementation of relational databases.

There are four modules in this course, each module consists of units of topics that you are

expected to complete in 2 hours. The four modules and their units are listed below.

What You Will Learn in this Course

The overall aims and objectives of this course provide guidance on what you should be
achieving in the course of your studies. Each unit also has its own unit objectives which
state specifically what you should be achieving in the corresponding unit. To evaluate
your progress continuously, you are expected to refer to the overall course aims and

objectives as well as the corresponding unit objectives upon the completion of each.

Page | v

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Course Aims

The overall aims and objectives of this course will help you to:

1. Develop your knowledge and understanding of the underlying principles of Relational
Database Management System

2. Build up your capacity to learn DBMS advanced features

3. Develop your competence in enhancing database models using distributed databases
4. Build up your capacity to implement and maintain an efficient database system using

emerging trends.

Course Objectives
Upon completion of the course, you should be able to:
. Describe the basic concepts of Relational Database Design
. Explain Database implementation and tools
. Describe SQL and Database System catalog.
. Describe the process of DB Query processing and evaluation.
. Discuss the concepts of transaction management.
. Explain the Database Security and Authorization.
. Describe the design of Distributed Databases.
. Know how to design with DB and XML.
. Describe the basic concept of Data warehousing and Data mining
10. Discuss the emerging Database Models Technologies and Applications

© 0N 01l WDN PP

Working through this Course

We designed this course in a systematic way, so you need to work through it from
Module one, Unit 1 through to Module four, Unit 3.

This will enable you appreciate the course better.

Course Materials

Basically, we made use of textbooks and online materials. You are expected to I, search
for more literature and web references for further understanding. Each unit has references
and web references that were used to develop them.

Page | vi

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Online Materials

Feel free to refer to the web sites provided for all the online reference materials required
in this course.

The website is designed to integrate with the print-based course materials. The structure
follows the structure of the units and all the reading and activity numbers are the same in
both media.

Study Units

Course Guide

Module 1: Database Design and Implemental
Unit 1: Relational Database Design

Unit 2: Database Implementation & Tools

Unit 3: Advance SQL

Unit 4: Database System Catalog

Module 2: DBMS Advance Features

Unit 1: Query Processing & Evaluation

Unit 2: Transaction Management and Recovery
Unit 3: Database Security & Authorization
Module 3: Distributed Databases

Unit 1: Enhanced Database Models

Unit 2: Object Oriented Database

Unit 3: Database and XML

Unit 4: Introduction To Data Warehousing

Unit 5: Introduction to Data Mining

Module 4: Emerging Trends and Example of DBMS Architecture

Unit 1: Emerging Database Models

Page | vii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Unit 2: Technologies and Applications

Unit 3 PostgreSQL & Oracle

Module one describes Database Design and Implementation.

Module Two explains the DBMS advanced features.

Module Three discusses the Distributed Database.

Module Four discusses Emerging trends in DBMS including technologies and
applications.

Equipment

In order to get the most from this course, it is essential that you make use of a computer
system which has internet access.
Recommended System Specifications:
Processor

2.0 GHZ Intel compatible processor

1GB RAM

80 GB hard drive with 5 GB free disk
CD-RW drive.

3.5" Floppy Disk Drive

TCP/IP (installed)

Operating System

Windows XP Professional (Service Pack 2)
Microsoft office 2007

Norton Antivirus

Monitor*

19-inch

1024 X 768 Resolution

16-bit high color

*Non Standard resolutions (for example, some laptops) are not supported.
DBMS Tools

ORACLE

PostgreSQL

Hardware

Open Serial Port (for scanner)

120W Speakers

Mouse + pad

Page | viii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Windows keyboard
Laser printer

Hardware is constantly changing and improving, causing older technology to become
obsolete. An investment in newer, more efficient technology will more than pay for itself
in improved performance results.

If your system does not meet the recommended specifications, you may experience
considerably slower processing when working in the application. Systems that exceed the
recommended specifications will provide better handling of database files and faster
processing time, thereby significantly increasing your productivity.

Assessment

The course, Advanced Database Management Systems entails attending a two-hour final
examination which contributes 50% to your final grading. The final examination covers
materials from all parts of the course with a style similar to the Tutor- marked
assignments.

The examination aims at testing your ability to apply the knowledge you have learned
throughout the course, rather than your ability to memorize the materials. In preparing for
the examination, it is essential that you receive the activities and Tutor-marked
assignments you have completed in each unit. The other 50% will account for all the
TMA’s at the end of each unit.

Tutor-Marked Assignment

About 20 hours of tutorials will be provided in support of this course.

You will be notified of the dates, time and location for these tutorials, together with the
name and phone number of your tutor as soon as you are allotted a tutorial group.

Your tutor will mark and comment on your assignments, keep a close watch on your
progress and on any difficulties you might encounter and provide assistance to you
during the course. You must mail your TMAs to your tutor well before the due date (at
least two working days are required). They will be marked by your tutor and returned to
you as soon as possible.

Do not hesitate to contact your tutor by phone, e-mail if you need help.

Page | ix

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The following might be circumstances in which you would find help necessary. You can
also contact your tutor if:

you do not understand any part of the study units or the assigned readings

you have difficulty with the TMAs

you have a question or problem with your tutor’s comments on an assignment or
with the grading of an assignment

You should try your best to attend tutorials, since it is the only opportunity to have an
interaction with your tutor and to ask questions which are answered instantly. You can
raise any problem encountered in the course of your study. To gain maximum benefit
from the course tutorials, you are advised to prepare a list of questions before attending
the tutorial. You will learn a lot from participating in discussions actively.

Course Overview
This section proposes the number of weeks that you are expected to spend on the three
modules comprising of 30 units and the assignments that follow each of the unit.

We recommend that each unit with its associated TMA is completed in one week,
bringing your study period to a maximum of 30 weeks.

How to Get the Most from this Course

In order for you to learn various concepts in this course, it is essential to practice.
Independent activities and case activities which are based on a particular scenario are
presented in the units. The activities include open questions to promote discussion on the
relevant topics, questions with standard answers and program demonstrations on the
concepts. You may try to delve into each unit adopting the following steps:

1. Read the study unit

2. Read the textbook, printed or online references

3. Perform the activities

4. Participate in group discussions

5. Complete the tutor-marked assignments

6. Participate in online discussions

This course makes intensive use of materials on the world-wide web.

Page | x

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Specific web address will be given for your reference. There are also optional readings in
the units. You may wish to read these to extend your knowledge beyond the required
materials. They will not be assessed.

Summary

The course, Advanced Database Management Systems is intended to develop your
understanding of the basic concepts of database systems, thus enabling you acquire skills
in designing and implementing Database Management Systems. This course also provides
you with practical knowledge and hands-on experience in implementing and maintaining
a system. We hope that you will find the course enlightening and that you will find it both
interesting and useful. In the longer term, we hope you will get acquainted with the
National Open University of Nigeria and we wish you every success in your future.

Page | xi

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

ADVANCED DATABASE MANAGEMENT SYSTEM

MAIN
COURSE
Course Developer/Writer Dr. Olusegun Folorunso
Department of Computer Science
University of Agriculture
Abeokuta
Programme Leader Prof. Afolabi Adebanjo
National Open University of Nigeria
Course Coordinator National Open University of Nigeria

NATIONAL OPEN UNIVERSITY OF NIGERIA

Page | xii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM

National Open University of Nigeria
Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse |1, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published by

National Open University of Nigeria
Printed 2009

ISBN: XXX-XXX-XXX-X

All Rights Reserved

Page | xiii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

CONTENTS PAGE

MODULE 1: Database Design and Implementation

Unit 1. Relational Database Design.

0T 1011 0o [0 o4 1 o o 1
00 R O | o 1= ox {1 1
1.2 What is Relational Database?.........ccccccevurrieiieninsie e 1
1.2.1 Relational Database Model Concept..........cocoviiiiiiiiininnn. 1
1.2.2 Relational Constraints and Relational Database Schemas............ 6
1.2.3 Update operations and Dealing with Constraint Violations........... 8
1.3 Relational Database DeSigN.......cccvviieiieiieieie e e 18
1.3.1 The Entity Relational (ER) model................cooiiiiiin s, 18
1.3.2 An lllustration of a Company Database Application.................. 20
1.3.3 Entity Types, Entity Set, Attributes and keys............ccccevvvvnnnnnn 20
1.3.4 Entity Types, Entity Set, Key and Value Set............................ 22
1.3.5 Pitfalls in a Relational Database Design...............ccoveveveinenn.n. 23
1.4 NOrmMalization.......oooie i e e 29
1.5 CONCIUSION. ..t e e e e e e e e e e e 58
18 QUMY .t e e e e e e et e e 58
1.7 Tutor Marked ASSIGNMENT. ..ot e 59
1.8 Further Reading.........covviiiiiiieii e e e 59

Page | xiv

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Unit 2: Database Implementation

2.0, INrOQUCTION. vt e e e e 61
2.0 OB JECIVES . ..o e 61
2.2. Conceptual DeSIgN.oeeirii e e e 61

2.2.1 Information Sources and USErS..........couiuiieiiiiein i 62
2.3. E-RModel Verification............ooiuiieiii e e 63
2.4, LOQICAl DESION. ..\ttt it e e e e e 70
2.5, PhysiCal DeSIgN... ... ot 72
2.6, IMplementation....... ..ot iii i 74

2.6.1 Database Creation...........oueeiuieries e e e e e e e 74

2.6.2 Database Loading and CONVErSION.........coviiviieiieiieieieiieannanen 74

2.6.3 SYStEM ProCEAUIES.v e e e e e e e e, 75
2.7 Testingand EValuation............oouieii i e 75

2.7.1. Performance MEASUIES.cou ittt e e e 75
2.8 SECUNLY MEASUIES. ...ttt ettt et et et et e e et e et et e e e e e enaas 76
2.9, OPRIALIONS. .. ettt e et e e e e e 77
2.10 CONCIUSION. .. ettt e e e e e e e e e 77
72200 T T 1 1 011 1T 1Y/ P 77
2.12 Tutor Marked ASSIGNMENT.ovtiieii e e e 78
2.13 FUMher REadINGS. ...t e e e e e e e e e e e e e e e e e 79

Unit 3: Advanced SQL.
3.0, INITOAUCTION . .. oot e e e e e e e e 80

T80 I ©]] 1< £ -1 80

Page | xv

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.2 WA IS SQL?..ciiiee e s 80
3.3. Using SQL on a Relational Database............coooiiiiiiiiiiiiin e v 81
3.4, SO S AlEMENTS. .. ettt e e e e s 83
3.5, CONCIUSION. .. .ttt e e e e e e e e 108
3.6, SUMIMAIY .. et e e e e e e e e e e e e e 108
3.7. Tutor Marked Assignment (TMA).......cuiiii e 108
3.8, FUMher REAAING. .. cu i e e e e e e e e e e e e e 109

Unit 4: Database System Catalogue

4.0, INEFOTUCTION et e et e e e e e e e e e e e e e e 110
O L o =T £ Y= P 110
4.2. What is Database System CatalogUue?..........cccccvevveieeiiieiie i e 110
4.3, CONCIUSTON . .. ottt e e e e e e e e e e e e e ee e 111
T [01 T PP 111
4.5. Tutor Marked Assignment (TMA).......oeii e e 111
4.6. FUrther ReadiNgS. cuu it e e e e e e e e e 111

Module 2: Advanced Features and DBMS

Unit 1: Query Processing & Evaluation

00 0 1 10 T 11 4 T o 1 112
00 O O | o 1= ox {1 112
1.2 Query Interpretation.......ccoooevie i e 112
1.3. Equivalence Of EXPreSSIONS.ocuvee e i i i e e e e e e ee e e 113

1.3.1. Selection Operation.........oovvvveiie i e 113

Page | xvi

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

1.3.2. Natural Join Operations..........ccc.evveeieieieiieiiecenaen 115

1.3.3. Projection Operations.o.uvieiieiiiiinie e aan e ean e 116
1.4, Estimation of Query-Processing CostS.........covviiiiiiiiii i, 117
1.5. Estimation Of Costs of Access Using INdiCeS..........cccovveiiiiiiiiiinnnnn 118
LG TN [0 1] S - U=T [120
1.6.1. Simple Iteration..........ccovoniiii e 121
1.6.2. Block-Oriented Iteration..............ooovviiiiiie i e 121
1.6.3. MEIQE-JOIN. .. ettt 123
1.6.4. Useofan INdeX........cooeiuiiiiiiii e e 124
1.6.5. Three-Way JOin.......c.oniii e, 124
1.7. Structure of Query OptimIZer..........ovviii i e 125
1.8, CONCIUSION. ...t e e 126
10, SUMMIAIY . e e e e e e e e e e 126
1.10. Tutor-Marked Assignment (TMA) ..o e 127
1.11. Further REadiNGS.ouv ittt it e e e e e e e e e e 127

Unit 2: Transaction Management & Recovery

2.0. INErOAUCTION.t e e e e e e 128

2.1, ODJECHIVES. ..t 128

2.2, What iS @ TranSaCtiON?.........ccviieiuiiieiicrieeie sttt 128
2.2.1. Transaction ProPerties.covee i i is e e e e, 129
2.2.2. Transaction Managementwith SQL................cooo i enn . 130
2.2.3. The TranSaction LOg.......ovvutieinetie e e e e e e 131
2.2.4 Types of Transaction Log ReCords.............ccvvvviviiiiiiiininnenn. 132

Page | xvii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

2.3. Concurrency Control..........cooi it 132
2.3.1. Concurrency control with Locking Methods................c.coet e, 133
2.3.2. TYPES OF LOCKS.....eeeie it 133
2.3.3. Two-Phase Locking to Ensure Serializablility....................... 134
2.3.4. Deadlocks.oiiie i, 134

2.4, Concurrency Control with Time Stamping Methods......................... 134

2.5 Concurrency Control with Optimistic Methods...................cooeen . 135
2.5.1 Optimistic Concurrency Control phases................coeeeneenn .. 135

2.6. Database Recovery Management.............vevveiiriirieieieieiecenaen, 135

2.7, CONCIUSION. ... e e e e e e 136

2.8, SUMIMAIY ...t e e e e e e e et e e e e 136

2.9. Tutor-Marked Assignment (TMA)......oi i e 136

2.10. FUrther REadiNgS.ouu it e e e e e e 137

Unit 3: Database Security &Authorization

3.0, INErOTUCTION. e e e e e e 138
TS0 T ©]] 13 £ Y1 138
3.2. Security and Integrity VIolations............coooiv it e, 138
3.3, AUhONIZAtION & VIBWS.ttt e e e e e e 139
3.4, Integrity CoNSIIaINTS.u ittt e e e e e e e e e e 143
KT8 N = 0 Tox Y/ 011 o o 145
3.6. Statistical Databases.oeie e 147
3.7, CONCIUSION.t e e e e e e e 148

3.8 SUMIMAIY ... et e e e e e e e e e e e e 148
3.9. Tutor-Marked Assignment (TMA).......ourii e 149

Page | xviii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.10. FUMher REAAINGS. .. cv ot ittt e e e e e e et e e e e eeeaen e 149

Module 3: Distributed Databases

Unit 1;: Enhanced Database Model

1.0, INEOQUCTION.e e e e e e e e e e 150
I R O o] 1= ox £V PP 150
1.2. Distributed Databases.c.uie et 150
1.3. Structure of Distributed Databases.ocooiiiiii i 151
1.4, Trade-offs in Distributing the database................ccooiiiiiiiiii i, 153
1.4.1 Advantages of Data Distribution................cooooiiiiiiii i 153
1.4.2. Disadvantages of Data Distribution................c.ccooiiiiiiiii e ann 154
1.5. Design of Distributed Databases............coeiieiiiiiiiii i v 154
1.5.1 Data Replication.......c.uveiiie it e 155
1.5.2 Data Fragmentation..........oouieiiiiieiiiii e 155
1.5.3 Data Replication and Fragmentation................c.oovvvve e eneennn. 159
1.6. Transparently and AULONOMYoiuiiniit it e 159
1.6.1 Naming and local Autonomy..........cccoviiiiiiiiiiiiieeenaen 160
1.6.2 Replication and Fragmentation Transparency.............c.voeeuer... 160
1.6.3 LOCAtION TranSParENCY v e et et et ee et et e e e e e eneenns 161
1.6.4 Complete Naming SCheme. ..o e, 161
1.6.5 Transparency and Update to Replicated Data.......................... 161
1.7. Distributed QUEry ProCeSSING.......ouuieiieiieiieie it 163
1.7.1 Replication and Fragmentation................cccoeiiiiiiiiiieeennns 163

Page | xix

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

1.7.2 Simple JOIN ProCesSiNG......ccvvee v e e e e e e e e e e 163
1.7.3 JOIN StrategiesS. .. et e e e e 164
1.7.4 Semijoin StrategiesS. .. .o oue ittt ittt e e e e e e e e aeen 164
1.8. Recovery in Distributed SyStemsS..........ouvie i 166
1.8.1 System StrUCUIE... ..ot e e e e 166
1.8.2 RODUSENESS. .. . ceee ettt e et e et e et e e e e e e 167
1.8.3 CommIt ProtoCols.oveii i e 168
1.9. Concurrency CONMIOL. cuuer e e 170
1.9.1 Locking ProtoCols.......ccovviiiiieiiie e 170
1.9.2 TimMe StaAMPING. ..ttt e 173
1.10. Deadlock Handling...o e e e e e e e e e e 174
1.10.1 Centralized Approach...........ccoovii i 175
1.10.2 Fully Distributed Approach..........cooovviiiiiiiiii i, 177
1.11. Coordinator SEIECHION. vu et 179
1.11.1 Backup Coordinators.cuueeiie e e e 180
1.11.2 Election Algorithms.............oo oo, 180
1,12, CONCIUSTON. ..ot e e e e e e e e e e e e e 181
113, SUMIMAIY . e e e e e e e e e e e e e e e e en 181
L L T M A e 182
1.15. FUMhEr rea0iNgS.o ou ettt e e e e e e e e e e 183

Unit 2: Object Orientated Database

2 0 R 101 1 oo [od o] 184
2.1 ODJECLIVES. ..t 184
2.2. Features of an Object-Orientated DBMS.........ccoooiiiiiiiin i, 184

Page | xx

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

2.3. Object-Oriented Database Design........cccvveiveiieiinii e iie e e e, 185
2.4. How OO Concept has Influenced the Relational Model................. 187
2.5 CONCIUSION. .. e e e e e 190
2.6 SUMMAIY ...ttt e e e e e e e e e e e e e et 190
2.7 M A o e e 190
2.8 Further Readings..........ovviriiiiii e e 190

Unit 3: Database and XML

3.0 INtrOQUCLION. ... e e e e e 191
3.1 ODJECHIVES. ..t e 191
3.2 Define the Purpose of XML........coooiiii i e, 191
3.3 XML Tr8ES. et e 194
34 XML Syntax RUIES. ... 196
35 XML EIEMENTS. ... 198

3.5.1 XML Naming RUIES........c.ooeiiiii e 199
3.6 XML AHIDULES.o 200
3.7, CONCIUSION. ..t et e e e e e e e 206
3.8 SUMMANY ..t e 206
3.0, TV A 206
3.10 Further Reading.......ovveiieiieie it e, 206

Unit 4: Introduction to Data Warehousing

4.0 ()00 T0 (U121 o] o 208

Page | xxi

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

4.1 ODJECHIVE. et 208
4.2. What is Data WarehouSing?........cccocoviriniiniie e 208
4.3. Data Warehouse ArchiteCtures.ooeeiiiiiiiiiie e, 209
4.3.1. Data Warehouse Architecture (BasiC)..........covviiriiiiieiiiiniennen. 210
4.3.2. Data Warehouse Architecture (With a Staging Area)................... 210

4.3.3.2. Data Warehouse Architecture (With a Staging Area and Data Mart) 211

4.4. Logical Versus Physical Design in Data Warehouse......................... 212
4.5. DataWarehousing SChema...........ccooiiiiiiiii e 213
4.6 Data Warehousing ODJectS.........covviiiiiiiii e 214

4.6.1 FaCt TabIeS. ... oo 214

4.6.2 DIMENSION TabIES. ... e e e 214
V1111 0 1 VPP 220
A T O] o 1] o] o P PP 220
4. 0. TV A 220
4.9. FUrther Readings.c.uiuiieiie e e 220

Unit 5: Introduction to Data Mining

5.0, INIrOTUCTION ... vee ettt e e e e e e e e e e 221
o T0 B @ o] 1= o3 {2 221
5.2, Data MiNING USES.ttt et e e e e e e e e e e e e e 221
5.3, Data Mining FUNCLIONS. ... e e e e 223
5.4 Data Mining TeChNOIOQIES.vuiiii i e e, 224
0.0 SUMIMAIY i e e e e e e e e e e e 225

Page | xxii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

TG T O] o [1E5] o] 1 226
D 7. T A e 226
5.8, FUMNEr REAINGS. ...ttt e e e e e e e e e 226

Module 4: Emerging Trends and Examples of DBMS Architecture

Unit 1: Emerging Database Models

1.0 INErOTUCTION. .. ettt e e e e e e e e e e e e 227
00 R O [o 1= o3 {1 227
1.2. Limitations of Conventional Databases..............coviiiiiiiiiiiiie, 227
1.3. What is Multimedia Database?...........ccccvririiinie e 228
1.4, Temporal Databases: Modelling Temporal data: Temporal SQL............. 230
141 INrOQUCTIONttt e e e e e e e e e 230
1.4.2 Temporal Data SemantiCs..........vvvieiiiiiiiiii e, 230
1.4.3 Temporal Data Models and Query Languages.............cc.ccoveunenn. 232
1.5 Temporal DBMS Implementation.............ccoviiiiiiiiiiiiieieieenans 236
1.5.1 QUEIY PrOCESSING. .. .uttttettatat et et e e e s re e e aesaanae e 236
1.5.2 Implementing Algebraic Operators..........ccocvviiiiveieieeneennnn. 237
1.5.3 Indexing Temporal Data..........c.covviiiiiii e 238
1.6 OUHIOOK. .. .ot e e e e e e e 238
1.7 CONCIUSION. ...t e e e e e e e e e e e 241
1.8 SUMMANY ...t e e 241
1.9. Tutor Marked ASSIgNMENT.o ittt et et e e e e e e enea 241
1.10 Further Reading.......ocvveiieiieie i e e e e e e e e e 242

Page | xxiii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Unit 2: The Major Application Domains

2.0 INEFOUCTION. e e e e e e e e e e 243
2.1 O JCHIVES . .. 243
2.2 Database on the World Wide Web...........cccooiii i 243
2.3 GIS APPHICALION.ee e e 243
2.3.1 Specific GIS Data Operations..........coueueriieiiieieiieiienienaes 244
2.3.2 AnExample of AGIS: Arc-Info.......cooooii i, 245
24 GENOME Data Management.cevuee et eies e e vaeeenaeen 246
2.4.1 Biological Sciences and GenetiCS..........ovvvviiviiiiieiieieieannnnn, 246
2.4.2 Characteristics of Biological Data.............c.ccocvevviiiinnnnn, 247

2.4.3 The Human GENOME Project and Existing Biological Databases.. 249

2.5 Digital LiDraries.o, 250
2.6 CONCIUSION. ...t e e e e e e e e e e 251
2 A 11 1 011 1T 1Y/ 251
2.8 Further Reading.........cooii i e e e e 252

Unit 3 PostgreSQL

3.0 INrOAECLION. ...t e e e e e e e e 253
T80 ©]] 1< £ -1 253
3.2 What 1S POStOreSQL. .. en ittt et e e e e e e e 253
3.3 PostgreSQL and other DBMS’S......civiiiiiiiiiii e 254
3.4 Open SOUICE SOTIWAIE.ie e e e e e 259
3.5 CONCIUSION. .. et e e e 259
3.0 SUMIMIAIY L.ttt e e e e e e e e e e 259

Page | xxiv

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.7
3.8

Tutor Marked ASSIgNMENT.ccie et 259
Further Reading......cco oo e, 259

MODULE 1: DATABASE DESIGN & IMPLEMENTATION

UNIT 1: RELATIONAL DATABASE DESIGN

1.0

11

1.2

INTRODUCTION

This unit discusses extensively on relational data model. The model was first introduced
by Ted Codd of IBM research in 1970 in a classic paper, and attracted immediate
attention due to its simplicity and mathematical foundations. The model uses the
concept of mathematical relation, which looks somewhat like a table of values, as its
basic building blocks, and has its theoretical basics in set theory and first order predicate
logic. In this unit, we will discuss the basic characteristics for the relational model and its
normalization processes. The model has been implemented in a large number of
commercial systems over the last years.

OBJECTIVES.

To understand the relational database model.
To understand the concepts of normalization in database design

WHAT IS RELATIONAL DATABASE?

A relational database is a database that groups data using common attributes found in
the data set. The resulting "clumps" of organized data are much easier for people to
understand. For example, a data set containing all the real estate transactions in a town
can be grouped by the year the transaction occurred; or it can be grouped by the sale
price of the transaction; or it can be grouped by the buyer's last name; and so on. Such a
grouping uses the relationalmodel (a technical term for this is schema). Hence such a
database is called a "relational database”. The software used to do this grouping is
called a relationaldatabasemanagementsystem. The term "relational database" often
refers to this type of software. Relational databases are currently the predominant
choice in storing financial records, manufacturing and logistical information, personnel
data and much more.

1.2.1 Relational Database Model Concept.

Page | xxv

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The relational model represents the database as a collection of relations. Informally,
each relation resembles a table of values or, to some extent a “flat” file of record. For
example, the university database of files that was shown earlier is considered to be in
the relational model. However, there are important differences between relations and
files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a
collection of related data values. In the relational model, each row in the table
represents a fact that typically corresponds to a real-world entity or relationship. The
table name and column names are used to help in interpreting the meaning of the row
which represents facts about a particular student entity. The column names - Name,
Student, Number, Class, Major - specify how to interpret the data values in each row,
based on the column each value is in. All values in a column are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column header is
called an attribute, and the table is called a relation. The data type describing the types
of values that can appear in each column is called a domain. We now define these
terms — domain, tuple, attribute, and relation — more precisely.

Domains, Attributes, Tuples, & Relations

A domain D is a set of atomic values. By atomic we mean that each value in the domain
is indivisible as far as the relational model is concerned. A common method of specifying
a domain is to specify a data type from which the data values forming the domain are
drawn. It is also useful to specify a name for the domain, to help in interpreting its
values. Some examples of domains follow:-

GSM phone-numbers: The set of 11-digit numbers valid in the Nigeria. E.g.
0803-5040- 707.

Local-phone-numbers: The set of 6-digit phone numbers valid within a particular
area code in Nigeria. E.g. 245290

Names: The set of names of persons.

Grade-point-averages: Possible values of computed grade point averages; each
must be a real (floating point) number between 0 and 5

Employee-ages: Possible ages of employees of a company, each must be a value
between 18 and 65 years old

Academic-department-names: The set of academic department names, such a
computer science, economics and physics, in a university.

Page | xxvi

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Academic-department-codes: The set of academic department codes, such as CSC,
ECON, and PHYS, in a university.

The preceding are called logical definitions of domains. A data type of format is also specified
on each domain. For example, the data type for the domain GSM phone-numbers can be
declared as a character string of the form (dddd)dddd-ddd, e.g. 0803-5640-707 where each d is
a data type. For Employee-ages, the data type is an integer number between 18 and 65, for
Academic-department-names, the data type is the set of all character strings that represent
valid department names. A domain is thus given a name, data type, and format. Additional
information for interpreting the values of a domain can also be given. For example, a numeric
domain such as person-weights should have the units of measurement - kilograms.

A relations schema

, denoted by (grzsms wewar J, is made up of a relation name R and a list of attributes grg: s .
Each attributes is the name of a role played by some domain

in the relation schema

is called the domain of
, and is denoted by (). A relation schema is used to describe a relation
is called the name of this relations. The degree of a relation is the number of attributes

of its relation schema.

An example of a relation schema for a relation of degree 7, which describes university students,
is the following:

Table 1.0 The attributes and tuples of a relation STUDENT

Page | xxvii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

STUDENT (Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)

Attributes

NS

Relation N

Student Name Ssn Home phone | Address Office Phone | Age | Gpa
Olumide Enoch | 305-61-2435 | 080-3616 2, Kings way Rd. null 19 | 4.21
Adamson Femi 381-62-1245 080-4409 125, Allen Avenue null 18 3.53

Tuples Yisa Ojo 22-11-2320 null 34,0bantoko Road 749-1253 25 2.89
Charles Olumo 489-22-1100 | 080-5821 256 Grammar School 749-6492 28 3.93
Johnson Paul 533-69-1238 | 0804461 7384, Paul Job Road null 19 3.25

For this relation schema, STUDENT is the name of the relation, which has seven attributes.

We can specify the following previously defined domains for some of the attributes of the

STUDENT relations:

O000¢0000} = 000o0o0;
OOO¢CCOy = DOCCOCOC - OOOOCOCOOC -DOCDCCo

O000¢00OD00O00O00O0OF = 00000 - 00000 - o00oonono;

O000¢00000000000%= 00000 -o0o0000 -ooooooa0;

Page | xxviii

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

AN ¢NAM = ANANA = NN - Annnnnna.
A relation (or relation state) "of the relation schema C(Z;,Cs wa » Z Jalso denoted by

C(C) isasetofn-tuples C = (C;,Cj,...Cx). Each n-tuple tis an ordered list of n values

O =°::EIFE:FIIIFE o

where each value T, f =C =T, is an element of CCC{CZ} or is a special null value. The
CCC value in tuple t, which correspondence to the attribute C; is referred to as C[C;].
The terms relation intension for the schema [and relation extension for a relation state
C(C} are also commonly used.

Table 1.0 shows an example of a STUDENT relation, which corresponds to the STUDENT schema
specified above. Each tuple in the relation represents a particular student entity. We display the
relation as a table, where each tuple is shown as a row and each attribute corresponds to a
column header indicating a role or interpretation of the values in that column. Null values

represent attributes whose values are unknown or do not exist for some individual STUDENT
tuples.

Page | xxix

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The above definitions of a relation can be restated as follows. A relation L{L) is a

mathematical relation of degree n on the domains CCCE(C /), CCC(CD), ., CEC(CET,

which is a subset of the Cartesian product of the domains that define :

D& ()X GEIXm X0

The Cartesian product specifies all possible combinations of values from the underlying
domains. Hence, if we denote the number of values or cardinality of a domain D by |D|, and
assume that all domains are finite, the total number of tuples in the Cartesian product is:

1G] % 1G] 5w % ()

Characteristics Of Relations

The earlier definition of relations implies certain characteristic that makes a relation different
from a file or a table. We now discuss some of these characters.

Ordering of Tuples in a Relation: A relation is defined as a set of tuples. Mathematically,
elements of a set have no order among them; hence tuples in a relation do not have any
particular order. However in a file, records are graphically stored on disk so there always
is an order among the records. This ordering indicates first, second, and last records in
the file. Similarly, when we display a relation as a table, the rows are displayed in a
certain order.

Page | xxx

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Tuple ordering is no part of a relation definition, because a relation attempts to
represent facts at a logical or abstract level. Many logical orders can be specified on a
relation, for example, tuples in this STUDENT relation in Table 1.0 could be logically
ordered by values of Name, SSN, Age, or some other attribute. The definition of a
relation does not specify any order, there is no preference for one logical ordering over
another. Hence, the relation displayed in Table 1.1 is considered identical to the one
shown in Table 1.0. When a relation is implemented as a file, a physical ordering may be
specified on the records of the file.

Ordering of values within a tuple, and an alternative definition of a relation: According to
the preceding definition of a relation, an n-tuple is an ordered list of n values, so the
ordering of values in a tuple and hence of attributes in a relation schema.

An alternative definition of relation can be given, making the ordering of value in a tuple
unnecessary. In this definition, a relation schema R = (A},A,,..., A,) is a set of attributes
and relation [} is a finite set of mappings r = [ty,t,,...,tm], Where each tuple is a mapping
from R to D, and D is the union of attribute domains; thatis, = (;3 U (g} Wt ()

Table 1.1. The relation STUDENT from Table 1.0, with a different order of tuples.

Student | Name Ssn ;'E;T:ee Address g;:ﬁi Age | Gpa
Olumide Enoch 305-61-2435 | 080-3616 2, Kings way Rd. Null 19 4.21
Adamson Femi 381-62-1245 | 080-4409 125, Allen Avenue null 18 3.53
Tuples Yisa Ojo 22-11-2320 Null 34,0bantoko Road 749-1253 25 2.89

Charles Olumo 489-22-1100 | 080-5821 256, Grammar School 749-6492 28 3.93

Johnson Paul 533-69-1238 0804461 7384, Paul Job Road null 19 3.25

In this definition, t(A;) must be in dom(A,) for 4 & = for each mapping t in r. Each mapping is
called a tuple.

t=<(Name; Yisa Ojo), (SSN,422-112320), (HomePhone, null), (Address, 34 Obantoko Road). (Office
Phone, 749-1253), (GPA, 2.89), (HomePhone, null) >

749-1253), (GPA, 2.89), (HomePhone; null)>

Page | xxxi

Figure 1.0 Two identical tuples when order of attributes and values in not
part of the definition of relation.

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

According to this definition, a tuple can be considered as a set of (<attribute>, <value>) pairs,
where each pair gives the value of the mapping form an attributes A, to a value v, from
dom(A,). The ordering of attributes is not important, because the attribute name appear with
its value. By this definition, the two tuples shown in figure 1.0 are identical. This makes sense at
an abstract or logical level, since they are really in no reason to prefer having one attribute
value appear before another in a tuple.

When a relation is sense at an abstracts are physically ordered as fields within a records. We
will use the first definition of relation, where the attributes and the values within tuples are
ordered, because it simplifies much of the notation. However, the alternative definition given
here is more general.

Values in the Tuples: Each value in a tuple is an atomic value; that is, it is not divisible into
components within the framework of the basic relational model. Hence, composite and
multi-valued attributes are not allowed. Much of the theory behind the relational model
was developed with this assumption in mind, which is called the first normal form
assumption. Multi-valued attributes must be represented by separate relations, and
composite attributes are represented only by their simple component attributes. Recent
research in the relational model attempt to remove these restrictions by using the
concepts of no first normal form or nested relations.

Interpretation of a Relation: The relation schema can be interpreted as a declaration or a
type of assertion. For example, the schema of the STUDENT relation of Table 1.0 asserts
that, in general, student entity has a Name, SSN, Home phone, Address, Office phone,
Age, and GPA. Each tuple in the relation can then be interpreted as a fact or a particular
instance of the assertion. For example, the first tuple in Table 1.0 asserts the fact that
there is a STUDENT whose name is Olutunde Enoch, SSN is 305-61-2435, Age in

19 and so on.

Notice that some relations may represent facts about entities, whereas other relations may
represent fact about relationship. For example, a relation schema MAJORS (Student SSN,
Department Code) asserts that students major in academic department, a tuple in this relation
relates a student to his or her major department. Hence, the relational model represents fact
about both entities and relationship uniformly as relations.

1.2.2 Relational Constraints And Relational Database Schemas

In this unit, we discuss the various restrictions on data that can be specified on
relational database schema in the form of constraints. These include domain constraints, key
strains, called data dependencies (which include functional dependencies and multi-valued
dependencies), are used mainly for database design by normalization.

Page | xxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Domain constraints

Domain constraints specify that the value of each attribute A must be an atomic value from the
domain dom(A). We have already discussed the ways in which domains can be specified above.
The data types associated with domains typically include standard numeric data type for
integers (such as short-integer, long-inter) and real number (float and double-precision float).
Character, fixed-length strings, and variable-length strings are also available, as are date, time,
timestamp, and money data types. A sub-range of values from a data type or an enumerated
data type may describe other possible domains where all possible values are explicitly listed.

Key constraints and constraints on null

A relation is defined as a set of tuples. By definition, all elements of a set are distinct, hence, all
tuples in relation must also be distinct. This means that no two tuples can have the same
combination of values for all their attributes. Usually, there are other subsets of attributes of a
relation schema R with the property that no two tuples in any relation state r of R should have
the same combination of values for these attributes. Suppose that we denote one such subset
of attributes by SK; then for any two distinct tuples t; and t, in a relation sate r or R, we have
the constraint that t;[SK]'t,[SK].

Any such set attributes SK is called a superkey of the relation schema R. A superkey SK specifies
a uniqueness constraint that no two distinct tuples in a state r of R can have the same value for
SK. Every relation has at least one default superkey the set of all its attributes. A superkey can
have redundant attributes, however, so a more useful concept is that of a key, which has no
redundancy. A key K of a relation schema R is a superkey of R with the additional property that
removing any attribute A from K leaves a set of attributes K that is not a superkey of R. Hence, a
key is a minimal superkey- that is, a superkey from which we cannot remove any attributes and
still have the uniqueness constraint hold.

For example, consider the STUDENT relation of Table 1.0 the attribute set (SSN) is a key of
STUDENT because no two student tuples can have the same value for SSN. Any set of attributes
that include SSN for example, (SSN, Name, Age) is a superkey. However, the superkey (SS,
Name, Age) is not a key for STUDENT, because removing Name or Age of both from the set still
leaves us with a superkey.

The value of key attribute can be used to identify uniquely each tuples in the relation. For
example, the SSN value 305-61-2435 identifies uniquely the tuples corresponding to Benjamin

Page | xxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Bayer in the STUDENT relation. Notice that a set of attributes constituting a key is a property of
the relation schema; it is a constraint that should hold on every relation state of the schema. A
key is determined from the meaning of the attributes, and the property is time-invariant; it
must continue to hold when we insert new tuples in the relation. For example, we cannot and
should not designate the Name attribute of the student relation in Table 1.0 as a key, because
there is no guarantee that two student with identical names will never exist.

In general, a relation schema may have more than one key. In this case, each of the keys is
called a candidate key. For example, the CAR relation in Table 1.2 has candidate keys: License
Number and Engine Serial Number. It is common to designate the candidate key as the primary
key of the relation. This is the key whose value is used to identify tuples in the relation. We use
the convention that the attributes that form the primary key of a relation schema are
underlined, as shown in Table 1.2. Notice that, when a relation schema has several candidate
key, the choice of one to become primary key is arbitrary; however, it is usually better to
choose a primary key with a single attribute or a small number of attributes. Another constraint
on attributes specifies whether null values are or are not permitted. For example, if every
student tuple must have a valid non-null value for the Name attribute, then Name of student is
constrained to be NOT null.

Table 1.2 The CAR relation wish two candidate key: license Number and Engine Serial number.

CAR | License Number Engine Serial Number Make Model Year
AB-419 KJA A69352 BMW 800 series 96
XA-893-AKM B43696 Bluebird Datsun 99
AAB383 WDE X83554 Datsun Toyota 95
LA 245 YYY C43742 Golf Volkswagen 93
DE382 MNA Y82935 Mercedes 190-D 98
FE 107 EKY U028365 Toyota Toyota 98

Relational Databases And Relational Database Schemas

So far, we have discussed single relations and single relation schemas. A relational database
usually contains may relations, with tuples relations that are related in various ways. In these
units we define a relational database and a relational database schema

is a set of relation schema ™ {; z-w: J and a set of integrity constraints IC. A relational
database state DB of

Page | xxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

a set of relation states ™ (; z;uu;} such that each is a state of and such that the relation
states satisfy the integrity constraints specified in IC. Figure 1.1 shows a relational database
schema

EMPLOYEE

FNAME | MINIT | LNAME | SSN | BDATE | ADDRESS | SEX | SALARY | SUP | DNO

DEPARTMENT

DNAME DNUMBER MGRSSN | MGRSTARTDATE
DEPT LOCATIONS

DNUMBER DLOCATION
PROJECT

PNAME | PNUMBER | PLOCATION | DNUM

WORK ON

ESSN PNO [HOURS

DEPENDENT

ESSN | DEPENDENT NAME SEX | BDATE | RELATIONSHIP

Figure 1.1. Schema diagram for the company relational database schema; the primary keys are
underlined.

1.2.3 Update Operations And Dealing With Constraint Violations

The operations of the relational model can be categorized into retrievals and updates. The
relational algebra operations, which can be use to specify retrievals, are discussed in details in a
later unit. In this unit, we concentrate on the update operations. There are three basic update
operations on relations (1) insert, (2) delete and (3) modify. Insert is used to insert a new tuple
or tuples in relation: Delete is used to delete tuple; and Update (or modify) is used to change
the values of some attribute in existing tuple. Whenever update operations are applied, the
integrity constraints specified on the relational database schema should not be violated. In this
unit we discuss the type of constraints that may be violated by each update operation and the
types of actions that may be taken if an update does cause a violation.

THE INSERT OPERATION

The insert operation provides a list of attribute values for a new tuple that is to be inserted into
a relation R. Insertion can violate any of the four types of constraints discussed in the previous

Page | xxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

unit. Domain constraints can be violated if an attribute value is given that does not appear in
the corresponding domain. Key constraints can be violating if a key value in the new tuple t
already exists in another tuple in the relation (). Entity integrity can be violated if the primary
key of the new tuple t is null. Referential integrity can be violated if the value of any foreign key
in t refers to a tuple that does not exists in the referenced relation. Here are some example to
illustrate this discussion.

1. Insert < ‘Cecilia’, ‘F’, ‘Komolafe’, null, ‘1960-04-05’, ‘6357 Adetutu, Lane, Abeokuta, OG’,
F 28000, null 4> into EMPLOYEE. This insertion violates the entity integrity constraint
(null for the primary key SSN), so it is rejected.

2. Insert < ‘Alice’, V', ‘Zachariah’, ‘999887777’, ‘1960-04-05’, ‘6357 Adetutu Lane,
Abeokuta OG’, F,28000, ‘987654321’, 4> into EMPLOYEE. This insertion violates the key
constraint because another tuple with the same SSN value already exists in the
EMPLOYEE relation, and so it is rejected.

3. Insert < ‘Folorunso’, ‘O’,’Olusegun’,’677678989’, ‘1960-04-05’ ‘6357 Obasanjo Aremu
0OG’, F,28000, ‘987654321’, 7 > into EMPLOYEE. This insertion violates the referential
integrity constraint specified on KNO because no DEPARTMENT tuples exists with
DNUMBERS = 7.

4. Insert < ‘Folorunso’, ‘O’, ‘Olusegun’, ‘677678989’, ‘1960-04-05’, ‘6357 Obasanjo Lane,
Aremu, OG’, F, 28000, null 4 > into EMPLOYEE. This insertion satisfies all constraints, so
it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the insertion. In
this case, it would be useful if the DBMS could explain to the user why the insertion was
rejected. Another option is to attempt to correct the reason for rejecting the insertion, but this

is typically not used for violations caused by insert; rather, it is used more often in correcting
violations for Delete and Update. The following examples illustrate how this option may be

used for insert violations. In operation 1 above, the DBMS could ask the user to provide a value
for SSN and could accept the insertion if a valid SSN value was provided. In operation 3, the
DBMS could either, ask the user change the value of DNO to some valid values (or set it to null),
or it could ask the user to insert a DEPARTMENT tuple with DNUMBER =7 and could accept the
insertion only after such an operation was accepted. Notice that in the latter case the insertion
can cascade back to the EMPLOYEE relation if the user attempt to insert a tuple for department
7 with a value off MGRSS that does not exist in the EMPLOYEE relation.

THE DELETE OPERATION

The Delete operation can violate only referential integrity; If the foreign keys reference the
tuple being deleted from other tuples in the database. To specify deletion, a condition on the
attributes of the relation select the tuples (or tuples) to be deleted. Here are some examples.

1. Delete the WORKS-ON tuples with ESS = 999887777 and KPNO = 10. This deletion is
acceptable.

2. Delete the employee tuple with SSN = 999887777. This deletion is not acceptable,
because tuples in works-on refer to this tuple. Hence, if the tuple is deleted, referential
integrity violation will result.

Page | xxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3. Delete the employee tuple with SSN = 333445555. This deletion will result in even worse
referential integrity violations, because the tuple involved is referenced by tuples from
the employee, department, works-on, and department relations.

Three options are available if a deletion operation causes a violation,.

The first option is to reject the deletion.

The second opting is to attempt to cascade (or propagate) the deletion by deleting

tuples that reference the tuple that is being deleted. For example in operation 2, the

DBMS could automatically delete the offending tuples form works-on with ESSN=

999887777.

A third option is a to modify the referencing attribute that cause the valid tuple. Notice

that, if a referencing attribute that cause a violation is part of the primary key, it cannot

be set to null otherwise, it would violate entity integrity.
Combinations of these three options are also possible. For example, to avoid having operation 3
cause a violation, DBMS may automatically delete all tuples from works —on and department
with ESSN=333445555. Tuples in employee with super SSN = 33445555 and changed to other
valid values or to null. Although it may makes sense to delete automatically the works-on and
department tuples that refer to an employee tuples, it may not make sense to delete other
employee tuples or a department tuple. In general, when a referential integrity constraint is
specified, the DBMS should allow the user to specify which of the three options applies in case
of a violation of the constraint.

THE UPDATE OPERATION

The update operation is used to change the values of one or more attributes in a tuple (or
tuples) of some relation r. It is necessary to specify a condition on the attribute of the relation
to select the tuple (or tuples) to be modified. Here are some examples.

1. Update the salary of the Employee tuple with SSN 999887777 to 28000 - Acceptable

2. Update the DNO of the employee tuple with SSN = 999887777 to 1 - Acceptable.

3. Update the DNO of the employee tuple with SSN = 999887777 to 7 - Unacceptable,
because it violates referential integrity.

4. Update the SSN of the employee tuple with SSN = 999887777 to 987654321 -
Unacceptable, because it violates primary key and referential integrity constraints.

Updating an attribute that is neither a primary key nor a foreign key usually cause no problems.
The DBMS need only check to confirm that the new values as of the correct data type and
domain. Modifying a primary key value is similar to deleting one tuple and the issues discussed
earlier under both insert and delete comes into play. If a foreign key attribute is modified, the

Page | xxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

DBMS must make sure that the new value refers to an existing tuple in the referenced relation
(oris null).

1.2.4 Basic Relational Algebra Operations

In addition to defining the database structure and constraints, a data model must include a set
of operations to manipulate the data. A basic set of relational model operations constitutes the
relational algebra. These operations enable the user to specify basic retrieval requests. The
result of a retrieval is a new relation, which may have been formed from one or more relations.
The algebra operations thus produce new relations, which can be further manipulated using
operations of the same algebra. A sequence of relational algebra operations forms a relation
algebra expression, whose result will also be a relation.

The relational algebra operations are usually divided into two groups. One group includes set
operations from mathematical set theory, these are applicable because each relation is defined
to be a set of tuples. Set operations include UNION, INTERSECTION, SET DIFFERENCE, and
CARTESIAN PRODUCT. The other group consists of operations developed specifically for
relational database; these include select , project, and join among others. The select and project
operations are discussed first, because they are the simplest, then we discuss set operations.
Finally, we discuss join and other complex operations. The relational database shown in Table
1.3 is used for our examples.

Some common database requests cannot be performed with the basic relational algebra
operations, so additional operations are needed to express these requests. Some of these
additional operations are described later.

THE SELECT OPERATIONS

The select operation is used to select a subset of the tuple from a relation that satisfy a
selection condition. One can consider the select operation to be a filter that keeps only those
tuples that satisfy a qualifying condition. For example, to select the employee tuples whose
departments is 4, or those whose salary is greater than 830,000, we can individually specify
each of these two conditions with a select operation as follows:

- ()

ATy U

In general, the SELECT operation is denoted by

25()

Where the symbol

Page | xxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

(sigma) is used to denote the SELECT operator, and the selection condition is a Boolean
expression specified on the attributes of relation

. Notice that

is generally a relational algebra expression whose result is a relation; the simplest expression is
just the name of database relation. The relation resulting from the select operations has the
same attributes as

. The Boolean expression specified in <selection condition> is made up of number of clauses of
the form
<attribute name> <comparison op><constant value>
or

<attribute name><comparison op><attribute name>

where <attribute name> is the name of an attribute of < = is normally one of the operators
{=<,>,e, ®} and <constant value> is a constant value from the attribute domain. Clauses can be
arbitrarily connected by the Boolean operators AND OR and NOT or form a general selection.
For example, to select the tuples for all employees who either work in department 4 and make
over N25,000 per year, or work in department 5 and make over 830,0000 we can specify the
following select operation:

Table 1.3 Result of select and project operations.

(a)

FNAME | MINT | LNAME SSN BDATE ADD SEX | SAL | SUPERSSN | DNO
Akin G | Adeosun | 123456789 | 1965-01-00 | /> FONeN || 5o00 | 333445555 | 6
Housing OG
291, Itok
Ayo T | Adeluola | 33344555 | 1955-12-08 | 29%Mtoko, M | 7000 | 88866555 5
Abeokuta
Daniel 0 | Olayinka | 453453453 | 1972-07-31 34'ig:j°b" M | 3400 | 333445555 | 5
(b)
LNAME FNAME SALARY
Adeosun Akin 50000

Page | xxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

Adeluola Ayo 70000
Olayinka Daniel 34000

Daunsi Jumoke 42000
Adjumo Kunle 50000
Bamidele Segun 40000
Oduntan Segun 45000
Olamide Kunle 80000

SEX

SALARY

50000

70000

<

34000

42000

50000

40000

45000

g £ | £

80000

(a) (=4 2230008 (=2 »200009()
(b) Tz
(c) T ©

The result is shown in Table 1.5(a). Notice that the comparison operators in the set {=,<,>, #
apply to attribute whose domains are ordered values, such as numeric or date domains.
Domains of strings of characters are considered ordered based on the collating sequence of

the characters. If the domain of an attribute is a set of unordered values, then only the

comparison operations in the set {="”} can be used. An example of an unordered domain is the

domain colour = {red, blue, green, white, yellow} where no order is specified among the various
colours. Some domains allow additional types of comparison operations; for example, a domain
allows additional types of comparison operators. For example, a domain of character strings

may allow the comparison operator substring of.

Page | xl

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

In general the result of a SELECT operation can be determined as follows. The selection
condition is applied independently to each tuple

. this is done by substituting each occurrence of an attribute ; in the selection condition with its
value in the tuples [;]. if the condition evaluates to true, then tuple

is selected. All the selected tuples appear in the result of the select operation. The Boolean
conditions AND, OR and NOT have their normal interpretation as follows:

(cond1 AND cond?2) is true if both (cond1) and (cond2) are true. Otherwise, it is false

(cond1 OR cond2) is true if either (cond1) or (cond2) is true or both are true. Otherwise, it is
false.

(NOT cond) is true if cond is false. Otherwise, it is false.

The SELECT operator is unary, that is, it is applied to a single relation. Moreover, the selection
operation is applied to each tuple individually. Hence, selection conditions cannot involve more
than one tuple. The degree of the tuples in the resulting relation is always less than or equal to
the number to tuples in

.Thatis [} = || for any condition

. The fraction of tuples selected by a selection condition is referred to as the selectivity of the
conditions.

Notice that the select operation is commutative; that is,
Gyr(=y» Q= w2 (s>l

Hence, a sequence of SELECTs can be allied in any order. In addition, we can always combine a
cascade of SELECT operations into a single SELECT operation with a conjunctive AND condition,
that is,

ayn(a;m(u(en Q}-”}}' Ty g

THE PROJECT OPERATION

If we think of a relation as a table, the SELECT operation selects some of the rows from the
table while discarding other rows. The PROJECT operation on the other hand, selects certain
attributes of a relation, we use the PROJECT operation to project the relation over these

Page | xli

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

attributes only. For example, to list each employees, first and last name and salary, we use the
PROJECT operation as follows:

LNAME, FNAME, SALARY (EMPLOYEE)

The result relation is shown in Table 1.3(b). The general form of the PROJECT operation is

<attribute list > (R)

Where (Pi) is the symbol used to represent the PROJECT operation and < attribute list> is a list
of attributes from the attributes of relation R. Again, notice that

is, in general, a relational algebra expression whose result is a relation, which in the simplest
case is just the name of a database relation. The result of the PROJECT operation has only the
attribute specified in attribute list and in the same order as they appear in the list. Hence, its
degree is equal to the number of attribute in attribute list. If the attribute list include only non
key attributes of

, duplicate tuple are likely to occur, the PROJECT operation removes any duplicate tuples. So
the result of the project operation is a set of tuples and hence a valid relation. This is known as
duplicate elimination. For example, consider the following PROJECT operation.

-0

The result it shown in Table 1.3 (c). Notice that the tuple <F,25000> appears only once in TABLE
1.3(c) even though this combination of values appears twice in the employee relation.

The number of tuples in relation resulting from a PROJECT operations is always less than or
equal to the number of tuples in

. If the projection list is a superkey of —that s, it includes some keys of R —the resulting
relation has the same number of tuples as R. Moreover as long as

‘:L?‘E‘:AF‘Q}' wg ()

<2 3 = contains the attribute in <list>. Otherwise, the left-hand side is an incorrect expression.
It is also noteworthy that commutativity does not hold on PROJECT.

SEQUENCES OF OPERATIONS AND THE RENAME OPERATION

The relations shown in Table 1.3 do not have any names. In general, we may want to apply
several relational algebra operations one after the other. Either we can write the operations as
a single relational algebra expression by nesting the operations, or we can name the first

Page | xlii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

name, last name, and salary of all employee who work in department number 5, we must apply
a SELECT and a PROJECT operation. We can write a single relational algebra expression as
follows:

ri (:j():[

Table 1.4(a) shows the result of this relational algebra expression. Alternatively we can explicitly
show the sequence of operations, giving a name to each intermediate relation:

= az Q
(5=

It is often simpler to break down a complex sequence of operations by specifying intermediate
result relations than to write a single relational algebra expression. We can also use this
technique to rename the attributes in the intermediate and result relations. This can be useful
in connection with more complex operations such as union and join as we shall see. To rename
the attributes in a relation, we simply list the new attribute names in parentheses, as in the
following example:

I, 0
(L0

The two operations above are illustrated in figures 1.6(b). If no renaming is applied the names
of the attributes in the resulting relation of a SELECT operation are the same as those in the
original relation and in the same order. For a project OPERATION with no renaming, the
resulting relation has the same attribute names as those in the project list and in the same
order in which they appear in the list.

We can also define a RENAME operation which can rename either the relation name, or the
attribute name, or both in a manner similar to the way we defined select.

H' ' {-.-il.‘::[:'

Table 1.3. Results of a relational algebra expression.

(a)

Page | xliii

FNAME LNAME SALARY
Akin Adeosun 50000
Ayo Adeluola 70000
Daniel Olayinka 34000

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009
Jumoke Daunsi 42000
(b)
FNAME | NINT | LNAME SSN BDATE ADDRESS | SEX | SALARY SUPER DN
Akin G Adeosun | 123456789 1965-01-09 75 F 50000 33445555 6
Ayo T Adeluola 3344555 1955-12-08 iii’;::tg M 70000 88866555 5
Daniel 0} Olayinka | 453453453 1972-07-31 34. off M 34000 33445555 5
Mobil Road
Jumoke | O | Daunsi | 666884444 | 1964-09-15 23:’;225'@ F | 342000 | 333445555 | 5
(c)
FNAME LNAME SALARY
Akin Adeosun 50000
Ayo Adeluola 70000
Daniel Olayinka 34000
Jumoke Daunsi 42000

The same expression using intermediate relation and renaming of attribute and PROJECT. The
general RENAME operation when applied to a relation

of degree

is denoted by (grzrm J{)or (s z0m s }(). Where the symbol

(rho) is used to denote the rename operator,

is the new relation name, and ; 3 are the new attribute names. The first expression rename

both the relation and its attributes; the second renames the relation only; and the third
renames the attributes only. If the attribute of

Page | xliv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

are lz,3,mp J in that order, then each is renamed as .

SET THEORETIC OPERATIONS

The next group of relational algebra operations is the standard mathematical operations on
sets. For example to retrieve security numbers of a employees who either work in department
5 or directly supervise an employee who works in department 5, we can use the union
operation as follows:

=0
1 &= JICE)
< = JI(5.9)
—12
Table 1.5 Query Result after UNION Operation: RESULTI] RESULT1 €< RESULT2
RESULT1 SSN RESULT2 SSN RESULT SSN
123456789 33344555 123456789
333445555 888665555 333445555
666884444 666884444
453453453 453453453
888665555

The relation RESULT1 has the social security numbers of all employee who work in department
5, whereas RESULT2 has the social security numbers of all employees who directly supervise an
employee who works in department 5. The union operation produces the tuples that are in
either resultl or result2or both. See Table 1.5.

Several set theoretic operations are used to merge the elements of two sets in various ways,
including UNION, INTERSECTION and SET DIFFERENCE. These are binary operators; that is, each
is applied to two sets. When these operations are adapted to relational database, the two
relations on which any of the above three operations are applied must database, the two
relations on which any of the above three operations are applied must have the same types of
tuples: this condition is called union compatibility. Two relations Emr -urj E.i_rzr -urj are said to
be union compatible if they have the same degree

Page | xlv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

;andif () = ()for I & & .This means that the row relations have the same number of
attributes and that each pair of corresponding attributes have the same domain.

We can define the three operations UNION, INTERSECTION, and DIFFERENCE on two union-
compatible relations

and

as follows:

UNION: The result of this operation, denoted by Y ,is a relation that includes all tuples
that are either in

or in

orin both . duplicating tuples are eliminated.

INTERSECTION: The result of this operation denoted by 1, is a relation that includes all
tuples that are in both

SET DIFFERENCE: The result of this operation, denoted by — is a relation that includes
all tuples that are in

We will adopt the convention that the resulting relation has the same attribute name as the
first relation

. FIGURE 1.2 illustrates the three operations. The relation student and instructor in Figure 1.2(a)
are union compatible, and their tuples represent the names of students and instructors,
respectively. The result of the union operation in appear in Figure 1.2 (b) shows names of all
student and instruction. The result of the intersection operator Figure 1.2(c) include only those
who are both students and instructions. Notice that both union and intersection are
commutative operations; that is

U= =i

Both union and intersection can be treated as n—ary operations applicable to any number of
relations as both are associative operations; that is

Viw)=(wlv (n)jn=n(n)

© oo T W

Two union compatible relations
STUDENT ¥ INSTRUCTOR
STUDENT fi INSTRUCTOR,
STUDENT — INSTRUCTOR
INSTRUCTOR — STUDENT

Page | xlvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 1.2 lllustrating the set operations UNION, INTERSECTION and DIFFERENCE

The DIFFERENCE operation is not commutative: that is, in general R—S #S—-R

Next we discuss the CARTESIAN PRODUCT operation — also known as CROSS PRODUCT or
CROSS JOIN — denoted by X, which is also a binary set operation, but the relations on which it is
applied do not have to be union compatible. This operation is used to combine tuples form two
relations in a combinational fashion. In general, the result of

(grzrme ¥ (e)

is relation

with * attribute

¢ PR Ap—— |

in that other. The resulting relation

has one tuple for each combination of tuples — one from R and one from
. Hence if

has tuples and

has n tuples, then X will have = tuples. Itis useful when followed by a selection that matches
values of attributes coming from the component relations. For example, suppose that we want
to retrieve for each female employee a list of the names of her dependents, we can do this as
follows:

- <=0
= (=)
- = ¥

The CARTESIAN PRODUCT creates tuples with the combined attributes of two relations. We can
then SELECT only related tuples form the two relations by specifying an appropriate selection

Page | xlvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

condition, as we did in the preceding example. Because this sequence of CARTESIAN PRODUCT
followed by SELECT is used quite commonly to identify and select related tuples from two
relations, a special operation, called JOIN, was created to specify this sequence as a single
operation.

THE JOIN OPERATION

The JOIN operation denoted by ¥ is used to combine related tuples from two relations into
single tuples. This operation is very important for any relational database with more than a
single relation because it allows us to process relationships among relations. To illustrate join,
suppose that we want to retrieve the name of the manager of each department. To get the
manager’s name, we need to combine each department tuple with employee tuple whose SSN
value matches the MGRSSN value in the department tuple. We do this by using the JOIN
operation, and then projecting the result over the necessary attribute, as follows:

A Complete Set Of Relational Algebra Operations

It has been shown that the set of relational algebra operation { = Il is a complete set. Any
of the other relational algebra operations can be expressed as a sequence of operations from
this set. For example, the INTERSECTION operation can be expressed by UNION and
DIFFERENCE as follows:

n =(ui-(C=xu(=)

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to specify this
complex expression every time we wish to specify an intersection. As another example, a JOIN
operation can be specified as a CARTSIAN PRODUCT followed by a SELECT operation as we
discussed:

= e (K]

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT proceeded by RENAME
and followed by SELECT and PROJECT operations. Hence, the various JOIN operations are also
not strictly necessary for the expressive power of the relational algebra. However, they are very
important because they are convenient to use and are commonly applied in database
applications. Other operations have been included in the relational algebra for convenience
rather than necessity.

THE DIVISION OPERATION.

The DIVISION operation is useful for a special kind of query that sometimes occurs in database
applications. An example is “retrieve the names of employee who work on all the project that
‘Daniel Olayinka works on”. To express this query using the DIVISION operation, the
intermediate relation Daniel PNOS:

Page | xlviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

“aml)
-6_1-.[[:_ N=I

Next, create a relation that includes a tuple <. =. Whenever the employee whose social
security number is ESSN works on the project whose number is PNO in the intermediate
relation SSN — PNOS

- «.(-)

Finally, apply the DIVISION operation to the two relations, which gives the desired employee
social security numbers:

&= +-

=1} (=)

ADDITIONAL RELATIONAL OPERATIONS

Some common database requests-which are needed in commercial query languages for
relational DBMSs-cannot be performed with the basic relational algebra operations described
earlier.

13 RELATIONAL DATABASE DESIGN

Here, we consider design issues regarding relational databases. In general, the goal of a
relational database design is to generate a set of relation schemes that allow us to store
information without unnecessary redundancy, yet allowing us to retrieve information easily.
One approach is to design schemes that are in an appropriate normal form. In order to
determine whether a relation scheme is in one of the normal forms, we shall need additional
information about the “real-world” enterprise that we are modelling with the database. This
additional information is given by a collection of constraints called data dependencies.

1.3.1 The Entity — Relationship Model

Designing a successful database application requires a good conceptual model. Generally the
term database application refers to a particular database, for example an XYZ bank database
that keeps track of customer accounts, and the associated programs that implement database

Page | xlix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

updates corresponding to customers making deposits and withdrawals. These programs often
provide user—friendly graphical user interfaces (GUI) utilizing forms and menus. Hence, part of
the database application will require the design, implementation and testing of these
application programs. This unit discusses ER-model extensively.

USING HIGH-LEVEL CONCEPTUAL DATA MODELS FOR DATABASE DESIGN

Requirements collection and Analysis

v

Conceptual design

v

Logical Design (Data Model Mapping)

v

Physical Design

Figure 1.9 A simplified description of the database design process.

Page | |

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

STEPS INVOLVED IN DATABASE DESIGN

Page | li

1.

Requirements, Collection and Analysis.

During this step, the database designers interview prospective database users to
understand and document their data requirements. The result of this step is
concisely written as a set of users’ requirements. These requirements should be
specified as detailed and complete a form as possible. In parallel with specifying the
data requirements, it is useful to specify the known functional requirements of the
application. These consist of the user—defined operations (or transactions) that will
be applied to the database and they include both retrievals and updates. In
software design, it is common to use data flow diagrams, sequence diagrams,
scenarios, and other techniques for specifying functional requirements.

Conceptual Schema

Once all the requirements have been collected and analyzed, the next steps is to
create a conceptual schema for the database, using a high-level conceptual data
model. This step is called conceptual design. The conceptual schema is a concise
description of the data requirements of the users and includes detailed descriptions
of the entity types, relationships, and constraints; these are expressed using the
concepts provided by the high-level data model. Because these concepts do not
include implementation details, they are usually easier to understand and can be
used to communicate with non-technical users. The high-level conceptual schema
can also be used as a reference to ensure that all users’ data requirements are met
and that the requirements do not include conflicts. This approach enables the
database designers to concentrate on specifying the properties of the data, without
being conceptual with storage details. Consequently, it is easier for them to come
up with a good conceptual database design.

During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user operations identified during functional
analysis. This also serves to confirm that the conceptual schema meets all the
identified functional requirements. Modifications to the conceptual schema can be
introduced if some functional requirements cannot be specified in the initial
schema.

Logical Design

The next step in database design is the actual implementation of the database,
using a commercial DBMS. Most current commercial DBMSs use an implementation
data model, such as the relational or the object database model, so the conceptual
schema is transformed from the high-level data models into the implementation
data model. This step is called logical design or data model mapping, and its result
is a database schema in the implementation data model of the DBMS.

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

4. Physical Design

Finally, the last step is the physical design phase, during which the internal storage
structures access paths, and file organizations for the database files are specified.
In parallel with these activities, application programs are designed and implemented
as datasets transactions, corresponding to the high — level transaction
specifications.

1.3.2 An lllustration Of A Company Database Applications

In this unit, we describe an example database application, called COMPANY, which serves to
illustrate the ER model concepts and their use in schema design. The COMPANY database keeps
track of a company’s employees, departments, and projects. Suppose that, after the
requirements, collection and analysis phase, the database designers stated the following
description of the “mini world” — the part of the company to be represented in the database:

The company is organized into departments. Each departments has a unique name, a
unigue number, and a particular employee who manages the department. We keep
track of the start date when that employee began managing the department. A
department may have several locations.

A departments controls a number of projects, each of which has a unique name, a
unigue number, and a single location.

We store each employee’s name, social security number, address, salary, sex, and birth
date. An employee is assigned to one department but may work on several project,
which are not necessarily controlled, by the same department. We keep track of the
number of hours per week that an employee works on each project. We also keep track
of the direct supervisor of each employee for insurance purposes. We keep each

dependent’s first name, sex. birth date, and relationship to the employee.

1.3.3 Entity Types, Entity Sets, Attributes And Keys

The ER model describes data as entities, relationships, and attributes.

ENTITIES AND ATTRIBUTES

The basic objects that ER model represents is an entity, which is a “thing” in the real world with
an independent existence. An entity may be an object with a physical existence — a particular
person, car, house, or employee, or it may be an object with a conceptual existence —a
company, a job, or a university course.

Each entity has attributes — the particular properties that describes it. For example, the
employee’s name, age, address, salary, and job may describe an employee entity. A particular

Page | lii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

entity will have a value for each of its attributes. The attribute Values that describe each entity
become a major part of the data stored in the database e.g.

EMPLOYEE {Name, Address, Age, and Home Phone}

Composite Versus Simple (Atomic) Attributes

Composite attributes can be divided into smaller subparts, which represent more basic
attributes with independent meanings. For example, the Address attribute of the employee
entity can be subdivided into Street Address, City, State, and Zip, with the values “8 Housing
Estate”, “Abeokuta”, Ogun”, and “110001”. Attributes that are not divisible are called simple or
atomic, subdivided into three simple attributes, Number, Street, and ApartmentNumber, as of
its constituent simple attributes.

Composite attributes are useful to model situations in which a user sometimes refer to the
composite attribute as a unit but at other times refers specially to its components. For example,
if there is no need to refer to the individual components of an address (Zip, Street, and so on),
then the whole address is designated as a simple attribute.

Single—valued Verses Multivalued Attributes

Most attributes have a single value for a particular entity; such attribute are called single—
valued. For example, Age is a single—valued attribute of person. In some cars, or a College
Degrees attribute for a person. Cars with one colour have a single value, whereas two—tone cars
have two values for colour. Similarly, one person may not have a College Degree, another
person may have one, and a third person may have two or more degrees; so different person
can have different numbers of values of the College Degrees attributes.

Such attributes are called multivalued. A multivalued attribute may have lower and upper

Address
Zip State City
Street Address
Number Street Apartment Number

Figure 1.4 A hierarchy of composite attributes; the Street Address component of an Address is further composed of number, s

Page | liii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

bounds on the number of values allowed for each individual entity. For example, the colour
attribute of car may have between one and three values, if we assume that a car can have at
most three colours.

Stored Versus Derived Attribute. In some cases, two (or more) attribute values are stated, for
example, the Age and Birth Date attributes of a person. For a particular person entity, the value
of Age can be determined from the current (today’s) date and the value of that person’s Birth
Date. The Age attribute is hence called a derived attribute and is said to be derivable from the
Birth Date attribute, which is called a stored attribute. Some attributes values can be derived
from related entities, for example, an attribute Number of Employees of a department entity
can be derived by counting the number of employees related to (working for) that department.

Null Values. In some case a particular entity may not have applicable value for an attribute. For
example, the Apartment Number attribute of an address applies only to address that are in
apartment buildings and not to other types of residences, such as single degrees. For such
situations, a special value called null is created. An address of a single—family home would have
null for its apartment Number attribute, and a person with no college degree would have null
for college degrees.

Complex Attributes. Notice that composite and multivalued attributes can be nested in an
arbitrary way. We can represent arbitrary nesting by grouping components of composite
attribute between parentheses. Such attributes are called complex attributes. For example, if a
person can have more than one residence and each residence can have multiple phones, an
attribute Address Phone for a PERSON entity type can be specified as shown in Figure 1.5.

1.3.4 Entity Types, Entity Sets, Keys & Value Sets

{Address Phone] [Phone {Area Code, Phone Number}, Address
(Street Address (Number, Street, Apartment Number) City,

State, Zip)

Figure 1.5 A complex attribute address phone with value and composition.

ENTITY Types and Entity Sets. A database usually contains groups of entities that are similar. For
example, a company employing hundreds of employees may want to store similar information
concerning each of the employees. These employee entities share the same attributes, but each
entity has its own values for each attribute. An entity type defines a collection (or set) of entities
that have same attributes. The collection of all entities of a particular entity type in the database
at any point in the time is called an entity set; the entity set is usually referred to using the same
name as the entity type. For example, EMPLOYEE refers to both a type of entity as well as the
current set of all employee entities in the database.

Page | liv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

An entity type describes the schemas or intension for a set of entities that have the same
structures. The collection of entities of a particular entity type is grouped into an entity set,
which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an entity type is the
key or uniqueness constraint on attributes. An entity type usually has an attribute whose values
are distinct for each individual entity in the collection is called a key attribute, and its values can
be used to identify each entity uniquely, for example, the Name attributes is a key of the
COMPANY entity type, because no two companies are allowed to have same name. For the
PERSON entity type a typical key attribute is Identification Number. Sometimes, several
attributes together form a key, meaning that the combination of the attribute values must be
distinct for each entity. If a set of attributes possesses this property, we can define a composite
attribute that becomes a key attribute of the entity type. Notice that a composite key must be
minimal, that is, all component attributes must be included in the composite attribute to have
the uniqueness property.

Specifying that an attribute is a key of an entity type means that the preceding uniqueness
property must hold for every extension of the entity type. Hence, it is a constraint that prohibits
any two entities from having the same value for the key attributes at the same time. It is not
the property of a particular extension, rather, it is a constraint on all extensions of the entity
type. This key constraint (and other constraints we discuss later) is derived from the constraints
of the mini world that the database represents.

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is associated with a
value set (or domain of values), which specifies the set of a values that may be assigned to that
attributes of each individual entity. E.g., if the range of ages allowed for employees is between
26 and 65, we can specify the value set of the Age attribute of EMPLOYEE to be the set of
integer number between 26 and 65. Similarly, we can specify the value set for the name
attribute as being the set of strings of alphabetic characters separated by blank characters and
so on. Value sets are not displayed in ER diagrams.

Mathematically, an attribute A of entity E whose value set is V can be defined as a function
from E to the power set & = =+ {}

1.3.5 Pitfalls In Relational Database Design

Page | Iv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Before we begin our discussion of normal forms and data dependencies, let us look at what

can go wrong in a bad database design. Among the undesirable properties that a bad design

may have are:

Repetition of information

Inability to represent certain information

Loss of information.
Below, we discuss these in greater detail using a banking example, with the following two
relation schemes:

Branch-scheme = (branch-name, assets, branch-city)
Borrow-scheme =(branch-name, loan-number, customer-name, amount)

Tables 1.6 and 1.7 show an instance of the relations branch (Branch-scheme) and borrow
(Borrow-scheme).

Repetition of Information

Consider an alternative design for the bank database in which we replace branch-scheme and
borrow-scheme with the single scheme

lending-scheme = (branch-name, assets, branch-city, loan number, customer-name, amount)

Table 1.6 Sample Branch Relation

branch-name Assets branch-city
Downtown 9000000 Brooklyn
Redwood 2100000 Palo Alto
Perryridge 1700000 Horseneck
Mianus 400000 Horseneck

Page | lvi

2009

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM
Round hill 8000000 Horseneck
Pownal 300000 Bennington
North Town 3700000 Rye
Brighton 7100000 Brooklyn

Table 1.8 shows an instance of the relation lending(Lending-scheme) produced by taking the

natural join of the branch and borrow instances of Tables 1.6 and 1.7. A tuple

in the lending relation has the following intuitive meaning:

Table 1.17 Sample Borrow Relation

branch-name loan-number customer-name | amount
Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500
Round hill 11 Turner 900
Pownal 29 Williams 1200
North town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200

t (assets) is the asset figure for the branch named (branch-name)

t (branch-city) is the city in which the branch named t (branch-name) is located

Page | Ivii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

t (loan-number) is the number assigned to a loan made by the branch named t(branch-
name) to the customer named t (customer-name)
t (amount) is the amount of the loan whose number is t(loan-number])

Suppose we wish to add a new loan to our database. Assume the loan is made by the Perryridge
branch to Turner in the amount of 81,500. Let the number of the loan be 31. In our original
design, we would add the tuple

[Perryridge, 31, Turner, 1500]

to the borrow relation. Under the alternative design, we need a tuple with values on all the
attributes of lending-scheme. Thus, we must repeat the asset and city data for the Perryridge
branch and add a tuple

[Perryridge, 17000000, Horseneck, 31, Turner, 1500]

to the lending relation. In general, the asset and city data for a branch must appear once for
each loan made by that branch.

The repetition of information required by the use of our alternative design is undesirable.
Repeating information wastes space. Furthermore, the repetition of information complicates
updating the database.

Table 1.8 branch ™ borrow

branch-name | assets branch-city loan-number | customer-name | amount
Downtown 9000000 Brooklyn 17 Jones 1000
Redwood 2100000 Palo alto 23 Smith 2000
Perryridge 1700000 Horseneck 15 Hayes 1500
Downtown 9000000 Brooklyn 14 Jackson 1500
Mianus 400000 Horseneck 93 Curry 500
Round hill 8000000 Horseneck 11 Turner 900
Pownal 30000 Bennington 29 Williams 1200
North town 3700000 Rye 16 Adams 1300
Downtown 9000000 Brooklyn 18 Johnson 2000

Page | Iviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Perryridge 1700000 Horseneck 25 Glenn 2500

Brighton 7100000 Brooklyn 10 Brooks 2200

Suppose, for example, that the Perryridge branch moves from Horseneck to Newtown. Under
our original design, one tuple of the branch relation needs to be changed. Under our alternative
design, many tuples of the lending relation needs to be changed. Thus, updates are more costly
under the alternative design than under the original design. When we perform the update in
the alternative database, we must ensure that every tuple pertaining to the Perryridge branch
is updated, lest our database shows two cities for the Perryridge branch.

The above observation is central to understanding why the alternative design is bad. We know
that a bank branch is located in exactly one city. On the other hand, we know that a branch may
make many loans. These are independent facts and, as we have seen, these facts are best
represented in separate relations. We shall see that the fact that for every branch there is
exactly one city can be stated formally, and this fact can be used to improve our database
design.

Representation of Information

Let us consider a second alternative to our original design. This time, we attempt to combine
the following two schemes:

Borrow-scheme = [branch-name, loan-number, amount]
Deposit-scheme = [branch-name, account-number, customer-name, balance]
To create a new scheme:
BD-scheme = [branch-name, loan-number, amount, account-number, balance, customer-name]

Let

be a relation on scheme —. A tuple

in this relation has the following intuitive meaning:

[loan-number] is the number assigned to a loan made by the branch named

Page | lix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

[branch-name]to the customer named

[customer-name]

[amount] is the amount of the loan whose number is t[loan-number]

[amount-number] is the number assigned to an account at the branch named

[branch-name] and belonging to the customer named t[customer-name]

t[balance] is the balance in the account whose number is t[account-number].
Consider a customer who has an account at the Perryridge branch but does not have a loan
from that branch. We cannot represent this information directly by a tuple in the BD relation
since tuples in k the BD relation require values for loan-number and amount.

One solution to this problem is to introduce null k values, as we did above to handle updates
through view. Recall, however, that null values are difficult to deal with. If we are not willing to
deal with null values, each branch must force every depositor to take a loan at that branch and
every borrower to open an account at that branch. Presumably, the teller would inform the
customer of this by saying, “we are sorry, but the computer forces us to do this”. Clearly, this
excuse is untrue, since under our original Database design, we could have depositors with no
loan and borrowers with no account, and we could do so without resorting to the use of null
values.

Loss of Information

The above examples of bad designs suggest that we should decompose relation schemes with
many attributes into several schemes with fewer attributes. Careless decomposition, however,
may lead to another form of bad design.

Consider yet another alternative design in which Borrow-scheme is decomposed into two
schemes, amt-scheme and loan-scheme, as follows:

Amt-scheme = (amount, customer-name)

Loan-scheme =(branch-name, loan-number, amount)

Using the borrow relation of Table 1.9 we construct our new relations Amt(Amt-scheme) and
loan (Loan-scheme) as follows:

=I-0

Page | Ix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

=10

We show the resulting
and

relations in Table 1.9

There are cases in which we need to reconstruct the borrow relation. For example, suppose
that we wish to find those branches from which Jones has a loan. None of the relations in our
alternative database contains this data. We need to reconstruct the borrow relation. It appears
that we can do this by writing:

-1

Table 1.10 shows the result of computing *¥ . When we compare this relation and the borrow
relation with which we started (Table 1.7), we notice some difference.

Although every tuple that appears in

appearsin ¥ there aretuplesin P4 thatare notin borrow. In our example, P4 has the
following additional tuples:

(Downtown, 14 Hayes, 1500)
(Perryridge, 15 Jackson, 1500)
(Redwood, 23, Johnson, 2000)

(Downtown, 18, smith, 2000)

Table 1.9 The relations amt and loan

Page | Ixi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

branch-name loan-number | amount amount customer-name
Downtown 17 1000 1000 Jones
Redwood 23 2000 2000 Smith
Perryridge 15 1500 1500 Hayes
Downtown 14 1500 1500 Jackson
Mianus 93 500 500 Curry
Round hill 11 900 900 Turner
Pownal 29 1200 1200 Williams
North Town 16 1300 1300 Adams
Downtown 18 2000 2000 Johnson
Perryridge 25 2500 2500 Glenn
Brighton 10 2200 2200 Brooks

Consider the query, “find those branches from which Hayes has a loan.” If we look back at Table
1.7 we see that Hayes has only one loan, and that loan is from the Perryridge branch. However,
when we apply the expression

Il (-l 9
we obtain two branch names: Perryridge and Downtown.

Let us examine this example more closely. If several loans happen to be the same amount, we
cannot tell which customer has which

. Thus, when we join
and

we obtain not only the tuples we had originally in borrow, but also several additional tuples.
Although we have more tuplesin ¥4 , we actually have less information.

We are no longer able, in general, to represent in the database which customers are borrowers
from which branch. Because of this loss of information, we call the decomposition of borrow-
scheme into amt-scheme and loan-scheme a lossy decomposition, or a lossy-join
decomposition. A decomposition that is not a lossy-join decomposition is referred to as a

Page | Ixii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

lossless-join decomposition. It should be clear from our example that a lossy-join

decomposition is, in general, a bad database design.

Table 1.10 The relation ™1

branch-name loan-number customer-name | Amount
Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500
Round Hill 11 Turner 900
Pownal 29 Williams 1200
North town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200
Downtown 14 Hayes 1500
Perryridge 15 Jackson 1500
Redwood 23 Johnson 2000
Downtown 18 Smith 2000

Let us examine the decomposition more closely to see why it is lossy. There is one attribute in

common between loan-scheme and amt-scheme:

- N -

Page | Ixiii

={

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The only way we can represent a relationship between branch-name and customer-name is
through amount. This is not adequate because many customers may happen to have loans in
the same amount, yet they do not necessarily have these loan from the same branches.
Similarly, many customers may happen to have loan from the same branch, yet the amounts of
their loan may be unrelated to each other.

Contrast this with Lending-scheme, which we discussed earlier. We argued that a better design
would result if we decompose Lending-scheme into Borrow-scheme and Branch-scheme.

- - = f{=7

Thus, the only way we can represent a relationship between for example, customer-name and
assets is through branch-name. The difference between this example and the example above is
that the assets of a branch are the same regardless of the customer to which we are referring,
while the lending branch associated with a certain loan amount does depend on the customer
to which we are referring. For a given branch-name, there is exactly one assets value and
exactly one branch-city, while a similar statement cannot be made for amount. Note that we
have never stated formally in our design that a branch has a unique assets value and branch-
city value. We know this from our intuition of the banking enterprise. We represented this
earlier by the notion of keys. In the next unit, we shall see how to express these facts formally.
The notion of lossless joins is central to much of relational database design. Therefore, we
restate the above examples below more concisely and more formally: Let

be a relation scheme, a set of relation schemes {;:z:m«] is a decomposition of U if:

L -

That is, {gs - me J is @ decomposition of

if every attribute in

appearsin atleastone ,fori & % Let

be a relation on scheme

candlet ™ JIC ford & = . Thatis {1:2:m«]is the database that results from decomposing

into {gzswe J. It is always the case that:

£ by,

Page | Ixiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

To see this, consider a tuple

in relation

. When we computer 2. =, the tuple givesrisetoonetuple ,ineach,f & % . These
tuples combine to regenerate

when we compute #-; =1 .The details are left as an exercise to the reader. Therefore, every
tuplein
appearsin ¥_; |

In general, ™ ¥Mz; . To illustrate this, consider our earlier example in which:

= 17
;= Table 18
M, = 110

Note that the relations in Tables 1.7 and 1.10 are not the same.

In order to have a lossless-join decomposition, we need to impose some constraints on the set
of possible relations. We found that decomposing Lending-scheme into Borrow-scheme and
Branch-scheme is lossless because of the rule that “for every branch-name, there is a unique
asset value and a unique branch-city value”. We say that a relation is legal if it satisfies all rules,
or constraints, that we impose on our database.

Let
represent a set of constraints on the database. A decomposition 13:z:] of a relation scheme
is a lossless-join decomposition for

if for all relations u on scheme

Page | Ixv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

that are legal under

= by JT)

We shall show how to test whether decomposition is a lossless-join decomposition in the next
unit. A major part of this subunit is concerned with the question of how to specify constraints
on the database and how to obtain lossless-join decomposition that avoid the pitfalls
represented by the examples of bad database designs that we have seen in this unit.

14 NORMALIZATION

Normalization Using Functional Dependencies

In this unit, we focus on a particular kind of constraint called a functional dependency.
Functional dependencies are important because they lead to several highly desirable normal
forms for relational databases. The notion of a functional dependency is a generalization of the
notion of key, as discussed above. In general, it may not be a simple manner to determine keys
from a given set of functional dependencies. In order to find key, we need to study the
properties of functional dependencies.

First, we need to determine all the functional dependencies that hold. Second, once we have
chosen a particular decomposition of a relation scheme, we need to determine those functional
dependencies that hold on the decomposed schemes. We need general techniques if we are to
deal with large, real-world databases.

Furthermore, we need to guard against decompositions that have anomalous behaviour similar
to those discussed earlier.

Functional Dependencies

Functional dependencies are a constraint of the set of legal relations. They allow us to express
facts about the enterprise that we are modelling with our database.

Earlier, we defined the notion of a superkey as follows: Let
be a relation scheme. A subset

of

is a superkey of

if, in any legal relation (), for all pair ;and ; of tuples in

Page | Ixvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

such that :

g gl [

That is no two tuples in any legal relation {} may have the same value on attribute set

. The notion of functional dependency generalizes the notion of superkey. Let & and . The
functional dependency

%.

Holds on

if in any legal relation (), for all pairs of tuples ;and zin

such that

o= . {}, itis also the case that 1{} = -{}

Using the functional dependency notation, we say that

is a superkey of

if — .Thatis. Kisasuperkeyifwhenever ; [] ™= z[l: s [0 = [0 Cug = zh

Functional

dependencies allow us to express constraints that cannot be expressed using

superkey. Consider the scheme lending-scheme that we used in one of our alternative designs
above, we would not expect the attribute branch-name to be a superkey because we know that
a branch may have many loans to many customers. However, we do expect the functional
dependency:

— s —

to hold, since we know that a branch may be located in exactly one city.

We shall use functional dependencies in two ways:

1.

Page | Ixvii

To test relations to see if they are legal under a given set of functional

dependencies. If a relation
is legal under a set
of functional dependencies, we say that

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

satisfies

2. To specify constraints on the set of legal relations. We shall thus concern ourselves
only with relations that satisfy a given set of functional dependencies.
Let us consider the relation

of Table 1.11 and see which functional dependencies are satisfied. Observe that — s
satisfied. There are two tuples that have an

value of 1. These tuples have the same

value, namely, 1. Similarly, the two tuples with an

value of >have the same

value, =. There are no other pairs of distinct tuples that have the same

value. The functional dependency — is not satisfied, however. To see this, consider the tuples
s = (aozezes) 2 = (zoz02-3). These two tuples have the same

value zbut they have different

value, and 5, respectively. Thus, we have found a pair of tuples 3 and s such that ,{} = () but

20w g0

Table 1.11. sample relation

A B C D
a, b, C d;
a; b, C d,
a, b, C2 d;

Page | Ixviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

dy b3 C d3

ds b3 C, d4

Many other functional dependencies are satisfied by r, including, for example, the functional
dependency — . Note that we use “AB” as a shorthand for {AB}, to confirm with standard
practice. The verification that —* is satisfied is left as an exercise. Some functional
dependencies are said to be trivial, because they are satisfied by all relations. For example, A is
satisfied by all relations involving attribute A.

Reading the definition of functional dependency literally, we see that for all tuples 1 and : such
that z|] = zlJ, itis also the case that z[] = zll. In general, a functional dependency of the
form — istrivialif & .

Let us return to the banking example. If we consider the customer relation as shown in Table
1.12, we see that = —y is satisfied. However, we do believe that, in the real world, two cites
can have streets with the same name. Thus, it is possible at some time to have an instance of
the

relation in which —* — is not satisfied. Thus, we would not include —+ — in the set of
functional dependencies that hold on —.

In the borrow relation of Table 1.7, we see that — —* is satisfied. Unlike the case of customer-
city and street, we do not believe that the real-world enterprise that we are modelling allows
loans to have several balances. Therefore, we want to require that — —* be satisfied by the
borrow relation at all times. In order words, we impose the constraint that — — hold on
borrow-scheme.

In what follows, we assume that when we design a relational database, we first list those
functional dependencies that must always hold. In the banking example, our list of
dependencies includes the following

On Branch-scheme

On Customer-scheme
—_— % —_—

Page | Ixix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

On borrow-scheme

On deposit-scheme
- =

Table 1.12 Customer Relation

customer-name street customer-city
Jones Main Harrison
Smith North Rye

Hayes Main Harrison
Curry North Rye

Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto

Page | Ixx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

Theory of functional Dependencies

A large body of formal theory has been developed for functional dependencies. We shall focus
on those algorithms that are most useful in applying this theory to the design BCNF and 3NF
relational databases.

In general, if we are given a set of functional dependencies, these functional dependencies may
imply that other functional dependencies hold also, For example, suppose we are given a
relation scheme = (;rr--) and a set of functional dependencies:

%

—

It is not sufficient to consider the given set of functional dependencies. Rather, we need to
consider all functional dependencies that hold. We shall see that, given a set

of functional dependencies, we can prove that certain other functional dependencies hold. We
say that such functional dependencies are logically implied by

If we are given the set of functional dependencies that appear above, the functional
dependency

%

is logically implied. That is, we can show that whenever our given set of functional
dependencies hold, = must hold also. Suppose that ; > are tuples such that

all=z0l

then, since we are given that —#, it follows from the definition of functional dependency that

Page | Ixxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

all = 201

then, since we are given that —, it follows from the definition of functional dependency that

all™= 2Tl

Therefore, we have shown that whenever ; ;are tuples such that j [] - [], it must be that
z[] =z [I but that is exactly the definition of — .

Let

be a set of functional dependencies. We denote the closure of

by *. The closure of

is the set of all functional dependencies logically implied by

. Given F, we can compute " directly from the formal definition of functional dependency. If
is large, this process would be lengthy and difficult. Such a computation of * requires
arguments of the type given above to show that — is in the closure of our example set of

dependencies. We now present a simpler techniques for reasoning about functional
dependencies.

The first technique we present is based on three axioms or rules of inference for functional
dependencies. By applying these rules repeatedly, we can find all of ¥ given

1. Reflexivity rule. If

is a set of attributes and <, then — holds

2 Augmentation rule. If —+ holds and

is a set of attributes, then — holds

3 Transitivity rule. If —* holds, and — holds, then — holds.
4, Union rule. If = holds and — holds, then — holds
5 Decomposition rule. If — holds, then — holds and — holds

Page | Ixxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

6 Pseudo transitivity rule. If — holds and — holds, then — holds

These rules are said to be sound because they do not generate any incorrect functional
dependencies. The rules are complete because given a set

of functional dependencies, they allow us to find all of *. This collection of rules is called
Armstrong’s axioms in honour of the person who first proposed them.

Although Armstrong’s axioms are complete, it is tiresome to use them directly for the
computation of *To simplify matters further, we list some additional rules. It is possible to use
Armstrong’s axioms to prove that these rules are correct .

Let us apply our rules to the example we presented earlier of scheme = (...} and the set

of functional dependencies { =, =, =, =, = }. We list some members of * below:

—+. Since —* and —* holds, we apply rule 3 (transitivity). Observed that it was much
easier to use Armstrong’s axioms to show that —* holds than it was to argue directly
from the definitions as we did earlier.

—+ . Since = and —*, the union rule (rule 4) implies that —

—+. We need several steps to show — . First, observe that — holds, using the
augmentation rule (rule 2) we see that — We are given that —, so by the transitivity
rule (rule 3) = holds.

Frequently, we are interested in finding those attributes functionally determined by a given set
of attributes. One way to find this set is to compute the closure of the given set of functional

dependencies by an exhaustive application of our inference rules. Fortunately, there is a more
efficient approach.

Let

be a set of attributes. We call the set of all attributes functionally determined by
under a set

of functional dependencies the closure of

under

and denote it by i Figure 1.6 shows an algorithm, written in pseudo Pascal, to compute . The
input is a set F of functional dependencies and the set

Page | Ixxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

of attributes. The output is store in the variable result.

To illustrate how the algorithm of Figure 1.6 works, let us use the algorithm to compute Q"

with the functional dependencies defined above. We start with = . The first time we execute
the while loop to test each functional dependency we find that:

— Causes us to include

. To see this, observe that — isin
, S (whichis

).So = .

- causes

to become ABCG

— causes

to become ABCGH

— causes

to become ABCGHI

The second time we execute the while loop, no new attributes are added to result and the
algorithm terminates.

Let us see why the algorithm of Figure 1.6 is correct.

The first step is correct since —* always holds (by the reflexivity rule). We claim that for any
subset

while (change to

Pag)dol i

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

of
, itis the case that — . Since we start the while loop with — being true, the only way we can
add Zto resultisif & and — .But

FIGURE 1.6 Algorithm to compute X', the closure of X under F

then — by the reflexivity rule, so —* by transitivity. Another application of transitivity shows
that X = Z (using — and —*). The union rule implies that — U, so

functionally determines any new result generated in the while loop. Thus any attribute
returned by the algorithm is in i

It is easy to see that the algorithm finds all of * If there is an attribute in * not yetin result,
then there must be a functional dependency — for which — result and at least one attribute

in Fis not in result. It turns out that in the worst case this algorithm may take exponential time
in the size of

. There is a faster [though slightly more complex] algorithm that runs in time linear in the size of

Desirable Properties of Decomposition

A given set of functional dependencies can be used in designing a relational database in which
most of the undesirable properties discussed in the unit on pitfalls in relational database design
do not occur. In designing such systems, it may become necessary to decompose a relation to a
number of smaller relations.

Here, we shall illustrate our concepts by considering the lending-scheme scheme again.

Lending-scheme =(branch-name, assets, branch-city, loan number, customer-
name, amount)

The set

of functional dependencies that we required to hold on lending-scheme are:

Page | Ixxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

As discussed in earlier, the — is an example of a bad database design. Assume that we
decompose it to the following five relations:

g =[]
z=[——]
z =[—-1

= [=:=]
g™ [—.—]

We claim that this decomposition has several desirable properties, which we discuss below.

Lossless-join decomposition

We have argued that it is crucial when decomposing a relation into a number of smaller
relations that the decomposition be lossless. We claim that the above decomposition is indeed
lossless. To demonstrate this, we must first present a criterion for determining whether a
decomposition is lossy.

Let R be a relation scheme and F a set of functional dependencies on R. let ;1 and z form a
decomposition of

. This decomposition is a lossless-join decomposition of R if at least one of the following
functional dependencies are in T

We now show that our decompostition is a lossless-join decomposition by showing a sequence
of steps that generate the decomposition. We begin by decomposing lending-scheme into two
schemes:

g W (== ==)
Since gy Fi 4 ™{="Tand — —, it follows (by augmentation) that

Page | Ixxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

So our initial decomposition is a lossless-join decomposition
Next, we decompose ; into:
g = (==

2= (=0 =s=0)

This step result in a lossless-join decomposition since — — —.We then decompose ; into:

Then 3 is decomposed into:
s ™ (=:=)

g™ (= =)

It is simple, using the set

of functional dependencies on —, to verify that both of these final steps generate a lossless-
join decomposition.

Dependency Preservation

There is another goal in relational database design to be considered: dependency preservation.
When an update is made to the database, the system should be able to check that the update
will not create an illegal relation; that is one that does not satisfy all of the given functional
dependencies. In order to check updates efficiently, it is desirable to design relational database
schemes that allow update validation without the computation of joins.

In order to determine whether we need to compute joins, we need to determine what
functional dependencies may be tested by checking only one relation. Let

be a set of functional dependencies on a scheme

and let 4,7, «u, be a decomposition of

Page | Ixxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

. The restriction of

to isthe set of all functional dependenciesin * that include only attributes of . Since all
functional dependencies in a restriction involve attributes of only one relation scheme, it is
possible to test satisfaction of such a dependency by checking only one relation.

The set of restrictions j:3: m; is the set of dependencies that can be checked efficiently. We
now must ask whether testing only the restrictions is sufficient. Let

be the union of all the restrictions, ¥gg . is a set of functional dependencies on scheme

,but, in general, #.However, evenif #,itmaybethat® = *

dependency in

. if this is true, then every

is logically implied by
and if we verify that
is satisfied, we have verified that

is satisfied. We say that a decomposition having this property is a dependency-preserving
decomposition. Figure 1.7 shows an algorithm for testing dependency preservation. The input is
asetD ™ {2, u,} of decomposed relation schemes, and a set F of functional dependencies.

We can now show that our decomposition Lending-scheme is dependency preserving. To see
this, we consider each member of the set

of functional dependencies that we require to hold on Lending-scheme and show that each one
can be tested in a at least one relation in the decomposition.

- — — can be tested using 4 = (=)

- — — — canbetestedusingz = ([—.,—]
- — — canbetested using g = (=)

] - = —

can be tested using

;= (==]

As the above example shows, it is often easier not to apply the algorithm of Figure 1.7 to test
dependency preservation, since the first step, computation of * takes exponential time.

Page | Ixxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Repetition of Information

The decomposition of lending-scheme does not suffer from the problem of repletion of
information. In lending-scheme, it was necessary to repeat the city and assets of a branch for
each loan. The decomposition separates branch and loan data into distinct relations, thereby
eliminating this redundancy. Similarly, observe that if a single loan is made to several customer,
we must repeat the amount of the loan once for each customer (as well as the city and assets
of the branch). In the decomposition, the relation on scheme 5 contains the loan-number,
customer-name relationship, and no other scheme does. Therefore, we have one tuple for each
customer for a loan only in the relation on s. in the other relations involving loan-number

(those on schemes z, and 4), only one tuple per loan need appear.

compute *

for each scheme in

do
begin

= the restriction of + to ;

Figure 1.7 Testing dependency preservation.

Clearly, the lack of redundancy exhibited by our decomposition is desirable. The degrees to
which can achieve this lack of redundancy is represented by several normal forms, which we
shall discuss in the remainder of this cheaper.

Boyce-Codd Normal Form

We now examine how we can use a given set of functional dependencies to design a relational
database. Using functional dependencies, we can define several normal forms which represent
“good” database designs. There are large number of normal forms. Of these, one of the more
desirable normal forms we can obtain is Boyce-Codd normal form (BCNF).

A relation scheme

is in BCNF if for all functional dependencies that hold on

Page | Ixxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

of the form —,where & and , at least one of the following holds:

= is a trivial functional dependency (thatis =)

is a superkey for scheme

A database design is in BCNF if each member of the set of relation schemes comprising the
design is in BCNF

In our banking example, the relation scheme Customer-scheme is in BCNF. To see this, note that
a candidate key for the relation is Customer-name. The only nontrivial functional dependencies
that hold on all legal instances of the customer relation have Customer-name on the left side of
the arrow. Since Customer-name is a candidate key, functional dependencies with Customer-
name on the left side do not violate the definition of BCNF.

The scheme, Borrow-scheme, however, is not in BCNF. First, note that loan-number is not a
superkey for Borrow-scheme. Although

%

Happens to hold on the borrow relation of Table 1.7, we could have a pair of tuples
representing a single loan made to two people:

[Downtown, 44, Mr. Bilk, 1000]
[Downtown, 44, Mrs. Bill, 1000]

Because we did not list functional dependencies that rule out the above case, loan-number is
not a candidate key. However, the functional dependency — —* is nontrivial. Therefore,
borrow-scheme does not satisfy the definition of BCNF.

We claim that borrow-scheme is not in a desirable form since it suffers from the repetition of
information problem described earlier. To illustrates this, observe that if there are several
Customer-name associated with a loan, in a relation on borrow-scheme, then we are forced to
repeat the branch name and the amount once for each customer. We can eliminate this
redundancy by redesigning our database so that all schemes are in BCNF. One approach to this
problem is to take the existing non BCNF design as a starting point and decompose those
schemes that are not in BCNF. Consider the decomposition of Borrow-scheme into two
schemes:

Loan-info-scheme = (branch-name, loan-number, amount)

Loan-customer-scheme= (loan-number, customer-name)

Page | Ixxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

To determine whether these schemes are in BCNF, we need to determined what functional
dependencies apply to the schemes. In this examples, it is easy to see that

Apply to loan-info-scheme, and that only trivial functional dependencies apply to loan-
customer-scheme. Although loan-number is not a superkey for borrow-scheme, it is a candidate
key for loan-info-scheme. Thus, both schemes of our decomposition are in BCNF.

It is now possible to avoid redundancy in the case where there are several customers
associated with a loan. There is exactly one tuple for each loan in the relation on loan-info-
scheme, and one tuple for each customer of each loan in the relation on loan-customer-
scheme. Thus, we do not have to repeat the branch name and the amount once for each
customer associated with a loan. The decomposition is a lossless-join decomposition. We shall
see how to determine this in the next unit.

In order for the entire design for the bank example to be in BCNF, we must decompose Deposit-
scheme in a manner similar to OUR decomposition of borrow-scheme. When we do this, we
obtain two schemes:

Account-info-scheme = (branch-name, account-number, balance)

Account-customer-scheme = (account-number, customer)

We are now able to state a general method to generate a collection of BCNF schemes. Let
be a given relation scheme and let

be given set of functional dependencies on

. Recall that

is in BCNF if for all functional dependencies =* in ¥ either = is trivial or

Page | Ixxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

is a superkey for {, = *LIf

i=

=;
+,
compute ~;

while (not done) do

if (there is a scheme , in result that is not in BCNF)

is not in BCNF, we can decompose

into

FIGURE 1.8 BCNF decomposition algorithm.

a collection of BCNF schemes z:3: m: using the algorithm of Figure 1.8 which generates not only
a BCNF decomposition but also a lossless-join decomposition. To see why our algorithm
generates only lossless-join decomposition, notice

that when we replace a scheme with — and (.}, the dependency — holdsand (=} W () = ,

Let us apply the BCNF decomposition algorithm to the Lending-scheme scheme that we used
earlier as an example of a bad database design.

Lending-scheme = (branch-name, assets, branch-city, loan-number, customer-
name, amount).

The set F of functional dependences that we require to hold on lending-scheme are:

We can apply the algorithm of Figure 1.8 as follows:-

Page | Ixxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The functional dependency:

— =

holds on Lending-scheme, but branch-name is not a superkey. Thus, Lending-scheme is not in
BCNF. We replace Lending-scheme by

1= (—)

LRCTEE

=)
1is in BCNF since branch-name is a key for ;
The functional dependency:

-

Holds on 3, but branch-name is not a key for 2. We replace z by
g = (=,=)
e= (== =)
zisin BCNF
The functional dependency:
- =

Causes us to decompose s into

5= (=)
= (= =0)
=isin BCNF

The functional dependency:

—_— -
Causes us to decompose ¢ into
™ (==)

g™ (—:—)

Page | Ixxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

=and zare in BCNF.

Thus, the decomposition of lending-scheme results in the five relation scheme j3.z.2.=, and
each of which is in BCNF. These relation schemes are the same as those used in above (except
for naming for the schemes). We have demonstrated in that unit that the resulting
decomposition is both a lossless-join decomposition and a dependency-preserving
decomposition.

Not every BCNF decomposition is dependency-preserving.

To illustrate this, consider the BD-scheme defined in earlier, that we used as an example of a
bad database design.

BD-scheme = (branch-name, loan-number, amount, account-number, balance, customer-
name)

The set

of functional dependencies that we require to hold on the BD-scheme is

— —

If we apply the algorithm of Figure 1.8, we may obtain the following BCNF decomposition

1 =(=:)

g™ (= =]

s =(=:)
a=(—r—2-)

Using our relation in scheme 3, we can esnsure that the functional dependency
— is not violated by an update.

Similarly, scheme z allows us to ensure that — — is satisfied, and z serves this purpose for
account-number. However, the dependency:

Page | Ixxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

%

is not preserved. That is it possible to insert two branch names for the same account number
(violating — —* —). the violation of this dependency cannot be detected unless a join is
computed. To see why the decomposition of BD-scheme into z-2-z and 4 is not dependency-
preserving, apply the algorithm of Figure 1.7. We find that the restriction of

to each scheme is as follows (trivial dependencies are omitted);

HEl

3:
4: only trivial dependencies hold.

Thus the set

It is easy to see that the functional dependency

%

Is notin * even though itisin i therefore, “# ¥ and the decomposition is not dependency-
preserving.

The above example demonstrates that not every BCNF decomposition is dependency-
preserving. We shall now show that it is not always possible to satisfy all three design goals:

BCNF
lossless join
dependency preservation
Consider the scheme = (.1 with a given set of functional dependencies

%

—

Page | Ixxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Clearly,
is not in BCNF since — and
is not a superkey. However, every BCNF decomposition of

must fail to preserve — . The algorithm of Figure 1.8 generates the decomposition {{.¥(,}}.
The decomposed schemes preserve only — (and trivial dependencies) but the closure of
{ =} does not include —

Third Normal Form

In those cases where we cannot meet all three design criteria, we abandon BCNF and accept a
weaker normal form called third normal form (3NF). We shall see that it is always possible to
find a lossless-join, dependency-preserving decomposition that is in 3NF.

BCNF requires that all nontrivial dependencies be of the form — where X is a superkey. 3NF
relaxes this constraint slightly by allowing nontrivial functional dependencies whose left side is
not a superkey.

A relation scheme
is in 3NF if for all functional dependencies that hold on
of the form —, where & and , at least one of the following holds:

—+ is a trivial function dependency

is a superkey for

is contained in a candidate key for

The definition of 3NF allows certain functional dependencies that are not allowed in BCNF. A
dependency —* that satisfies only the third condition of the 3NF definition is not allowed in
BCNF though it is allowed in 3NF. These dependencies are called transitive dependencies.

Observe that if a relation scheme is in BCNF, then all functional dependencies are of the form
“superkey” determines a set of attributes” {or the dependency is trivial}. Thus, a BCNF scheme

Page | Ixxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

cannot have any transitive dependencies at all. As a result, every BCNF scheme is also in 3NF,
and BCNF is therefore a more restrictive constraint than 3NF .

Let us return to our simple example of a scheme that did not have a dependency-preserving,
lossless-join decomposition into BCNF.

Let = (,,Jwith = [=, =} although scheme
is not in BCNF, it is in 3NF. To see that this is so, note that
is a candidate key for

, S0 the only attribute not contained in a candidate key for

. The only non trivial functional dependency of the form — is — . Since

is a candidate key, this dependency does not violate the definition of 3NF.

Figure 1.9 shows an algorithm for finding a dependency-preserving, lossless-join decomposition
in 3NF. It ensures preservation of dependencies by building explicitly a schemed for each given
dependency. It ensure that the decomposition is a lossless-join decomposition by ensuring that
at least one scheme contains a candidate key for the scheme being decomposed. The exercise
provide some insight into the proof that this success to guarantee a lossless join.

We illustrate the algorithm of Figure 1.9by using it to generates a 3NF decomposition of BD-
scheme. The for loop causes us to include the following schemes in our decomposition:

(loan-number, account)

(loan-number, branch-name)

Page | Ixxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

(account-number, balance)
= 0

for each functional dependency — in

end

if none of the schemes ; = = contains a candidate key for

then begin

= + -

’

(account-number, branch-name)

Since none of the above schemes contains a candidate key for BD-scheme, we add a scheme
consisting of a candidate key

(customer-name, loan-number, account-number)

The final if statement does not cause us to add any more schemes to our decomposition since
all attributes of BD-scheme already appear in some attribute of the decomposition.

Comparison of BCNF and 3NF

We have seen two normal forms for relational database schemes: 3NF and BCNF. There is an
advantage to 3NF in that we know that it is always possible to obtain a 3NF design without
sacrificing a lossless join or dependency preservation. Nevertheless, there is a disadvantages to
3NF. If we do not eliminate all transitive dependencies, it may be necessary to use null values to
represent some of the possible meaningful relationships among data items. To illustrate this,
consider the scheme ™= {;;)with = { = , = }.Since — , we may want to represent
relationships between values for L and values for K in our database. However, in order to do so,
either there must be a corresponding value for J, or we must use a null value for the attribute J.

If we are forced to choose between BCNF and dependency preservation with 3NF, it is generally
preferable to opt for 3NF. If we cannot test for dependency preservation efficiently, we either
pay a high penalty in system performance or risk the integrity of the data in our database.

Page | Ixxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Neither of these alternatives is attractive. With such alternatives, the limited amount of
redundancy imposed by transitive dependencies allowed under 3NF is the lesser evil. Thus we
normally choose to retain dependency preservation and sacrifice BCNF.

To summarize the above discussion, we note that our goal for a relational database design is:

BCNF
lossless join
dependency preservation
If we cannot achieve this, we accept:

3NF
lossless join
dependency preservation

Normalization Using Multivalued Dependencies

Until now, the only form of constraint we have allowed on the set of legal relations is the
functional dependency. We now define another form of constraint, called a multivalued
dependency. As we did for functional dependencies, we shall use multivalued dependencies to
define a normal form for relation schemes. This normal form, called fourth normal form (4NF),
is more restrictive than BCNF. We shall see that every 4NF scheme is also in BCNF, but there are
BCNF schemes that are not in 4NF.

Multivalued Dependencies

Functional dependencies rule out certain tuples from being in a relation. If — , then we
cannot have two tuples with the same

value but different

values. Multivalued dependencies do not rule out the existence of certain tuples. Instead, they
require that other tuples of a certain form sometimes are referred to as “equality-generating”
dependencies.

Let

be a relation schemeandlet < and &=

The multivalued dependency:

ﬁ.}

Page | Ixxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

holds on

if in any legal relation (J}, for all pairs of tuples ;and ; in

such that

s[] = z[], there exist tuples z;and 4in

such that:

Table 1.13 Tabular representation of —

1 F &3 &7
3 1 &1 L1 wm
4 |1 +1 +1

o= 0= (] = .0

gl] =

:.=] = :0"]

a] =zl

a.=] = q[-]

This definition is less complicated than it appears. In Tablee 1.13, we give a tabular picture of
arar2, and 4. intuitively, the multivalued dependency —* says that the relationship between

and

is independent of the relationship between and - . If the multivalued dependency — is

satisfied by all relations on scheme

,then — is a trivial multivalue dependency on scheme

Page | xc

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

.Thus — istrivialif & or U =,

To illustrate the difference between functional and multivalued dependencies, consider again
our banking example. Let us assume that instead of the schemes borrow-scheme and
customer-scheme, we have the single scheme:

BC-scheme =(loan-number, customer-name, street, customer-city)

The astute reader will recognize this as a non—BCNF scheme because of the functional
dependency customer-name—street customer-city that we asserted earlier, and the fact that
customer-name is not a key for BC-scheme. However, let us assume that our bank is attracting
wealthy customers who have several addresses (say, a winter home and a summer home).
Then, we no longer wish to enforce the functional dependency customer-name—street
customer-city. If we remove this functional dependency, we find BC-scheme to be in BCNF with
respect to our modified set of functional dependencies. Despite the fact the BC-scheme is now
in BCNF, we still have the problem of repetition of information that we had earlier.

Consider the relation BC(BC-scheme) of Table 1.14, we must repeat the, loan-number once for
each address a customer has, and we must repeat the address for each loan a customer has.
This repetition is unnecessary since the relationship between a customer and his address is
independent of the relationship between that customer and a loan. If a customer, say Smith,

Table 1.14 Relation bc, an example of redundancy in a BCNF relation.
loan-number customer-name street customer-city
23 Smith North Rye
23 Smith Main Manchester
93 Curry North Rye
93 Curry Main Manchester

has a loan, say loan number 23, we want that loan to be associated with all of Smith’s
addresses. Thus, the relation of Table 1.15 is illegal. To make this relation legal, we need to add
the tuples (23, Smith, MAIN, Manchester) and (27, Smith, North, Rye) to the BC relation of Table
1.15. Comparing the above example with our definition of multivalued dependency, we see that
we want the multivalued dependency:

customer-name —* street customer-city

to hold. (The multivalued dependency customer-name —*loan-number will do as well. We shall
soon see that they are equivalent).

As was the case for functional dependencies, we shall use multivalued dependencies in two
ways:

Page | xci

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

1. To test relations to determine whether they are legal under a given set of functional and
multivalued dependencies.

2 To specify constraints on the set of legal relations. We shall thus concern ourselves only
with relations that satisfy a given set of functional and multivalued dependencies.

Note that if a relation

fails to satisfy a given multivalued dependency, we can construct a relation

that does satisfy the multivalued dependency by adding tuples to

Table 1.15 An illegal BC relation

loan-number customer-name street customer-city
23 Smith North Rye
27 Smith Main Manchester

Theory of Multivalued Dependencies

As was the case for functional dependencies and 3NF and BCNF, we shall need to determine all
the multivalued dependencies that are logically implied by a given set of multivalued
dependencies.

We take the same approach here that we did earlier or functional dependencies. Let

+

denote a set of functional and multivalued dependencies. The closure ™, of

is the set of all functional and multivalued dependencies. We can compute * from

using the formal definitions of functional dependencies and multivalued dependencies.
However, it is usually earlier to reason about set of dependencies using a system of inference
rules.

The following list of inference rules for functional and multivalued dependencies is sound and
complete. Recall that soundness means that the rules do not generate any dependencies that
are not logically implied by

Page | xcii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

. Completeness means that the rules allow us to generate all dependencies in *. The first three
rules are Armstrong’s axioms, which we saw earlier.

Reflexivity rule. If is a set of attributesand &,then — holds.
2. Augmentation rule. If — holds and

is a sset of attributes, then — holds

Transitivity rule. If = holds and — holds, then — holds
Complementation rule. If #* holds then - — — holds.

Multivalued augmentation rule. If = holdsand & and & ,then —* holds.
Multivalued transitivity rule. If = holds and —* holds, then — — holds.
Replication rule. If = holds, then —

© N o U bk w

Coalescence rule. If — holds and - and there is a

suchthat = and n = and —*, then — holds.

The complementation rules states that if =, then — . Observe that ; and s satisfy the
definition of —* if we simply change the subscripts.

We can provide similar justification for rules 5 and 6 using the definition of multivalued
dependencies.

Rule 7, the replication rule, involves functional and multivalued dependencies. Suppose that —*
holds on

.thenif z[] = ; [l.z [] = z [J. and ;and ; themselves serve as the tuples ;and 4 required by
the definition of the multivalued dependency — .
Rule 8, the coalescence rule, is the most difficult of the eight rules to verify

We can simplify the computation of the closure of

by using the following rules which can be proved using rules 1 to 8

Multivalued union rule. If = holds and —* holds, then —* holds.
Intersection rule. If = holds and — holds, then — 11 holds
Differences rule. If =+ holds and = holds, then =+ — holdsand — — holds.

Let us apply our rules to the following example. Let = [,....] with the following set of
dependencies

given:

Page | xciii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

—

ﬁ

We list some members of + below:

— : Since —, the complementation rule (rule 4)implies that -+ - - . - - = ,so

%

—: Since —* and —*, the multivalued transitivity rule (rule 6) implies that — - .

Since - =, =

—+ . To show this fact, we need to apply the coalescence rule (rule 8). —* holds since
C and —+ and 1 = . We satisfy the statement of the coalescence rule with
being

being

being

, and
being

. We conclude that —.

—+: We already know that —+ and —. By the difference rule, = — . Since

- = & =,

Let us return to our BC-scheme example in which customer-name—*street and customer-city
holds, but no nontrivial functional dependencies hold. We saw earlier that, although BC-scheme
is in BCNF, it is not an ideal design since we must repeat a customer’s address is information for
each loan. We shall see that we can use the given multivalued dependency to improve the
database design, by decomposing BC-scheme into a fourth normal form (4NF) decomposition.

Page | xciv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

A relation scheme is in 4NF with respect to a set D of functional and multivalued dependencies
if for all multivalued dependencies in * of the form —» ,where & and %, at least one of the
following hold:

— is trivial multivalued dependency

is a superkey for scheme

A database design is in 4NF if each member of the set of relation schemes comprising the
design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF only in the use of
multivalued dependencies instead of functional dependencies. Every 4NF scheme is in BCNF. To
see that this is so, note that if a scheme

is not in BCNF, then there is a nontrivial functional dependency — holding on
, Where
is not a key. Since =* implies =* (by the replication rules),

cannot be in 4NF.

The analogy between 4NF and BCNF applies to the algorithm for decomposing a scheme into
ANF. Figure 1.10 shows the 4NF decomposition algorithm. It is identical to the BCNF
decomposition algorithm of Figure 1.8 except for the use of multivalued instead of functional
dependencies.

If we apply the algorithm of figure 1.10 to BC-scheme, we find that — —* — is a nontrivial
multivalued dependency and customer-name is not a key for BC-scheme. Following the
algorithm, we replace BC-scheme by two schemes:

(customer-name, loan number)
(customer-name, street, customer-city)

This pair of schemes which are in 4NF eliminates the problem we have encountered with
redundancy of BC-scheme.

As was the case when we were dealing solely with functional dependencies, we are interested
also in decompositions that are lossless-join decompositions and that preserve dependencies.
The following fact about multivalued dependencies and lossless joins shows that the algorithm
of figure 1.10 generates only lossless-join decompositions:

Page | xcv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Let

1w {Jy

done := false;
while (not done) do
if (there is a scheme result that is not in 4NF)
then begin

let — be a nontrivial multivalued dependency that holds on such thatis notin *

and M =
= (-3 v
be a relation scheme and
a set of functional and multivalued dependencies on
Let : and P form a decomposition of
This decomposition is a lossless-join decomposition of

if and only if at least one of the following multivalued dependencies is in ™

g Mg =9y

sfig#,

Recall that we stated earlier thatif ; fig = z or g lg =* 3, then ; and ; are a lossless-join
decomposition of

. The above fact regarding multivalued dependencies is a more general statement about
lossless joins. It says that for every lossless-join decomposition of into two schemes ; and 3,,
one of the two dependencies 3 iz =#* 3 or ; i z =* z must hold.

The question of dependency preservation when we have multivalued dependencies is not as
simple as for the case in which we have only functional dependencies. Let R be a relation
scheme and let j,z, sy be a decomposition of

Page | xcvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

. recall that for a set

of functional dependencies, the restriction of

to is all functional dependencies in ¥ that include only attributes of . Now consider a set
of both functional and multivalued dependencies. The restriction of

to isthe set consisting of:
All functional dependencies in * that include only attributes of
All multivalued dependencies of the form:
= il
where S and * isin "~
A decomposition of scheme

into schemes z:zr = is @ dependency-preserving decomposition with respect to a set

of functional and multivalued dependencies if every set of relations z{z):31z): w {J such that all,
, satisfies , there exists a relation () that satisfied

and for which ™ JI1C) for all

Let us apply the 4NF decomposition algorithm of figure 1.10 to our example of ™ (...} with
= {-#. -2, — }. Weshall then test the resulting decomposition for dependency
preservation

is not in 4NF. Observe that — is not trivial, yet
is not a key. Using —# in the first iteration of the while loop, we replace
with two schemes (.) and ;... J. it is easy to see that ;) is in 4NF since all multivalued

dependencies that hold on (] are trivial. However, the scheme {,...} is not in 4NF. Applying
the multivalued dependency —*# (which follows from the given functional dependency — by

Page | xcvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

the replication rule), we replace (...} by the two schemes (,.7and (,..}. Scheme (..} is in 4NF,
but scheme {;++) is not.

To see that {:++} is not in 4NF recall that we showed earlier that —* is in ¥ therefore —* isin
the restriction of

to [;+-1. Thus in a third iteration of the while loop, we replace (.} by two schemes ;] and
(:+). the resulting 4NF decomposition is) G Gl s

This 4NF decomposition is not dependency-preserving since it fails to preserve the multivalued
dependency = . Consider the relations of Figure 1.11. It shows the four relations that may
result from the projection of a relation on {z+#++) onto the four schemes of our decomposition.
The restriction of

to [,Jis = and some trivial dependencies. It is easy to see that ; satisfies —+ because there is
no pair of tuples with the same

value. Observe that > satisfies all functional and multivalued dependencies since no two tuples
in ; have the same value on any attribute.

1 |
2 2
E:
1 | 1
2 2 2
3.
1 i
2 2

Page | xcviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

2 2 2

Figure 1.11 Projection of r unto a 4NF decomposition of R

A similar statement can be made for ; and 4. Therefore, the decomposed version of our
database satisfies all the dependencies in the restriction of

. however, there is no relation

on [ysssr) that satisfieds and decomposes into z,3:3, and 4. To see this, observe that ™ W'El is
as shown in Figure 1.12. Relation

does not satisfy —** . Any relation
containing

and satisfying = must include the tuple (zs3,3-2:-1). However JI{} includes a tuple (3.3,
that is not in z. Thus, our decomposition fails to detect a violation of =#

Figure 1.12 Arelation (Jthat does not satisfy -

We have seen that if we are given a set of multivalued and functional dependencies, it is
advantageous to find a database design that meets the three criteria of:

ANF
dependency preservation
lossless join.

Page | xcix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

If all we have are functional dependencies, the first criteria is just BCNF. We have seen also that
it is not always possible to achieve all three of these criteria. We succeeded in finding such a
decomposition for the bank example, but failed for the example of scheme = (.....)}. When
we cannot achieve our three goals, compromise on 4NF, and accept BCNF or even 3NF, if
necessary to ensure dependency preservation.

Normalization Using Join Dependencies

We have seen that the lossless-join property is one of several properties of a good database
design. Indeed, this property is essential since, without it, information is lost. When we restrict
the set of legal relations to those satisfying a set of functional and multivalued dependencies,
we are able to use these dependencies to show that certain decompositions are lossless-join
decompositions. Because of the importance of the concept of lossless join, it is useful to be able
to constrain the set of legal relations over a scheme

to those relations for which a given decomposition is a lossless-join decomposition.

In this unit, we define such a constraint, called a join dependency. As has been the case for
other types of dependency, join dependencies will lead to another normal form called project-
join normal form (PJNF).

Join Dependencies

Let
be a relation scheme and .z, »+» be a decomposition of R, the join-dependency {gsgs s Jis
used to restrict the set of legal relations to those for which g:z: »: is a lossless-join

decomposition of

.Formally, if = =1, we say that a relation 1} satisfies the join dependency {zrzrw=s } if:

gy (IO =

A join dependency is trivial if one of the is

itself.

Page | c

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Consider the join dependency (; ;) on scheme

. This dependency requires that for all legal ()
r=Tp, O¥ Il O

Let

contain the two tuples 1and ; defined as follows:

sla= 2l = Cuarverd ali= gl ™ Cugemaid
l[l ﬁﬁ:l - [:'iﬁ""f:): 3[} ng:l - [:-Hr-'-.':[

ila—] = Cogromr) ala— a2l = (.”_r---r:[

Thus, 5 [; Mz] = : [s M z], but 1 and z have different values on all other attributes. Let us
compute ITg, (3% [Ig, (. Figure 1.13 shows TT_{} TI,(} When we compute the join, we get
two additional tuples besides 1 and z, as shown by z=and 4 in Figure 1.14

If *(3:2) holds, whenever we have tuple ; and ; we must also have : and 4. Thus Figure 1.14
shows a tabular representation of the join dependency * (2:2). Compare Figure 1.14 to Figure
1.13, in which we gave a tabular representation of = .Ifwelet ™ ; 7l zand = 3 thenwe
can see that the two tabular representations in these figures are the same. Indeed * {3,) is just
another way of stating 3 Mg =% 1. Using the complementation and augmentation rules for
multivalued dependencies, we see that 3 f1 3 =# 1 implies 3 M1 ; =% ;. Thus, *{3.2J is equivalent
to ; I 3z =% z. This observation is not surprising in light of the fact we noted earlier that ; and
form a lossless-join decomposition of

ifandonlyif g Fig=#zo0r fl;=%;.

1~ 2 lni
TG) .. PO
n:(ﬂ:) 1 +1

aﬂz 271

Page | ci

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

anJ‘-:I IS S +1 -
M, . e

Figure 1.13 H,;O H_O

17 2 g Ny 271
i 1 +1- +1
2 1 41 - 1
ES 1 +1- +1
4 1 +1 +1

Figure 1.14 Tabular representation of *{z:z.).

Every join dependency of the form * (3:2) is therefore equivalent to a multivalued dependency.
However, there are join dependencies that are not equivalent to any multivalued dependency.
The simplest example of such a dependency is on scheme ™ (;:): The join dependency

(.} (.1, (.} is not equivalent to any collection of multivalued dependencies. Table 1.16 shows a
tabular representation of this join dependency. To see that no set of multivalued dependencies
logically implies €):(;):(;): consider Table 1.16 as a relation {; ™) as shown in Table 1.15
relation

satisfies (- (; ¥ (-): as can be verified by computing:

Iy v JI Q) = JI0)

and showing that the result is exactly
. However,

does not satisfy any nontrivial multivalued dependency. To see this, verify that r fails to satisfy
any of =, =%, =%, =%, =%, -,

Just as a multivalued dependency is a way of stating the independence of a pair of relationship,
a join dependency is a way of stating that a set of relationships are all independent. This notion

Page | cii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

of independence of relationships is a natural consequence of the way we generally define a
relation.

Table 1.16 Tabular representation of *((A,B), (B,C),(A,C))

1 1 2
2 1 1
1 2 1
1 1 1

Consider, for example:
Borrow-scheme = (branch-name, loan-number, customer-name, amount)

From our banking example. We can define a relation borrow (borrow-scheme) as the set of all
tuples on borrow-scheme such that

the loan represented by loan-number is made by the branch named branch-name

the loan represented by loan-number is made to the customer named customer-name.

the loan represented by loan-number is in the amount given by amount
The above definition of the borrow relations is a conjunction of three predicates: one on loan-
number and branch-name, one on loan-number and customer-name, and one on loan-number
and amount. Surprisingly, it can be shown that the above intuitive definition of borrow logically
implies the join dependency *((loan-number, branch-name)(loan-number, customer-name)
(loan-number amount))

Thus, join dependencies have an intuitive appeal and correspond to one of our three criteria for
a good database design.

For functional and multivalued dependencies, we were able to give a system of inference rules
that are sound and complete. Unfortunately, no such set of rules is known for join
dependencies. It appears to be necessary to consider more general classes of dependencies
than join dependencies to contrast a sound and complete set of inference rules. The
bibliographic notes contain references to recent research in this area.

Project — Join Normal Form

Page | ciii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Project-join normal form is defined in a manner similar to BCNF and 4NF, except that join
dependencies are used. A relation scheme R is in project-join normal form (PJNF) with respect
to a set D of functional, multivalued, and join dependencies if for all join dependencies in * of
the form *{gszrmes) whereeach & and W=; ™ | at least one of the following holds.

*{gr20+=- 1 is a trivial join dependency
Every is a superkey for

A database design is in PJNF if each member of the set of relation schemes comprising the
design is in PJNF. PJNF is called fifth normal form (5NF) in some of the literature on database
normalization.

Let us return to our banking example. Given the join dependency *((loan-number, branch-
name, (loan-number, customer-name), (loan-number, amount,)) borrow-scheme is not in PJNF.
To put borrow-scheme into PJNF, we must decompose it into the three schemes specified by
the join dependency: (loan-number, branch-name,) (loan-number, customer-name) and (loan-
number, amount).

Because every multivalued dependency is also a join dependency, it is easy to see that every
PJNF scheme is also in 4NF. Thus, in general, we may not be able to find a dependency-
preserving decomposition for a given scheme into PJNF.

Domain-key Normal Form

The approach we have taken toward normalization is to define a form constraint (functional,
multivalued, or join dependency) and then use that form of constraint to define a normal form.
Domain-Key normal form is based on three notions.

Domain declaration. Let
be an attribute, and let
be a set of values. The domain declaration S requires that the
value of all tuples be values in

Page | civ

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Key declaration. Let
be a relation scheme with <. The key declaration key () requires that
be a superkey for

, that is — . Note that all key declarations are functional dependencies are key
declarations.
General constraint. A general constraint is a predicate on the set of all relations on give
scheme. The dependencies we have studied in this unit are examples of a general
constraint. In general, a general constraint is a predicate expressed in some agreed-
upon form, such as first-order logic.
We now give an example of a general constraint that is not functional, multivalued, or join
dependency. Suppose that all accounts whose number begins with 9 are special high-interest
accounts with a minimum balance of 842500. then we would include as a general constraint “if
the first digit of tfaccount-number] is 9, then t [balance] =2500”

Domain declarations and key declarations are easy to test in a practical database system.
General constraints, however, may be extremely costly (in time and space) to test. The purpose
of a domain-key normal form database design to allow the general constraints to be tested
using only domain and key constraints.

Formally, let
be a set of domain constraints and let

be a set of key constraints implies that our database design is not in DKNF. To create a DKNF
design, we need two schemes in place of account-info-scheme.

Regular-acct-scheme =(branch-name, account-number, balance)
Special-acct-scheme = (branch-name, account-number, balance)

We retain all the dependencies we had on account-info-scheme as general constraints. The
domain constraints for special-acct-scheme require that:

the account number begins with 9
the balance is greater than 2500

The domain constraints for regular-acct-scheme require that the account number not begin with
9. the resulting design is in DKNF although the proof of this fact is beyond the scope of this text.

Page | cv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Let us compare DKNF to the other normal forms we have studied. Under the other normal
forms, we did not take into consideration domain constraints. We assumed (implicitly) that the
domain of each attribute was some infinite domain such as the set of all integers or the set of
all character strings. We allowed key constraints (indeed, we allowed functional dependencies).
For each normal form, we allowed a restricted form of general constraint (a set of functional,
multivalued, or join dependencies.) Thus, we can rewrite the definitions of PINF, 4NF, BCNF,
and 3NF in a manner which shows them to be special cases of DKNF.

The following is a DKNF-inspired rephrasing of our definition of PINF. Let = (j.z-w-) be a
relation scheme. Let () denote the domain of attribute , and let all these domains be infinite.
Then all domain constraints

are of the form & (). Let the general constraints be a set

of functional, multivalued, or join dependencies. If

is the set of functional dependencies in

, let the set

of key constraints be those nontrivial functional dependenciesin * of the form — . Scheme

is in PINF if and only if it is in DKNF with respect to ...
A consequence of DKNF is that insertion and deletion anomalies are eliminated.

DKNF represents an “ultimate” normal form because it allows arbitrary constraints rather than
dependencies, yet it allows efficient testing of these constraints. Of course, if a scheme is not in
DKNF we may be able to achieve DKNF via decomposition, but such decomposition, as we have
seen, are not always dependency-preserving decompositions. Thus, while DKNF is a goal of a
database designer, it may have to be sacrificed in a practical design.

Atomic Values

Conspicuous by their absence from our discussion in 3NF, 4NF, etc are first and second normal
forms. The reasons for this is that second normal form is of historical interest only. Although we
have not mentioned first normal form, we have assumed it since we introduced the relational
model. We now, finally, make our assumption explicit.

A relation scheme

is in first normal form (INF) if the domains of all attributes of

Page | cvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

are atomic. A domain is atomic if elements of the domain are considered to be individisble
units.

For example, the set of integers is an atomic domain, but the set of all sets of integers is a non
atomic domain. The distinction is that we do not normally consider integers to have subparts,
but we consider set of integers to have subparts namely, the integers comprising the set. The
important issue in INF is not the domain itself, but the way we use domain elements in our
database. The domain of all integers would be non atomic if we considered each integer to be
an ordered list of digits.

In all our examples, we have assumed atomic domains. We have made this assumptions not
only for the relational model but also for the entity-relationship, network and hierarchical
model. Because this assumption is so natural, we have chosen not to draw attention to it until
now.

The reason we mention INF at all is that recent development in database theory and practice
have called into question the legitimacy of assuming INF. Let us consider a document retrieval
system. For each document, we store the following information.

Document title
Author list.
Date
Keywords lists
Table 1.17 Non 1NF documents relation

title author-list date keywords

day month year

sales plan {Smith, Jones} 1 April 79 {profit, strategy}

status plan {Jones, Frick} 17 June 85 {profit, personnel}

We can see that if we define a relation for the above information, several domains will be non
atomic.

Authors. A documents may have a set of authors. Nevertheless, we may want to find all
documents of which Jones was one of the authors. Thus we are interested in a subpart
of the domain element “set of authors”

Page | cvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Keywords. If we store a set of keywords for a document, we expect to be able to
retrieve all documents whose keywords include one or more keywords. Thus, we view
the domain of keyword list as non atomic.
Date. Unlike keywords and authors, date does not have a set-valued domain. However,
we may view date as consisting of the subfields day, month, and year. This makes the
domain of date monatomic.
Table 1.17 shows an example document relation. This relation can be represented in INF, but
the resulting relation is awkward (see Table 1.18). Since we must have atomic domains in INF,
yet want access to individual authors and to individual keywords, we need one tuple for each
(keyword, author) pair. The date attribute is replaced in the INF version by three attributes; one
for each subfield of date.

title author day month year keyword

salesplan Smith 1 April 79 profit
salesplan Jones 1 April 79 profit
salesplan Smith 1 April 79 strategy
salesplan Jones 1 April 79 strategy
status report | Jones 17 June 79 profit
status report | Frick 17 June 79 profit
status report | Jones 17 June 79 personnel
status report | Frick 17 June 79 personnel

Table 1.18 INF version of non-INF relation in Table 1.17

Much of the awkwardness of the relation in Table 1.18 is removed if we assumed that:

title = author
title =% keyword
title = day month year
Then, we can decompose the relation into 4NF using the schemes:

(title, author)
(title, keyword)
(title, day, month, year)

Page | cviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

Table 1.19 shows the projection of the relation of Table 1.18 onto the above decomposition.

Although INF can represent our example document database adequately, the non-1NF

representation may be an easier-to-understand model for the typical user of a document

retrieval system.

Table 1.19 4NF version of 1NF relation in Table 1.18

title author
salesplan Smith
salesplan Jones
status report Jones
status report Frick
title keyword
salesplan Smith
salesplan Jones
status report Jones
status report Frick
title day | mont | yea
h r
salesplan 1 | April 79
status report 17 | June 85

Users of such system think of the database in terms of our non-1NF design. The 4NF design
would require users to include joins in their queries, there by complicating interaction with the
system. We could define a view that eliminates the need for users to write joins in their query.

Page | cix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

However in such a view, we lose the one-to-one correspondence between tuples and
documents.

Once we realize that there are new applications of database systems that benefit from a
non-1NF representation, we need to define new normal forms and criteria for goodness of a
design.

Alternative Approaches to Database Design

In this unit, we re-examine normalization of relation schemes with an emphasis on the impact
of normalization on the design of practical database systems.

We have taken the approach of starting with a single relation scheme and decomposing it. One
of our goals in choosing a decomposition was that the decomposition be a lossless-join
decomposition. In order to consider losslessness, we assumed that it is valid to talk about the
join of all the relations of the decomposed database.

Consider the database of Figure 1.16 showing a borrow relation decomposed in PIJNF. In Figure
1.16, we represent a situation in which we have not yet determined the amount of loan 58, but
wish to record the remainder of the data on the loan. If we compute the natural join of these
relations we discover that all tuples referring to loan 58 disappear. In other words, there is no
borrow relation corresponding to the relations of Figure 1.16. We refer to the tuples that
“disappear” in computing the join as dangling tuples.

branch-name loan-number
Round Hill 58
loan-number amount
loan number customer-number
58 Johnson

Figure 1.16 Decomposition in PJNF

Page | cx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Formally, let 5 (). 2(2) ... () be a set of relations. A tuple of relation is a dangling tuple if it is
not in the relation:

T1(%a;)

Dangling tuples may occur in practical database applications. They represent incomplete
information, as in our example where we wish to store data about a loan still in the process of
being negotiated. The relation ¥=; , is called a universal relation since it involves all the

attributes in the “universe” defined by Vm; .

The only way we can write a universal relation for the examples of Figure 1.16 is to include null
values in the universal relation. Ongoing research regarding null values and universal relations
is discussed in the bibliographic notes. Because of the difficulty of managing null values, it may
be desirable to view the relations of the “decomposed” design as representing “the” database,
rather than the universal relation whose scheme we decomposed during the normalization
process.

Note that not all incomplete information can be entered into the database of Figure 1.16
without resorting to the use of null values. For example, we cannot enter a loan number unless
we know at least one of the following:

The customer name
The branch name
The amount of the loan.

Thus, a particular decomposition defines a restricted form of incomplete information that is
acceptable in our database.

The normal forms that we have defined generate good database designs from the point of view
of representation of incomplete information. Returning again to the example of Figure 1.16, we
would not want to allow the storage of the following fact “there is a loan (whose number is
unknown) to Jones in the amount of 8100”. Since loan-number — customer-name amount is
the only way we can relate customer-name and amount through loan-number. If we do not
know the loan number, we cannot distinguish this loan from other loan with unknown
numbers.

In other words, we do not want to store data for which the key attributes are unknown.
Observed that the normal forms we have defined do not allow us to store that type of
information unless we use null values. Thus, our normal forms allow representation of
acceptable incomplete information via dangling tuples while prohibiting the storage
undesirable incomplete information. If we allow dangling tuples in our database, we may prefer
to take an alternative view of the database design process. Instead of decomposing a universal
relation, we may synthesize a collection of normal form schemes from a given set of attributes.
We are interested in the same normal forms regardless of whether we use decomposition or
synthesis. The decomposition approach is better understood and more widely used.

Page | cxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Another consequence of our approach to the database design is that the attribute names must
be unique in the universal relation. We cannot use name to refer to both customer-name and
to branch-name. It is generally preferable to use unique names, as we have done. Nevertheless,
if we defined our relation schemes directly rather that in terms of a universal relation, we could
obtain relations on schemes such as the following for out banking example:

branch-loan(name, number)
loan-number(name, number)
loan(number, amount)

Observe that with the above relation, such expression as branch-name % loan-customer are
meaningless. Indeed, the expression branch-loan ¥ loan-customer finds loan made by branches
to customers with the same name as the branch.

However, in a language like SQL, there is natural join operation, so in a query involving branch-
loan and loan-customer, references to name must be disambiguated by prefixing the relation
name. In such environment, the multiple roles for name (as branch name and customer name)
are less troublesome and may be simpler for some users.

We feel that the unique role assumption that each attribute name has a unique meaning in the
database, is generally preferable to the use of the same name in multiple roles. When the
unique role assumption is not made, the database designer must be especially careful when
constructing a normalised relational database design.

15 CONCLUSION

A database management system provides us with mechanisms for storing and organizing data
to facilitate easy access to and manipulation of the data. Today’s most popular database
systems are relational databases.

1.6 SUMMARY

In this unit we defined additional operations to express the requests. These operations enhance
the expressive power of the relational algebra. We have presented criteria for a good database
design:

Lossless join
Dependency preservation
PJNF, BCNF, 4NF, or 3NF

We have shown how to achieve these goals and how to find a good compromise when not all
the criteria can be achieved.

Page | cxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

In order to represent these criteria, we defined several types of data dependencies

Functional dependencies
Multivalued dependencies
Join dependences

We studied the properties of these dependencies with emphasis on what dependencies are
logically implied by a set of dependencies.

DKNF is an idealized normal form that may be difficult to achieve in practice. Yet, DKNF has
desirable properties that should be included to the extent possible in a good database design.

In reviewing the issues we have discussed in this unit, it is worthwhile to observe that the
reason we could define rigorous approaches to relational database design is that the relational
data model rest on a firm mathematical foundation

1.7 TUTOR-MARKEDASSIGNMENT(TMA).

1. Define the following terms: domain, attribute, n-tuple, relation schema, relation state
2. Why are tuples in a relation not ordered

3 Why are duplicate tuples not allowed in a relation

4 What is the difference between a key and a upper key

5 List the operations of relational algebra and the purpose of each

6 What is union compatibility ? Why do the UNION, INTERSECTION, and DIFFERENCE
operations require that the relations on which they are applied be union compatible.

7. Consider the following relations for a database that keeps track of student enrolment in
courses and the books adopted for each course:

STUDENT (SSN, Name, Major, Bdate)
COURSE (course#, Cname, Dept)
ENROLL(SSN, course#, Quarter, Grade)
BOOK-ADOPTION (course#, QUARTER, BOOK-ISBN)
TEXT (BOOK-ISBN, Book-Title, Publisher, Author)
Specify the foreign keys for the above schema, stating any assumptions you make. Then specify

the following queries in relational algebra:

Page | cxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

(a) List the number of courses taken by all students named ‘Daniel Olayinka’ in
December 1991 (i.e. Quarter = w99)

(b) Produce a list of textbooks (includes course#t, Book-ISBN, Book — Title) for course
offered by the ‘cs’ department that have used more than two books.

1.8 FURTHERREADINGS

Atzeni, P., and De Antonellis, V. [1993] Relational Database Theory Benjamin / Cummings, 1993.

Batini., C., Ceri, S., and Navathe, S. [1992] Database Design: An Entity — Relationship Approach,
Benjamin/Cummings, 1992.

Bernstein, P. [1976] “Synthesizing Third Normal Form Relations from Functional Dependencies”,
TODS, 1:4, December 1976.

Codd, E [1970] “A Relational Model for Large Shared Data BANks” CACM, 136, June 1970.

Maier, D. [1983] The Theory of Relational Databases, Computer Science Press, 1983.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Schmidt., J., and Swenson, J., [1975] “On the Semantics of the Relational Model” in SIGMOD
[1975].

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — hill, 1986.

Page | cxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

UNIT 2: DATABASE IMPLEMENTATION

2.0 INTRODUCTION

Database design is a part of a larger picture called an information system more like a relational
database management system.. Within the system, we not only collect, store and retrieve data,
but also transform that raw data into useful information. The system does not just happen,

they are a product of a carefully staged development process. To determine the need for an
information system and to establish its limit, we use a process known as system analysis to
develop the system. This continuous process of creation, maintenance, enhancement, and
replacement constitute the Systems Development Life Cycle. The information contained in the
database, to a large extent, is the product of interviews with the end users. These people are the
system’s main beneficiaries and must be identified carefully. The key users of the University
Computer Lab application developed in this unit are:

O The lab director, who is charged with the Lab‘s operational management.
O The lab assistants LA, who are charged with the Lab’s daily operations.
O The secretary of the Computer Information Systems (CIS) department, who assists in

the Lab’s general administrative functions.
In the interest of brevity, we will show only a few excerpts of the numerous interviews that
were performed for this project.
2.1 OBIJECTIVES
To understand the stages involved in the database design
To see important features of the implementation stage

To consider various operations involved during design and implementation
To develop a University Computer Lab application

2.2 CONCEPTUAL DESIGN

The conceptual database blueprint development helps us define the basic characteristic of the

database environment. Using an analogy, if an architect’s blueprint show a wall, it is important
you know if that wall is to be made of board, brick, block or poured concrete and whether that

wall will bear a load or merely act as a partition. In short, detail matters.

Page | cxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

To develop a good conceptual design we must be able to gather information that lets us
accurately identify the entities and describe their attributes and relationships must accurately
reflect real-world relationships.

2.2.1 Information Sources And Users

We must begin the conceptual design phase by confirming good information sources. The
confirmation process recertifies key users and carefully catalogues all current and prospective
end users. In addition, the confirmation process targets the current system’s paper flow and
documentation, including data and report forms. For the UCL the following are necessary:

Computer Lab director (CLD).

Computer information Systems (CIS) department secretary and chair.

Computer Lab assistant (LA).

Students, faculty, and staff who use the Lab’s resources.

All currently used computer lab forms, file, and report forms.
Not surprisingly, a list of prospective system user tends to duplicate at least a portion of
the list of information sources.

The CLD (who is also the UCL system administrator) will manage the system, enter
data into the database, and define reporting requirements.

The LAs are the primary UCL system users and will enter data into the database.

The CIS secretary is a UCL system user and will query the database.

We suggest that you create a summary table to identify all system sources and users. Such a
table can be used for cross-checking purposes, thereby enabling you to audit sources and users
more easily. The UCL system summary is shown in Table 2.1.

Page | cxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

__MODULE PROCESS _SOURCES(S) USER(S) INTERFACE
Inventory INVENTORY _
Management Inventory Type University, CLD CIs, CLD Order
System Item Data Orders, inventory forms CIS, CLD Maintenance

Withdrawal Inventory forms CIS,CLD, LA Check_out
Repairs Bad Equipment Log CIS, CLD Storagé
Ched‘<_out Check-out forms CIS,CLD Inventory
Location Inventory forms CIS,CLD Inventory
ORDER PO forms CIs,CLD Inventory
Order Data PO forms CIS,CLD Maintenance
Items Ordered Inventory forms CIs,CLD Inventory
ltems Received University, CLD CIS,CLD Inventory
Inventory Type PO forms, CLD CIS,CLD Order
Vendors CLD CIs,CLD Inventory
STORAGE Inventory forms _ CIS, CLD Access
Locations Bad Equipment Log CiS,CLD, LA
Item Data Inventory forms CIS,CLD
MAINTENANCE PO forms " CIS,CLD -
Repair inventory forms CIsS,CLD, LA
ltem Data Check-out Log CIS, CLD, LA
Vendor Data
CHECK_OUT) -
ltem Data
Users
Lab ACCESS B fnven;c‘:.r_y o
gﬂanagement User Lab usage log CLD, LA Check_out
ystem oGy = - = ——
RESERVATION Lab reservation forms CLS, CLD, Reservation
Reservation Data Lab assistant form LA, Faculty Access
PERSONNEL Lab schedule form CLD, CIS Personnel
Lab assistants Time sheet forms CLD, CIS Reservation
Schedule CLD, CIS
Hours Worked

Table 2.1 Data Sources and Users

Source: Database System Design, Implementation and Management Rob Coronel

23

E-R MODEL VERIFICATION

At this point we would have identified:

Entity sets, attributes, and domains.

Composite attributed. Such attributes may be (and usually are) decomposed into

several independent attributes.

Multivalued attributes. We implemented them in a new entity set in a I:M

relationship with the original entity set.
Primary keys. We ensured primary key integrity.
Foreign keys. We ensured referential integrity through the foreign keys.
Derived attributes. We ensured the ability to computer their values.
Composite entities. We implemented them with 1:M relations.

Although we seem to have made considerable progress, much remains to be done before the

model can be implemented.

Page | cxvii

2009

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

To complete the UCL conceptual database design we must verify the model. Verification
represents the link between the database modelling and design activities, database
implementation, and database application design. Therefore, the verification process is used to
establish that:

The design properly reflects the end user or application views of the database.

All database transaction - inserts, updates, deletes — are defined and modelled to
ensure that the implementation of the design will support all transaction —
processing requirements.

The database design is capable of meeting all output requirements, such as query
screens, forms, and report formats. (Remember that information requirements may
drive part of the design process).

All required input screens and data entry forms are supported.

The design is sufficiently flexible to support expected enhancements and
modifications. In spite of the fact we were forces to revise the E-R diagram depicted
in Figure 2.1, it is still possible that:

Some of the relationship are not clearly identified and may even have been
misidentified.

The model contains design redundancies (consider the similarity between the
WTIHDRAW and CHECK-OUT entities).

The model can be enhanced to improve semantic precision and better represent the
operations in the real world.

The model will demonstrate the requirements (such as processing performance or
security).

In the following few paragraphs, we will demonstrate the verification process for some of the
application views in the inventory Management module. (This verification process should be
repeated for all the system’s modules.)

Page | cxviii

Identifying the Central Entity. Although the satisfaction of the UCL's end users is
vital, inventory management has the top priority from an administrative point of
view. The reason for this priority rating is simple: state auditors target the Lab’s
considerable and costly inventory to ensure accountability to the state’s taxpayers.
Failure to track items properly may have serious consequences and, therefore, ITEM
becomes the UCL’s central entity.

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

performs

M 1
. oK)
o
CORDER supplias ! VENDOR
7 om

LOCATION

REPAIR

M . 1.1

ORDER_ITEM (O:N) L fenuies
mja.n
is_ |
lef.l:‘n.w WORK_SCHEDULE
1} (O.N) it b
(1.1
w2 O
NV_TYPE ITEM : Is
(O,N) assigned
Tom Tfomom| 1 :
am !
LABASSISTANT |

LW 1 N

@ulm&s
1N (N 1

USER (L)

LoG

"V

RESERVATION

(O,N)

. HOURS_WORKED
Mmjan mian (O.N) |
ploces

i

. W o

Figure 2.1 The UCL Management System’s Initial ERD

Source: Database System Design, Implementation and Management. Rob Coronel

Identifying each module and its components. It is important to “connect” the
components by using share entities. For example, although USER is classified as
belonging to the Lab management module and ITEM is classified as belonging to the
inventory Management module, the USER and ITEM entities interface with both. For
example, the USER is written into the LOG in the Lab Management module. USER

Page | cxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

also features prominently in the inventory Management module’s withdrawal of
supplies and in the check-out-in processes.
Identifying each module transaction requirement. We will focus our attention on
one of the INVENTORY module’s reporting requirements. Then, validate these
requirement against UCL database for all system modules.
A sample inventory Management module’s reporting requirement uncovers the following
problems:

The inventory module generates three reports, one of which is an inventory
movement report. But the inventory movements are spread across several different
entities (CHECK-OUT and WITHDRAW and ORDER). Such a spread makes it difficult
to generate the output and reduces system performance.
An item’s quantity on hand is updated with an inventory that can represent a
purchase, withdrawal, check-out, check-in, or inventory adjustment. Yet only the
withdrawal and check-outs are represented in the model.
The solution to these problems is described by the database designer:-

What the inventory Management module needs is a common entry point for all movements. In
other words, the system must track all inputs to and withdrawals from inventory. To accomplish
this task, we must create a new entity to record all inventory movements; that is, we need an
inventory transaction entity. We will name this entity INV-TRANS.

The creation of a common entry point serves two purposes:

1. It standardizes the inventory module’s interface with other (external) modules. Any
inventory (whether it adds or withdraws) will generate an inventory transaction
entry.

2. It facilities control and generation of required outputs, such as the inventory

movement report.
Figure 2.2 illustrates a solution to the problems we have just described.

L NSRS
x_\'\/ﬂ'>~0([7—“mh:]

| LOCATION

o ———ey

LAB_ASSISTANT

et —

Page | cxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 2.2 The Inventory Transaction Process

Source: Database System Design, Implementation and Management. Rob Coronel

The INV-TRANS entity in Figure 2.2 is a simple inventory transaction log, and it will contain any
inventory 1/0 movement. Each INV-TRANS entry represents one of two types of movement:
input (+) or output (-). Each INV-TRANS entry must contain a line TR-ITEM for each item that is
added. Withdrawn, checked in, or checked out.

The INV-TRANS entity’s existence also enables us to build additional 1/0 movement efficiently.
For example, when an ordered item is received, an inventory transaction entry (+) is generated.
This INV-TRANS entry will update the quantity received (01-QTY-RECVD) attribute of the
ORDER-ITEM entity in the inventory management module. The inventory management module
will generate an inventory transaction entry (+) to register the items checked in by a user. The
withdrawal of items (supplies) will also generate an inventory transaction entry (-) to register
the items that are being withdrawn. These relationship are depicted in Figure 2.2.

The new INV-TRANS entity’s attributes are shown in Table 2.2.

Page | cxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

ATTRIBUTE NAME

CONTENTS

ATTRIBUTETYPE:
COMPOSITE (C),
DERIVED (D), OR
MULTIVALUED (M)

PRIMARY KEY (PK)
AND/OR

FOREIGN KEY (FK) REFERENCES

TRANS_ID

Inventory transaction 1D
(This code is generated

by the system.)

PK

TRANS_TYPE

Inventory transaction type:
I = Input (an addition
to the Inventory)
O = output (a subtraction
from the inventory

TRANS_PURPOSE

Reason for inventory
transaction:
PO = purchase order
(add to the inventory)
CC = check-out (subtract
from the inventory)
WD = withdrawal
(subtract from the
inventory)
AD = adjustment
(add to or subtract
from the inventory,

depending on the type

of adjustment)

TRANS_DATE

Inventory transaction date

T LAD

Lab assistant who recorded
the transaction

FIK LAB_ASSISTANT

USER_ID

Person who created the
transaction

FK USER

ORDER_ID

Order ID

FK ORDER

TRANS_COMMENT

Comments

Table 2.2 The INV_TRANS Entity

Source: Database System Design, Implementation and Management. Rob Coronel

can be accessed through STORAGE. Because INV-TRANS is relate to both LAB-ASSISTANT and
USER, we know who recorded the transaction and who generated it.

Page | cxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 2.3 The INV_TRANS Sample Data

Source: Database System Design, Implementation and Management. Rob Coronel

For example, the first INV-TRANS row lets us know that on Thursday, February 4, 1999 a laser
printer cartridge was withdrawn from inventory by user 299-87-9234. The transaction was
recorded by LA 387-99-9565, and the transaction decreased (TRANS-TYPE = 0) the stock in
inventory.

The transaction details in Figure 2.3 are stored in TR-ITEM, so before we can examine these
details we must examine the TR-ITEM structure in Table 2.3.

Page | cxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Table 2.3 The TR_ITEM(Weak) Entity

Source: Database System Design, Implementation and Management. Rob Coronel

We can trace some transaction details in Figure 2.3.

4238131 KOM2454-1
326 3154567 KOM245B-1
326 4238131 | KOM2454-1
326 4238132 KOM24524-1
327 42361 32| KOM106-1
328 53154567 KOM106-1
328 4238130] KOM106-1
401 4228753 KOM2454-1
402 4228733 KOM2454-1
403 4358255 KHOM245B8-1
403 4358258] KOM245B-1
404 4228753 KOM2454-1
405 4358255! KOM245B-1
406 4112151 |HOM2458.-2
407 4112151 |KOM2454-2
408 3154567 | KOM2454-2
408 4567920 KOM245B-2
408 45675921 | KOM2458-2

Figure 2.4 The TR_ITEM Sample Data

ATl O N e R B S N SR B

Source: Database System Design, Implementation and Management. Rob Coronel

For example, note that the first INV-TRANS row’s TRANS-ID = 325 entry (see Figure 2.3) now
points to the TR-ITEM’s TRAND-ID = 325 entry shown. Thus allowing us to conclude that this
transaction involved the withdrawal of a single unit of item 4238131, a laser printer cartridge.
(We can conclude that item 4238131, is a laser printer by examining the ITEM and TY-GROUP =

Page | cxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SUCALPXX.) Transaction 362 involved three items, so the TR-ITEM table contains three detail
lines for this transaction.

Examine how checks-out and check-in are handled. In Figure 2.3, INV TRANS transaction 401
records TRANS PURPOSE= CC and TRANS TYPES= O, indicating that a check was made. This
transaction recorded the following: check-out of a 486 laptop, ITEM ID= 4228753 on Tuesday,
February 2, 1999 by an accounting faculty member, USERID= 301-23-4245. The laptop was
returned on Wednesday, February 3, 1999, and this transaction was recorded as TRANS 1D=402,
whose TRANS PURPOSE= CC and TRANS TYPES=1, indicating that this particular 486 laptop was
returned to the available inventory. Indicating, because the department owns several laptops,
Faculty members need not wait for one to be returned before checking out a laptop, as long as
there are laptops in inventory, However, if no additional laptops are available, the system can
trace who has them and when they were checking out. If the CLD wants to place restriction on
the length of time an item can be check out, this design makes it easy to notify users to return
the items in question.

The Final entity relationship diagram reflects the changes that we have made, Although the
original E-R diagram is easier to understand from the users point of v, the revised E_R diagram
has more meaning from the procedural point of view. For example, the changes we have made
are totally transparent (invisible) to the user, because the user never seen the INV-TRANS
entity. The final E-R diagram is shown in Figure 2.4.

Page | cxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

Figure 2.4 The Revised University Computer Lab ERD

Source: Database System Design, Implementation and Management. Rob Coronel

2.4 LOGICAL DESIGN

When the conceptual design phase is completed, the ERD reflects — at the conceptual level-the
business rules that , turn, define the entities, relationship, optional ties, connectives,
cardinalities, and constraints. (Remember that some of the design elements cannot be
modelled and are, therefore, enforced at the application level;. For example, the constraint, “a
checked out item must be returned within five days” cannot be reflected in the ERD.) In
addition, the conceptual model includes the definition of the attributes that describe that
describe each of the entities and are required to meet information requirements.

Keep in mind that the conceptual model’s entries must be normalized before they can be
properly implemented. The normalization process may yield additional entities and
relationships, thus requiring the modification of the initial ERD. We made sure that the model
we verified in this unit meets the requisite normalization requirements. In short, we used
design and normalization reflects real-world practice. However, you should remember that the

Page | cxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

logical design process is used to translate the conceptual design into the internal model for the
selected DBMS. To the extent that normalization helps establish the appropriate attributes,
their characteristics, and their domains, normalization moves you to the logical design phase.
Nevertheless, because the conceptual modelling process does preclude the definition of
attributes, you can reasonably argue that normalization occasionally straddles the line between
conceptual and logical modelling.

The following few examples illustrate the design of the logical model using SQL. (Make sure that
the table conform to the E-R model’s structure and that they obey the foreign rules if your DBMS
software allows you to specify foreign keys.)

Using SQL, you can create the table structures within the database you have designated. For
example, the STORAGE table would created with:

CREATE TABLE STORAGE(
LOC_ID CHAR(12) NOT NULL,
ITEM_ID CHAR(10) NOT NULL,
STOR_QTY NUMBER,

PRIMARY KEY(LOC_ID,ITEM_ID),

FOREIGN KEY(LOC_ID) REFERENCES LOCATION
ON DELETE RESTRICT
ON UPDATE RESTRICT,

FOREIGN KEY(ITEM_ID) REFERENCES ITEM
ON DELETE CASCADE

ON UPDATE CASCADE);

Page | cxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Most DBMSs now use interfaces that allow you to type the attribute names into a template and
to select the attribute characteristics you want from pick lists. You can even insert comments
that will be reproduced on the screen to prompt the user for input. For example, the preceding
STORAGE table structure might be created in a

[Location 10, references LOCATION
_{1tem ID, references ITEM
Storage quantity A

Figure 2.5 The STORAGE Tables Structure Defined In Microsoft Access Source:
Database System Design, Implementation and Management. Rob Coronel

Microsoft Access template as shown in Figure 2.5.

2.4.1 Index And Views

In the logical design phase, the designer can specify appropriate indexes to enhance
operational speed. Indexes also enable us to produce logically ordered output sequences. For
example, if you want to generate a LA schedule , you need data from two tables. LAB-
ASSISTANT and WORK-SCHEDULE. Because the report output is ordered by semester, LA,
weekday, and time, indexes must be available for the primary key fields in each table. Using
SQL, we would type:

CREATE UNIQUE INDEX LAS_DEX
ON LAB_ASSISTANT(LA_ID)
and

CREATE UNIQUE INDEX WS_DEX

Page | cxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

ON WORK SCHEDULE(SCHED_SEMESTER, LA_ID, SCHED_WEEKDAY,

SCHED_TIME_IN);

Most modern DBMSs automatically index on the primary key components.

Views (see Unit 3, “Advanced Structured Query Language”) are often for security purposes.
However, views are also used to streamline the system’s processing requirements. For
example, output limits may be defined efficiently appropriate views necessary for the LA
schedule report for the fall semester of 1999, we use the CREAT VIEW command:

CREATE VIEW LA_SCHED AS
SELECT LA_ID, LA_NAME, SCHED_WEEKDAY, SCHED_TIME_IN
SCHED_TIME_OUT
WHERE SCHED_SEMESTER = ‘FALL9Y’;

The designer creates the view necessary for each database output operation.

2.5 PHYSICAL DESIGN

Physical design requires the definition of specific storage or access methods that will be used by
the database. Within the DBMS’s confine, the physical design must include as estimate to the
space required to store the database. The required space estimate is translated into the space
to be reserved within the available storage devices.

Physical storage characteristics are a function of the DBMS and the operating systems being
used. Most of the information necessary to perform this task is found in the technical manuals
of the software you are using. For example, if you use IBM’s OS/2 Database Manager Version
1.2, an estimate of the physical storage required for database creation (empty database) would
be provided by a table such as the shown in Table 2.4.

DISK SPACE IN KB

Fixed space per table created within the database 535
17 tables x 4 KB per table 68
Total fixed overhead used by database 603

Table 2.4 Fixed Space Claimed by OS/2 DBM V1.2 Per Database

Source: Database System Design, Implementation and Management. Rob Coronel

Page | cxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Next we need to estimate the data storage requirement for each table. Table 2.5 shows this
calculation for the USERS table only

ATTRIBUTE NAME] DATATYPE STORAGE REQUIREMENT (BYTES)
USER_ID CHAR(11) N
DEPT_CODE ‘CHAR(?) 7 -
 USER_TYPE - CHAR(5) 5
USER_CLASS CHAR(5) 5
USER_SEX CHAR(1) 1
- Row length 29
Number of rows 15,950
Total space required 462,550

Table 2.5 Physical Storage Requirements: The USERS Table

Source: Database System Design, Implementation and Management. Rob Coronel

If the DBMS does not automate the process of determining storage locations and data access
paths, physical design requires well-developed technical skills and a precise knowledge of the
physical-level details of the database, operating system, and hardware used by the database,
fortunately, the more recent versions of relational DBMS software hide most of the
complexities inherent the physical design phase.

You might store the database within a single volume of permanent storage space; or you can
use several volumes, distributing the data in order to decrease data-retrieval time. Some
DBMSs also allow you to create cluster tables and indexes. Cluster tables store rows of different
tables together, in consecutive disk locations. This arrangement speeds up data access; it is
mainly used in master / detail relationship such as ORDER and ORDER-ITEM or INV-TRANS and
TR-ITEM.

The database designer must make decisions that affect data access time by fine-tuning the
buffer pool size, the page frame size, and so on. These decisions will be based on the selected
hardware platform and the DBMS.

Indexes created for all primary keys will increase access speed when you use foreign
key references in tables. This is done automatically by the DBMS.

Page | cxxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Indexes can also be created for all alternate search keys. For example, if we want to
search the LAB-ASSITANCE table by user name, we should create an index for the LA-
LNAME attribute. Example:

CERATE INDEX LAOO1 ON LAB-ASSISTANT)LA-LNAME);

Indexes can be created for all secondary access keys used in report or queries. For
example, an inventory movement report is likely to be ordered by inventory type
and item ID. Therefore, an index is create for the ITEM table:

CREATE INDEX INV002 ON ITEM(TY-GROUP, ITEM-ID);

Indexes can be created for all columns used in the WHERE, ORDER BY, and GROUP
BY clauses of a SELECT statement

2.6 IMPLEMENTATION

One of the significant advantages of using databases of using databases is that a database
enables users to share data. When data are held in common, rather than being “Owner” by the
various organizational divisions, data management becomes a much more specialized task. The
database environment thus favours the creation of a new organizational structure designed to
manage the database resources. Database management functions are controlled by the
database administrator (DBA).

Once the data base designer has completed the conceptual, logical, and physical design phases,
the DBA adopts an appropriate implementation plan. The plan includes formal definitions of
the processes and standards to be followed, the chronology of the required activities (creation,
loading, testing, and evaluation), the development of adequate documentation standards, the
specific documentation needed, and the precise identification of responsibilities for continued
development and maintenance.

2.6.1. Database Creation

All the tables, indexes, and views that were defined during the logical design phase are created
during this phase. We also issue the commands or use utility programs at this time to create
storage space and the access methods that were defined by the physical design.

2.6.2. Database Loading And Conversion

The newly created database contains the (still empty!) table structures. These table structures
can be filed by entering (typing) the data one table at a time or by copying the data from
existing databases or files. If the new table structures and formats are incompatible with those

Page | cxxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

used the original DBMS or file system software, the copy procedure requires these of special
loading or conversion utilities.

Because many process require a precise sequencing of data activities, data are loaded in a
specific order. Because of foreign key requirement, the University Computer Lab database must
be initially loaded in the following order:

User, vendor, and location data
Lab assistant and work schedule data
inventory type data
4. ltem data
After these main entities have been loaded, the system is ready for testing and evaluation.

w N

2.6.3 System Procedures

System procedures describe the steps been required to manage, access, and maintain
the database system. The development of these procedures constitutes a concurrent and
parallel activity that started in the early stages of the system’s design.

A well-run database environment requires and enforces strict standards and procedures to
ensure that the data repository is managed in an organized manner. Although operational and
management activities are logically connected, it important to define distinct operations and
management procedures.

IN the case of the University Computer Lab Management System, procedure must be
established to:

Test and evaluate the database.

Fine-tune the security and integrity.

Back up and recover the database.

Access and the database system.
Several database may exist within a database environment. Each database must have its
own set of system producers and must be evaluated in terms of how it fits into the
organization’s information system.

2.7 TESTING AND EVALUATION

Page | cxxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The purpose of testing and evaluation is to determine how the database meets its goals.
Although testing and evaluation constitute a district database life cycle (DBLC) phase, the
implementation, testing and evaluation of the database are concurrent and related. Database
testing and evaluation should be ongoing. A database that is acceptable today may not be
acceptable a few years from now because of rapidly changing information needs. In fact, one of
the important reasons for the relational database’s growing dominances is its flexibility
(Because relational database tables are independent, changes can be made relatively quickly
and efficiently.)

2.7.1 Performance measures

Performance refers to Ability to retrieve information within a responsible time and at a
responsible cost. A database system’s performance can be affected by such fact ors as
communication speeds, number of concurrent users, resources limits, and so on.
Performance, primarily measured in terms of database query response time, is generally
evaluated BY Computing the number of transaction per second .

Performance of the UCL database will be affected by the types of processor used by the
database server computer, the available amount of memory in the server and in the
workstation computers, the communication Network speed, and the number of concurrent
users.

Several measures may enhance the UCL system’s performance, keep in mind that, at the
physical levels, each DBMS/hardware combination has its own specific advantages, For
example, IBM’s OS/2 DBM allows us to use the following techniques:

Define system configuration parameters to enhance system performance For

instance, we can:

0 Change the maximum number of concurrently active databases by settings the
NUMDB parameter.

O Increase the number of the maximum shared memory segments that OS/2DBM
uses to open a database, by setting the SQLNSEG parameters.

Adjust database configuration parameters to optimize the database, For instance,

we can:

0 Increase the buffer pool manager size through the BUFFPAGE parameters.

O Increase the shared segment used to sort data through SORTHEAP. The selection
of this parameter affects the amount of work space that is used by the ORDER BY
clause in a SELECT statement.

Enhanced system performance through the reorganization of the database with

REORG and RUNSTATS commands.

Enhance system performance by fine-tuning the local area parameters and

increasing the amount of RAM used in each of the network’s computers.

The designer must fine-tune the database and the system itself in order to achieve acceptable
performance. Make sure to distinguish between acceptable and optimum performance.

Page | cxxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Performance is not the only important factors in database, nor is it necessarily the most
important factors. In fact, requirement for proper concurrency control, data integrity, security,
and backup/recovery may outweigh strict performance standards.

2.8 SECURITY MEASURES

Security measures seek to ensure that data safely stored in the database. Security is especially
critical in a multiuser database environment, in which someone might deliberately enter
inconsistent data. The DBA must define (with the help of end users) a company information
policy that specifies how data are stored, accessed, and managed within a data security and
privacy framework.

Access may be limited by using access rights or access authorizations. Such rights are assigned
on the basics of the user’s need to known or the user’s system responsibilities, IN the case of
the UCL database, access rights must be assigned to Las, the CLD and the CIS secretary. But
such rights are limited For example, the Las may read their work schedules, but they are able to
modify the data stored in LAB ASSISTANT or HOURS WORKED tables.

The database administrator may, for example, grant the use of a previously created LA_SCHED
view to the lab assistant Anne Smith by using the following (SQL) syntax:

GRANT SELECT ON LA _SCHED TO LA_ASMITH;

In this case, only the LA_ASMITH may use the view LA_SCHED to check the LA schedules. A
similar procedure is used to enable other Las to check the Lab schedules.

Backup And Recovery Procedures

Database backup is crucial to the continued availability of the database system after a database
or hardware failure has occurred. Backup must be a formal and frequent procedure, and
backup files should be located in predetermined sites. Recovery procedures must delineate the
steps to ensure full recovery of the system after a system failure or physical disaster.

2.9 OPERATION

291 Database is Operational

Page | cxxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

An operational database provides all necessary support for the system’s daily operations and
maintains all appropriate operational procedures. If the database is properly designed and
implemented, its existence not only enhances management’s ability to obtain relevant
information quickly, it also strengthens the entire organization’s operational structure.

Operational Procedures

Database operational procedures are written documents in which the activities of the daily
database operations are described. The operational procedures delineate the steps required to
carry on specific tasks, such as data entry, database maintenance, backup and recovery
procedures, and security measures.

2.11 CONCLUSION

From the study, the database designer prepares for the conceptual design by carefully
establishing the organisation’s information from sources and users. Good design must take into
account the end user requirement for both as hoc queries and formail results. Report contents
and formats are analysed carefully to provide clues about the entities that must be contained
within the design.

2.11 SUMMARY

An examination of sample data makes it easier to evaluate the adequacy of the entities and
their attributes against end user requirements. The designer uses normalization checks to
ensure that data redundancies are kept to an absolute minimum, subject to performance
requirements.

The E-R model’s verification process also requires a careful examination of the propose system
modules. Therefore, we must review and verify:

The central entity within the system.
All modules and their components.
All module processes.

The verification process often leads to the creation of few entities and attributes, or it might
demonstrate that one or more existing may be deleted from design. For example, we
discovered that the UCL's WITHDRAW entity could be implemented as shown in the initial E-R

Page | cxxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

diagram. The addition of a new INV-TRANS entity and a set of relationship based on this entity
closed the implementation gap.

Following the verification of the conceptual model based on the E-R diagram the designer
addresses the logical design. The logical yields all appropriate table structures, indexes, and
views and is, for this reason, software-dependent.

The completion of the logical design lets the designer address the database’s physical design.
The physical design addresses physical storage requirements, memory allocation, and access
methods. Because these features are a function of the computer’s operating system and its
physical configuration, physical design is both software —and hardware-dependent.

The completion of the physical design allows the designer to being the database
implementation process. The data are entered into the table structures created during the
logical design phase, using appropriate loading and / or conversion utilities. The order in which
data are loaded is a function of the foreign key requirements. The designer must also address
the implementation of appropriate systems operational and management procedures.

Before the database design is accepted, it must be subjected to testing and evaluation. Actually,
testing and evaluation are continuous database management activities, but they are especially
important when the database is about to come on-line. Although database performance (speed
and efficiency) testing and evaluation criterion. Testing and evaluation must ensure that
database security and integrity are maintained hat backup and recovery procedure are in place,
and that database access and use are properly secured.

When all appropriate operational and management issues have been addressed and
implemented, the database is finally operational. The database’s existence not only ensures the
availability of information on which decision making is based, it also sets the stage for the
evaluation of data as a corporate resource and tightens operational structure throughout an
organization.

2.12 TUTOR MARKED ASSIGNMENT (TMA)

1. Why must a conceptual be verified? What steps are involved in the verification
process?

Page | cxxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

2. what steps must be completed before the database design is fully implemented?
(Make sure you follow the correct sequence and discuses each briefly.)

3. What major factors should be addressed when database system performance is
evaluated? Discuss each factor briefly.

4. How would you verify the E-R diagram shown in Figure Q8.4? Make specific
recommendations.

5. Described and discuss the E-R model’s treatment of the UCL’s inventory / order
hierarchy:
a. Category
b. Class
c. Type
d. Subtype

6. You read in this unit that:

An examination of the UCL’s inventory Management module reporting requirements
uncovered the following problems:

The inventory module generates three reports, one of which is an inventory
movement report. But the inventory movement are spared across two different
entities (CHECK-OUT and WITHDRAW). Such a spread makes it different to generate
the output and reduces the system’s performance.
An item’s quantity on hand is updated with an inventory movement that can
represent a purchase, with drawl, check-out, check-in, or inventory adjustment. Yet
only the withdrawals and check-outs are represented in the system.
What solution was proposed for this set of problems? How would such a solution be useful in
other sups of inventory environments?

2.13.FURTHERREADINGS

Boyce, R., Chamberlin, D., King, W., and Hammer, M. [1975] “Specifying Queries as Relational
Expressions”, CACM, 18 : 11, November 1975.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4™ ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — hill, 2000.

www.w3schools.com

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB [1992.

Page | cxxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

UNIT 3: ADVANCED SQL

3.0. INTRODUCTION

SQL - Structured Query Language is a standard language for accessing and manipulating
databases. SQL lets you access and manipulate databases. It is used for defining tables and
integrity constraints and for accessing and manipulating data. SQL (pronounced “S-Q-L” or
“sequel”). This unit explains how to use SQL to access and manipulate data from database
systems like MySQL, SQL Server, MS Access, Oracle, Sybase, DB2, and others.

3.1. OBIJECTIVES

To understand the SQL statements
To be able to query a database using SQL queries

3.2. WHATISSsQL?

SQL - Structured Query Language is a standard language for accessing and manipulating
databases. SQL lets you access and manipulate databases. It is used for defining tables and
integrity constraints and for accessing and manipulating data. SQL (pronounced “S-Q-L” or
“sequel”). This unit explains how to use SQL to access and manipulate data from database
systems like MySQL, SQL Server, MS Access, Oracle, Sybase, DB2, and others. Application
programs may allow users to access a database without directly using SQL, but these
applications themselves must use SQL to access the database.

Although SQL is an ANSI (American National Standards Institute) standard, there are many
different versions of the SQL language. However, to be compliant with the ANSI standard, they
all support at least the major commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE) in
a similar manner. Most of the SQL database programs also have their own proprietary
extensions in addition to the SQL standard.

The Structured Query Language can be used to execute queries against a database, retrieve
data from a database, insert records in a database, update records in a database, delete
records from a database, create new databases, create new tables in a database, create stored
procedures in a database, create views in a database, and set permissions on tables,
procedures, and views among other things. It could also be used when creating a web
application i.e. a build web site that shows some data from a database. Some other tools
including SQL would be required for this.

Page | cxxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Namely:

An RDBMS database program (i.e. MS Access, SQL Server, MySQL)
A server-side scripting language, like PHP or ASP

HTML / CSS

RDBMS

RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL, and
for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft
Access. The data in RDBMS is stored in database objects called tables. A table is a collection of
related data entries and it consists of columns and rows.

Database Tables

A database most often contains one or more tables. Each table is identified by a name (e.g.
"Customers" or "Orders"). Tables contain records (rows) with data. Below is an example of a
table called "Persons":

Table 3.0: Table Persons

P_Id LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

The table above contains three records (one for each person) and five columns (P_lId,
LastName, FirstName, Address, and City).

3.3. USING SQL ON A RELATIONAL DATABASE

SQL can be used on MySQL, Oracle, Sybase, IBM DB2, IBM Informix, Borland Interbase, MS
Access, or any other relational database system. This unit uses MySQL to demonstrate SQL and
uses MySQL, Access, and Oracle to demonstrate JDBC programming.

Assume that you have installed MySQL with the default configuration, you can access MySQL
from the DOS command prompt using command MySQL from c./MySQL/bin directory, as
shown in figure below.

Page | cxxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

-

BN C:\Program Files\MySQLWMySOL Server 5.00bin\mysql.exe | = |] [

Enter password: e

llelcome to the MySQL monitor. Commands end with ; or “g.

Your MySQL connection id is 1

Cerver version: 5. B 37-community-nt MySQL Community Edition (GPL>

Type ‘help;:’ or ‘“h’ for help. Type *“c’ to clear the buffer.

musgl>

Figure 3.1 You can access a MySQL database server from the command window.

By default, the server contains two databases named MySQL and test. You can see these two
database displayed in figure using the command “show databases”.

(a)

BN C\Program Files\MySQUMySQL Server 5.00binvmysgl.exe | = | B

mysgl> show databases

information_schema 1

myhusinessrecords |

mysgl i I
H

vows in set (A.BA5% sec)

mysogl>

(b)

&8 C:\Program Files\MySQL\MySQL Server 5.0\bin\mysql.exe ESRIEN

ysgl} use test;
Databaze changed
ysgl>

Figure 3.2 (a) The show database command display all available databases in the MySQL
database server; (b) The use test command selects the test database.

Page | cxl

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The MySQL database contains the tables that store information about the server and its users.
This database is intended for the server administrator to use. For example, the administrator
can use it to create users and grant or revoke user privileges. Since you care the owner of the
server installed on your system, you have full access to the MySQL database. However, you
should not create user tables in the MySQL database. You can use the test database to store
data or create new databases. You can also create a new database using the command create
database <database name> or drop an existing database using the command drop database
<database name>.

To select a database for use, type use database command. Since the test database is created by
default in every MySQL database, let use it to demonstrate SQL commands. As shown in the
figure above, the test database is selected. Enter the statement to create the course table as
shown in figure below:

&N C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqgl.exe E=ENT

muyzgl> create tahle Coursed
—» courseld char(S),
—»* subjectld char(4? not null,
—»* courseMumher integep,
—» title varchar(58> not null,
—» numdfCredits integer,
—; grimary key {courseld>

Query OH: B rouws affected (B.11 sec?

muysqgl>

Figure 3.3 The execution result of the SQL statements is displayed in the MSQL monitor

If you make typing errors, you have to retype the whole command. To avoid retyping the whole
command, you can save the command in a file, and then run the command from the file. To do
so, create a text file to contain the commands, named, for example, test.sqgl. You can create the
text file using any text editor, such as notepad, as shown in the figure below. To comment a

line, proceed it with two dashes. You can now run the script file by typing source test.sql from
MySQL command prompt, as shown in the figure below.

Page | cxli

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

""" test - Notepad = B &

create table Course(.
courseId char(5),

subjectId char(4) not null,

courseNumber integer,

title varchar(50) not null,

numofCredits integer,

primary key (courseId)

¥

Figure 3.4 You can use Notepad to create a text file for SQL commands

BN C\Program Files\MySQL\MySOL Server 5.0\bin\mysgl.exe

mysgl> drop table course:
Query OK. B rows affected <B.83 secl

muysgl> source C:vbook-test.sqgl

Query 0K, A rows affected (A.AT? zech

mysol>

Figure 3.5: You can run the SQL commands in a script file from MySQL

3.4. SQL STATEMENTS

Most of the actions you need to perform on a database are done with SQL statements'. Some
database systems require a semicolon at the end of each SQL statement. Semicolon is the
standard way to separate each SQL statement in database systems that allow more than one
SQL statement to be executed in the same call to the server. We are using MS Access and SQL
Server 2000 and we do not have to put a semicolon after each SQL statement, but some
database programs force you to use it. SQL statements can be divided into two parts:

1. The Data Manipulation Language (DML)
2. The Data Definition Language (DDL).

The query and update commands form the DML part of SQL:

SELECT - extracts data from a database
UPDATE - updates data in a database

DELETE - deletes data from a database

INSERT INTO - inserts new data into a database

Page | cxlii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The DDL part of SQL permits database tables to be created or deleted. It also define indexes
(keys), specify links between tables, and impose constraints between tables. The most
important DDL statements in SQL are:

CREATE DATABASE
DATABASE
CREATE TABLE
ALTER TABLE
DROP TABLE
CREATE INDEX
DROP INDEX

to create a new database ALTER

- to modify an existing database
- creates a new table in a database

- deletes a table

modifies an existing table in a database

- creates an index (search key)

- deletes an index

The table below contains a list of SQL commands and functions:

Table 3.1: SQL Commands and Functions

SQL Basic SQL Advanced SQL Functions
SQLSyntax SQLSelect SQLTop SQL SQlavg()
SQLDistinct SQL Like SQL SQLcount()
Where SQL And&Or Wildcards SQL SQLfirst()
sQL OrderBy In SQL SQLlast()
SQlInsert Between SQL SQLmax()
SQLUpdate Alias SQLJoins SQLmin()
SQL Delete SQL InnerJoin SQLsum()
SQL Leftloin SQL SQL GroupBy
RightJoin SQLHaving
SQL Fullloin SQLucase()
SQLUnion SQL Select SQLlcase()
Into SQL CreateDB SQLmid()
SQL CreateTable SQllen()
SQLConstraints SQL SQLround()
NotNull SQL | SQLnhow()
Unique SQL Primary SQL format()
Key SQL ForeignKey
sQLCheck saL isnull()
SQLDefault
sQL Createlndex
SQLDrop
SQLAlter SQL
Increment SQL
Views

Page | cxliii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SQLDates
SQL Nulls

3.4.1 CREATING AND DROPPING TABLES

Tables are the essential objects in a database. To creates a table, use the create table
statement to specify a table name, attributes, and types, as in the following example

create table Course(
courseld char(5),
subjectld char(4) not null,
courseNumber integer,
title varchar(50) not null,
numOfCredits integer,
primary key (courseld)

);

This statement creates the course table with attributes courseld, subjectld,
courseNumber, title and numOfCredits. Each attribute has a data type that specifies the
type of data stored in the attribute. char(5) specifies that courseld consists of five
characters. varchar(50) specifies that title is a variant-length string with a maximum of
fifty characters. Integer specifies that courseNumber is an integer. The primary key is
courseld.

The table Student and Enrollment can be created as follows:
create table Student (
ssn char(9)
firstName varchar(5),
mi char (1)
lastName varchar (25)
birthDate date,
street varchar (25),

phone char(11)

Page | cxliv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

zipCode char (5),

deptld char(4),

primary key (ssn)

);

create table Enrollment (

ssn char(9), courseld

char(5)

dateRegistered date,

grade char (10,

primary key (ssn, courseld)

foreign key (ssn) references student,
foreign key (courseld) references Course
);

If a table is no longer needed, it can be dropped permanently using the drop table
command. For example, the following statements drops the Course table:

drop table Course;

If a table to be dropped is referenced by other tables, you have to drop other tables first.
For example, if you have created the tables Course, Student and Enrollment and want to
drop Course, you have to first drop Enrollment, because Course is referenced by
Enrollment.

3.4.2 THE SQL SELECT STATEMENT

Page | cxlv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The SELECT statement is used to select data from a database. Depending on the form it

takes, it searches through the table in the database and selects the data that matches the
criteria. The result is stored in a result table, called the result-set.

SQL SELECT Syntax
SELECT column_name(s)

FROM table_name
and

SELECT * FROM table_name

Note: SQL is not case sensitive. SELECT is the same as select.

An SQL SELECT Example

The "Persons" table:

Page | cxlvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

Table 3.2: The “Persons” table

P_Id | LastName FirstName | Address City

1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the content of the columns named "LastName" and "FirstName"

from the table above. We use the following SELECT statement: SELECT LastName,
FirstName FROM Persons.

The result-set will look like this:

Page | cxlvii

LastName FirstName
Hansen Ola
Svendson Tove
Pettersen Kari

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT * Example

Now we want to select all the columns from the "Persons” table.

We use the following SELECT statement: SELECT * FROM Persons

Tip: The asterisk (*) is a quick way of selecting all columns!

The result-set will look like this:

P_Id | LastName FirstName | Address City

1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

3.4.3 The SQL SELECT DISTINCT Statement

Page | cxlviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

In a table, some of the columns may contain duplicate values. This is not a problem,

however, sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

SQL SELECT DISTINCT Syntax

SELECT DISTINCT column_name(s)

FROM table name

SELECT DISTINCT Example

Page | cxlix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Now we want to select only the distinct values from the column named "City" from the

table above.

We use the following SELECT statement: SELECT DISTINCT City FROM Persons

The result-set will look like this:
City

Sandnes

Stavanger

The WHERE clause is used to filter records.

3.4.4 The WHERE Clause

The WHERE clause is used to extract only those records that fulfill a specified criterion.

Page | cl

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

SQL WHERE Syntax

SELECTcolumn_name(s)

FROMtable_name

WHERE column_name operator value

WHERE Clause Example

The "Persons" table:

P_Id | LastName FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Page | cli

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Now we want to select only the persons living in the city "Sandnes" from the table above.

We use the following :

SELECT * FROM Persons
WHERE City="'Sandnes'

The result-set will look like this:

P_Id | LastName FirstName | Address City
1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes

3.4.5 Quotes Around Text Fields

Page | clii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SQL uses single quotes around text values (most database systems will also accept double

quotes). Although, numeric values should not be enclosed in quotes.

For text values:
This is correct:

SELECT * FROM Persons WHERE FirstName="Tove'
This is wrong:

SELECT * FROM Persons WHERE FirstName=Tove

For numeric values:
This is correct:

SELECT * FROM Persons WHERE Year="'1965"

Page | cliii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

This is wrong:

SELECT * FROM Persons WHERE Year=1965
3.4.6 Operators Allowed in the WHERE Clause

With the WHERE clause, the following operators can be used:

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal
<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern

IN If you know the exact value you want to
return for at least one of the columns

Note: In some versions of SQL the <> operator may be written as !=

The AND & OR operators are used to filter records based on more than one condition.

3.4.7. The AND & OR Operators

Page | cliv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The AND operator displays a record if both the first condition and the second condition is true.

The OR operator displays a record if either the first condition or the second condition is true.

AND Operator Example

The "Persons" table:

P_Id | LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the persons with the first name equal to "Tove" AND the last name
equal to "Svendson":

We use the following SELECT statement:

SELECT * FROM Persons

WHERE FirstName="Tove'

AND LastName='Svendson'

The result-set will look like this:

P_Id | LastName FirstName Address City
2 Svendson Tove Borgvn 23 Sandnes
OR OPERATOR EXAMPLE

Now we want to select only the persons with the first name equal to "Tove" OR the first name
equal to "Ola":

We use the following SELECT statement:

SELECT * FROM Persons
WHERE FirstName='Tove'

OR FirstName='0Ola'

Page | clv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The result-set will look like this:

P_Id | LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes

COMBINING AND & OR

You can also combine AND and OR (use parenthesis to form complex expressions).

Now we want to select only the persons with the last name equal to "Svendson" AND the first

name equal to "Tove" OR to "Ola":

We use the following SELECT statement:

LastName='Svendson'

SELECT * FROM Persons WHERE

AND (FirstName="Tove' OR FirstName="0la")

The result-set will look like this:

P_Id

LastName

FirstName

Address

City

2

Svendson

Tove

Borgvn 23

Sandnes

3.4.8. The ORDER BY Keyword

Page | clvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The ORDER BY keyword is used to sort the result-set. The result is sorted against a

specified column and is in ascending order by default. To sort the records in a descending

order, we can use the DESC keyword.

SELECT column_name(s)
FROM table_name

ORDER BY column_name(s) ASC|DESC

THE ORDER BY Syntax

ORDER BY Example

Page | clvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT * FROM Persons

Now we want to select all the persons from the “Persons” table above, however, we want to

sort the persons by their last name.

We use the following SELECT statement:

The result-set will look like this:

P_Id | LastName FirstName Address City

1 Hansen Ola Timoteivn 10 | Sandnes

4 Nilsen Tom Vingvn 23 Stavanger

3 Pettersen Kari Storgt 20 Stavanger

2 Svendson Tove Borgvn 23 Sandnes
ORDER BY DESC Example

Page | clviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Now we want to select all the persons from the table above, however, we want to sort the

persons descending by their last name.

SELECT * FROM Persons

ORDER BY LastName DESC

We use the following SELECT statement:

The result-set will look like this:

P_Id | LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Tom Vingvn 23 Stavanger
1 Hansen Ola Timoteivn 10 | Sandnes

3.4.9. The INSERT INTO Statement

The INSERT INTO statement is used to insert a new row in a table.

Page | clix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

THE INSERT INTO Syntax

It is posssible to write the INSERT INTO statement in two forms.

INSERT INTO table_name

VALUES (valuel, value2, values,...)

The first form doesn't specify the column names where the data will be inserted, only their

values:

INSERT INTO table_name (columnl, column2, columna,...)

VALUES (valuel, value2, values,...)

The second form specifies both the column names and the values to be inserted:

INSERT INTO Example

Page | clx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

We have the following "Persons" table:

P_Id LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
INSERT INTO Persons
VALUES (4,'Nilsen’, 'Johan', 'Bakken 2', 'Stavanger’)
Now we want to insert a new row in the "Persons" table.
We use the following SQL statement:
The "Persons" table will now look like this:
P_Id | LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Johan Bakken 2 Stavanger

Page | clxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Insert Data Only in Specified Columns

It is also possible to only add data in specific columns.

INSERT INTO Persons (P_Id, LastName, FirstName)

VALUES (5, 'Tjessem’, "Jakob")

The following SQL statement will add a new row, but only add data in the "P_Id",

"LastName" and the "FirstName" columns:

The "Persons" table will now look like this:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Johan Bakken 2 Stavanger
5 Tjessem Jakob

Page | clxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.4.10. The UPDATE Statement

The UPDATE statement is used to update existing records in a table.

UPDATE table_name
SET columnl=value, column2=value2,...

WHERE some_column=some_value

THE UPDATE Syntax

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which
record or records that should be updated. If you omit the WHERE clause, all records will be
updated!

SQL UPDATE Example

Page | clxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Johan Bakken 2 Stavanger
5 Tjessem Jakob

UPDATE Persons

SET Address="Nissestien 67, City="'Sandnes'

WHERE LastName="Tjessem' AND FirstName="Jakob'

Now we want to update the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

The "Persons" table will now look like this:

Page | clxiv

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

4 Nilsen Johan Bakken 2 Stavanger
5 Tjessem Jakob Nissestien 67 | Sandnes
UPDATE Warning
UPDATE Persons

SET Address="Nissestien 67, City="'Sandnes'

Be careful when updating records. If we had omitted the WHERE clause in the example

above, like this:

The "Persons" table would have looked like this:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Nissestien 67 | Sandnes
2 Svendson | Tove Nissestien 67 | Sandnes
3 Pettersen | Kari Nissestien 67 | Sandnes
4 Nilsen Johan Nissestien 67 | Sandnes
5 Tjessem Jakob Nissestien 67 | Sandnes

Page | clxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.4.11. The DELETE Statement

The DELETE statement is used to delete rows in a table.

DELETE FROM table_name

WHERE some_column=some_value

THE DELETE Syntax

Note: Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which
record or records that should be deleted. If you omit the WHERE clause, all records will be
deleted!

SQL DELETE Example

Page | clxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Johan Bakken 2 Stavanger
5 Tjessem Jakob Nissestien 67 | Sandnes

DELETE FROM Persons

WHERE LastName='Tjessem' AND FirstName="'Jakob

Now we want to delete the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

Page | clxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The "Persons" table will now look like this:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Johan Bakken 2 Stavanger

Delete All Rows

Page | clxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

DELETE FROM table_name

or

DELETE * FROM table_name

It is possible to delete all rows in a table without deleting the table. This means that the

table structure, attributes, and indexes will be intact:

Note: Be very careful when deleting records. You cannot undo this statement!

3.4.12. The TOP Clause

The TOP clause is used to specify the number of records to return.

The TOP clause can be very useful on large tables with thousands of records. Returning a
large number of records can impact on performance.

Page | clxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Note: Not all database systems support the TOP clause.

SELECT TOP number|percent column_name(s)

FROM table_name

THE Server Syntax

SQL SELECT TOP Equivalent in MySQL and Oracle

SELECT column_name(s)
FROM table_name

LIMIT number

MySQL Syntax

Example

SELECT *
FROM Persons
LIMIT 5

Page | clxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Oracle Syntax

SELECT column_name(s)
FROM table_name
WHERE ROWNUM <= number

Example

SELECT *

FROM Persons

WHERE ROWNUM <=5
SQL TOP Example

The "Persons" table:

P_Id | LastName FirstName Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Tom Vingvn 23 Stavanger

Page | clxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT TOP 2 * FROM Persons

Now we want to select only the two first records in the table above.

We use the following SELECT statement:

The result-set will look like this:

P_Id | LastName FirstName Address City

1 Hansen Ola Timoteivn 10 | Sandnes

2 Svendson Tove Borgvn 23 Sandnes
SQL TOP PERCENT Example

The "Persons" table:

P_Id | LastName FirstName Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger
4 Nilsen Tom Vingvn 23 Stavanger

Page | clxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Now we want to select only 50% of the records in the table above.

SELECT TOP 50 PERCENT * FROM Persons

We use the following SELECT statement:

The result-set will look like this:

P_Id | LastName | FirstName Address City
1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes

3.4.13. The LIKE Operator

The LIKE operator is used to search for a specified pattern in a column. It is used in a

WHERE clause to search for the specified pattern in the column.

Page | clxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT column_name(s)

FROM table_name

WHERE column_name LIKE pattern

The SQL LIKE Syntax

LIKE Operator Example

The "Persons" table:

P_Id | LastName FirstName Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons living in a city that starts with "s" from the table above.

We use the following SELECT statement:

Page | clxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT * FROM Persons

WHERE City LIKE 's%'

The "%" sign can be used to define wildcards (missing letters in the pattern) both before

and after the pattern.

The result-set will look like this:

P_Id | LastName FirstName Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Next, we want to select the persons living in a city that ends with an "s" from the "Persons"

table.

Page | clxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT * FROM Persons

WHERE City LIKE '%s'

We use the following SELECT statement:

The result-set will look like this:

P_Id | LastName FirstName Address City
1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes

Next, we want to select the persons living in a city that contains the pattern "tav" from the

"Persons" table.

Page | clxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT * FROM Persons

WHERE City LIKE '%tav%'

We use the following SELECT statement:

The result-set will look like this:

P_Id | LastName | FirstName | Address City

3 Pettersen | Kari Storgt 20 Stavanger

It is also possible to select the persons living in a city that NOT contains the pattern "tav"

from the "Persons" table, by using the NOT keyword.

SELECT * FROM Persons

WHERE City NOT LIKE '%tav%'

We use the following SELECT statement:

The result-set will look like this:
| P_Id ‘ LastName | FirstName | Address City

Page | clxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3.4.14. SQL Wildcards

SQL wildcards can be used when searching for data in a database. They can substitute for one
or more characters when searching for data in a database and they must be used with the LIKE
operator.

With SQL, the following wildcards can be used:

Wildcard Description

% A substitute for zero or more characters

A substitute for exactly one character

[charlist] Any single character in charlist

[Acharlist] or[!charlist] Any single character not in charlist

SQL Wildcard Examples

We have the following "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen | Kari Storgt 20 Stavanger

Using the ‘%’ Wildcard
Now we want to select the persons living in a city that starts with "sa" from the "Persons" table.

We use the following SELECT statement:
SELECT * FROM Persons

WHERE City LIKE 'sa%'

Page | clxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The result-set will look like this:

P_Id | LastName | FirstName | Address City
1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes

Next, we want to select the persons living in a city that contains the pattern "nes" from the
"Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE City LIKE '%nes%'

The result-set will look like this:

P_Id | LastName FirstName Address City
1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson Tove Borgvn 23 Sandnes

Using the ‘_’ Wildcard

Now we want to select the persons with a first name that starts with any character, followed by
"la" from the "Persons" table.

We use the following SELECT statement:
SELECT * FROM Persons

WHERE FirstName LIKE ' _Ia'

The result-set will look like this:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes

Next, we want to select the persons with a last name that starts with "S", followed by any
character, followed by "end", followed by any character, followed by "on" from the "Persons"
table.

We use the following SELECT statement:

Page | clxxix SELECT * FROM Persons

WHERE LastName LIKE 'S_end_on'

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009
The result-set will look like this:
P_Id | LastName | FirstName | Address City
2 Svendson | Tove Borgvn 23 Sandnes
Using the [charlist] Wildcard
Now we want to select the persons with a last name that starts with "b" or "s" or "p" from the
"Persons" table.
We use the following SELECT statement:
SELECT * FROM Persons
WHERE LastName LIKE '[bsp]%'
The result-set will look like this:
P_Id | LastName FirstName | Address City
2 Svendson Tove Borgvn 23 | Sandnes
3 Pettersen Kari Storgt 20 Stavanger
Next, we want to select the persons with a last name that do not start with "b" or "s" or "p"

from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE LastName LIKE '[!bsp]%'

The result-set will look like this:

P_Id

LastName

FirstName

Address

City

1

Hansen

Ola

Timoteivn 10

Sandnes

Page | clxxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

3.4.15. The IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

SELECT column_name(s)

FROM table_name

WHERE column_name IN (valuel,value2,...)

THE IN Syntax

IN Operator Example

The "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen | Kari Storgt 20 Stavanger

Page | clxxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Now we want to select the persons with a last name equal to "Hansen" or "Pettersen” from

the table above.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE LastName IN (‘Hansen','Pettersen’)

The result-set will look like this:

P_Id | LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Page | clxxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.4.16. The BETWEEN Operator

The BETWEEN operator selects a range of data between two values. The values can be

numbers, text, or dates. It is usually added to a WHERE clause to select data between the a

range specified

SELECT column_name(s)
FROM table_name
WHERE column_name

BETWEEN valuel AND value2

The SQL BETWEEN Syntax

BETWEEN Operator Example

Page | clxxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen | Kari Storgt 20 Stavanger

Now we want to select the persons with a last name alphabetically between "Hansen" and

"Pettersen” from the table above.

WHERE LastName

SELECT * FROM Persons

BETWEEN 'Hansen' AND 'Pettersen'

We use the following SELECT statement:

The result-set will look like this:

Page | clxxxiv

P Id

LastName

FirstName

Address

City

1

Hansen

Ola

Timoteivn 10

Sandnes

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Note: The BETWEEN operator is treated differently in different databases.

In some databases, persons with the LastName of "Hansen" or "Pettersen" will not be listed,
because the BETWEEN operator only selects fields that are between and excluding the test
values).

In other databases, persons with the LastName of "Hansen" or "Pettersen” will be listed,
because the BETWEEN operator selects fields that are between and including the test
values).

Page | clxxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

And in other databases, persons with the LastName of "Hansen" will be listed, but

"Pettersen” will not be listed (like the example above), because the BETWEEN operator

selects fields between the test values, including the first test value and excluding the last
test value. Therefore, Check how your database treats the BETWEEN operator.

Example 2

SELECT * FROM Persons

WHERE LastName

NOT BETWEEN 'Hansen' AND 'Pettersen'

To display the persons outside the range in the previous example, use NOT BETWEEN:

The result-set will look like this:

Page | clxxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

3.4.17.SQL Alias

P_Id | LastName | FirstName | Address City
2 Svendson | Tove Borgvn 23 | Sandnes
3 Pettersen | Kari Storgt 20 | Stavanger

You can give a table or a column another name by using an alias. This can be a good thing to

do if you have very long or complex table names or column names.
An alias name could be anything, but usually, it is short.

Page | clxxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT column_name(s)

FROM table_name

AS alias_name

SQL Alias Syntax for Tables

SQL Alias Syntax for Columns

SELECT column_name AS alias_name

FROM table_name

Alias Example

Assume we have a table called "Persons” and another table called "Product_Orders". We

will give the table aliases of "p" an "po" respectively.

Now we want to list all the orders that "Ola Hansen" is responsible for.

Page | clxxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT po.OrderID, p.LastName, p.FirstName
FROM Persons AS p,
Product_Orders AS po

WHERE p.LastName="Hansen'

WHERE p.FirstName="Ola'

We use the following SELECT statement:

The same SELECT statement without aliases:

SELECT Product_Orders.OrderID, Persons.LastName, Persons.FirstName
FROM Persons,
Product_Orders

WHERE Persons.LastName='Hansen'

WHERE Persons.FirstName="0la’

As you'll see from the two SELECT statements above; aliases can make queries easier to

both write and to read.

3.4.18.SQL JOIN

Page | clxxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The JOIN keyword is used in an SQL statement to query data from two or more tables, based on
a relationship between certain columns in these tables. Tables in a database are often related
to each other with keys. A primary key is a column (or a combination of columns) with a unique
value for each row. Each primary key value must be unique within the table. The purpose is to

bind data together, across tables, without repeating all of the data in every table.

Look at the "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen | Kari Storgt 20 Stavanger

Note that the "P_Ild" column is the primary key in the "Persons" table. This means that no two
rows can have the same P_Id. The P_Id distinguishes two persons even if they have the same

name.

Next, we have the "Orders" table:

Table 3.4: The “Orders”
o_id OrderNo P_Id
1 77895 3
2 44678 3
3 22456 1
4 24562 1
5 34764 15

Page | cxc

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Note that the "O_Id" column is the primary key in the "Orders" table and that the "P_Id"
column refers to the persons in the "Persons" table without using their names.

Notice that the relationship between the two tables above is the "P_Id" column.

Different SQL JOINs

Before we continue with examples, we will list the types of JOIN you can use, and the
differences between them.

JOIN: Return rows when there is at least one match in both tables
LEFT JOIN: Return all rows from the left table, even if there are no matches in the right
table

RIGHT JOIN: Return all rows from the right table, even if there are no matches in the left
table
FULL JOIN: Return rows when there is a match in one of the tables

The FULL JOIN Keyword
The FULL JOIN keyword return rows when there is a match in one of the tables.

Page | cxci

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT column_name(s)
FROM table_namel
FULL JOIN table_name2

ON table_namel.column_name=table_name2.column_name

SQL FULL JOIN Syntax

SQL FULL JOIN Example

The "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes
2 Svendson | Tove Borgvn 23 Sandnes
3 Pettersen | Kari Storgt 20 Stavanger

The "Orders" table:

O_Id | OrderNo P_Id

1 77895 3

Page | cxcii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

2 44678 3
3 22456 1
4 24562 1
5 34764 15

Now we want to list all the persons and their orders, and all the orders with their persons.

FROM Persons

FULL JOIN Orders
ON Persons.P_ld=Orders.P_Id

ORDER BY Persons.LastName

SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo

We use the following SELECT statement:

The result-set will look like this:

Page | cxciii

LastName | FirstName | OrderNo
Hansen Ola 22456
Hansen Ola 24562

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Pettersen | Kari 77895

Pettersen | Kari 44678

Svendson | Tove

34764

The FULL JOIN keyword returns all the rows from the left table (Persons), and all the rows

from the right table (Orders). If there are rows in "Persons" that do not have matches in
"Orders", or if there are rows in "Orders" that do not have matches in "Persons", those rows
will be listed as well.

3.4.19. The AVG() Function
The AVG() function returns the average value of a numeric column.

Page | cxciv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

SELECT AVG(column_name) FROM table_name

SQL AVG() Syntax

SQL AVG() Example

We have the following "Orders" table:

O_Id | OrderDate | OrderPrice | Customer
1 2008/11/12 | 1000 Hansen

2 2008/10/23 | 1600 Nilsen

3 2008/09/02 | 700 Hansen

4 2008/09/03 | 300 Hansen

5 2008/08/30 | 2000 Jensen

6 2008/10/04 | 100 Nilsen

Now we want to find the average value of the "OrderPrice" fields.

SELECT AVG(OrderPrice) AS OrderAverage FROM Orders

We use the following SQL statement:

Page | cxcv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

The result-set will look like this:

OrderAverage

950

Now we want to find the customers that have an OrderPrice value higher than the average

OrderPrice value.

SELECT Customer FROM Orders

WHERE OrderPrice>(SELECT AVG(OrderPrice) FROM Orders)

We use the following SQL statement:

The result-set will look like this:

Customer

Hansen

Nilsen

Jensen

Page | cxcvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.4.20. The COUNT() Function

The COUNT() function returns the number of rows that matches a specified criteria.

The COUNT(column_name) Syntax

SELECT COUNT(column_name) FROM table_name

The COUNT(column_name) function returns the number of values (NULL values will not be

counted) of the specified column:

SQL COUNT (*) Syntax

SELECT COUNT(*) FROM table_name

The COUNT(*) function returns the number of records in a table:

Page | cxcvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SQL COUNT(DISTINCT column_name) Syntax

SELECT COUNT(DISTINCT column_name) FROM table_name

The COUNT(DISTINCT column_name) function returns the number of distinct values of the

specified column:

Note: COUNT(DISTINCT) works with ORACLE and Microsoft SQL Server, but not with
Microsoft Access.

SQL COUNT(column_name) Example

We have the following "Orders" table:
O_Id | OrderDate | OrderPrice | Customer

1 2008/11/12 | 1000 Hansen

2 2008/10/23 | 1600 Nilsen

Page | cxcviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3 2008/09/02 | 700 Hansen
4 2008/09/03 | 300 Hansen
5 2008/08/30 | 2000 Jensen
6 2008/10/04 | 100 Nilsen

Now we want to count the number of orders from "Customer Nilsen".

SELECT COUNT(Customer) AS CustomerNilsen FROM Orders

WHERE Customer="'Nilsen’

We use the following SQL statement:

The result of the SQL statement above will be 2, because the customer Nilsen has made 2

orders in total:

CustomerNilsen

2

SQL COUNT (*) Example

Page | cxcix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

SELECT COUNT(*) AS NumberOfOrders FROM Orders

If we omit the WHERE clause, like this:

The result-set will look like this:

NumberOfOrders

6

which is the total number of rows in the table.
SQL COUNT (DISTINCT column_name) Example

Now we want to count the number of unique customers in the "Orders" table.

SELECT COUNT(DISTINCT Customer) AS NumberOfCustomers FROM Orders

We use the following SQL statement:

Page | cc

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The result-set will look like this:

NumberOfCustomers

3

which is the number of unique customers (Hansen, Nilsen, and Jensen) in the "Orders"
table.

3.4.21. The MAX() Function

The MAX() function returns the largest value of the selected column.

SELECT MAX(column_name) FROM table_name

The MAX() Syntax

SQL MAX() Example

Page | cci

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

We have the following "Orders" table:

O_Id | OrderDate | OrderPrice | Customer
1 2008/11/12 | 1000 Hansen

2 2008/10/23 | 1600 Nilsen

3 2008/09/02 | 700 Hansen

4 2008/09/03 | 300 Hansen

5 2008/08/30 | 2000 Jensen

6 2008/10/04 | 100 Nilsen

Now we want to find the largest value of the "OrderPrice" column.

SELECT MAX(OrderPrice) AS LargestOrderPrice FROM Orders

We use the following SQL statement:

The result-set will look like this:

Page | ccii

LargestOrderPrice

2000

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.4.22. The UCASE() Function

The UCASE() function converts the value of a field to uppercase.

SELECT UCASE(column_name) FROM table_name

The UCASE() Syntax

SELECT UPPER(column_name) FROM table_name

Syntax for SQL Server

SQL UCASE() Example

We have the following "Persons" table:

P_Id | LastName | FirstName | Address City

1 Hansen Ola Timoteivn 10 | Sandnes

Page | cciii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

2 Svendson | Tove Borgvn 23 Sandnes

3 Pettersen | Kari Storgt 20 Stavanger

Now we want to select the content of the "LastName" and "FirstName" columns above, and

convert the "LastName" column to uppercase.

SELECT UCASE(LastName) as LastName,FirstName FROM Persons

We use the following SELECT statement:

The result-set will look like this:

LastName | FirstName
HANSEN Ola
SVENDSON | Tove
PETTERSE | Kari

N

3.4.23. The SUM() Function

The SUM() function returns the total sum of a numeric column.

Page | cciv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

SELECT SUM(column_name) FROM table_name

SQL SUM() Syntax

SQL SUM() Example
We have the following "Orders" table:

O_Id | OrderDate | OrderPrice | Customer
1 2008/11/12 | 1000 Hansen

2 2008/10/23 | 1600 Nilsen

3 2008/09/02 | 700 Hansen

4 2008/09/03 | 300 Hansen

5 2008/08/30 | 2000 Jensen

6 2008/10/04 | 100 Nilsen

Page | ccv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Now we want to find the sum of all "OrderPrice" fields".

SELECT SUM(OrderPrice) AS OrderTotal FROM Orders

We use the following SQL statement:

The result-set will look like this:

OrderTotal

5700

3.5. CONCLUSION

The structured Query language (SQL) is composed of about 30 commands that enable users to
create database and table structures, perform various types of data manipulation, and query
the database to extract useful information. Almost all RDBMS software supports SQL, many
software vendors have developed extensions to the basic SQL command set.

3.6. SUMMARY

SQL - Structured Query Language is a standard language for accessing and manipulating
databases. SQL lets you access and manipulate databases. The Structured Query Language can
be used to execute queries against a database, retrieve data from a database, insert records in
a database, update records in a database, delete records from a database, create new
databases, create new tables in a database, create stored procedures in a database, create
views in a database, and set permissions on tables, procedures, and views among other things.
It could also be used when creating a web application i.e. a build web site that shows some data
from a database.

3.7. TUTOR MARKED ASSIGNMENT

Page | ccvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

1. How do the relations (tables) in SQL differ from the relations defined formally in
relational data model? Discuss the other differences in terminology. Why does SQL allow
duplicate tuples in a table or in a query result?

2. List the data types that are allowed for SQL attributes.

3. What is a view in SQL, and how is it defined? Discuss the problems that may arise when
one attempts to update a view. How are views typically implemented?

4, Describe the six clauses in the syntax of an SQL query, and show what type of constructs
can be specified in each of the six clauses. Which of the six clauses are required and which are
optional?

5. Choose some database application that you are familiar with
(A) Design a relational database schema for your database application
(b) Declare your relations, using the SQL DDL
Specify a number of queries in SQL that are needed by your database application

(d) Based on your expected use of the database, chosen some attributes that should
have indexes specified on them.

(e) Implement your database, if you have a DBMS that supports SQL.

3.8. FURTHER READINGS
Chamberlin D., and Boyce, R. [1984] “SEQUEL: A Structured English Query Language”, in SIGMOD [1984].

Date, C [1983] “The Outer Join, “Proceedings of the Second International Conference on Database (ICOD
-2), 1983.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — hill, 1986.

www.w3schools.com

Page | ccvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

UNIT 4: DATABASE SYSTEM CATALOGUE

4.0.INTRODUCTION.

The catalogue is the place where among other things, all of the various schemas (external,
conceptual, internal) and all of the corresponding mappings (external/conceptual,
conceptual/internal) are kept. In other words, the catalogue contains detailed information
(sometimes call descriptor information or metadata) regarding the various objects that are of
interest to the system itself.

4.1.0BJECTIVES.

To understand the description of a database catalogue system

4.2. WHATISDATABASESYSTEMCATALOGUE ?

As explained earlier, every DBMS must provide a catalogue or dictionary function. The catalogue
is the place where among other things, all of the various schemas (external, conceptual,
internal) and all of the corresponding mappings (external/conceptual, conceptual/internal) are
kept. In other words, the catalogue contains detailed information (sometimes call descriptor
information or metadata) regarding the various objects that are of interest to the system itself.
Examples of such objects are relvars, indexes, users integrity constraints, security constraints,
and so on and so forth. Descriptor information is essential if the system is to do its job properly.
For example, the optimizer uses catalogue information about indexes and other physical
storage structures, as well as much other information, to help it decided how to implement user
request. Likewise, the security subsystem uses catalogue information about seers and security
contains to grant or deny such requests in the first place.

Now, one of the nice features of relational systems is that, in such a system, the catalogue itself
consists of relvars (more precisely, system relvars, so called to distinguish them from ordinary
user ones). As a result, users can interrogate the catalogue in exactly the same way they
interrogate their own data. For example, the catalogue will typically include two system relvars
called TABLE and COLUMN, the purpose of which is to describe the tables (i.e. relvars) in the
database and the columns in those tables (We say “typically” because the catalogue is not the

Page | ccviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

same in every system; the difference arise because the catalogue for a particular system
necessarily contains a good deal of information that is specific to that system) for the
departments and employees database.

The catalogue should normally be self-describing i.e. it should include entries describing the
catalogue relvars themselves. Now suppose some user of the departments and employees
database want to know exactly what columns relvar DEPT contains (obviously we are assuming
that for some reason the user does not already have this information). Then the expression

[COLUMN WHERE TABNAME = DEPT | [COLMNAME]

does the job. Note, if we had wanted to keep the result of this query in some more permanent
fashion, we could have assigned the value of the expression to some other relvar.

Here is another example: “which relvars includes a column called EMP#?

(COLUMN WHERE COLNAME = ‘EMP#) {TABNAME}

4.3.CONCLUSION.

The catalogue should normally be self-describing i.e. it should include entries describing the
catalogue relvars themselves.

4.4.SUMMARY.

DBMS must provide a catalogue or dictionary function. The catalogue is the place where among
other things, all of the various schemas (external, conceptual, internal) and all of the
corresponding mappings (external/conceptual, conceptual/internal) are kept.

4.5.TUTOR-MARKEDASSIGNMENT(TMA).

What is a database catalogue system?

4.6.FURTHERREADINGS
Date, C. [2000] An Introduction Database System, 7th ed.; Addison-Wesley 2000.

Atzeni, P., and De Antonellis, V. [1993] Relational Database Theory Benjamin / Cummings, 1993.

Page | ccix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Batini., C., Ceri, S., and Navathe, S. [1992] Database Design: An Entity — Relationship Approach,
Benjamin/Cummings, 1992.

Bernstein, P. [1976] “Synthesizing Third Normal Form Relations from Functional Dependencies”, TODS,
1:4, December 1976.

Codd, E [1970] “A Relational Model for Large Shared Data BANks” CACM, 136, June 1970.

Page | ccx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

UNIT 1: QUERY PROCESSING & EVALUATION

1.0 INTRODUCTION

In the preceding units, we have considered how to structure the data in the database. These
decisions are made at the time the database is designed. Although it is possible to change this
structure, it is relatively costly to do so. Thus, when a query is presented to the system, it is
necessary to find the best method of finding the answer using the existing database structure.

There are large numbers of possible strategies for processing a query, especially if the query is
complex. Nevertheless, it is usually worthwhile for the system to spend a substantial amount of
time on the selection of a strategy. Typically, strategy selection can be done using information
available in main memory, with little or no disk accesses. The actual execution of the query will
involve many accesses to disk. Since the transfer of data from disk is slow relative to the speed
of main memory and the central processor of the computer system, it is advantageous to spend
a considerable amount of processing to save disk accesses.

1.1. OBIJECTIVES
To understand the basics of query optimization

Ability to estimate costs involved in query processing

1.2 QUERY INTERPRETATION

Given a query, there are generally a variety of methods for computing the answer. For example,
we saw that in SQL a query could be expressed in several different ways. Each way of
expressing the query “suggests” a strategy for finding the answer. However, we do not expect
users to write their queries in a way that suggests the most efficient strategy. Thus, it becomes
the responsibility of the system to transform the query as entered by the user into an
equivalent query which can be computed more efficiently. This “optimizing” or more

Page | ccxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

accurately, improving of the strategy for processing a query, is called query optimization. There
is a close analogy between code optimization by a compiler and query optimization by a
database system. We shall study the issues involved in efficient query processing both in high —
level language and at the level of the physical access to the data.

Query optimization is an important issue in any database system since the difference in
execution time between a good strategy and a bad one may be huge. In the network model and
the hierarchical model, query optimization is left, for the most part, to the application
programmer. Since the data manipulation language statements are embedded in a host
programming language, it is not easy to transform a network or hierarchical query to an
equivalent one unless one has knowledge about the entire application program.

Since a relational query can be expressed entirely in a relational query language without the use
of host language, it is possible to optimize queries automatically. Since the most useful
optimization techniques apply of the relational model, we shall emphasize the relational model
in this module.

Before query processing can begin, the system must translate the query into a usable form.
Language such as SQL are suitable for human use, but ill-suited to be the system’s internal
representation of a query. A more useful internal representation of query is one based on the
relational algebra.

Thus, the first action the system must take on a query is to translate the query into its internal
form. This translation process is similar to that done by the parser of a compiler. In the process
of generating the internal form of the query, the parser checks the syntax of the user’s query,
verifies that the relation names appearing in the query are names of relation in the database,
etc. if the query was expressed in terms of a view, the parser replaces all reference to the view
name with the relational algebra expression to compute a view.

The details of the parser are beyond the scope of this text.

Once the query has been translated to an internal relational algebra form, the optimization
process begins. The first phase of optimization is done at the relational algebra level. An
attempt is made to find an expression that is equivalent to the given expression but that is
more efficient to execute. The next phase involves the selection of a detailed how the query
will be executed. A choice of specific indices to use must be made. The order in which tuples
are processed must be determined. The final choice of a strategy is based primarily on the
number of disk accesses required.

13 EQUIVALENCE OF EXPRESSIONS

The relational algebra is a procedural language. Thus, each relational algebra expression
represents a particular sequence of operations. We have already seen that there are several
ways to express a given query in the relational algebra. The first step in selecting a query
processing strategy is to find a relational algebra expression that is equivalent to the given
query and is efficient to execute.

Page | ccxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

We use our bank example to illustrate optimization techniques. In particular, we shall use the
relations customer (customer-scheme), deposit (deposit-scheme), and branch (branch-scheme).
As was the case earlier, we define our relation scheme as follows;

- -[:_rr_:)
- =E-r-r-rj

- -[:_FF_:I

1.3.1. Selection Operation.

Let us consider the relational algebra expression we wrote earlier for the query “find the assets
and name of all banks who have depositors living in Port Chester”

I
(e v)

This expression constructs a large relation, ¥ ¥4 However, we are interested in only a few
tuples of this relation [those pertaining to residents of Port Chester], and in only two of the
eight attributes of this relation. The large intermediate result:

4 4

is probably too large to be kept in main memory and thus must be stored on disk. This means
that in addition to the disk accesses required to read the relations customer, deposit, and
branch, the system will need to access disk to read and write intermediate results. Clearly, we
could process the query more efficiently if there were a way to reduce the size of the
intermediate result.

Since we are concerned only about tuples for which customer-city = Port Chester”, we need not
consider those tuples of the customer relation that do not have customer-city = “Port Chester”.
By reducing the number of tuples of the customer relation that we need to access, we reduce
the size of the intermediate result. Our query is now represented by the relational algebra
expression:

| J IR).

MM)

Page | ccxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The above example suggests the following rule for transforming relational algebra queries:

Perform selection operations as early as possible

In our example, we recognized that the selection operator pertained only to the customer
relation, so we performed the selection on customers directly. Suppose that we modify our
original query to restrict attention to customers with a balance over 81000. the new relational
algebra query is

]-[-,-E: = gyl husla S 2-EEET
(M)
We cannot apply the selection

- m Tp w1006

Directly to the customer relation, since the predicate involves attributes of customer and
deposit. However, the branch relation does not involve either customer-city or balance. If we
decide to process the join as:

(v wa)
Then we can rewrite our query as:

T1-.(C -=ro-t chamars »a0p0 ¥ J)
)
Let us examine the sub query:
- e [; I.)
We can split the selection predicate into two, forming the expression:
T 1)

Both of the above expressions select tuples with customer-city = “Port Chester” and balance >
1000. However, the latter form of the expression provides a new opportunity to apply the
“perform selections early” rule. We now rewrite our query as:

(oo) W (g ()
We now add a second transformation rule:

Replace expressions of the form:

e

Page | ccxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

by
(:0)
where ; and ; are predicates and

is a relational algebra expression.

An easy way to remember this transformation is by nothing the following equivalences among
relational algebra expression:

1 [z":l-}}- z [zt:j} - r"r.ﬂ.t:l-1

1.3.2. Natural Join Operations.

By modifying queries so that selections are done early, we reduce the size of temporary results.
Another way to reduce the size of temporary results is to choose an optimal ordering of the
join operations. We mentioned in earlier that natural join is associative. Thus, for all relations

ir3r £
(s P) v m 0 (0

Although these expressions are equivalent, the costs of computing them may differ. Consider
again the expression:

I ((o e)

M[}ﬂj

We could choose to compute ¥ first and then join the result with:

~uen()

However, ¥ s likely to be a large relation since it contains one tuple for every account.
However,

-uro ()

is probably a small relation. To see this, note that since the bank has a large number of widely
distributed branches, it is likely that only a small fraction of the bank’s customers live in Port
Chester. If we compute:

(< men () vu

Page | ccxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

First, we obtain one tuple for each account held by a resident of Port Chester. Thus, the
temporary relation we must store is smaller than if we computer deposit x borrow first.,

There are other options to consider for evaluating our query. We do not care about the order in
which attributes appear in a join, since it is easy to change the order before displaying the
result. Thus, for all relations ; .

|]

3 i =3 5

That is, natural join is commutative.

Using this fact, we can consider rewriting our relational algebra expression as
M,i((-= -0}
M) M)

That is, we could join = m== ()} with branch as the first join operation performed. Note, however,
that there are no attributes in common between Branch-scheme and Customer-scheme, so the
join is really just a Cartesian product. If there are ¢ customers in Port Chester and b branches,
this Cartesian product generates

tuples, one for every possible pair of customers and branches (without regard for whether or not
the customer has an account at the branch). Thus, it appears that this Cartesian product will
produce a large temporary relation. As a result, we would reject this strategy. However, if the
user had entered the above expression, we could use the associativity and commutativity of
natural join to transform this expression to the more efficient expression we used earlier.

1.3.3. Projection Operations.

We now consider another technique for reducing the size of temporary result. The projection
operation, like selection operation, reduces the size of relations. Thus, whenever we need to
generate a temporary relation, it is advantageous to apply any projections that are possible.
This suggests a companion to the perform selections early rule we stated earlier:

Perform projections early

Consider the following form of our example query:
ﬂ-, ((E—:F:rﬁihnnnrtj} 4 } i)

When we compute the sub-expression:

Page | ccxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

(C=-0})
We obtain a relation whose scheme is
t:_ | Tl B B r}

We can eliminate several attributes from the scheme. The only attributes we must retain are
those that:

Appear in the result of the query or

Are needed to process subsequent operations
By eliminating unneeded attributes, we reduce the number of columns of the intermediate
result. Thus, the size of the intermediate result is reduced. In or example, the only attribute we
need is branch-name. therefore, we modify the expression to:

M (1 (a0 20)))

1.4. ESTIMATION OF QUERY-PROCESSING COSTS

The strategy we choose for a query depends upon the size of each relation and the distribution
of value within columns. In the example we have used, the fraction of customers who live in
Port Chester has a major impact on the usefulness of our techniques. In order to be able to
choose a strategy based on reliable information, database systems may store statistics for each
relation r. these statistics include:

1. the number of tuples in the relation

2. the size of a record (tuple) of relation

in bytes (for fixed-length records)

3. (), the number of distinct values that appear in the relation r for attribute

The first two statistics allow us to estimate accurately the size of a Cartesian product. The
Cartesian product X contains tuples. Each tuple of X occupies bytes.

The third statistic is used to estimate how many tuples satisfy a selection predicate of the form:

o R W

Page | ccxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

However, in order to perform such an estimation, we need to know how often each value
appears in a column. If we assume that each value appears with equal probability, then u(J} is
estimated to have # {+] tuples. However, it may not always be realistic to assume that each
value appears with equal probability. The branch-name attribute in the deposit relation is an
example of such a case. There is one tuple in the deposit relation for each amount. It is
reasonable to expect that the large branches have more accounts than smaller branches.
Therefore certain branch-name values appear with greater probability than others.

Despite the fact that our uniform distribution assumption is not always true, it a good
approximation of reality in many cases. Therefore, many query processors make such an
assumption when choosing a strategy. For simplicity, we shall assume a uniform distribution for
the remainder of this unit.

Estimation of the size of a natural join is somewhat more complicated than estimation of the
size of a selection or a Cartesian product. Let 1) and 3(3) be relations. If 1fiy = thenj ¥ ;
isthe same as ; # z, and we an use our estimation technique for Cartesian products. If ;i is
a key for 3, then we know that a tuple of z will join with exactly one tuple from 3. Therefore, the
number of tuples in ; ¥¥ z is no greater than the number of tuples in 2.

The most difficult case to consider is when g 13 is a key for neither ; nor ;. In this case, we use
the third statistic and assume, as before, that each value appears with equal probability.
Consider a tuple

of sand assume 5 Ml ; ™ {}» we estimate that there are z*"ira:[tuples in ; with an

value of []. So tuple

produces:

-

(a)
tuplesin 3 ¥ 3. considering all of the tuples in ;, we estimate that there are:

-

(ra)

Tuplesin z ™ ;. Observe that if we reverse the roles of ; and z in the above estimate, we obtain
an estimate of , , / (::) tuplesin 3 ¥ ;. These two estimates differ if (5) % (;z)« If this

situation occurs, there are likely to be some dangling tuples do not participate in the join. Thus,
the lower of the two estimates is probably the better one.

The above estimate of join size may be too high if the (3) value in ; have few values in common
with the {2} value in 2. However, it is unlikely that our estimate will be very far off in practice

Page | ccxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

since dangling tuples are likely to be only a small fraction of the tuples in a real-world relation.
If dangling tuples appear frequently, then a correction factor could be applied to our estimates.

If we wish to maintain accurate statistics, then every time a relation is modified, it is necessary
also to update the statistics. This is a substantial amount of overhead. Therefore, most systems
do not update the statistics on every modification. Instead, statistics are updated during
periods of light load on the system. As a result, the statistics used for choosing a query
processing strategy may not be accurate. However, if the interval between the update of the
statistics is not too long, the statistics will be sufficiently accurate to provide a good estimation
of the size of the results of expressions.

Statistical information about relations is particularly useful when several indices are available to
assist in the processing of a query, as we shall see in unit 1.5

1.5. ESTIMATION OF COSTS OF ACCESS USING INDICES

The cost estimates we have considered for relational algebra expressions did not consider the
effects of indices and has functions on the cost of evaluating an expression. The presence of
these structures, however, has a significant influence on the choice of a query—processing
strategy.

Indices and has functions allow fast access to records containing a specific value
on the index key
Indices (though not most has functions) allow the records of a file to be read in
sorted order. If an index allows the records of a file to be read in an order that
corresponds to the physical order of records, we call that index a clustering
index. Clustering indices allow us to take advantage of the physical clustering of
records into blocks.
The detailed strategy for processing a query is called an access plan for the query. A plan
includes not only the relational operations to be performed but also the indices to be used and
the order in which tuples are to be accessed and the order in which operations are to be
performed.

Of course, the use of indices imposes the overhead of access to those blocks containing the
index. We need to take these blocks accesses into account when we estimate the cost of a
strategy that involves the use of indices.

In this unit, we consider queries involving only one relation. We use the selection predicate to
guide us in the choice of the best index to use in processing the query.

As an example of the estimation of the cost of a query using indices assume that we are
processing the query:

select account — number

Page | ccxix .
ge | from deposit

where branch-name = “Perryridge’ and customer-name = “Williams”

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Assume that we have the following statistical information about the deposit relation:

20 tuples of deposit fit in one block
V(deposit, branch —name) = 50
V(deposit, customer-name) = 200
V(deposit, balance) = 5000

the deposit relation has 10,000 tuples.

Let us assume that the following indices exists on deposit:

. 1 .
A clustering, "-tree index for branch-name
. + .
A non-clustering, "-tree index for customer-name

As before, we shall make the simplifying assumption that value are distributed uniformly.

Since V(deposit, branch-name) = 50, we expect that 10000/50 = 200 tuples of the deposit
relation pertain to the Perryridge branch. If we use the index on branch-name, we will need to
read these 200 tuples and check each one for satisfaction of the where clause. Since the index
is a clustering index, 200/20 = 10 block reads are required to read the deposit tuples. In
addition, several index blocks must be read. Assume the *_tree index stores 20 pointers per
node. This means that the "+ - tree index must have between 3 and 5 leaf nodes. With this
number of leaf nodes, the entire tress has depth of 2, so at most 2 index blocks must be read.
Thus the above strategy requires 12 total block reads.

We conclude that it is preferable to use the index for branch-name.

If we use the index for customer-name, we estimate the number of block accesses as follows.
Since V(deposit, customer-name) = 200, we expect that 10000/200 = 50 tuples of the deposit
relation pertain to Williams. However, since the index for customer-name is non-clustering, we
anticipate that one block read will be required for each tuple. Thus, 50 block reads are required,
just to read the deposit tuples. Let us assume that 20 pointers fit into one node of *_tree index
for customer-name. Since there are 200 customer names, the tree has between 11 and 20 leaf
nodes. So, as was the case for other *_tree index, the index for customer-name has a depth of
2 and2 block accesses are required to read the necessary index blocks. Therefore, this strategy
requires a total of 52 block reads. We conclude that it is preferable to use the index for branch-
name.

Observe that if both indices were non-clustering, we would prefer to use the index for
customer-name since we expect only 50 tuples with customer-name = Williams” versus 200
tuple with branch- name = “Perryridge” without the clustering property, our first strategy
would have required 200 block accesses to read the data plus 2 index block accesses for a total
of 202 block reads. However, because of the clustering property of the branch-name index, it is
actually less expensive in this example to use the branch-name index.

Page | ccxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

We did not consider using the balance attribute and the predicate balance >1000 as a starting
point for a query processing strategy for two reasons:

there is no index for balance

the selection predicate on balance involves a “greater than” comparison. In

general, equality predicates are more selective than “greater than” predicates.

Since we have an equality predicate available to us (indeed, we have two), we

prefer to start by using such a predicate since it is likely to select fewer tuples.
Estimation of the cost of access using indices allows us to estimate the complete cost, in terms
of block accesses, of a plan. For a given relational algebra expression, it may be possible to
formulate several plans. The access plan selection phase of a query optimizer chooses the best
plan for a given expression.

We have seen that different plans may have significant differences in cost. It is possible that a
relational algebra expression for which a good plan exists may be preferable to an apparently
more efficient algebra expression for which only inferior plans exist. Thus, it is often worthwhile
for a large number of strategies to be evaluated down to the access plan level before a final
choice of query—processing strategy is made.

1.6. JOIN STRATEGIES

Earlier, we estimated the size of the result of a relational algebra expression involving a natural
join. In this unit, we apply our techniques for estimating the cost of processing a query to the
problem of estimating the cost of processing a join. We shall see that several factors influence
the selection of an optimal strategy:

The physical order of tuples in a relation
The presence of indices and the type of index (clustering or nonclustering)
The cost of computing a temporary index for the sole purpose of processing one

query
Let us begin by considering the expression

-1

and assume that we have no indices whatsoever. Let:

= 10,000
= 200

1.6.1. Simple Iteration

If we are not willing to create an index, we must examine every possible pair of tuples 1 in
deposit and s in customer. Thus, we examine @00 & 200 = 200000C pairs of tuples.

Page | ccxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

If we execute this query cleverly, we can reduce the number of block accesses significantly.
Suppose that we use the procedure of figure 1.1 for computing the join. We read each tuple of
deposit once. This may require as many as 10,000 block accesses. However, if the tuples of
deposit are stored together physically, fewer accesses are required. If we assume that 20 tuples
of deposit fit in one block, then reading deposit requires 10000/20 = 500 block accesses.

for each tuple

in deposit do
begin
for each tuple c in customer do
begin
test pair (d, c) to see if a tuple should be added to the result

We read each tuples of customer once for each tuple of deposit. This suggests that we read
each tuples of customer 10,000 times. Since = 202 we could make as many as 2,000,000
accesses to read customer tuples. As was the case for deposit, we can reduce the required
number of accesses significantly if we store the customer tuples together physically. If we
assume that 20 customer tuples fit in one block, then only 10 accesses are required to read the
entire customer relation. Thus, only 10 accesses per tuple of deposit rather than 200 are
required. This implies that only 100,000 block accesses are needed to process the query.

1.6.2. Block—Oriented Iteration

A major savings in block accesses results if we process the relations on a per — block basis rather
than a per-tuple basis. Again, assuming that deposit tuples are stored together physically and
that customer tuples are stored together physically, we can use the procedure of figure 1.2 to
compute

This procedure performs the join by considering an entire blocks of deposit tuples at once. We
still must read the entire deposit relation at a cost of 500 accesses. However, instead of reading
the customer relation once for each tuple of deposit, we read the customer relation once for
each block of deposit. Since there are 500 blocks of deposit tuples and 10 blocks of customer
tuples, reading customer once for every block of deposit tuples requires 10 x 500 = 5000 block
accesses.

Page | ccxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Thus, the total cost in terms of block accesses is 5500 accesses (5000 accesses to customer
blocks plus 500 accesses to deposit blocks). Clearly, this is a significant improvement over the
number of accesses that were necessary for our initial strategy.

Our choice of deposit for the outer loop and customer for enter loop was arbitrary. If we had
used customer as the relation for the outer loop, the cost of our final strategy would have been
slightly lower (5010 block accesses). A major advantage to the use of the smaller relation
(customer) in the inner loop is that it may be possible to store the entire relation in main
memory temporarily. This speeds query processing significantly since it is necessary to read the
inner loop relation only once. If customers is indeed small enough to fit in main memory, out
strategy requires only 500 blocks to read deposit plus 10 blocks to read customer for a total of
510 block accesses.

for each block

of

do
begin

for each block

of customer do
begin

for each tuple b in

do

1.6.3. Merge-Join

Page | ccxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

In those cases in which neither relation fits in main memory inform be store and possible to
process the join efficiently if both relations happens merge-join in sorted order on the join

pd: = address of first tuple of deposit;
pc: = address of first tuple of customer;
while (pc # null) do
begin
:= tuple to which pc points;
I
set pc to point to next tuple of customer;
done: = false;
while (not done) do
begin;

:= tuple to which pc points;

if [=]= [=]
then begin
= U

set pc to point to next tuple of customer;
end
else done :=true;

end

set pd to point to next tuple of deposit;

while {[=] = [=]do
attributes. Suppose that both with each deposit are sorted by customer-name. We can then
perform irrespective operation. To compute a merge—join, we associate one point through the
relation. These pointers point initially to the first tuple of the join relations. As the algorithm
proceeds, the pointers move the other relation. A group of tuples of one relation with the same
value with the attribute is read. Then the corresponding tuples (if any) allow us relations
relation are read. Since the relations are in sorted order, tuples us to same value on the join
attributes are in consecutive order. Thus allow us to read each tuple only once. In the case in

Page | ccxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

which the example of relations are stored together physically, compute the join by reading
each block exactly once.

For our example which the ™ there is a total of 510 block accesses. This is as good as the
earlier join method we presented for the special case in which the entire customer relations fit
in main memory. The algorithm of figure 1.3 does not require the entire relation to fit in main
memory large. Rather, it suffices to keep all tuple with the same value for the join attributes in
main memory. This is usually feasible even if both relations.

A disadvantage of the merge—join method is the requirement relations be sorted physically.
However, it may be worthwhile to sort the relations in order to allow a merge-join to be
performed.

1.6.4. Use of an Index

Frequently, the join attributes form a search key for an index relations being joined. In such a
case, we may consider a join strategy that uses such an index. The simple strategy of figure 1.1
is more of index exists on customer for customer-name. Given a tuple

in deposit, it is

no longer necessary to read the entire customer relation. Instead, the index is used to look up
tuples in customer for which the customer-name value is d[customer-name].

Without use of an index, and without special assumptions about the physical storage of
relations, it was shown that as many as 2 million accesses might be required. Using the index,
but without making any assumptions about physical storage, the join can be computed with
significantly fewer block accesses. We still need 10,000 accesses to read deposit. However, for
each tuple of deposit only an index lookup is required. If we assume (as before) that = Z0@,
and that 20 pointers fit in one block, then this lookup requires at most 2 index block accesses
plus a block access to read the customer tuple itself. We access 3 blocks per tuple of deposit
instead of 200. Adding this to the 10,000 accesses to read deposit, we find that the total cost of
this strategy is 40,000 accesses.

Although a cost of 40,000 accesses appears high, we must remember that we achieved more
efficient strategies only when we assumed that tuples were stored physically together. If this
assumption does not hold for the relations being joined, then the strategy we just presented is
highly desirable. Indeed the savings (160,000 accesses saved) is enough to justify creation of
the index. Even if we create the index for the sole purpose of processing this one query and
erase the index afterwards, we may perform fewer accesses than if we use the strategy of
figure 1.1.

Page | ccxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

1.6.5 Three — Way Join
Let us now consider a join involving three relations

e

Assume that and are as above and that =50. Not only do we have a choice of strategy for join
processing, but also we have a choice of which join to compute first. There are many possible
strategies to consider. We shall analyze several of them below and leave others to the
exercises.

Strategy 1. Let us first compute the join (val using one of the strategies we presented
above. Since customer-name is a key for customer, we know that the result of this join
has at most 10,000 tuples (the number of tuples in deposit). If we build an index on
branch for branch — name, we can compute:

WM)
by considering each tuple

of (deposit x customer) and looking up the tuple in branch with a branch — name value of
t(branch-name). since branch-name is a key for branch, we know that we must examine
only one branch tuple for each of the 10,000 tuples in ([¥, The exact number of block
accesses required by this strategy dependes on the way we compute (deposit x
customer) and on the way in which branch is stored physically. Several exercises
examine the costs of various possibilities.

Strategy 2. Compute the join without constructing any indices at all. This requires
checking 50 * 10000 * 200 possibilities, a total of 100,000,000
Strategy 3. Instead of performing two joins, we perform the pair of joins at once. The
technique is first to build two indices:

On branch for branch-name

On customer for customer —name

Next we consider each tuple t in deposit. For each t, we look up the corresponding tuples in
customer and the corresponding tuples in branch. Thus, we examine each tuple of deposit
exactly once.

Strategy 3 represents a form of strategy we have not considered before. It does not correspond
directly to relational algebra operation. Instead, it combines two operations into one special-
purposes operation. Using strategy 3, it is often possible to perform a join of three relations
more efficiently than it is using two joins of two relations. The relative costs depends on the
way in which the relations are stored, the distribution of values within columns, and the

Page | ccxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

presence of indices. The exercises provide an opportunity to compute these costs in several
examples.

1.7.STRUCTUREOFQUERYOPTIMIZER

We have seen only some of the many query processing strategies used in database systems.
Most systems implement only a few strategies and, as a result, the number of strategies to be
considered by the query optimizer is limited. Other systems consider a large number of
strategies. For each strategy a cost estimate is computed.

In order to simplify the strategy selection task, a query may be split into several sub-queries.
This not only simplifies strategy selection but also allows the query optimizer to recognize cases
where a particular sub-query appear several times in the same query. By performing such sub-
gueries only once, time is saved both in the query optimizing phase and in the execution of the
guery itself. Recognition of common sub-queries is analogous to the recognition of common
sub-expressions in many optimizing compilers for programming languages.

Clearly, examination of the query for common subs queries and the estimation of the cost of a
large number of strategies impose a substantial overhead on query processing. However, the
added cost of query optimization is usually more than offset by the savings at query execution
time. Therefore, most commercial systems include relatively sophisticated optimizers.

1.8. CONCLUSION

There are a large number of possible strategies for processing a query, especially if the query is
complex. Strategy selection can be done using information available in main memory, with little
or no disk accesses. The actual execution of the query will involve many accesses to disk. Since
the transfer of data from disk is slow relative to the speed of main memory and the central
processor of the computer system, it is advantageous to spend a considerable amount of
processing to save disk accesses.

Given a query, there are generally varieties of methods for computing the answer. It is the
responsibility of the system to transform the query as entered by the user into an equivalent
query, which can be computed more efficiently. This “optimizing” or, more accurately,
improving of the strategy for processing a query is called query optimization.

The first action the system must take on a query is to translate the query into its internal form,
which (for relational database systems) is usually based on the relational algebra. In the process
of generating the internal form of the query, the parser checks the syntax of the user’s query,
verifies that the relations names appearing in the query are names of relation in the database,
etc. if the query was expressed in terms of a view, the parser replaces all references to the view
name with the relational algebra expression to compute the view.

1.9. SUMMARY

Page | ccxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Each relational algebra expression represents a particular sequence of operations. The first step
in selecting a query — processing strategy is to find a relational algebra expression that is
equivalent to the given expression and is efficient to execute. There are a number of different
rules for transforming relational algebra queries, including to:

perform selection operations as early possible

perform projections early
The strategy we choose for a query depends upon the size of each relation and the distribution
of values within columns. In order to be able to choose a strategy based on reliable
information, database systems may store statistics for each relation r. these statistics include:

the number of tuples in the relation r
the size of a record (tuple) of relation r in bytes (for fixed-length records)
the number of distinct values that appear in the relation r for a particular
attribute.
The first two statistics allow us to estimate accurately the size of a Cartesian product. The third
statistics allows us to estimate how many tuples satisfy a simple selection predicate.

Statistical information about relations is particularly useful when several indices are available to
assist in the processing a query. The presence of these structures has a significant influences on
the choice of a query — processing strategy.

Queries involving a natural join may be processed in several ways, depending on the availability
of indices and the form of physical storage used for the relations. If tuples of a relation are
stored together physically, a block — oriented join strategy may be advantageous. If the
relations sorted, a merge — join may be desirable. It may be more efficient to sort a relation
prior to join computation (so as to allow use of the merge — join strategy). It may also be
advantageous to compute a temporary index for the sole purpose of allowing a more efferent
join strategy to be used.

1.10. TUTOR-MARKED ASSIGNMENT (TMA).

1. At what point during query processing does optimization occur?

2. Why is it not desirable to force users to make an explicit choice of a query processing
strategy? Are there cases in which it is desirable for users to be aware of the costs of competing
guery-processing strategies?

3. Show that the following equivalences hold, and explain how they can be applied to
improve the efficiency of certain queries:

a. (fu2)= (v ()
b. (i=2) = (J-a= @Q— (l
C. (22l 3= V(Y]

Page | ccxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

d. i =a2U

4. Consider the relations 1 (s1], 3(;) and 3{;), with primary keys A, C, and E respectively.
Assume that ; has 1000 tuples, =has 1500 tuples and 3 has 750 tuples. Estimate the size of
- 2 3 and give an efficient strategy for computing the join.

1.11. FURTURE READINGS

Boyce, R., Chamberlin, D., King, W., and Hammer, M. [1975] “Specifying Queries as Relational
Expressions”, CACM, 18 : 11, November 1975.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — hill, 1986.

www.w3schools.com

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB [1992.

Page | ccxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

UNIT 2: TRANSACTION MANAGEMENT AND RECOVERY

2.0. INTRODUCTION

Transaction processing systems are systems with large databases and hundreds of concurrent
users. It provides and “all-or-noting” proposition stating that each work —unit performed in
database must either complete in its entirety or have no effect whatsoever. Users of database
systems are usually consider consistency and integrity of data as highly important. A simple
transaction is usually issued to the database system in a language like SQL wrapped in a
transaction.

2.1. OBIJECTIVES
At the end of this unit, the student should be able to discuss:

e database transaction and its properties

* how database transactions are managed

* concurrency control and the role it plays in maintaining the database’s integrity
¢ locking methods and how they work

* how database recovery management is used to maintain database integrity

2.2, WHATIS A TRANSACTION?

A transaction is a logical unit of database processing, which can include one or more database
operations, such as insertion, deletion, modification, or retrieval operations. In a database
environment, transactions have two main purposes:

1. To provide reliable units of work that allow correct recovery from all failures and keep a
database consistent even in vases of system failure, when execution stops (completely
or partially) and many operations upon the database remain uncompleted, with unclear
status.

2. To provide isolation between programs accessing a database concurrently. Without this,
the programs outcomes are typically erroneous.

Transaction processing systems are systems with large databases and hundreds of concurrent
users. It provides and “all-or-noting” proposition stating that each work —unit performed in
database must either complete in its entirety or have no effect whatsoever. Further, the system

Page | ccxxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

must isolate each transaction from the other, results must conform to existing constraints in
the database and transactions that complete successfully must be written to durable storage.

Amount in stock = X

Figure 2.1: A consistent database state is one in which all data integrity constraints are
satisfied.

2.2.2. Transaction Properties

The set of properties that guarantee that database transactions are processed reliably is given
the acronym ACID (Atomicity, Consistency, Isolation and Durability)

Atomicity - this refers to the ability of the DBMS to guarantee that either all of the
transactions are performed or non of them are. For example, the transfer of funds from
one account to another can be completed or it can fail for a multitude of reasons, but
atomicity guarantees that one account would not be debited if the other is not credited.
Atomicity states that database modifications must follow an “all-or-nothing” rule. Each
transaction is said to be atomic if when one part of the transaction fails, the entire
transaction fails. It is critical that database management system maintain the atomic
nature of transitions in spite of any DBMS operating system or hardware failure.

Consistency — this ensures that the database remains consistent before the start of the
transaction and after the transaction is over (whether successful or not)

Consistency states that only valid data will be written to the database. If for some
reason, a transaction violates the database’s consistency rule, the entire transaction will
be rolled back and the database will be restored to a state consistent with those rules.
On the other hand, if the transaction successfully executes, it will take the database
from one state that is consistent with the rules to another state that is also consistent
with the rules.

Page | ccxxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

» Isolation — this refers to the requirement that other operations cannot access or see
data in as immediate state during a transaction. This constraint is requires to maintain
the performance as well as the consistency between transactions in a DBMS. Thus, each
transaction is unaware of another transaction executing concurrently in the system.

» Durability — this refers to the guarantee that once the user has been notified of success,
the transaction will persist and not be undone. This means it will survive system failure,
and that the database system has checked the integrity of the constraints and would not
need to abort the transaction. Many databases implement durability by writing all
transactions into a transaction log.

Durability does not imply a permanent state of the database. Another transaction may
overwrite any changes made by the current transaction without hindering durability.

2.2.2. Transaction Management with SQL

Users of database systems are usually consider consistency and integrity of data as highly
important. A simple transaction is usually issued to the database system in a language like SQL
wrapped in a transaction using the pattern similar to that below:

1. Begin the transaction.

2. Execute several data manipulations and queries.

3. If no error occurs commit the transaction and end it.

4. If errors occur, then rollback the transaction and end it.
If no errors occur during the execution of the transaction then the system commits the
transaction. A transaction commit operation applies all data manipulation within the scope of
the transaction and persists the results to the database. If an error occurs during the
transaction, or if the user specifies a rollback operation, the data manipulations within the
transactions are not persisted into the database. In no case can a partial transaction be
committed to the database since that would leave the database in an inconsistent state.

A START TRANSACTION statement in SQL or any other statement that will modify data stars
with a transaction within a relational database management system. The result of any work
done after this point will remain invincible to other database-users until the system process a
COMMIT statement. A ROLLBACK statement can also occur, which will undo any work
performed since the START TRANSACTION command. Both COMMIT and ROLLBACK will end
the transaction: another START TRANSACTION will need to be issued to start another one.

An example of a transaction is given below:

* Transaction support
- COMMIT
— ROLLBACK
* Userinitiated transaction sequence must continue until:

Page | cexxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

— COMMIT statement is reached

— ROLLBACK statement is reached

— End of a program reached

— Program reaches abnormal termination (leads to ROLLBACK)
* Register credit sale of 100 units of product X to customer Y for N500

UPDATE PRODUCT

SET PROD _QOCH = PROD_QOCH - 100

WHERE PROD_CODE = X’:

UPDATE ACCT RECEIVABLE

SET ACCT_BALANCE = ACCT BALANCE + 500
WHERE ACCT_NUM = ‘Y’ ;

COMMIT ;

Figure 2.2: A query with the commit statement

¢ Transaction begins when first SQL statement is encountered, and ends at COMMIT or
end

2.2.3. The Transaction Log

This is a history of all the actions executed by a database management system to guarantee
ACID properties over crashes or hardware failures. Physically, a log is a file of updates done to
the database and stored in stable storage. If after a start, the database is found in an
inconsistent state or is not shut down properly, the database management system reviews the
database logs for uncommitted transactions and rolls back the changes made by these
transactions. Additionally, all transactions already committed but whose changes were not yet
materialized in the database are re-applied. Both are done to ensure atomicity and durability of
transactions.

A transaction log is made up of:

Log Sequence Number: A unique id for a log record. With LSNs, logs can be recovered in
constant time. Most logs’ LSNs are assigned in monotonically increasing order, which is
useful in recovery algorithms.

PrevLSN: A link to the last log record. This implies database logs are constructed in
linked list form.

Transaction ID number: A reference number to the database transaction generating the
log record.

Type: Describes the type of transaction log.

Information about the actual changes that triggered the log record to be written.

Page | ccxxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Example
|
341 101 MNull 352 START *%% Starl transaction
352 1M 341 363 LIPDATE PRODUCT 345TYX PR(1D_(J(H 243 143

363 107 352 365 UPDATE ACCT_RECEIVABLE 60120010 ACCT_BALANCE 1200 4700

e TRL_ID: transaction log record ID (Log Sequence Number)

e TRX_NUM: transaction number (Transaction ID)

e PREV_PTR: pointer to previous transaction record (PrevLSN)
* NEXT_PTR: pointer to next transaction record

2.2.4. Types of transaction log records

All log records include the general log attributes described above and also other attributes
depending on their type (which is recorded in the Type attribute above).

Update Log Record notes an update (change) to the database. It includes this extra information

PagelD: A reference to the page ID of the modified page.

Length and Offset: Length byte and offset of the page are usually included.

Before and After images: includes the value of the bytes of the page change. Some
databases may have logs which include one or both images.

Compensation Log Record notes the rollback of a particular change to the database. Each
corresponds with exactly on other Update Log Record (although the corresponding log record is
not typically stored in the Compensation Log Record). It includes this extra information:

undoNextLSN: This field contains the LSN of the next log record that is to be undone for
the transaction that wrote the last Update Log.

Commit Record notes a decision to commit a transaction.
Abort Record notes a decision to abort and hence rollback a transaction.

Checkpoint Record notes that a checkpoint has been made. These are used to speed up
recovery. They record information that eliminates the need to read a long way into the log’s
log. This varies according to the checkpoint algorithm. If all dirty pages are flushed while
creating the check point (as in PostgreSQL), it might contain:

Page | ccxxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

redoLSN: This is a reference tot the first log record that corresponds to a dirty page i.e.
the first update that wasn’t flushed at the checkpoint time. This is where redo must
begin recovery.

undoLSN: This is a reference to the oldest log record of the oldest in-progress
transaction. This is the oldest log record needed to undo all in-progress transactions.

Completion Record notes that all work has been done for this particular transaction. (It has
been fully committed or aborted)

2.3.CONCURRENCYCONTROL

Concurrency control is the process of managing/controlling simultaneous operations on the
database. It is required because actions from different users or applications taking place upon a
database must not interfere. It establishes order of concurrent transactions.

Interleaving operations can lead to the database being in an inconsistent state. Three potential
problems which should be addressed by successful concurrency control are as follows:

e Lost Updates
¢ Uncommitted data
* |nconsistent Retrievals.

The Scheduler is a module that is responsible for implementing a particular strategy for
concurrency control. It:

» Establishes order for concurrent transaction execution.
* Interleaves execution of database operations to ensure serializability
e Bases actions on concurrency control algorithms
— Locking
— Time stamping
e Ensures efficient use of computer’s CPU

2.3.1. Concurrency Control with Locking Methods

A transaction will use a lock to deny data access to other transactions and so prevent incorrect
updates. Locks can be Read (shared) or Write (exclusive) locks. Write Locks on a data item
prevents other transaction from reading that data item whereas Read Locks simply stop other
transactions from editing (writing to) the data item.

Locks are used in the following ways:

1. Any transaction that needs to access a data items must first lock the item, requesting
a shared lock for read only access or exclusive lock for read and write access.

2. Iftheitemis not locked by another transaction, the lock will be granted.

Page | ccxxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3. Iftheitemis currently locked, the DBMS determines whether the request is
compatible with the existing lock. If a shared lock is requested on an item that
already has shared lock on it, request will be granted. Otherwise, transaction must
wait until the existing lock is released.

4. Transaction continues to hold a lock until it is explicitly released either during
execution or when it terminates (aborts or commit). It is only when the exclusive lock
has been released that the effects of the write operation will be made visible to
another transaction.

2.3.2. Types of Locks
The two main lock types are:

* Binary locks
¢ Shared/Exclusive locks
Binary locks

Binary can be in one of two states i.e. the locked states (denoted by 1) and the
unlocked state (denoted by 0) . Locked objects are unavailable to other objects and
this is managed by the DBMS. Unlocked objects however, are open to any order
transaction. Its each transaction that locks its objects and the same unlocks it when
complete. It is also possible to change DBMS default with LOCK TABLE and other SQL
commands.

Shared/Exclusive locks

Shared locks exist when concurrent transactions grants READ access. This produces
no conflict for read-only transactions and it is issued when transactions want to read
and an exclusive lock is not held on the item.

Exclusive locks exist when access is reserved for locking transactions. This is used
when potential conflict exists and is exclusively granted if object does not have a
lock yet. It is used when transactions have to update unlocked data.

2.3.3. Two-Phase locking to Ensure Serializability

A transaction follows the “two-phase” lock if all lock requests come before the first unlock
operation within the transaction. This means there are two main phases within the transaction:

Growing phase (all locks are acquired)
Shrinking phase (locks are released — no new lock can be acquired)

2.3.4. Deadlocks

Page | ccxxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Deadlocks occur when two or more transactions are waiting for locks held by each other to be
released. The only way to break a deadlock is to abort one of the transactions so that a lock is
released so the other transaction can proceed. The DBMS can manage this process of aborting a
transaction when necessary. The aborted transaction is typically restarted so that it is able to
execute and commit without the user being aware of any problems occurring. A timeout could
also be used. The transaction that requests a lock waits for at most a specified period.
Deadlocks can be prevented when the DBMS looks ahead to determine if the transaction would
cause a deadlock and thus never allow the dead lock to occur.

2.4. CONCURRENCY CONTROL WITH TIME STAMPING METHODS

Whenever a transaction starts, it is given a timestamp. This is so we can tell which order that
the transactions are supposed to be applied in. So given two transactions that affect the same
object, the transaction that has the earlier timestamp is meant to be applied before the other
one. However, if the wrong transaction is actually presented first, it is aborted and must be
restarted.

Every object in the database has a read timestamp, which is updated whenever the object's
data is read, and a write timestamp, which is updated whenever the object's data is changed.

If a transaction wants to read an object, but the transaction started before the object's write
timestamp it means that something changed the object's data after the transaction started. In
this case, the transaction is cancelled and must be restarted.

If a transaction wants to write to an object, but the transaction started before the object's read
timestamp it means that something has had a look at the object, and we assume it took a copy
of the object's data. So we can't write to the object as that would make any copied data invalid,
so the transaction is aborted and must be restarted.

Timestamp Resolution

This is the minimum time elapsed between two adjacent timestamps. If the resolution of
the timestamp is too large (coarse), the possibility of two or more timestamps being equal
is increased and thus enabling some transactions to commit out of correct order. For
example, assuming that we have a system that can create one hundred unique
timestamps per second, and given two events that occur 2 milliseconds apart, they will
probably be given the same timestamp even though they actually occurred at different
times.

Timestamp Locking

Even though this technique is a non-locking one, in as much as the Object is not locked
from concurrent access for the duration of a transaction, the act of recording each
timestamp against the Object requires an extremely short duration lock on the Object or
its proxy.

Page | ccxxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

2.5. CONCURRENCY CONTROL WITH OPTIMISTIC METHODS

Optimistic Concurrency Control (OCC) is a concurrency control method that assumes that
multiple transactions can complete without affecting each other, and that therefore
transactions can proceed without locking the data resources that they affect. Before
committing, each transaction verifies that no other transaction has modified its data. If the
check reveals conflicting modifications, the committing transaction rolls back.

However, if conflicts happen often, the cost of repeatedly restarting transactions hurts
performance significantly; other concurrency control methods have better performance under
these conditions.

2.5.1 Optimistic Concurrency Control Phases
More specifically, OCC transactions involve these phases:

» Begin: Record a timestamp marking the transaction's beginning.

* Modify: Read and write database values.

» Validate: Check whether other transactions have modified data that this transaction
has modified. Always check transactions that completed after this transaction's start
time. Optionally, check transactions that are still active at validation time.

« Commit/Rollback: If there is no conflict, make all changes part of the official state of
the database. If there is a conflict, resolve it, typically by aborting the transaction,
although other resolution schemes are possible.

OCC is generally used in environments with low data contention. When conflicts are rare,
transactions can complete without the expense of managing locks and without having
transactions wait for other transactions' locks to clear, leading to higher throughput than
other concurrency control methods.

2.6.DATABASERECOVERYMANAGEMENT

Database Recovery deals with restoring the database to a correct state in the event of a failure.
We have various storage that holds data and they include main memory, magnetic disk,
magnetic tape and optical disks. Failure that could make the DBMS require recovery includes:

System crashes (Software & Hardware)
media failures
application software error
natural physical disaster
unintentional distraction
sabotage
7. Programming Exemption
Levels of backup

ok wnNeE

Page | ccxxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

a. Full database backup
b. Differential backup
c. Transaction log backup

Transaction recovery comprises of the following:

e Write-ahead protocol

¢ Redundant transaction logs
* Database buffers

¢ Database checkpoints

There are two basic features for transaction recovery they are
1. Deferred-write and Deferred-update

e Changes are written to the transaction log
e Database updated after transaction reaches commit point
2. Werite-through

¢ Immediately updated during execution
e Before the transaction reaches its commit point
e The transaction log is also updated

* If transaction fails, database uses log information to ROLLBACK
2.7. CONCLUSION

Transaction processing systems are systems with large databases and hundreds of concurrent
users. It provides and “all-or-noting” proposition stating that each work —unit performed in
database must either complete in its entirety or have no effect whatsoever. Further, the system
must isolate each transaction from the other, results must conform to existing constraints in
the database and transactions that complete successfully must be written to durable storage.

2.8. SUMMARY

A transaction is a logical unit of database processing, which can include one or more database
operations, such as insertion, deletion, modification, or retrieval operations. A transaction will
use a lock to deny data access to other transactions and so prevent incorrect updates. Database
recovery is necessary to deal with restoring the database to a correct state in the event of a
failure.

2.9. TUTOR-MARKED ASSIGNMENT (TMA)

1. What is a transaction?

Page | ccxxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

2. Discuss the properties of database transactions.

3. Discuss how simultaneous transactions are controlled.

2.10. FURTHER READINGS

Eswaran, K., Gray, J., Lorie, R., and Traiger, |. [1976] “The Notions of Consistency and Predicate
Locks in a Data Base System”, CACM, 19 : 11 November 1976.

Gray. J. [1981] “The Transaction Concept: Virtues and Limitations”, in VLDB [1981].

Gray., J., and Reuter, A [1983] Transaction Processing: Concepts and Techniques, Morgan
Kaufmann, 1993.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, 4th ed., McGraw — hill,
1986.

www.w3schools.com

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB [1992.

Page | cexl

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

UNIT 3: DATABASE SECURITY & AUTHORIZATION

3.0. INTRODUCTION

The data stored in the database needs to be protected from unauthorized access, malicious
destruction or alteration, and accidental introduction of inconsistency. In this unit, we examine
the ways in which data may become inconsistent or be misused. We then present mechanisms
to guard against their occurrence.

3.1 OBIJECTIVES
To understand the various security and authorization concepts and forms

To understand the various constraints in ensuring database consistency

3.2. SECURITY AND INTEGRITY VIOLATIONS

Misuse of the database can be categorized as being either intentional (malicious) or accidental.
Accidental loss of data consistency may result from:

Crashes during transaction processing
Anomalies due to concurrent access to the database
Anomalies due to the distribution of data over several computers

A logical error that violates the assumption that transactions preserve the
database consistency constraints.

It is easier to protect accidental loss of data consistency than to protect against malicious
access to the database. Among the forms of malicious access are the following:

Unauthorized reading of data (theft of information)

Page | cexli

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Unauthorized modification of data
Unauthorized destruction of data

Absolute protection of the database from malicious abuse is not possible, but the cost of the
perpetrator can be made sufficiently high to deter most if not all attempts to access the
database without proper authority. The term database security usually refers to security from
malicious access, while integrity refer to the avoidance of accidental loss of consistency. In
practice, the dividing line between security and integrity is not always clear. We shall use the
term security to refer to both security and integrity in cases where the distinction between
these concepts is not essential.

In order to protect the database, security measures must be taken at several levels:

Physical. The site or sites containing the computer systems must be physically
secured against armed or surreptitious entry by intruders.

Human. Authorization of users must be done carefully to reduce the chance of

authorized user giving access to an intruder in exchange for a bribe or other
favours.

Operating system. No matter how secure the database system is, weakness in
operating system security may serve as a means of unauthorized access to the
database. Since almost all database systems allow remote access through
terminals or networks, software-level security within the operation system is as
important as physical security.

Database system. Some authorized database system users may be authorized to

access only a limited portion of the database. Other users may be allowed to
issue queries, but may be forbidden to modify the data. It is the responsibility of
the database system to ensure that these restrictions are not violated.

It is worthwhile in many applications to devote a considerable effort to the preservation of the
integrity and security of the database. Large databases containing payroll or other financial data
are inviting targets to thieves. Database that contain data pertaining to corporate operations
may be of interest to unscrupulous competitions. Furthermore, loss of such data, whether via
accident or fraud, can seriously impair the ability of the corporation to function.

In the remainder of this unit, we shall address security at the database system level. Despite the
importance of physical and human level security these subjects are far beyond the scope of this
text. Security within the operating system is implemented at several levels ranging from
passwords for access to the system to the isolation of concurrent processes running within the
system. The file system also provides some degree of protection. We shall present our discussion
of security in terms of the relational data model, although the concepts of this unit are equally
applicable to all data models.

3.3.AUTHORIZATION&VIEWS

Page | ccxlii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The concept of views is a means of providing a user with a “personalized” model of the
database. A view can hide data that a user does not need to see. The ability of views to hide
data serves both to simplify usage of the system and to enhance security. System usage is
simplified since the user is allowed to restrict attention to the data of interest. Security is
provided if there is a mechanism to restrict the user to his or her personal view or views.
Relational database systems typically provide security at two levels:

Relation. A user may be permitted or denied direct access to a relation
View. A user may be permitted or denied access to data appearing in a view.

Although a user may be denied direct access to a relation, the user may be able to access part
of that relation through a view. Thus, a combination of relational — level security and view —
level security can be used to limit a user’s access to precisely the data that user needs.

In our bank example, consider a clerk who needs to know the names of the customers of each
branch. This clerk is not authorized to see information regarding specific loans and accounts
that the customer may have. Thus, the clerk must be denied direct access to the borrow and
deposit relations. In order for the clerk to have access to the information needed, we grant the
user access to the view all — customer which we define as:

create view all — customer as
(select branch — name, customer — name
from deposit)
union
(select branch-name, customer-name
from borrow)

A user may have several forms of authorization on part of the database. Among these are the
following:

Read authorization, which allows reading, but not modification of data

Insert authorization, which allows insertion of new data, but not the
modification of existing data

Update authorization, which allows modification, but not deletion, of data
Delete authorization, which allows deletion of data.

In addition to the above forms of authorization for access to data, a user may be granted
authorization to modify the database scheme:

Index authorization, which allow creation and deletion of indices

Page | ccxliii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Resources authorization, which allow the creation new relations

Alteration authorization, which allow the addition or deletion of attributes
in a relation

Drop authorization, which allows the deletion of relations

The drop and delete authorization differ in that delete authorization allows deletion of tuples
only. If a user deletes all tuples of a relation, the relation still exists, but it is empty. If a relation
is dropped, it no longer exists.

The ultimate form of authority is that given to the database administrator. The database
administrator may authorize new users, restructure the database, etc. this form of
authorization is analogous to that provided to a “super user” or operator for an operating
system.

A user who has been granted some form of authority may be allowed to pass this authority on
to other users. However, we need to be careful about how authorization may be passed among
users in order to ensure that we can revoke authorization at some future time.

Let us consider, as an example, the granting of update authorization on the deposit relation of
the bank database. Assume that, initially, the database administrator (DBA) grants update
authorization on deposit to users 1.2, and 2. Users 3.:2: and 1 may in turn pass this authorization
on to other users. We represent the passages of authorization from one user to another by an
authorization graph. The nodes of this graph are the users. An edge (+Jis included in the graph
if user grants update authorization on deposit to . A sample graph appears in figure 3.1.
observe that user s is granted authorization by both ; and .

Suppose that the database administrator decided to revoke the authorization of user ;. Since 4
has authorization granted from 1, that authorization should be revoked as well. However, 5 was
granted authorization by both :and ;. Since the database administrator did not revoke update
authorization on deposit from 3, s retains update authorization on deposit. If 2z eventually
revokes authorization from s, then s loses the authorization.

A pair of devious users might attempt to defeat the above rules for revocation of authorization
by granting authorization to each other as shown in figure 3.2a. if the database administrator
revokes authorization from ; ; retains authorization through 3 as shown in figure 3.2b.

Page | cexliv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

/v-'\'F
P_-—V_-
_.

Figure 3.1 An authorization — grant tree

If authorization is revoked subsequently from . 3 retains authorization through U2 as shown in
figure 3.2c

To avoid problems like that above, we require that all edges in an authorization graph be part
of some path originating with the database administration. Under this rule, the authorization
graph of figure 3.2b would still be the result of revocation of authorization from ;. However,
when the database administrator subsequently revokes authorization from 3, the edges from 3
to ; and from 2 to 3 are no longer part of a path starting with the database administration.

Therefore, those edges are deleted and the resulting authorization graph is as shown in figure
3.3.

Alternative schemes for managing authorization have been used in several database systems.
Several of these are discussed in the bibliographic notes and in the exercises.

As an example of how authorization is granted and revoked in an actual database system, we
present examples from SQL. To grant authorization, one uses the grant statement :

grant <privilege list> on <relation name or view name> to <user list>

The privilege list allows the granting of several privileges in one command. Members of this list
may be the privileges read, insert, drop, delete, index, alteration, and resource, all of which we
have discussed earlier. Update authorization may be given on all attribute of the relation or
only some. Update authorization is included in a grant statement, the list of attributes on which
update authorization is to be granted is listed in parentheses: The

following grant statement grants three users j, ; and ; update authorization on the

Page | ccxlv

b —

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

(a)

balance attribute of the deposit relation:

grant update (balance) on deposit to zru-x

1

Figure 3.2 Attempt to defeat authorization revocation.

To revoke authorization, the revoke statement is used. It takes a form almost identical to that
of grant:

revoke <privilege list>
on <relation name or view name> from <user list>

thus, to revoke the privilege we granted above, we write:
revoke update (balance) on deposit from 3: z: 3
3.4.INTEGRITYCONSTRAINTS

The forms of authorization discussed earlier are a means by which the database system can be
protected against malicious or unauthorized access. Integrity constraints, however, serve a
different purpose. They provide a means of ensuring that changes made to the database by
authorized users do not result in a loss of data consistency. Thus, integrity constraints guard
against accidental damaged to the database.

Page | ccxlvi

Figure 3.3 Authorization graph.

CIT 844 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

—

Above, we discussed the notion of a transaction. We required that all transactions preserve the
constraints, and using that assumption, showed how to preserve consistency despite system
crashes. We saw also how ensure that no anomalies result from concurrent access to the
database. In practice, of course, programs have bugs and interactive users of the database
system make mistakes. The integrity control component of the database system is intended to
detect as many of these errors as possible.

We have already seen a form of integrity constraint for relational database in Module 1. Data
dependencies (functional, multivalued, and join) are statements about the enterprise we are
modelling. We wish to restrict the database to contain only relations that satisfy these
dependencies. In the network model and the E-R model, we saw integrity constraints in the
form of:

Key declarations, the stipulation that certain attributes form a candidate key for a
given entity set constrains the set of legal insertions
Form of a relationship, many-to-many, one—to—-many, one—to—one. A one-to-
one or one-to-many relationship restricts the set of legal relationships among
entities of a collection of entity sets.

Another example of an integrity constraint is set retention in the network model.

In general, an integrity constraint can be an arbitrary predicate pertaining to the database.
However, arbitrary predicates may be costly to test. Thus, we usually limit ourselves to integrity
constraints that can be tested with minimal overhead. This is the purpose behind dependency —
preserving decompositions of relation schemes. Recall that in a dependency — preserving
decomposition, it is possible to test for satisfaction of the data dependencies without the need
to compute any joins. Domain — key normal (DKNF; see module 1) is an ideal design from the
point of view of efficient testing of integrity constraints, since the only forms of constraint that
need be tested are key constraints and domain constraints.

If the key and domain constraints are satisfied, and the database scheme is in DKNF, then all
integrity constraints on the database are satisfied.

Key constraints are one of the most easily tested forms of consistency constraint, especially if
an index is maintained on that candidate key. During the process of inserting a record into the
database a lookup must be performed using the index and any duplicate key values that may

Page | ccxlvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

exist are found. Since not all index search keys are candidate keys for the relation (Indices may
be for secondary keys), we need to declare an index to be either

Unique. Only one record may exist for a key value

Non-unique. Multiple records are allowed to have the same key value
Another form of constraint that is easy to test is domain constraints. Testing domain
constraints is analogous to runtime — type checking in a programming language. A form of
constraint closely related to domain constraints involves the admissibility of null values. We
may forbid null values for certain attributes but allow them for others.

Relatively few systems allow the expression of constraints that are more complex than key
declarations or domain constraints. The original proposal for the SQL language included a
general — purpose construct called the assert statement for the expression of integrity
constraints.

An assertion pertaining to a single relation takes the form:
assert < assertion-name> on <relation-name><predicate>

For example, if we wish to define an integrity constraint that no account balance is negative we
write:

assert balance-constraint on deposit
balance =0

In its most general form, the assert statement takes the form:
assert <assertion-name> : <predicate>

Let us consider a more complicated constraint involving more than one relation scheme.
Suppose that we do not allow a customer to open an account unless the customer appears in
the customer relation. We write the following assertion:

assert address — constraint:
(select customer — name
from customer)
contains
(select customer-name
from deposit)

When an assertion is made, the system test it for validity. If the assertion is valid, then any
future modification to the database is allowed only if it does not cause an assertion to be

Page | ccxlviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

violated. This testing may introduce a significant amount of overhead if complex assertions
have been made.

Because of the high overhead of assertion test, an alternative scheme called triggering is
sometimes used for integrity preservation. A trigger is a statement that is executed
automatically by the system as a side effect of a modification to the database.

To design a trigger mechanism, we must:

specify the conditions under which the trigger is to be executed

specify the actions to be taken when the trigger executes.
Suppose that instead of allowing negative account balances, the bank deals with overdrafts by
setting the account balance to zero and creating a loan in the amount of the overdraft. This
loan is given a loan number equal to the account number of the overdrawn account. For the
above example, the condition for executing the trigger is an update to the deposit relation that
results in a negative balance value. Let t denote the tuple with a negative balance value. The
actions to be taken are as follows:

Insert a new tuple s in the borrow relation with:
s[branch-name] = t[branch-name]
sfloan-number]= t[account-number]
s[amount] = - t [balance]
s[customer-name] = t[customer-name]
(Note that since [] is negative, we negate [] to get the loan amount, a positive number]

Set t [balance] to 0.

3.5. ENCRYPTION

The various provisions a database system may make for authorization may not be sufficient
protection or highly sensitive data. In such cases, data may be encrypted. It is not possible for
encrypted data to be read unless the reader knows how to decipher (decrypt) the encrypted
data.

There are a vast number of techniques for the encryption of data. Simple techniques for
encryption may not provide adequate security since it may be easy for an authorized user to
break the code. As an example of a bad encryption technique, consider substitution of each
character with the next character in the alphabet. Thus:

Perryridge
becomes:

Page | ccxlix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Qfsszshehf

If an unauthorized user sees only “Qfsszsjehf,” there is probably insufficient information to
break the code. However, if the intruder sees a large number of encrypted branch names, the
intruder could use statistical data regarding the relative frequency of characters (for example,

“u_n

e” is more common than “x”) to guess what substitution is being made.
Good encryption techniques have the following properties:

it is relatively simple for authorized users to encrypt and decrypt data.

The encryption scheme depends not on the secrecy of the algorithm but on a parameter
of the algorithm called the encryption key.

It is extremely difficult for an intruder to determine the encryption key.

The Data Encryption Standard is an approach which does both a substitution of characters and
a rearrangement of their order based on an encryption key. In order for this scheme to work,
the authorized users must be provided with the encryption key via a secure mechanism. This is
a major weakness since the scheme is no more secure than the secureness of the mechanism
by which the encryption key is transmitted.

There is an alternative scheme that avoids some of the problems with the Data Encryption
Standard. This scheme, called public—key encryption, is based on two keys, a public key and
private key. Each user has his or her own public key and private key . All public keys are
published. Each user’s private key is known only to the one user to whom the key belongs. If
user ; wants to store encrypted data, 1 encrypts it using his or her public key 1. decryption
requires the private key ;.

Because the encryption key for each user is public, it is possible to exchange information
securely using this scheme. if user :wants to share data with z;, U1l encrypts the data using ;,
the public key of z. Since only user z knows how to decrypt the data, secure information
transfer is accomplished.

For public key encryption to work, there must be a scheme for encryption that can be made
public without making it easy to figure out the scheme for decryption. Such a scheme does
exist. It is based on the following:

There is an efficient algorithm for testing whether or not a number is prime
No efficient algorithm is known for finding the prime factors of a number.

Data is treated as a collection of integers for purposes of this scheme. A public key is created by
computing the product of two large prime numbers 3 and 2. The private key consists of the
(4:2), and the decryption algorithm cannot be used successfully if only the product 1 is known.
Since all that is published in the product ;;, an unauthorized user would need to be able to
factor 1z in order to steal data. By choosing ; and ; to be sufficiently large (over 100 digits). We
can make the cost of factoring ;; prohibitively high (on the order of years of computation time

Page | ccl

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

even on the fastest computers). The details of public key encryption and the mathematical
justification of its properties are referenced in the bibliographic notes.

3.6. STATISTICAL DATABASES

Suppose that our bank grants an outsider access to its database under the condition that only
statistical studies(averages, medians, etc.) are made on the data and that information about
individuals is not divulged. In this unit, we examine the difficulty of ensuring the privacy of
individuals while allowing use of data for statistical purposes.

One weakness in a statistical database is unusual cases. For example, there may be a city in
which only one bank customer lives. Suppose that one asks for the total bank account balances
for all customers living in Smalltown. If only one customer happens to live in Smalltown, the
system has divulged information about an individual. Of course, a security breach has occurred
only if the user knows that only one customer lives in Smalltown. However, that information is
easily determined by the statistical query, “Find the number of customers living in Smalltown”.

A simple way to deal with potential security breaches like that described above is for the
system to reject any query that involves fewer than some predetermined number of
individuals. Suppose this predetermined number is n. A malicious user who has an account with
our bank can find an individual’s balance in two queries. Suppose he wants to find how much
money Rollo has on deposit. He chooses n customers and finds:

x, the total balance for himself and the n customers.
y, the total balances for Rollo and the n customers.
Rollo’s total balance is:
— + 4

The critical flow that was exploited in the above example is that the two queries referred to
many of the same data items. The number of data items the queries ; and z have in common is
called the intersection of ; and ..

Thus, in addition to requiring that a query reference data pertaining to at least n individuals, we
may require that no two queries have an intersection larger than m. By adjusting n and m, we
can increase the difficulty of a user determining data about an individual, but we cannot
eliminate it entirely.

Page | ccli

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

These two restrictions do not preclude the possibility of some extremely clever query that
divulges data. However, if all queries are restricted to computing sums, counts, or averages,
and if a malicious user knows only the data value for himself, it can be shown that it will take at
least L #+ (= 2}/ queries for the malicious user to determine data about an individual. The

proof of this is beyond the scope of this text and is referenced in the bibliographic notes. this
act is only partially reassuring. We can limit a user to less than

1 + (- 2}/ queries, but a conspiracy of two malicious users can result in data being divulged.

Another approach to security is data pollution. This involves the random falsification of data
provided in response to a query. This falsification must be done in such a way that the statistical
significance of the response is not destroyed. A similar technique involves random modification
of the query itself. For both of these techniques, the goals involve a trade — off between
accuracy and security.

Regardless of the approach taken to security of statistical data, it is possible for a malicious user
to determine individual data values. However, good techniques can make the expense in terms
of cost and time sufficiently high to be a deterrent.

3.7. CONCLUSION

The various provisions a database system may make for authorization may not sufficient
protection for highly sensitive data. In such cases, data may be encrypted. It is not possible for
encrypted data to be read unless the reader knows how to decipher (decrypt) the encrypted
data.

It is difficult to ensure the privacy of individuals while allowing use of data for statistical
purposes. A simple way to deal with potential security breaches is for the system to reject any
query that involves fewer than some predetermined number of individuals. Another approach
to security is data pollution. This involves the random falsification of data provided in response
to a query. A similar technique involves random modification of the query itself. For both of
these techniques, the goals involve a trade-off between accuracy and security . Regardless of
the approach taken to security of statistical data, it is possible for a malicious user to determine
individual data values. However, good techniques can make the expense in terms of cost and
time sufficiently high to be a deterrent.

3.8. SUMMARY

The data stored in the database needs to be protected from unauthorized access, malicious
destruction or alteration, and accidental introduction of inconsistency. It is easier to protect
against accidental loss of data consistency than to protect against malicious access to the
database. Absolute protection of the database from malicious abuse is not possible, but the
cost to the perpetrator can be made sufficiently high to deter most if not all attempts to access
the database without proper authority.

Page | cclii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The concept of views provides a means for a user to design a “personalized” model of the
database. A view can hide data that a user does not need to see. Security is provided if there is
a mechanism to restrict the user to his or her personal view or views. A combination of
relational-level security and view-level security can be used to limit a user’s access to precisely
the data that user needs.

A user may have several forms of authorization on parts of the database. Authorization is a
means by which the database system can be protected against malicious or unauthorized
access. A user who has been granted some form of authority may be allowed to pass this
authority on to other uses. However, we need to be careful about how authorization may be
passed among users in order to ensure that we can revoke authorization at some future time.

Integrity constraints provide a means of ensuring that changes made to the database by
authorized users do not result in a loss of data consistency. Thus, integrity constraints guard
against accidental damage to the database. In general, an integrity constraint can be an
arbitrary predicate pertaining to the database. However, arbitrary predicates may be costly to
test. Thus, we usually limited ourselves to integrity constraints that can be tested with minimal
overhead.

Because of the high overhead of assertion test, an alternative scheme called triggering is
sometimes used for integrity preservation. A trigger is a statement that is executed
automatically by the system as a side effect of modification to the database.

3.10. TUTOR-MARKED ASSIGNMENT (TMA)

1. Mention the causes of data loss from database.
2. How can accidental loss of data consistency be prevented?
3. Discuss the techniques of ensuring database security.

3.11. FURTHER READINGS

Date, C. [1995] An Introduction Database System, 7th ed; Addison-Wesly 2000.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Page | ccliii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — hill, 1986.

www.w3schools.com

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB, 1992.

UNIT1: ENHANCED DATABASE MODEL

1.0. INTRODUCTION

A single database can be divided into several fragments. The fragments can be stored on
different computers within a network. Processing, too, can be dispersed among several
different network sites or nodes. The multisite database forms the core of the distributed
database systems.

1.1. OBIJECTIVES
At the end of this unit, you student should be able to:

differentiate between centralized and distributed databases
design a distributed database
database atomicity

discuss distributed query processing
discuss the concurrency control schemes

1.2 DISTRIBUTED DATABASES

In a distributed database system, the database is stored on several computers. The computers
in a distributed system communicate with each other through various communication media,
such as high—speed buses or telephone lines. They do not share main memory, nor do they
share a clock.

The processors in a distributed system may vary in size and function. They may include small
microcomputers, work stations, minicomputers, and large general—-purpose computer systems.

Page | ccliv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

These processors are referred to by a number of different names such as sites, nodes,
computers, and so on, depending on the context in which they mentioned, we mainly use the
term site, in order to emphasize the physical distribution of these systems.

A distributed database system consists of a collection of sites, each of which may participate in
the execution of transactions which access data of one site, or several sites. The main
difference between centralized and distributed database systems is that, in the former, the
data resides in one single location, while in the latter, the data resides in several locations. As
we shall see, this distribution of data is the cause of many difficulties that will be addressed in
this unit.

1.3 STRUCTURE OF DISTRIBUTED DATABASE

A distributed database system consists of a collection of sites, each of which maintains a local
database system. Each site is able to process local transactions, those transactions that access
data only in that single site. In addition, a site may participate in the execution of global
transactions, those transactions that access data in several sites. The execution of global
transactions requires communication among the sites.

The sites in the system can be connected physically in a variety of ways. The various topologies
are represented as graphs whose nodes correspond to sites. An edge from node A to node B
corresponds to a direct connection between the two sites. Some of the most common
configurations are depicted in figure 1.1. the major differences among these configurations
involve:

Installation cost. The cost of physical linking the sites in the system.

Communication cost. The cost in time and money to send a message from site A to site
B.

Reliability. The frequency with which a link or site fails.

Availability. The degree to which data can be accessed despite the failure of some links
or sites.

As we shall see, these differences play an important role in choosing the appropriate
mechanism for handling the distribution of data.

The sites of a distributed database system may be distributed physically either over a large
geographical area (such as the United States), or over a small geographical area (such as a
single building or a number of adjacent buildings). The former type of network is referred to as
a long—haul network, while the latter is referred to as a local-area network.

Since the sites in long—haul networks are distributed physically over a large geographical area,
the communication links are likely to be relatively slow and less reliable as compared with

Page | cclv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

local—area networks. Typical long-haul links are telephone lines, microwaves links, and satellite
channels. In contrast, since all the sites in local-area networks are close to each other, the
communication links are of higher speed and lower error rate than their counterparts in long-
haul networks. The most common links are twisted pair, based band coaxial, broadband coaxial,
and fiber optics.

Let us illustrate these concepts by considering a banking system consisting of four branches
located in four different cities. Each branch has its own computer with a database consisting of
all the accounts maintained at that branch. Each such installation is thus a site. There also exists
one single site which maintains information about all the branches of the bank. Suppose that
the database systems at the various sites are based on the relational model. Thus, each branch
maintains (among others) the relation deposit (Deposit—-scheme) where

- = E:_r_.— _r:[

The site containing information about the four branches maintains the relation branch
(Branch—scheme), where

- - [:_FF-:I

Page | cclvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

fully connected network partially connected network

e°e Ow/%@

oRoRO 9

star network

Tree structured

Ring network

Figure 1.1 Network topology

There are other relations maintained at the various sites which are ignored for the purpose of
our example. A local transaction is a transaction that accesses accounts in the one single site, at
which the transaction was initiated. A global transaction, on the other hand, is one which either
accesses accounts in a site different from the one at which the transaction was initiated, or
accesses accounts in several different sites. To illustrate the difference between these two
types of transactions, consider the transaction to add N50 to account number 177 located at
the Valleyview branch. If the transaction was initiated at the Valleyview branch, then it is
considered local; otherwise it is considered global. A transaction to transfer N50 from account
177 to account 305, which is located at the hillside branch, is a global transaction since
accounts in two different sites are accessed as a result of its execution.

Page | cclvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

What makes the above configuration a distributed database system are the facts that:
The various sites are aware of each other.
Each site provides an environment for executing both local and global transactions.

1.4 TRADE-OFFS IN DISTRIBUTING THE DATABASE

There are several reasons for building distributed database systems, including sharing of data,
reliability and availability, and speedup of query processing. However, along with these
advantages come several disadvantages, including software development cost, greater
potential for bugs, and increased processing overhead. In this unit, we shall elaborate briefly on
each of these.

1.4.1 Advantages of Data Distribution

The primary advantage of distributed database systems is the ability to share and access data in
a reliable and efficient manner.

Data Sharing and Distributed Control

If a number of different sites are connected to each other, then a user at one site may be able
to access data that is available at another site. For example, in the distributed banking system
described in unit 1.3, it is possible for a user in one branch to access data in another branch.
Without this capability, a user wishing to transfer funds from one branch to another would
have a resort to some external mechanism for such a transfer. This external mechanism would,
in effect, be a single centralized database.

The primary advantage to accomplishing data sharing by means of data distribution is that each
site is able to retain a degree of control over data stored locally. In a centralized system, the
database administrator of the central site controls the database. In a distributed system, there
is a global database administrator responsible for the entire system. A part of these
responsibilities is delegated to the local database administrator for each site. Depending upon
the design of the distributed database system, each local administrator may have a different
degree of autonomy. This is referred to as local autonomy. The possibility of local autonomy is
often a major advantage of distributed databases.

Reliability and Availability

If one site fails in a distributed system, the remaining sites may be able to continue operating. In
particular, if data are replicated in several sites, a transaction needing a particular data item may
find it in several sites. Thus, the failure of a site does not necessarily imply the shutdown of the
system.

Page | cclviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The failure of one site must be detected by the system, and appropriate action may be needed
to recover from the failure. The system must no longer use the services of the failed site.
Finally, when the failed site recovers or is repaired, mechanisms must be available to integrate
it smoothly back into the system.

Although recovery from failure is more complex in distributed systems than in centralized
systems, the ability of most of the system to continue to operate despite the failure of one site
results in increased availability. Availability is crucial for database systems used for real-time
applications. Loss of access to data by, for example, an airline may result in the loss of potential
ticket buyers to competitors.

Speedup of Query Processing

If a query involves data at several sites, it may be possible to split the query into subqueries
that can be executed in parallel by several sites. Such parallel computation allows for faster
processing of a user’s query. In those cases in which data is replicated, queries may be directed
by the system to the least heavily loaded sites.

1.4.2 Disadvantages of Data Distribution

The primary disadvantage of distributed database systems is the added complexity required to
ensure proper coordination among the sites. This increased complexity takes the form of:

Software development cost. It is more difficult to implement a distributed database
system and thus, more costly.

Greater potential for bugs. Since the sites that comprise the distributed system operate
in parallel,, it is harder to ensure the correctness of algorithms. The potential exists for
extremely subtle bugs. The art of constructing distributed algorithms remains an active
and important area of research.

Increased processing overhead. The exchange of messages and the additional
computation required to achieve inter-site coordination is a form of overhead that does
not arise in centralized systems.

In choosing the design for a database system, the designer must balance the advantages
against the disadvantages of distribution of data. We shall see that there are several
approaches of distributed database design ranging from fully distributed designs to designs
which include a large degree of centralization.

1.5 DESIGN OF DISTRIBUTED DATABASES
The principles of database design that we discussed earlier apply to distributed databases as

well. In this unit, we focus on those design issues that are specific to distributed databases.

Page | cclix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Consider a relation r that is to be stored in the database. There are several issues involved in
storing this relation in the distributed database including:

Replication. The system maintains several identical replicas (copies) of the relation.
Each replica is stored in a different site, resulting in data replication. The alternative to
replication is to store only one copy of relation r.

Fragmentation. The relation is partitioned into several fragments. Each fragment is
stored in a different site.

Replication and fragmentation. This is a combination of the above two notions. The
relation is partitioned into several fragments. The system maintains several identical
replicas of each such fragment.

In the following subunits, we elaborate on each of these.
1.5.1 Data Replication

If relation ris replicated, a copy of relation ris stored in two or more sites. In the most extreme
case, we have full replication, in which a copy is stored in every site in the system.

Availability. If one of the sites containing relation r fails, then the relation r may be
found in another site. Thus, the system may continue to process queries involving r
despite the failure of one site.

Increased parallelism. In the case where the majority of access to the relation r results
in only reading of the relation, then several sites can process queries involving r in
parallel. The more replicas of r there are, the greater the chance that the needed data is
found in the site where the transaction is executing. Hence, data replication minimizes
movement of data between sites.

Increased overhead on update. The system must ensure that all replicas of a relation r
are consistent since otherwise erroneous computations may result. This implies that
whenever r is updated, this update must be propagated to all sites containing replicas,
resulting in increased overhead. For example, a in a banking system, where account
information is replicated in various sites, it is necessary that transactions assure that the
balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and increases the
availability of data to read transactions. However, update transaction incur greater overhead.
The problem of controlling concurrent updates by several transactions to replicated data is
more complex than the centralized approach to concurrency control. We may simplify the
management of replicas of relation r by choosing one of them as the primary copy of r. For
example, in banking system, an account may be associated with the site in which the account
has been opened. Similarly, in an airline reservation system, a flight may be associated with the

Page | cclx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

site at which the flight originates. We shall examine the options for distributed concurrency
control in unit 1.9.

1.5.2 Data Fragmentation

If the relation r if fragmented, r is divided into a number of fragments z-3: These fragments
contain sufficient information to reconstruct the original relation r. As we shall see, this
reconstruction can take place through the application of either the union operation or a special
type of join operation on the various fragments. There are two different schemes for
fragmenting a relation: horizontal fragmentation and vertical fragmentation. Horizontal
fragmentation splits the relation by assigning each tuple of r to one or more fragments. Vertical
fragmentation splits the relation by decomposing the scheme R of relation r in a special way
that we shall discuss. These two schemes can be applied successively to the same relation,
resulting in a number of different fragments. Note that some information may appear in several
fragments.

Below we discuss the various ways for fragmenting a relation. We shall illustrate these by
fragmenting the relation deposit, with scheme:

- - [:_r'r_rj

The relations deposit (deposit—scheme) is shown in Table 1.1

Table 1.1 sample deposit relation

Branch-name Account — number Customer- name Balance
Hillside 305 Lowman 500
Hillside 226 Camp 336
Valleyiew 117 Camp 205
Valleyview 402 Kahn 10000

Page | cclxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Hillside 155 Kahn 62
Valleyview 408 Kahn 1123
Valleyview 639 Green 750

Horizontal Fragmentation

The relation r is partitioned into a number of subsets, 4: £ . Each subset consists of a number
of tuples of relation r. Each tuple of relation r must belong to one of the fragments, so that the
original relation can be reconstructed, if needed.

A fragment may be defined as a selection on the global relation r. that is, a predicate

used to construct fragment as follows:

=

The reconstruction of the relation r can be obtained by taking the union of all fragments, that is,
-U
u

To illustrate this, suppose that the relation r is the deposit relation of Table 1.1. This relation
can be divided into n different fragments, each of which consists of tuples of accounts
belonging to a particular branch. If the

Table 1.2 Horizontal fragmentation of relation deposit

Branch —name Account—number Customer—name Balance
Hillside 305 Lowman 500
Hillside 226 Camp 336
Hillside 155 Kahn 62

(a)

Branch — name Account—-number Customer- name Balance
Valleyview 177 Camp 205
Valleyview 402 Kahn 10000
Valleyview 408 Kahn 1123

Page | cclxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

Valleyview

639

Green

750

(b)

banking system has only two branches, Hillside and Valleyview, then there are two different

fragments:

—_ = il

-

-

2 -

These two fragments are shown in Table 1.2. Fragment ; is stored in the Hillside site. Fragment
2 is stored in the Valleyview site.

In our example, the fragments are disjoint. By changing the selection predicates used to
construct the fragments, we may have a particular tuple of r appear in more than one of the .
This is a form of data replication about which we shall say more at the end of this unit.

Vertical Fragmentation

In its most simple form, vertical fragmentation is the same as decomposition. Vertical
fragmentation of () involves the definition of several subsets 4; &:11: of R such that Uy ™ .

Each fragment of ris defined by:

relation r can be reconstructed from the fragments by taking the natural join:

Table 1.3 the deposit relation of Table 1.1 with tuple-ids.

=10

C4 ca ., [4

Branch — name Account-number Customer-name Balance Tuple- id
Hillside 305 Lowman 500 1
Hillside 226 Camp 336 2
Valleyview 177 Camp 205 3
Valleyview 402 Kahn 10000 4
Hillside 155 Kahn 62 5
Valleyview 408 Kahn 1123 6

Page | cclxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Valleyview 639 Greeen 750 7

More generally, vertical fragmentation is accomplished by adding a special attribute called a
tuple—id to the scheme R. A tuple-id is a physical or local address for a tuple. Since each tuple in
r must have a unique address, the tuple-id attribute is a key for the augmented scheme.

In Table 1.3, we show the relation deposit’, the deposit relation of Table 1.1 with tuple-ids
added. Table 1.4 shows a vertical decomposition of the scheme - U- into:

-—m (= = =]}

-—4 = E_rr - _J

The two relations shown in Table 1.4 result from computing:
s« = Il L
+=0__.o

Table 1.4 Vertical fragmentation of relation deposit.

Branch- name Customer — name Tuple —id
Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5
Valleyview Kahn 6
Valleyview Green 7

(a)

Account — number Balance Tuple —id
305 500 1
226 336 2
177 205 3

Page | cclxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

402 10000 4
155 62 5
408 1123 6
639 750 7

(b)
To reconstruct the original deposit relation from the fragments, we compute
I twa
Note that the expression

.'*M-"

is a special from of natural join. The join attribute is tuple—id. Since the tuple—id value
represents an address, it is possible to pair a tuple of : with the corresponding tuple of s by
using the address given by the tuple—id value. This address allows direct retrieval of the tuple
without the need for an index. Thus, this natural join may be computed much more efficiently
than typical natural joins.

Although the tuple—id attribute is important in the implementation of vertical partitioning, it is
important that this attribute not be visible to users. If users are given access to tuple—ids, it
becomes impossible for the system to change tuple addresses. Furthermore, the accessibility of
internal addresses violates the notion of data independence, one of the main virtues of the
relational model.

Mixed Fragmentation

The relation ris divided into a number of fragment relations z:z: ==+ Each fragment is obtained
as the result of applying either horizontal fragmentation or vertical fragmentation scheme on
relation r, or a fragment of r which was obtained previously.

To illustrate this, suppose that the relation r is the deposit relation of Table 1.1. This relation is
divided initially into the fragments 3 and 4 as defined above. We can now further divide
fragment ;using the horizontal fragmentation scheme into the following two fragments:

2™ L e

§™ . omeid

Page | cclxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Thus relation r is divided into three fragments 3 and 4. Each of these may reside in a different
site.

1.5.3 Data Replication and Fragmentation

The technique described above for data replication and data fragmentation can be applied
successively to the same relation. That is, a fragment can be replicated; replicas can be
fragmented; etc. For example, consider a distributed system consisting of sites . 2. ... 28, We
can fragment deposit into 3, 3, and 4, and, for example, store a copy of z in site S;, S;, and S5, a
copy of ; at sites S; and S,y and a copy of 5 at sites S,, Sg, and S.

1.6 TRANSPARENCY AND AUTONOMY

In the previous unit, we saw that a relation r may be stored in a variety of ways in a distributed
database system. It is essential that the system minimize the degree to which a user needs to
be aware of how a relation is stored. As we shall see, a system can hide the details of the
distribution of data in the network. We call this network transparency.

Network transparency is related, in some sense, to the issue of local autonomy. Network
transparency is the degree to which system users may remain unaware of the details of the
design of the distributed system. Local autonomy is the degree to which a designer or
administrator of one site may be independent of the remainder of the distributed system.

We shall consider the issues of transparency and autonomy from the points of view of:
Naming of data items.
Replication of data items.
Fragmentation of data items.
Location of fragments and replicas.
1.6.1 Naming and Local Autonomy

Every data item in the database must have a unique name. this property is easy to ensure in a
non distributed database. However, in a distributed database, the various sites must ensure
that two sites do not use the same name for distinct data items.

One solution to this problem is to require all names to be registered in a central name—server.
This approach, however, suffers from several disadvantages:

The name server may become a bottleneck.

Page | cclxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

If the name server crashes, it may not be possible for any site in the distributed system
to continue to run.

There is little local autonomy since naming is controlled centrally.

An alternative approach that results in increased local autonomy is to require that each site
prefix its own site identifier to any name it generates. This ensures that no two sites generate
the same name (since each site has a unique identifier). Furthermore, no central control is
required.

The above solution to the naming problem achieves local autonomy, but fails to achieve
network transparency since site identifiers are attached to names. Thus, the deposit relation
might be referred to as sitel7.deposit rather than simply deposit. We shall soon see how to
overcome this problem.

Each replica of a data item and each fragment of a data item must have a unique name. it is
important that the system be able to determine those replicas that are replicas of the same
data item and those fragments that are fragments of the same data item. We adopt the
convention of post fixing “ 2% “2% «; “." to fragments of a data item and “ 2% “.2%; w.,
replicas. Thus

oo
-

to

df. 3.2

refers to replica 2 of fragment 3 of deposit, and this item was generated by site 17.
1.6.2 Replication and Fragmentation Transparency

It is undesirable to expect users to refer to a specific replica of a data item. Instead, the system
should determine which replica to reference on a read request, and update all replicas on a
modification request.

When a data item is requested, the specific replica need not be named. Instead, a catalog table
is used by the system to determine all replicas for the data item.

Similarly, a user should not be required to know how a data item is fragmented. As we
observed earlier, vertical fragments may contain tuple—ids, which represent addresses of
tuples. Horizontal fragments may involve complicated selection predicates. Therefore, a
distributed database system should allow request to be stated in terms of the unfragmented
data items. This presents no major difficulty, since it is always possible to reconstruct the
original data item from its fragments. However, it may be inefficient to reconstruct data from
fragments. Returning to our horizontal fragmentation of deposit, consider the query:

Page | cclxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

This query could be answered using only the ; fragment. However, fragmentation transparency
requires that the user not be aware of the existence of fragments ; and;. If we reconstruct
deposit prior to processing the above query, we obtain the expression:

The optimization of this expression is left to the query optimizer (see unit 1.7)
1.6.3 Location Transparency

If we have replication and fragmentation transparency provided by the system a large part of
the design of the distributed database is hidden from the user. However, the site—identifier
component of names forces the user to be aware of the fact that the system is distributed.

Location transparency is achieved by creating a set of alternative names or aliases for each
user. A user may thus refer to data items by simple names that are translated by the system to
complete names.

By using aliases, the user can be unaware of the physical location of a data item. Furthermore,
the user is unaffected if the database administrator should decide to move a data item from
one site to another.

1.6.4 Complete Naming Scheme

We have seen that a name provided by the user is translated in several steps before it refers to a
specific fragment at a specific site. Figure 1.2 shows the complete translation scheme. To
illustrate the operation of the scheme, consider a user located in the Hillside branch (site S,).
This users use the alias local-deposit for the local fragment - 1 of the deposit relation. When this
user references local-deposit, the query processing subsystem look up local-deposit in the alias
table and replaces it with 1.« 1. it is possible that 1.1 is replicated. If so, the replica table must
be consulted in order to choose a replica. This replica could itself be fragmented, requiring
examination of the fragmentation table. In most cases, only one or two tables must be
consulted. However, the name translation scheme of Figure 1.2 is sufficiently general to deal
with any combination of successive replication and fragmentation of relations.

1.6.5 Transparency and Updates to Replicated Data

Providing transparency for users that update the database is somewhat more difficult than
providing transparency for readers. The main problem is ensuring that all replicas of a data item
are updated and that all affected fragments are updated. In its full generality, the update
problem for

If name appears in the alias table

then expression := map (name)

Page | cclxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

else expression : = name;

function map (n)
if n appears in the replica table
then n := name of replica of n;
if n appears in the fragment table
then begin
result := expression to construct fragment;
for each n’ in result do begin
replace n’ in result with map (n’);
end
return result;
Figure 1.2 Name translation algorithm.

replicated and fragmented data is related to the view update problem that we discussed
earlier.

Consider our example of the deposit relation and the insertion of the tuple:

(Valleyview, 733, Jones, 600)

If deposit is fragmented horizontally, there is a predicate associated with the fragment. We
apply to the tuple (Valleyview, 733, Jones, 600) to test if that tuple must be inserted in the
fragment. Using our example of deposit being fragmented into

i"™ -mnl
the tuple would be inserted into :.

Now consider a vertical fragmentation of deposit into ; ands. The tuple (Valleyview, 733, Jones,
600) must be split into two fragments: one to be inserted into ; and one to be inserted into 4 .

If the deposit relation is replicated, the tuple (Valleyview, 733, Jones, 600) must be inserted in
all replicas. This presents a problem if there is concurrent access to the deposit relation, since it

Page | cclxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

is possible that one replica is updated earlier than another. We consider this problem in unit
1.9.

1.7 DISTRIBUTED QUERY PROCESSING

For centralized systems, the primary criterion for measuring the cost of a particular strategy is
the number of disk accesses. In a distributed system, we must take into account several other
issues, including:

The cost of data transmission over the network

The potential gain in performance from having several sites process parts of the query in
parallel.

The relative cost of data transfer over the network and data transfer to and from disk varies
widely depending on the type of network and speed of the disks. Thus, in general, we cannot
focus solely on disk cost or on network costs. Rather, we must find a good trade—off between
the two. We shall emphasize the relational model although most of our techniques are
applicable to the other models.

1.7.1 Replication and Fragmentation

Let us consider an extremely simple query, “Find all the tuples in the deposit relation”. Although
the query is simple, and indeed trivial, processing of this query is not trivial since the deposit
relation may be fragmented, replicated, or both, as we saw in unit 1.4. If the deposit relation is
replicated, we have a choice of replica to make. If no replicas are fragmented, we choose the
replica for which the transmission cost is lowest. However, if a replica is fragmented, the choice
is not as easy to make since several joins or unions need to be computed to reconstruct the
deposit relation. In this case, the number of strategies for our simple example may be large.
Indeed, choosing a strategy may be a complex a task as an arbitrary query.

Fragmentation transparency implies that a user may write a query such

Since deposit is defined as
i U F3
the expression that results from the name translation scheme is
= = wnfy W3l
Using query optimization techniques, we can simplify the above expression automatically.

1.7.2 Simple Join Processing

Page | cclxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

A major aspect of the selection of a query processing strategy is choosing a join strategy.
Consider the relation algebra expression:

M

Assume that the three relations are neither replicated nor fragmented and that customer is
stored at site deposit at, and branch at . Let denote the site at which the query was issued.
The system needs to produce the result at site. Among the possible strategies for processing
this query are the following:

Ship copies of all three relations to site j;, then choose a strategy for processing the
entire query locally at site S,

Ship a copy of the customer relation to site and compute ¥ at.Ship ™ from to
where [M} M js computed. The result of this computation is shipped to

e Strategies similar to the one above may be devised with the roles of . exchanged.

It is not the case that one strategy is always the best one. Among the factors that must be
considered are the amount of data being shipped, the cost of transmitting a block of data
between a pair of sites, and the relative speed of processing at each site. Consider the first two
strategies listed above. If we ship all three relations to and indices exist on these relations, we
may need to recreate these indices at. This entails extra processing overhead and extra disk
accesses. However, the second strategy has the disadvantage that a potentially large relation

(¥) must be shipped from to. This relation repeats the address data for a custosmer
oncefor each account the customer has. Thus, the second strategy may result in extra network
transmission as compared with the first strategy.

1.7.3 Join Strategies that Exploit Parallelism

Let us consider a join of our relations:

| d kd

i F 3 L

where relation is stored at site . Assume that the result must be presented at site. There are
of course, many strategies to be considered. One attractive strategy is to compute two joins in
parallel. For example, ; can be shipped to: andz ¥ 3 computed at;. At the same time, 3 can
be shipped to sand ; ¥ , computed ats. We are then left with the task of computing:

(G P MG W g

where {; # ;)isstoredatsite zand {z ™ 4)is stored at site 4. Although we need to
compute three natural joins to answer the query; [, H ; M _ the use of parallelism
allows the query to be computed by the distributed system in the time it would have taken a
single processor to compute two joins.

Page | cclxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

To achieve even greater parallelism in the above example, site ;can ship tuples of {; ¥ ;)to
as they are produced rather than waiting for the entire join to be computed. Similarly, «can
ship tuples of {; ¥4 4)to.Once tuplesof {y * zJand (z ™ 4)arrive at, site can begin the
computation of (3 ¥ 2} ¥ (; H ,¥in parallel with the computation of {; ™ ;)at;and
the computation of (; ¥ .} at _4.

1.7.4 Semijoin Strategies

In situations in which network transmission costs are high, the semijoin operator, denoted by®,
can be used for efficient processing of queries involving joins. Let r and s be relations on
schemes R and S, respectively. The semijoin of r and s, denoted F ,is

Mp(v)

Note that, in general, ¥ w5 The expression ™ selectsthose tuples of r that
participate in ¥= . That is, it selects those tuples in r such that there is a tuple in s such that:

[(n]l=1[nl]

We use this fact in a distributed system to avoid the shipment over the network of tuples that
are not needed to compute a given join.

Consider the expression £ ¥ 2 where rl and r2 are stored at sites ; and, respectively. Let the
schemes of ; ; be R1 and R2/ The following is a semijoin strategy for computing 1 zand
producing the result at 1:

1. Compute templ =]L n,_[:;',] ats.

2 Ship temp1 from ; toa.

3. Compute temp2 =3 ¥ H: n ,ladat
4, Ship temp?2 from ; to 3

5. Computerz ¥ Zat ;.

For the above strategy to be correct, 3 ¥ g must equal:

g M WTL GH

Zung

To see this, note that the definition of semijoin, implies that (2 W ””.,E (2is:
l'lz (5 b l'lz - (7)
This is equivalent to:

Page | cclxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

NG rm)

Or:

Thus,
g Mg WILn, Grm g0 (JLGG M 1)) = ; ba

The strategy thus generates the correct result. Let us now examine why this strategy may be
advantageous in a distributed system. Suppose that relatively few tuples of ; and ; participate
in the join. In such a case, z ¥ ; has many fewer tuples than;. Thus, it is significantly less costly
to ship z ¥ 3 from ;to ; than to ship all of > from z tos. The above semijoin strategy does
require the shipment of n,_ s () from ; tos, but this cost may be deminated by the savings
from the use of the semijoin.

It may appear that semijoin strategies are useful only if there are a large number of dangling
tuples. Such situations arise primarily in cases where ; or ; are not relations in the database but
rather the result of a relational algebra expression.

A substantial body of theory has been developed regarding the use of semijoins for query
optimization.

1.8 RECOVERY IN DISTRIBUTED SYSTEMS

A transaction must be executed atomically. That is, the instructions associated with it are either
all executed to completion, or none are performed. In addition, in the case of concurrent
execution, the effect of executing a transaction must be the same as if the transaction executed
alone in the system.

1.8.1 System Structure

When dealing with a distributed database system, however, it becomes much more
complicated to ensure the atomicity property of a transaction. This is due to the fact that
several sites may be participating in the execution of the transaction. The failure of one of these
sites, or the failure of a communication link connecting these sites, may result in erroneous
computations.

It is the function of the transaction manager of a distributed database system to ensure that
the execution of the various transactions in the distributed system preserves atomicity. Each
site has its own local transaction manager. The various transaction managers cooperate to
manage global transactions. To understand how such a manager can be implemented, let us
define as abstract model of a transaction system. Each site of the system contains two
subsystems:

Page | cclxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Transaction manager, whose function is to manage the execution of those transactions
(for substransactions) that access data stored in that site. Note that each such
transaction may be either a local transaction (that is, a transaction that only executes at
that site), or part of a global transaction (that is, a transaction that executes at several
sites).

Transaction coordinator, whose function is to coordinate the execution of the various
transactions (both local and global) initiated at that site.

The overall system architecture is depicted in Figure 1.3

The structure of a transaction manager is similar in many respects to the structure used in the
centralized system case. Each transaction manager is responsible for:

Maintaining a log for recovery purposes.

Participating in an appropriate concurrency control scheme to coordinate the parallel
execution of the transactions executing at that site.

As we shall see, both the recovery and concurrency schemes need to be modified in order to
accommodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized environment, since a
transaction accessed data only at one single site. A transaction coordinator, as its name
implies, is responsible for coordinating the execution of all the transactions initiated at that
site. For each such transaction, the coordinator is responsible for:

Starting the execution of the transaction.

Breaking the transaction into a number of subtransactions, and distributing these
subtransactions to the appropriate sites for execution.

Coordinating the termination of the transaction which may result in the transaction
being committed at all sites or aborted at all sites.

/1]

/Q Transmission
- '

g Coordinator
L

Q O Transaction

Manager

Figure 1.3 System Architecture.

Page | cclxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

1.8.2 Robustness

A distributed system may suffer from the same types of failure that centralized system does
(for example, memory failure, disk crass). There are, however, additional failures that need to
be dealt with in a distributed environment, including

The failure to a site

The failure of a link

Loss of messages

Network partitions
In order for the system to be robust, it must therefore detect any of these failures, reconfigure
the system so that computation may continue, and recover when a processor or a link is
repaired. It is generally not possible to differentiate between link failure, site failure, message
loss, and network partition. We can usually detect that a failure has occurred, but we may not
be able to identify what kind of failure it is. For example, suppose that site s1 is not able to
communicate with S2. if could be that S2 has failed. However, another possibility is that the link
between S1 and S2 has failed.

Suppose that site S1 has discovered that a failure has occurred. It must then initiate a
procedure that will allow the system to reconfigure and continue with its normal mode of
operation.

If replicated data is stored at the failed site, the catalog should be updated so that
gueries do not reference the copy at the failed site.

If transactions were active at the failed site at the time of the failure, these transactions
should be aborted. It is desirable to abort such transactions promptly since they may
hold locks on data at sites that are still active.

If the failed site is a central server for some subsystem, an “election” must be held on
determine the new server. Examples of central servers include a name server, a
concurrency coordinator, or a global deadlock detector.

Since it is, in general, not possible to distinguish between network link failures and site failures,
any reconfiguration scheme must be designed to work correctly in case of a partitioning of the
network. In particular, following situations must be avoided:

Two or more servers are elected in distinct partitions
More than one partition updates a replicated data item.

Reintegration of a repaired site or link into the system also requires some care. When a failed
site recovers, it must initiate a procedure to update its system tables to reflect changes made
while it was down. If the site had replicas of any data items, it must obtain the current values of

Page | cclxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

these data items and ensure that it receives all future updates. This is more complicated than it
seems to be a first glance, since there may be updates to the data items processed during the
time the site is recovering.

An easy solution is temporarily to halt the entire system while the failed site rejoins the system.
In most applications, this solution is unacceptably disruptive. A preferable solution is to
represent the recovery tasks as a series of transactions. The concurrent control subsystem and
transaction management subsystem may then be relied upon for proper reintegration of the
site. If a failed link recovers, it is possible that two or more partitions are rejoined. Since a
partitioning of the network limits the allowable operations by some or all sites, it is desirable to
inform sites promptly of the recovery of the link. This can be done by a message broadcast to all
sites. In networks in which broadcast is not feasible, alternative schemes may be used.

1.8.3 Commit Protocols

In order to assure atomicity, all the sites in which a transaction T executed must agree on the
final outcome of the execution. T either commits at all sites, or aborts at all sites. In order to
ensure this property, the transaction coordinator of T must execute a commit protocol.

There are a number of different commit protocols that can be used. We present the most
widely used commit protocol, called two—phase commit. Let T be a transaction initiated at site.
, and let the transaction coordinator at be . When T completes its execution, that is, when all
the sites at which T has executed inform that T has completed, then starts the two—phase
commit protocol.

Phase 1. adds the record <prepare. T> to the long and forces it onto stable storage.
Once this is done, it sends a prepare—to commit message to all sites at which T
executed. Upon receiving such a message, the transaction manager at that site
determines whether it is willing to commit its portion of T, or not. If the answer is no, it
adds a record <no T> to the log and then it responds by sending an abort T message to.
If the answer is yes, it ads a record <ready T> to the log and forces all the log records
corresponding to T onto stable storage. Once this is aaccomplished, it replies with a
ready T message to

Phase 2. When receives responses to the prepare T message from all the sites, or a

prespecified interval of time has elapsed since the prepare T message was sent out, can
determine whether the transaction T can be committed or aborted. Transaction T can
be committed if received a ready T message from all the participating sites. Otherwise,
transaction T must be aborted. Depending on the verdict, either a record <commit T> or
a record <abort T> is added to the log and forced onto stable storage. At this point, the
fate of the transaction has been sealed. Following this, the coordinator sends either a
commit T or an abort T message to all participating sites. When a site receives that
message, it records it in the log and sends a message acknowledge T to the coordinator.
When the coordinator receives the acknowledge T message from all the sites, it adds
the record <complete T> to the log.

Page | cclxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Since any site at which T executed could fail at any time, the protocol is designed so that the
transaction T will be aborted in all cases prior to the time that all sites involved in the execution
of T have recorded changes made by T in stable storage. The ready T message is, in effect, a
promise by a site to follow the coordinator’s order to commit T or abort T. The only means by
which a site can make such a promise is if the needed information is stored in stable storage.
Otherwise, if the site crashes after sending ready T, it may be unable to make good on its
promise.

Since unanimity is required to commit a transaction, the fate of T is sealed as soon as at least
one site responds abort T. since the coordinator site is one of the sites at which T executed,
the coordinator can decide unilaterally to abort T. The final verdict regarding T is determined at
the time the coordinator writes that verdict (commit or abort) to the log and forces it to stable
storage. The final acknowledge T messages are not a necessary part of two—phase commit.

We now examine in detail how two—phase commit responds to various types of failures:

Failure of participating site. When a participating site recovers from a failure, it must
examine its log to determine the fate of those transactions that were in the midst of
execution when the failure occurred. Let T be one such transaction. We consider each of
the possible case below.

The log contains a <commit T> record. In this case, the site executes redo (T)
The log contains an <abort T> record. In this case, the site executes undo (T)

The log contains a <ready T> record. In this case, the site must consult to determine the fate of
T.if is up, it notifies as to whether T committed or aborted. In the former case, it executes redo
(7), while in the latter case, it executes undo (T). If is down, must try to find the fate of T from
other sites. It does so by sending a query—status T message to all the sites in the system. Upon
receiving such a message, a site must consult its log to determine whether T has executed there,
and if so, whether T committed or aborted. It then notifies Oabout this outcome. If no site has
the appropriate information (that is, whether T committed or aborted), must periodically
resend the query—status message until a site recovers that contains the needed information.
Until the outcome of T is determined, must remain in the ready T state. This may require that

locks held by T at not be released. Note that the site at which resides always has the needed
information.

The log contains no control records concerning T. In this case, knows that has aborted T since
has not responded to the prepare T message from and thus by our algorithm must abort T.
Hence, must execute undo (7).

Failure of the Coordinator. When the coordinator fails, a decision must be made as to
whether to commit or abort each transaction that was being coordinated by the failed
coordinator.

Page | cclxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Transaction T can be committed only if there exists an active site that contains a
<commit T> record in its log.

Transaction T can be aborted only if there exists an active site that contains either a no
T> or an <abort T> record in the log.

If neither of the above can be established, then the fate of transaction T cannot be
determined and this must be postponed until the coordinator recovers.

Failure of a link. When a link fails, all the messages that are in the process of being
routed through the link do not arrive at their destination intact. From the viewpoint of
the sites connected throughout that link, it appears that the other sites have failed. Thus
our previous schemes apply here as well.

Network partition. When a network partitions, two possibilities exist.

The coordinator and all of its participants remain in one partition. In this case, this
failure has no effect on the commit protocol. The coordinator and its participants belong
to several partitions. In this case, messages between the participant and the coordinator
lost, reducing the case to a link failure discussed above.

1.9 CONCURRENCY CONTROL

In this unit, we show how some of these schemes can be modified so that they can be used in a
distributed environment.

1.9.1 Locking Protocols

Below, we present several possible schemes, the first of which deals with the case where no
data replication is allowed. The other schemes are applicable to the more general case where
data can be replicated in several sites. We shall assume the existence of the shared and
exclusive lock modes.

Nonreplicated Scheme

If no data is replicated in the system, then the locking schemes can be applied as follows. Each
site maintains a local lock manager whose function is to administer the lock and unlock
requests for those data items that are stored in that are stored in that site. When a transaction
wishes to lock data item X at site it simply sends a message to the lock manager at site
requesting a lock (in a particular lock mode). If data item X is locked in an incompatible mode,
then the request is delayed until it can be granted. Once it has been determined that the lock
request can be granted, the lock manager sends a message back to the initiator of the request
indicating that the lock request has been granted.

Page | cclxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The scheme has the advantage of simple implementation. It requires two message transfers for
handling lock request, and one message transfer for handling unlock requests. However,
deadlock handling is more complex. Since the lock and unlock request are no longer made at
one single site, the various deadlock handling algorithms must be modified, as will be discussed
in unit 1.10.

Single—Coordinator Approach

The system maintains one single lock manager that resides in one single chosen site, say . All
lock and unlock requests are made at site ' When a transaction needs to lock a data item, it
sends a lock request to . The lock manager determines whether the lock can be granted
immediately. If so, it sends a message to that effect to the site at which the lock request was
initiated. Otherwise, the request is delayed until it can be granted, at which time; a message is
sent to the site at which the lock request was initiated. The transaction can read the data item
from any one of the sites at which a replica of that data item resides. In the case of a write, all
the sites where a replica of that data item resides must be involved in the writing.

The scheme has the following advantages:

Simple implementation. This scheme requires two messages for handling lock request,
and on message for handling unlock requests.

Simple deadlock handling. Since all lock and unlock requests are made at one site, the
deadlock handling algorithms discussed in unit 1.11 can be applied directly to this
environment.

The disadvantages of this scheme include the follows:
Bottleneck. The site becomes a bottleneck since all requests must be processed there.

Vulnerability. If the site fails, the concurrency controller is lost. Either processing must
stop, or a recovery scheme such as those of unit 1.10 must be used.

A compromise between the advantages and disadvantages noted above can be achieved via a
multiple—coordinator approach in which the lock manager function is distributed over several
sites.

Each lock manager administers the lock and unlock requests for a subset of the data items. Each
lock manager resides in a different site. This reduces the degree to which the coordinator is a
bottleneck, but it complicates deadlock handling, since the lock and unlock requests are not
made at one single site.

Majority Protocol

The majority protocol is a modification of the non-replicated data scheme that we presented
earlier. The system maintains a lock manager at each site. Each manager manages the locks for

Page | cclxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

all the data items or replicas of data items stored at that site. When a transaction wishes to lock
a data item X, which is replicated in n different sites, it must send a lock request to more than
half of the n sites in which X is stored. Each lock manager determines whether the lock can be
granted immediately (as far as it is concerned). As before, the response to the request is
delayed until it can be granted. The transaction does not operate on X until it has successfully
obtained a lock on a majority of the replicas of X.

This scheme has the advantage of dealing with replicated data in a decentralized manner. This
avoids the drawbacks of central control. However, it suffers from the following disadvantages.

Implementation. This scheme is more complicated to implement than the previous
schemes. It requires &(/2 + I} messages for handling lock requests and (/2 + I}
messages for handling unlock requests.

Deadlock handling. As will be discussed in unit 1.10. In addition, it is possible for a
deadlock to occur even if only one data item is being locked. To illustrate this, consider a
system with four sites and full replication. Suppose that transactions ; and; wish to lock
data item Q in exclusive mode. Transaction ; may succeed in lock Q at sites: and : while
transaction z may succeed in locking Q at sites 2 ands+ Each then must wait to acquire the
third lock, and hence a deadlock has occurred.

Biased Protocol

This protocol is based on a model similar to that of the majority protocol. The difference is that
requests for shared locks are given more favourable treatment than requests for exclusive
locks. The system maintains a lock manager at each site. Each manager manages the locks for
all the data items stored at that site. We differentiate between the way shared and exclusive
locks are handled.

Shares locks. When a transaction needs to lock data item X, it simply requests a lock on
X from the lock manager at one site containing a replica of X.

Exclusive locks. When a transaction needs to lock data item X, it requests a lock on X
from the lock manager at all sites containing a replica of X.

As before, the response to the request is delayed until it can be granted. The scheme has the
advantage of imposing less overhead on read operations than does the majority protocol. This
is especially significant in common cases in which the frequency of read is much greater than
the frequency of write. However, the additional overhead on writers is a disadvantage.
Furthermore, the biased protocol shares the majority protocol’s disadvantages of complexity in
handling deadlock.

Primary Copy

Page | cclxxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

In the case of data replication, we may choose one of the replicas as the primary copy. Thus, for
each data item X, the primary copy of X must reside in precisely one site, which we call the
primary site of X.

When a transaction needs to lock a data item X, it requests a lock at the primary site of X. As
before, the response to the request is delayed until it can be granted.

Thus, we are able to handle concurrency control for replicated data in a manner similar to that
in which we handled unreplicated data. This allows for a simple implementation. However, if
the primary site of X fails, X is inaccessible even though other sites containing a replica may be
accessible.

1.9.2 Time stamping

The principal idea behind is that each transaction is given a unique timestamp that is used in
deciding the serialization order. Our first task, then, in generalizing the centralized scheme to a
distributed scheme is to develop a scheme for generating unique timestamps. Once this has
been accomplished, our previous protocols can be directly applied to the nonreplicated
environment.

Generating Unique Timestamps

There are two primary methods for generating unique timestamps, one centralized and one
distributed. In the centralized scheme, a single site is chosen for distributing the timestamps.
The site can use a logical counter or its own local clock for this purpose.

In the distributed scheme, each site generates a unique local timestamp using either a logical
counter or the local clock. The global unique timestamp is obtained by concatenating the
unique local timestamp with the site identifier, which must be unique (Figure 1.4). The order of
concatenation is important. We use the site identifier in the least significant position in order to
ensure that the global timestamps generated in one site are not always greater than those
generated in another site. Compare this technique for generating unique timestamps with the
one we saw earlier for generating unique name.

Page | cclxxxi

Local

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Site

Unique

identifier

Global

Unique

Figure 1.4 Generating unique timestamps

We may still have a problem if one site generates local timestamps at a faster rate than other
sites. In such a case, the fast site’s logical counter will be larger than that of other sites.
Therefore, all timestamps generated by the fast site will be larger than those generated by
other sites. What is needed is a mechanism to ensure that local timestamps are generated fairly
across the system. To accomplish this, we define within each site a logical clock () which
generates the unique local timestamp. The logical clock can be implemented as a counter that
is incremented after a new local timestamp is generated. To ensure that the various logical
clocks are synchronized, we require that a site advance its logical clock whenever a transaction
with timestamp ==, = visits that site and x is greater than the current value of. In this case,
site advances its logical clock to the value + 1.

If the system clock is used to generate timestamps, then timestamps are assigned fairly
provided that no site has a system clock that runs fast or slow. Since clocks may not be perfectly
accurate, it is necessary that a technique similar to that used for logical clocks be used to
ensure that no clock gets very far ahead or behind another clock.

Concurrency Control Schemes

As in the centralized case, cascading rollbacks may result if no mechanism is used to prevent a
transaction from reading a data item value which is not yet committed. To eliminate cascading
rollbacks we can combine the basic timestamp scheme with the two—phase commit protocol of
unit 1.7 to obtain a protocol that ensures Serializability with no cascading rollbacks. We leave
the development of such an algorithm as an exercise for the reader.

The basic timestamp scheme described above suffers from the undesirable property that
conflicts between transactions are resolved through rollbacks rather than waits. To alleviate
this problem, we can buffer the various read and write operations (that is, delay them) until a
time when we are assured that these operations can take place without causing aborts. A read
(x) operation by must be delayed if there exists a transaction that will perform a write (x)
operation but has not yet done so, and{} < (J. There are various methods for ensuring this
property. One such method, called conservative timestamp ordering scheme, requires each site
to maintain a read and write queue consisting of all the read and write requests, respectively,

Page | cclxxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

that are to be executed at the site and which must be delayed in order to preserve the above
property. We shall not present the scheme here. Rather, we shall leave the development of the
algorithm as an exercise for the reader.

1.10 DEADLOCK HANDLING

Deadlock prevention may result in some unnecessary waiting and rollback. Furthermore, some
of the deadlock prevention techniques may require more sites to be involved in the execution
of a transaction than would otherwise be the case.

If we allow deadlocks to occur and rely on deadlock detection, the main problem in a distributed
system is deciding how to maintain the wait—for graph. We describe several common
techniques to deal with this issue. These schemes require that each site keep a local wait—for
graph. The nodes of the graph correspond to all the transactions (local as well as nonlocal) that
are currently either holding or requesting any of the items local to that site. For example, in
Figure 1.5 we have a system consisting of two sites, each maintaining its local wait—

() (D)
> ()

Figure 1.5 Local wait-for graphs

for graph. Note that transactions z and sz appear in both graphs, indicating that the transactions
have requested items at both sites.

These local wait-for graphs are constructed in the usual manner for local transactions and data
items. When a transaction on site 1 needs a resources held by transaction in site ;: a request
message is sent by to site ;. The edge is then inserted in the local wait-for graph of site 1.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. On the other hands, the
fact that there are no cycles in any of the local wait-for graphs does not mean that there are no
deadlocks. To illustrate this problem, consider the local wait-for graphs of Figure 1.5. Each wait-
for graph is acyclic; nevertheless, a deadlock exists in the system. A deadlock exists because the
union of the local wait-for graphs contains a cycle. This graph is shown in Figure 1.6

There are a number of different methods for organizing the wait-for graph in a distributed
system. Several common schemes are described below.

1.10.1. Centralized Approach

Page | cclxxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

In the centralized approach, a global wait-for graph (union of all the local graphs) is constructed
and maintained in a single site, the deadlock detection coordinator. Since there is
communication delay in the system, we must distinguish between two types of wait-for graphs.
The real graph describes the real but unknown state of the system at any instance in time, as
would be seen by an omniscient observer. The constructed graph is an approximation
generated by the controller during the execution of its algorithm. Obviously, the constructed
graph must be generated in such a way that whenever the detection algorithm is invoked, the
reported results are correct in a sense that, if a deadlock exists it is reported promptly, and if it
reports a deadlock, then the system is indeed in a deadlock state.

The global wait-for graph may be constructed:

Whenever a new edge is inserted or removed in one of the local wait-for graph:s.

Figure 1.6 Global wait-for graph for Figure 1.5

Periodically when a number of changes have occurred in a local wait-for graph.
Whenever the coordinator needs to invoke the cycle detection algorithm.

When the deadlock detection algorithm is invoked, the coordinator searches its global graph. If
a cycle is found, a victim is selected to be rolled back. The coordinator must notify all the sites
that a particular transaction has been selected as victim. The sites, in turn, roll back the victim
transaction.

We note that in this scheme unnecessary rollbacks may result, as a result of two situations:

False cycles may exist in the global wait-for graph. To illustrate this point, consider a
snapshot of the system represented by the local wait-for graphs of Figure 1.7. Suppose
that > releases the resource it is holding in site;, resulting in the deletion of the edge :
—+ 5 in ; .Transaction then request a resource held by ;at site;, resulting in
the addition of the edger; ; in . if the insert message » —* 2z from :arrives before
the remove ; —* ; message fram , the coordinator may discover the false cyche ; = ;

after the insert (but before the remove). Deadlock recovery may be initiated, although

no deadlock has occurred.

Page | cclxxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Unnecessary rollbacks may also result when a deadlock has indeed occurred and a
—

=)

Coordinator

Figure 1.7 False cycles in the global wait-for graph.

victim has been picked, while at the same time of the transactions was aborted for
reasons unrelated to the deadlock. For example, suppose that site ; in Figure 1.5 decides
to abortz. At the same time, the coordinator has discovered a cycle and picked zas a
victim. Both z and : are now rolled back, although only ; needed to be rolled back.

We note that the same problem exist in solutions employing the other option.

1.10.2 Fully Distributed Approach

In the fully distributed deadlock detection algorithm, all controllers share the responsibility for
detecting deadlock equally. In this scheme, every site constructs a wait—for graph which
represents a part of the total graph, depending on the dynamic behaviour of the system. The
idea is that if a deadlock exists, a cycle will appear in (at least) one of the partial graphs. Below
we present one such algorithm which involves construction of partial graphs in every site.

Each site maintains its own local wait-for graph. A local wait—for graph differs from the one
described above in that we add one additional node to the graph. Anarc — existsin the
graph if is waiting for a data item in another site being held by any transaction. Similarly, an arc

Page | cclxxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

— exists in the graph if there exists a transaction at another site which is waiting to acquire a
resource currently being held by in this local site.

To illustrate this, consider the two local wait-for graph of Figure 1.5. The addition of the node

(D= O @ @
> @ O

S Site Site

Figure 1.8 Local wait-for graphs
in both graphs results is the local wait-for graphs shown in Figure 1.8.

If a local wait-for graph contains a cycle which does not involve node, then the system isin a
deadlock state. If, however, there exists a cycle involving, then this implies that there is a
possibility of a deadlock. In order to ascertain this, a distributed deadlock detection algorithm
must be invoked. Suppose that site contains a cycle in its local wait for graph involving node .
This cycle must be of the form:

e

which indicates that transaction in is waiting to acquire a data item in some other site, say .
Upon discovering this cycle, site sends to site a deadlock detection message containing
information about that cycle.

When a site receives this deadlock detection message, it updates its local wait-for graph with
the new information it has obtained. When this is done, it searches the newly constructed wait-
for graph for a cycle not involving. If one exists, a deadlsock is found and an appropriate
recovery scheme is invoked. If a cycle involving is discovered, then transmits a deadlock
detection message to the appropriate site, say . Site, in return, repeats the above procedure.
Thus, after a finite number of rounds, either a deaelock is discovered, or the deadlock detection
computation halts.

To illustrate this, consider the local wait—for graphs of Figure 1.8. Suppose that site ; discover
the cycle:

- g =g

Page | cclxxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Since ;is waiting to acquire a data item in site ; a deadlock detection message describing that
cycle is transmitted from site ; to site z. When site : receives this message, it updates its local
wait-for graplh obtaining the wait-for graph of Figure 1.9. This graph contains the cycle:

That does not include node . Therefore, the system is sin a deadlock state and an approspriate
recovery scheme must be invoked.

Note that the outcome would be the same if site 7 discovered the cycle first in its local wait-for
graph and it sent the deadlock detection message to site ;. In the worst case, both sites
discover the cycle at about the same time, and two deadlock detection messages will be sent,
one by ; to ; and another by ; to ;. This result is unnecessary message transfter and overhead in
updating the two local wait-for graphs and searching for cycles in both graphs.

To reduce message traffic, we assign to each transaction a unique identifier, which we denote

by (). When site discovers that its local wait-for graph contains a cycle involving node of the
form

- e =

It will sent a deadlock detection message to another site only if
0«

Otherwise, site continues with its normal execution leaving the burden of initiating the
deadlock detection algorithm to some other site.

&

Site

Figure 1.9 Local wait-for graph

To illustrate this, consider again the wait-for graph maintained at sites ; and : of Figure 1.8.
Suppose that

Page | cclxxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

e @e G Q)

Let both sites discover these local cycles at about the same time. The cycle is site ;is of the
form

Since (3} # (3], site ; does not send a deadlock detection message to site 3.

The cycle in site ; is of the form

— g =g —rg—

Since (3} % (3), site » does send a deadlock detection message to site 3, which upon receiving
the message dupdates its local wait-for graph. It then searches for a cycle in the graph and
discovers that the system is in a deadlock state.

1.11 COORDINATOR SELECTION

Some of the algorithms we have presented above require the use of a coordinator. If the
coordinator fails due to the failure of the site at which it resides, the system can continue
execution only by restarting a new coordinator on some other site: this can be accomplished by
maintaining a backup to the coordinator that is ready to assume responsibility if the
coordinator fails. Another approach is to choose the new coordinator after the coordinator has
failed. The algorithms that determine where a new copy of the coordinator should be restarted
are called election algorithms.

1.11.1. Backup Coordinators

A backup coordinator is a site which, in addition other task, maintains enough information
locally to allow it to assume the role of coordinator with minimal disruption of the distributed
system. All messages directed to the coordinator are received by both the coordinator and its
backup. The backup coordinator executes the same algorithms and maintains the same internal
state information (such as, for a concurrency coordinator, the lock table) bas the actual
coordinator and its backup is that the backup does not take any action that affects other sites.
Such actions are left to the actual coordinator.

In the event that the backup coordinator detects the failure of the actual coordinator, it
assumes the role of coordinator. Since the backup has all of the information available to it that
the failed coordinator had, processing can proceed without interruption.

The prime advantage to the backup approach is the ability to continuer processing immediately.
If a backup were not ready to assume the coordinator’s responsibility, it would be necessary for
a newly appointed coordinator to seek information from all sites in the system so that it could

Page | cclxxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

execute the coordination tasks. Frequently, the only source of some of the requisite
information is the failed coordinator. In this case, it may be necessary to abort several (or all)
active transaction s and restart them under the aegis of the new coordinator. Thus, the backup
coordinator approach avoids a substantial amount of delay while the distributed system
recovers from a coordinator failure.

The disadvantage to the backup coordinator approach is the overhead of duplicate execution of
the coordinator’s tasks. Furthermore, a coordinator and its backup need to communicate
regularly to ensure that their activities are synchronized.

Thus, the backup coordinator approach involves overhead during normal processing in order to
allow fast recovery from a coordinator failure. In the next unit, we consider a lower-overhead
recovery scheme that requires somewhat more effort in order to recover from a failure.

1.11.2 Election Algorithms

Election algorithms require that a unique identification number be associated with each active
site in the system. For easy of notation, we shall assume that the identification number of site
is . Also, to simplify our discussion, we assume that the coordinator resides always at the site
with the largest identification number. The goal of an election algorithm is to choose a site for
the new coordinator. Hence, when a coordinator fails, the algorithm must elect that active site
with the largest identification number. This number must be sent to each active site in the
system. Additionally, the algorithm must provide a mechanism by which a site recovering from
a crash may identify the current coordinator.

There are a number of different election algorithms. These usually differ in terms of the
network configuration. In this unit, we present one of these algorithms, the bully algorithm,

Suppose that site sends a request that is into answered by the coordinator within a
prespecified time interval T. In this situation, it is assumed that the coordinator has failed, and
tries to elect itself as the site for the new coordinator.

Site sends an elections message to every site with a higher identification number. Site then
waits for a time interval T for an answer from any one of these sites.

If no response is received within time T, it is assumed that sites with numbers greater than

have failed, and elects itself as the site for the new coordinator and sends a message to inform
all active sites with identification numbers less than i that is the site at which the new
coordinator resides.

However, if an answer is received, begins a time interval T, waiting to receive a message
informing it that a site with a higher identification number has been elected. (Some other site is
electing itself coordinator, and should report the results within time T). If no message is sent

Page | cclxxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

within, then the site with a higher number is assumed to have failed, and site restarts the
algorithm.

After a failed site recovers, it immediately begins execution of the same algorithm. If there are
no active sites with higher numbers, the recovered site forces all sites with lower numbers to
let it become the coordinator site, even if there is a currently active coordinator with a lower
number. It is for this reason that the algorithm is termed the bully algorithm.

1.12. CONCLUSION

There are several reasons for building distributed database systems, including sharing of data,
reliability and availability, and speedup of query processing. However, along with these
advantages come several disadvantages, including software development cost, greater
potential for bugs, and increased processing overhead. The primary disadvantages of
distributed database systems is the added complexity required to ensure proper coordination
among the sites.

1.13. SUMMARY

A distributed database system consists of a collection of sites, each of which maintains a local
database system. Each site is able to process local transactions, those transactions that access
data only in that single site. In addition, a site may participate in the execution of global
transactions, those transactions that access data in several sites. The execution of global
transactions requires communication among the sites.

There are several issues involved in storing a relation in the distributed database, including
replication and fragmentation. It is essential that the system minimize the degree to which a
user needs to be aware of how a relation is stored.

A distributed system may suffer from the same types of failure that a centralized system does.
There are, however, additional failures that need to be dealt with in a distributed environment,
including the failure of a site, the failure of a link, loss of messages, and network partition. Each
of these needs to be considered when designing a distributed recovery scheme. In order for the
system to be robust, it must therefore detect any of these failures, reconfigure the system so
that computation may continue, and recover when a processor or a link is repaired.

In order toe assure atomicity, all the sites in which a transaction T executed must agree on the
final outcome of the execution. T either commits at all sites or aborts at all sites. In order to
ensure this property, the transaction coordinator of T must execute a commit protocol. There
are a number of different commit protocols that can be used; the one most widely used is the
two—phase commit protocol.

The various concurrency control schemes which can be used in a centralized system can be
modified so that they can be used in a distributed environment. In the case of locking protocols,
the only change that needs to be incorporated is in the way we implement the lock manager.

Page | ccxc

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

There are a variety of different ways of doing so. One or more central coordinators may be
used. If instead a distributed approach is taken, replicated data must be treated specially. There
are several protocols for doing this including the majority, biased, and primary — copy protocols.
In the case of timestamping and validation schemes, the only needed change is in developing a
mechanism for generating unique global timestamps. This can be done by either concatenating
a local timestamp with the site identification, or by advancing local clocks whenever a message
arrives with a larger timestamp.

The primary method for dealing with deadlocks in a distributed environment is deadlock
detection. The main problem is in deciding how to maintain the wait-for graph. There are a
number of different methods for organizing the wait-for graph including a centralized
approach, a hierarchical approach, and a fully distributed approach.

Some of the distributed algorithms require the use of a coordinator. If the coordinator fails due
to the failure of the site at which it resides, the system can continue execution only by
restarting a new copy of the coordinator on some other site. This can be accomplished by
maintaining a backup to the coordinator that is ready to assume responsibility if the
coordinator fails. Another approach is to choose the new coordinator after the coordinator has
failed. The algorithms that determine where a new copy of the coordinator should be restarted
are called election algorithms.

1.14 TMA
1. Discuss the relative advantages of centralized and distributed database.
2. How might a distributed database designed for a local-area network differ from one

designed for a long-haul network?
3. Consider the relations
employee (name, address, salary, plant-number)
machine (machine-number, type, plant-number)

Assume the employee relation is fragmented horizontally, by plant-number and each fragment
is stored locally at its corresponding plant site. Assume the machine relation is stored in its
entirety at the Armonk site. Describe a good strategy for processing each of the following
gueries

a. Find all employees at the plant containing machine number 1130
b. Find all employee at plants containing machines whose type is “milling machine”
b. find all machines at the Almaden plant

c. Find ® |

Page | ccxci

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

4, Does I« necessarilyequals ? Under what conditions does ki = 5 hold?

1.15. FURTHER READINGS

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — Hill, 1986.

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB [1992.

www.w3schools.com

Page | ccxcii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

UNIT 2: OBJECT ORIENTED DATABASE

2.0. INTRODUCTION

An object database (also object-oriented database) is a database model in which information is
represented in the form of objects as used in object-oriented programming. Object databases
are a niche field within the broader DBMS market dominated by Relational database
management systems (RDBMS). Object databases have been considered since the early 1980s
and 1990s but they have made little impact on mainstream commercial data processing, though
there is some usage in specialized areas.

An object-oriented database management system (OODBMS) sometimes shortened to ODBMS
for object database management system), is a database management system (DBMS) that
supports the modeling and creation of data as objects. This includes some kind of support for
classes of objects and the inheritance of class properties and methods by subclasses and their
objects. There is currently no widely agreed-upon standard for what constitutes an OODBMS,
and OODBMS products are considered to be still in their infancy. In the meantime, the object-
relational database management system (ORDBMS), the idea that object-oriented database
concepts can be superimposed on relational databases, is more commonly encountered in
available products. An object-oriented database interface standard is being developed by an
industry group, the Object Data Management Group (ODMG). The Object Management Group
(OMG) has already standardized an object-oriented data brokering interface between systems
in a network.

2.1. OBIJECTIVES

* To develop a framework for an OODM.
e To understand the basics of persistent programming languages.
* To understand the main strategies for developing an OODBMS.
¢ To design an object-oriented database.

2.2. FEATURES OF AN OBJECT-ORIENTATED DBMS.

An object-oriented database system must satisfy two criteria: it should be a DBMS, and it
should be an object-oriented system, i.e., to the extent possible, it should be consistent with
the current crop of object-oriented programming languages. The first criterion translates into
five features: persistence, secondary storage management, concurrency, recovery and an ad

Page | ccxciii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

hoc query facility. The second one translates into eight features: complex objects, object
identity, encapsulation, types or classes, inheritance, overriding combined with late binding,
extensibility and computational completeness.

Mostly, object databases offer some kind of query language, allowing objects to be found by a
more declarative programming approach. It is in the area of object query languages, and the
integration of the query and navigational interfaces, that the biggest differences between
products are found. An attempt at standardization was made by the ODMG with the Object
Query Language, OQL.

Access to data can be faster because joins are often not needed (as in a tabular implementation
of a relational database). This is because an object can be retrieved directly without a search,
by following pointers. (It could, however, be argued that "joining" is a higher-level abstraction
of pointer following.) Another area of variation between products is in the way that the schema
of a database is defined. A general characteristic, however, is that the programming language
and the database schema use the same type definitions. Multimedia applications are facilitated
because the class methods associated with the data are responsible for its correct
interpretation.

Many object databases, for example VOSS, offer support for versioning. An object can be viewed
as the set of all its versions. Also, object versions can be treated as objects in their own right.
Some object databases also provide systematic support for triggers and constraints which are
the basis of active databases. The efficiency of such a database is also greatly improved in areas
which demand massive amounts of data about one item. For example, a banking institution
could get the user's account information and provide them efficiently with extensive
information such as transactions, account information entries etc. The Big O Notation for such a
database paradigm drops from O(n) to O(1), greatly increasing efficiency in these specific cases.

2.3. OBIJECT ORIENTED DATABASE DESIGN

OODM CDM Difference

Object Entity Object includes behavior

Attribute Attribute None

Association Relationship Associations are the same but inheritance in OODM
includes both state and behavior

Message No corresponding concept in CDM

Class Entity type/Supertype ~ None

Instance Entity None

Encapsulation No corresponding concept in CDM

Page | ccxciv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

OODBMS; Advantages & Disadvantages

Advantages

1.

Composite Objects and Relationships: Objects in an OODBMS can store an arbitrary
number of atomic types as well as other objects. It is thus possible to have a large class
which holds many medium sized classes which themselves hold many smaller classes, ad
infinitum. In a relational database this has to be done either by having one huge table
with lots of null fields or via a number of smaller, normalized tables which are linked via
foreign keys. Having lots of smaller tables is still a problem since a join has to be
performed every time one wants to query data based on the "Has-a" relationship
between the entities. Also an object is a better model of the real world entity than the
relational tuples with regards to complex objects. The fact that an OODBMS is better
suited to handling complex, interrelated data than an RDBMS means that an OODBMS
can outperform an RDBMS by ten to a thousand times depending on the complexity of
the data being handled.

Class Hierarchy: Data in the real world usually has hierarchical characteristics. The ever
popular Employee example used in most RDBMS texts is easier to describe in an
OODBMS than in an RDBMS. An Employee can be a Manager or not, this is usually done
in an RDBMS by having a type identifier field or creating another table which uses
foreign keys to indicate the relationship between Managers and Employees. In an
OODBMS, the Employee class is simply a parent class of the Manager class.

Circumventing the Need for a Query Language: A query language is not necessary
for accessing data from an OODBMS unlike an RDBMS since interaction with the
database is done by transparently accessing objects. It is still possible to use queries in
an OODBMS however.

No Impedance Mismatch: In a typical application that uses an object oriented
programming language and an RDBMS, a significant amount of time is usually spent
mapping tables to objects and back. There are also various problems that can occur
when the atomic types in the database do not map cleanly to the atomic types in the
programming language and vice versa. This "impedance mismatch" is completely
avoided when using an OODBMS.

No Primary Keys: The user of an RDBMS has to worry about uniquely identifying tuples
by their values and making sure that no two tuples have the same primary key values to
avoid error conditions. In an OODBMS, the unique identification of objects is done
behind the scenes via OIDs and is completely invisible to the user. Thus there is no
limitation on the values that can be stored in an object.

Page | ccxev

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

One Data Model: A data model typically should model entities and their relationships,
constraints and operations that change the states of the data in the system. With an
RDBMS it is not possible to model the dynamic operations or rules that change the state
of the data in the system because this is beyond the scope of the database. Thus
applications that use RDBMS systems usually have an Entity Relationship diagram to
model the static parts of the system and a separate model for the operations and
behaviors of entities in the application. With an OODBMS there is no disconnecting
between the database model and the application model because the entities are just
other objects in the system. An entire application can thus be comprehensively modeled
in one UML diagram.

Disadvantages

2.4.

1.

Schema Changes: In an RDBMS modifying the database schema either by creating,
updating or deleting tables is typically independent of the actual application. In an
OODBMS based application modifying the schema by creating, updating or modifying a
persistent class typically means that changes have to be made to the other classes in the
application that interact with instances of that class. This typically means that all schema
changes in an OODBMS will involve a system wide recompile. Also updating all the
instance objects within the database can take an extended period of time depending on
the size of the database.

Language Dependence: An OODBMS is typically tied to a specific language via a specific
APl. This means that data in an OODBMS is typically only accessible from a specific
language using a specific API, which is typically not the case with an RDBMS.

Lack of Ad-Hoc Queries: In an RDBMS, the relational nature of the data allows one to
construct ad-hoc queries where new tables are created from joining existing tables then
querying them. Since it is currently not possible to duplicate the semantics of joining
two tables by "joining" two classes then there is a loss of flexibility with an OODBMS.
Thus the queries that can be performed on the data in an OODBMS is highly dependent
on the design of the system.

HOW OO CONCEPTS HAVE INFLUENCED THE RELATIONAL MODEL.

There are concepts in the relational database model that are similar to those in the object
database model. A relation or table in a relational database can be considered to be

Page | ccxcevi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

analogous to a class in an object database. A tuple is similar to an instance of a class but is

different in that it has attributes but no behaviors. A column in a tuple is similar to a class

attribute except that a column can hold only primitive data types while a class attribute can
hold data of any type. Finally classes have methods which are computationally complete
(meaning that general purpose control and computational structures are provided while
relational databases typically do not have computationally complete programming
capabilities although some stored procedure languages come close.

Relationships

Page | ccxcevii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

In OODMS, relationships represented using reference attributes which are typically

implemented using Object Identifiers (OIDs). Sample tables are given below. Consider how

to represent the following binary relationships according to their cardinality:

1:1- one-to-one

1:* - one-to-many

: - many-to-many

Page | ccxcviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Page | ccxcix

Branch: OID1

branchNo: B003
street; 163 Main St
city: Glasgow
postcode: G711 9QX

staff: {0ID4, OID5, . ..
property: {OID2, OID3, ...

manager: 0OID6

}
}

One-to-one relationship:

Manager: OID6

staffNo: SGH
fName: Susan
IName: Brand
position: Manager
sex: F

DOB: 3-Jun-40
salary: 24000
branch: OID1

First, we add a reference attribute to A and to

maintain referential integrity, we reference attribute to B also as shown

below.

Figure 2.1:

A one-to-one relationship

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

* One-to-many: First add reference attribute to B and attribute

containing set of references to A.

Figure 2.2: A one-to-many relationship

Page | ccc

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

e Many-to-many relationship

Client: OID2
™
clientNo: CR56 \
fName: Aline \ \
IName: Stewart v N
telNo: 0141-848-1825 \ \
prefType: Flat \ \:
maxRent: 350 \\ N\,
Viewing \ \
\\ \ J— PropertyForRent: OID7
property: OID7 — <
viewDate: 28-Apr-01 | \ \ propertyNo: PG36
comment: \ \ city: 2 Manor Rd
type: Flat
"-\ rooms: 3
property: OID2 \ \ rent: 375
viewDate: 26-May-01 |- \ \ | staff: 0ID8
comment: . \ | branch: 0ID1
S \\ viewers: {OIDg}
™ \
- \
\
Client: OID10 N O\
X "}
clientNo: CR74 \ \\\\
fName: Mike \ \\
IName: Ritchie " Y .
telNo: 01475-392178 Y \ _» Property o
prefType: House N X)

; W e i\ propertyNo: PG4
maxiRentic X \\, city: 6 Lawence St
Viewing P . type: Flat

= \ ‘-\ rooms: 3
property: OID2 ol : \ rent: 350
viewDate: 20-Apr-01 | \ \| staff: 0ID4
comment: too remote | branch: olDA1
viewers: {OIDY, OID10}

Figure 2.3: A many-to-many relationship
Referential Integrity

This is a property of data which, when satisfied, requires every value of one attribute (column) of a
relation (table) to exist as a value of another attribute in a different (or the same) relation (table).

Less formally, and in relational databases: For referential integrity to hold, any field in a table that is
declared a foreign key can contain only values from a parent table's primary key or a candidate key. For
instance, deleting a record that contains a value referred to by a foreign key in another table would
break referential integrity. Some relational database management systems (RDBMS) can enforce
referential integrity, normally either by deleting the foreign key rows as well to maintain integrity, or by
returning an error and not performing the delete.

If a record in the Managers table is deleted, all corresponding records in the Employees table
must be deleted using a cascading delete.

Several techniques can be used to handle referential integrity in an object oriented database
model.

Do not allow user to explicitly delete objects. The system is responsible for “garbage
collection”.

Page | ccci

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Allow user to delete objects when they are no longer required. The system may detect
invalid references automatically and set reference to NULL or disallow the deletion.

2.5. CONCLUSION

There is currently no widely agreed-upon standard for what constitutes an OODBMS, and
OODBMS products are considered to be still in their infancy. In the meantime, the object-
relational database management system (ORDBMS), the idea that object-oriented database
concepts can be superimposed on relational databases, is more commonly encountered in
available products.

2.6. SUMMARY

Object databases are a niche field within the broader DBMS market dominated by Relational
database management systems (RDBMS). An object-oriented database system must satisfy two
criteria: it should be a DBMS, and it should be an object-oriented system, i.e., to the extent
possible, it should be consistent with the current crop of object-oriented programming
languages.

2.7 TUTOR-MARKEDASSIGNMENT(TMA).

1. How would you define object orientation? What are some of its benefits?

2. What is the difference between an object and a class in the object-oriented data model
(OODM)?

3. What are the advantages and disadvantages of OODBMS?

2.8. FURTHER READINGS

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — Hill, 1986.

www.w3schools.com

Page | cccii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

UNIT 3: DATABASE AND XML
3.0. INTRODUCTION

There are four central problems in data management capture, storage retrieval and exchange.
The focus for most of this book has been on storage (i.e. data modeling) and retrieval (i.e. SQL).
Now it is time to consider capture and exchange. Capture has always been an important issue,
and the guiding principle is to capture once in the cheapest possible manner. Likewise, data
exchange has long been an issue, but the internet has elevated the import this issue. Electronic
data interchange (EDI), the traditional standard of data exchange for large organizations, is
giving way to XML, which is likely to become the data exchange standard for all organizations,
irrespective of size.

3.1. OBIJECTIVES

To understand XML
To understand the relationships among DTDs, Schemas, and XML
To understand the principles of Web site management with XML

3.2. DEFINE THE PURPOSE OF XML
What You Should Already Know
Before you continue you should have a basic understanding of the following:

HTML
JavaScript
HTML was designed to display data. XML was designed to transport and store data.

What is XML?

XML stands for eXtensible Markup Language

XML is a markup language much like HTML

XML was designed to carry data, not to display data

XML tags are not predefined. You must define your own tags
XML is designed to be self-descriptive

The Difference Between XML and HTML

XML is not a replacement for HTML. XML and HTML were designed with different goals:

Page | ccciii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

XML was designed to transport and store data, with focus on what data is.
HTML was designed to display data, with focus on how data looks.
HTML is about displaying information, while XML is about carrying information.

XML Does not DO Anything

Maybe it is a little hard to understand, but XML does not DO anything. XML was created to
structure, store, and transport information.

The following example is a note to Tove from Jani, stored as XML:

<note>

<to>Tove</to>

<from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>
</note>

The note above is quite self descriptive. It has sender and receiver information, it also has a
heading and a message body. But still, this XML document does not DO anything. It is just pure
information wrapped in tags. Someone must write a piece of software to send, receive or
display it.

XML is Just Plain Text

XML is nothing special. It is just plain text. Software that can handle plain text can also handle
XML. However, XML-aware applications can handle the XML tags specially. The functional
meaning of the tags depends on the nature of the application.

With XML You Invent Your Own Tags

The tags in the example above (like <to> and <from>) are not defined in any XML standard.
These tags are "invented" by the author of the XML document. That is because the XML
language has no predefined tags. The tags used in HTML (and the structure of HTML) are
predefined. HTML documents can only use tags defined in the HTML standard (like <p>, <h1>,
etc.). XML allows the author to define his own tags and his own document structure. XML
however is not a replacement for HTML. It is just a complement to HTML.

In most web applications, XML is used to transport data, while HTML is used to format and
display the data. The best way to describe XML is that XML is a software- and hardware-
independent tool for carrying information.

XML is Everywhere

Page | ccciv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

XML is now as important for the Web as HTML was to the foundation of the Web. XML is
everywhere. It is the most common tool for data transmissions between all sorts of
applications, and is becoming more and more popular in the area of storing and describing
information. XML is used in many aspects of web development, often to simplify data storage
and sharing.

XML Separates Data from HTML

If you need to display dynamic data in your HTML document, it will take a lot of work to edit the
HTML each time the data changes. With XML, data can be stored in separate XML files. This way
you can concentrate on using HTML for layout and display, and be sure that changes in the
underlying data will not require any changes to the HTML. With a few lines of JavaScript, you
can read an external XML file and update the data content of your HTML.

XML Simplifies Data Sharing

In the real world, computer systems and databases contain data in incompatible formats. XML
data is stored in plain text format. This provides a software- and hardware-independent way of
storing data. This makes it much easier to create data that different applications can share.

XML Simplifies Data Transport

With XML, data can easily be exchanged between incompatible systems. One of the most time-
consuming challenges for developers is to exchange data between incompatible systems over
the Internet. Exchanging data as XML greatly reduces this complexity, since the data can be
read by different incompatible applications.

XML Simplifies Platform Changes

Upgrading to new systems (hardware or software platforms), is always very time consuming.
Large amounts of data must be converted and incompatible data is often lost. XML data is
stored in text format. This makes it easier to expand or upgrade to new operating systems, new
applications, or new browsers, without losing data.

XML Makes Your Data More Available

Since XML is independent of hardware, software and application, XML can make your data
more available and useful. Different applications can access your data, not only in HTML pages,
but also from XML data sources. With XML, your data can be available to all kinds of "reading
machines" (Handheld computers, voice machines, news feeds, etc), and make it more available
for blind people, or people with other disabilities.

Page | cccv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

XML is Used to Create New Internet Languages
A lot of new Internet languages are created with XML. Here are some examples:

XHTML the latest version of HTML

WSDL for describing available web services

WAP and WML as markup languages for handheld devices
RSS languages for news feeds

RDF and OWL for describing resources and ontology

SMIL for describing multimedia for the web

The future might give us word processors, spreadsheet applications and databases that can
read each other's data in a pure text format, without any conversion utilities in between. We
can only pray that all the software vendors will agree.

3.3. XML TREE

XML documents form a tree structure that starts at "the root" and branches to "the leaves".

An Example XML Document

XML documents use a self-describing and simple syntax:

<?xml version="1.0" encoding="1SO-8859-1"?>
<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>
</note>

The first line is the XML declaration. It defines the XML version (1.0) and the encoding used
(1ISO-8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (like saying: "this document is a
note"):

<note>

Page | ccevi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The next 4 lines describe 4 child elements of the root (to, from, heading, and body):

<to>Tove</to>

<from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

And finally the last line defines the end of the root element:

</note>

You can assume, from this example, that the XML document contains a note to Tove from Jani.

XML Documents Form a Tree Structure

XML documents must contain a root element. This element is "the parent" of all other
elements.

The elements in an XML document form a document tree. The tree starts at the root and
branches to the lowest level of the tree. All elements can have sub elements (child elements):

<root>
<child>
<subchild>.....</subchild>
</child>
</root>

The terms parent, child, and sibling are used to describe the relationships between elements.
Parent elements have children. Children on the same level are called siblings (brothers or
sisters).

All elements can have text content and attributes (just like in HTML).

Example:
Root element:
<hookstorez
Parent
Child
Attribute: Element: || Attribute:
*lang® <bookz *category”
Element: Element: Element: Element:
<title» <authors <yEars <prices
T
Siblings
Page | cc
Text: Text: Text: Text:
Everyday Italian Giada De 2005 20.00
Laurertiis

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 3.1: A Book representation

The image above represents one book in the XML below:

<bookstore>

<book category="COOKING">
<title lang="en">Everyday ltalian</title>
<author>Giada De Laurentiis</author>
<year>2005</year>
<price>30.00</price>

</book>

<book category="CHILDREN">
<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

<book category="WEB">
<title lang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>

</bookstore>

The root element in the example is <bookstore>. All <book> elements in the document are
contained within <bookstore>. The <book> element has 4 children: <title>,< author>, <year>,
<price>.

3.4. XML SYNTAX RULES
The syntax rules of XML are very simple and logical. The rules are easy to learn, and easy to use.

All XML Elements Must Have a Closing Tag

In HTML, you will often see elements that don't have a closing tag:

<p>This is a paragraph
<p>This is another paragraph

In XML, it is illegal to omit the closing tag. All elements must have a closing tag:

Page | cccviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

<p>This is a paragraph</p>
<p>This is another paragraph</p>

Note: You might have noticed from the previous example that the XML declaration did not have
a closing tag. This is not an error. The declaration is not a part of the XML document itself, and
it has no closing tag.

XML Tags are Case Sensitive

XML elements are defined using XML tags. XML tags are case sensitive. With XML, the tag
<Letter> is different from the tag <letter>. Opening and closing tags must be written with the
same case:

<Message>This is incorrect</message>
<message>This is correct</message>

Note: "Opening and closing tags" are often referred to as "Start and end tags". Use whatever
you prefer. It is exactly the same thing.

XML Elements Must be Properly Nested

In HTML, you might see improperly nested elements:

<i>This text is bold and italic</i>

In XML, all elements must be properly nested within each other:

<i>This text is bold and italic</i>

In the example above, "Properly nested" simply means that since the <i> element is opened
inside the element, it must be closed inside the element.

XML Documents Must Have a Root Element

XML documents must contain one element that is the parent of all other elements. This
element is called the root element.

<root>
<child>

Page | cccix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

<subchild>.....</subchild>
</child>
</root>

XML Attribute Values Must be Quoted

XML elements can have attributes in name/value pairs just like in HTML. In XML the attribute
value must always be quoted. Study the two XML documents below. The first one is incorrect,
the second is correct:

<note date=12/11/2007>
<to>Tove</to>
<from>Jani</from>
</note>

<note date="12/11/2007">
<to>Tove</to>
<from>Jani</from>
</note>

The error in the first document is that the date attribute in the note element is not quoted.

Entity References

Some characters have a special meaning in XML. If you place a character like "<" inside an XML
element, it will generate an error because the parser interprets it as the start of a new element.
This will generate an XML error:

<message>if salary < 1000 then</message>

To avoid this error, replace the "<" character with an entity reference:

<message>if salary < 1000 then</message>

There are 5 predefined entity references in XML:

Page | ccex

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

< < less than

> > greater than
& & ampersand
' ' apostrophe
" " guotation mark

Note: Only the characters "<" and "&" are strictly illegal in XML. The greater than character is
legal, but it is a good habit to replace it.

Comments in XML

The syntax for writing comments in XML is similar to that of HTML.

<l-- This is a comment -->

White-space is Preserved in XML

HTML truncates multiple white-space characters to one single white-space:

HTML: Hello my name is Tove

Output: Hello my name is Tove.

With XML, the white-space in a document is not truncated.

XML Stores New Line as LF

In Windows applications, a new line is normally stored as a pair of characters: carriage return
(CR) and line feed (LF). The character pair bears some resemblance to the typewriter actions of
setting a new line. In Unix applications, a new line is normally stored as a LF character.
Macintosh applications use only a CR character to store a new line.

3.5. XML ELEMENTS
An XML document contains XML Elements.

What is an XML Element?

Page | ccexi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

An XML element is everything from (including) the element's start tag to (including) the
element's end tag.

An element can contain other elements, simple text or a mixture of both. Elements can also
have attributes.

<bookstore>
<book category="CHILDREN">
<title>Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>
</book>
<book category="WEB">
<title>Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>
</book>
</bookstore>

In the example above, <bookstore> and <book> have element contents, because they contain
other elements. <author> has text content because it contains text.

In the example above only <book> has an attribute (category="CHILDREN").

3.5.1. XML Naming Rules
XML elements must follow these naming rules:

Names can contain letters, numbers, and other characters
Names cannot start with a number or punctuation character
Names cannot start with the letters xml (or XML, or Xml, etc)
Names cannot contain spaces

Any name can be used, no words are reserved.

Best Naming Practices

Make names descriptive. Names with an underscore separator are nice: <first_name>,
<last_name>. Names should be short and simple, like this: <book_title> not like this:
<the_title_of _the_book>.

Avoid "-" characters. If you name something "first-name," some software may think you
want to subtract name from first.

Page | ccexii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Avoid "." characters. If you name something "first.name," some software may think that
"name" is a property of the object "first."

Avoid ":" characters. Colons are reserved to be used for something called namespaces
(more later).

XML documents often have a corresponding database. A good practice is to use the
naming rules of your database for the elements in the XML documents.

Non-English letters like €03 are perfectly legal in XML, but watch out for problems if
your software vendor doesn't support them.

XML Elements are Extensible

XML elements can be extended to carry more information. Look at the following XML example:

<note>

<to>Tove</to>

<from>Jani</from>

<body>Don't forget me this weekend!</body>
</note>

Let's imagine that we created an application that extracted the <to>, <from>, and <body>
elements from the XML document to produce this output:

MESSAGE

To: Tove
From: Jani

Don't forget me this weekend!

Imagine that the author of the XML document added some extra information to it:

<note>

<date>2008-01-10</date>

<to>Tove</to>

<from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>
</note>

Page | cccxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Should the application break or crash? No. The application should still be able to find the <to>,
<from>, and <body> elements in the XML document and produce the same output. One of the
beauties of XML, is that it can often be extended without breaking applications.

3.6. XML ATTRIBUTES

XML elements can have attributes in the start tag, just like HTML. Attributes provide additional
information about elements.

XML Attributes

From HTML you will remember this: . The "src" attribute provides
additional information about the element. In HTML (and in XML) attributes provide
additional information about elements:

Attributes often provide information that is not a part of the data. In the example below, the
file type is irrelevant to the data, but important to the software that wants to manipulate the
element:

<file type="gif">computer.gif</file>

XML Attributes Must be Quoted

Attribute values must always be enclosed in quotes, but either single or double quotes can be
used. For a person's sex, the person tag can be written like this:

<person sex="female">

or like this:

<person sex='female'>

If the attribute value itself contains double quotes you can use single quotes, like in this
example:

<gangster name='George "Shotgun" Ziegler'>

Page | ccexiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

or you can use character entities:

<gangster name="George "Shotgun" Ziegler">

XML Elements vs. Attributes

Take a look at these examples:

<person sex="female">
<firstname>Anna</firstname>
<lastname>Smith</lastname>
</person>

<person>
<sex>female</sex>
<firstname>Anna</firstname>
<lasthname>Smith</lastname>
</person>

In the first example sex is an attribute. In the last, sex is an element. Both examples provide the
same information. There are no rules about when to use attributes and when to use elements.
Attributes are handy in HTML. In XML my advice is to avoid them. Use elements instead.

The following three XML documents contain exactly the same information: A date attribute is
used in the first example:

<note date="10/01/2008">
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!

</body>

</note>

A date element is used in the second example:

<note>
<date>10/01/2008</date>
<to>Tove</to>
<from>Jani</from>

Page | ccexv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

An expanded date element is used in the third:

<note>
<date>
<day>10</day>
<month>01</month>
<year>2008</year>
</date>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

Avoid XML Attributes?
Some of the problems with using attributes are:

attributes cannot contain multiple values (elements can)
attributes cannot contain tree structures (elements can)
attributes are not easily expandable (for future changes)

Attributes are difficult to read and maintain. Use elements for data. Use attributes for
information that is not relevant to the data.

Don't end up like this:

<note day="10" month="01" year="2008"
to="Tove" from="Jani" heading="Reminder"
body="Don't forget me this weekend!">
</note>

XML Attributes for Metadata

Sometimes ID references are assigned to elements. These IDs can be used to identify XML
elements in much the same way as the ID attribute in HTML. This example demonstrates this:

| <messages> |

Page | cccxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

<note id="501">
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>

<note id="502">
<to>Jani</to>
<from>Tove</from>
<heading>Re: Reminder</heading>
<body>I will not</body>

</note>

</messages>

The ID above is just an identifier, to identify the different notes. It is not a part of the note itself.

Hence, metadata (data about data) should be stored as attributes, and that data itself should
be stored as elements.

XML Validation
XML with correct syntax is "Well Formed" XML.

XML validated against a DTD is "Valid" XML.

Well Formed XML Documents
A "Well Formed" XML document has correct XML syntax.
The syntax rules:

XML documents must have a root element
XML elements must have a closing tag
XML tags are case sensitive

XML elements must be properly nested
XML attribute values must be quoted

<?xml version="1.0" encoding="1SO-8859-1"?>
<note>

<to>Tove</to>

<from>Jani</from>

Page | ccexvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

Valid XML Documents

A "Valid" XML document is a "Well Formed" XML document, which also conforms to the rules
of a Document Type Definition (DTD):

<?xml version="1.0" encoding="1S0O-8859-1"?>
<IDOCTYPE note SYSTEM "Note.dtd">

<note>

<to>Tove</to>

<from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>
</note>

The DOCTYPE declaration in the example above, is a reference to an external DTD file. The
content of the file is shown in the paragraph below.

XML DTD

The purpose of a DTD is to define the structure of an XML document. It defines the structure
with a list of legal elements:

<IDOCTYPE note
[
<IELEMENT note (to,from,heading,body)>
<IELEMENT to (#PCDATA)>

<IELEMENT from (#PCDATA)>
<IELEMENT heading (#PCDATA)>
<IELEMENT body (#PCDATA)>

1>

XML Schema

W3C supports an XML-based alternative to DTD, called XML Schema:

<xs:element name="note">

<xs:complexType>

Page | cccxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

<xs:sequence>
<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>
</xs:sequence>
</xs:complexType>

</xs:element>

A General XML Validator

Note: Only Internet Explorer will actually check your XML against the DTD. Firefox, Mozilla,
Netscape, and Opera will not.

Viewing XML Files
Raw XML files can be viewed in all major browsers.

Don't expect XML files to be displayed as HTML pages.

Viewing XML Files

<?xml version="1.0" encoding="1S0O-8859-1"?>
- <note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

Page | ccexix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

<body>Don't forget me this weekend!</body>

</note>

The XML document will be displayed with color-coded root and child elements. A plus (+) or
minus sign (-) to the left of the elements can be clicked to expand or collapse the element
structure. To view the raw XML source (without the + and - signs), select "View Page Source" or
"View Source" from the browser menu.

Note: In Chrome, Opera, and Safari, only the element text will be displayed. To view the raw
XML, you must right click the page and select "View Source"

Viewing an Invalid XML File

If an erroneous XML file is opened, the browser will report the error. Look at this XML file:
note error.xml

Why Does XML Display Like This?

XML documents do not carry information about how to display the data. Since XML tags are
"invented" by the author of the XML document, browsers do not know if a tag like <table>
describes an HTML table or a dining table. Without any information about how to display the
data, most browsers will just display the XML document as it is.

Below is a fraction of the XML file. The second line links the XML file to the CSS file:

<?xml version="1.0" encoding="1S0O-8859-1"?>
<?xml-stylesheet type="text/css" href="cd_catalog.css"?>
<CATALOG>
<CD>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>
</CD>
<CD>
<TITLE>Hide your heart</TITLE>
<ARTIST>Bonnie Tyler</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>

Page | ccexx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

</CD>

</CATALOG>

Formatting XML with CSS is not the most common method.

W3C recommend using XSLT instead.

Displaying XML with XSLT

XSLT is the recommended style sheet language of XML. XSLT (eXtensible Stylesheet Language
Transformations) is far more sophisticated than CSS. XSLT can be used to transform XML into
HTML, before it is displayed by a browser.

3.7. CONCLUSION

Processing an XML document requires a software program called an XML Parser or XML
Processor. Most XML parsers are available at no charge and for a variety of programming
languages (e.g., Java, Perl, C++).

3.8. SUMMARY

XML is actually a language used to create other markup languages to describe data in a
structured manner. It is a widely supported open technology (i.e., non-proprietary technology)
for data exchange and storage.

3.9. TUTOR MARKED ASSIGNMENT

1. Differentiate between XML and Html.
2. State which of the following statements are true and which are false. If false, explain
why.

(a) XML is a technology for creating markup languages.
(b) XML is not case sensitive.
(c) Forward and backward slashes (/ and \) delimit XML markup text.

(d) All XML start document may contain only one root element.

Page | ccexxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

(e) All XML start tags must have corresponding end tags.
(f) A DTD/Schema defines the presentation style of an XML document.

3. Write a scheme that provides tags for a person’s first name, last name, weight, and shoe
size. Weight and shoe size tags should have attributes to designate measuring systems.

3.10. FURTHER READINGS/ RESOURCES

Bradley, Neil The XML Companion. Harlow, UK: Addison-Wesley, 2000.

Goldfarb, Charles F. and Prescod, Paul The XML Handbook. Upper Saddle River, NJ: Prentice

Hall PTR, 2000.

Graham, Ian S. and Quin, Liam XML Specification Guide. New York, NY: John Wiley & Sons,

Inc., 1999.

Page | ccexxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Hoque, Reaz XML for Real Programmers. San Diego, CA: Morgan Kaufmann, 2000.

Hunter, David Beginning XML. Acock's Green, Birmingham, UK: Wrox Press Ltd, 2000.

Kay, Michael XSLT: Programmer's Reference. Acock's Green, Birmingham, UK: Wrox Press

Ltd, 2000.

Sturm, Jake Developing XML Solutions. Redmond, WA: Microsoft Press, 2000.

Page | ccexxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Young, Michael]. XML: Step by Step. Redmond, WA: Microsoft Press, 2000.

http://www.alphaWorks.ibm.com/ — IBM alphaWorks http://www.w3.org/XML/ —
Extensible Markup Language (XML) http://msdn.microsoft.com/xml/default.asp — MSDN
Online: XML Developer Center

hipmlincdnmiesesotmeommidewnteads /webtechnology /xml/msxml.asp — Microsoft XML

Parser Preview Release

Page | ccexxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

http://www.xmlsoftware.com/ — XMLSOFTWARE: The XML Software Site

http://www.oasis-open.org/cover/sgml-xml —The SGML/XML Web Page - Home Page

Page | ccexxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

4.0. INTRODUCTION

A data warehouse is the central repository for the decision support systems (DSS). It is not a
static database; instead it is a dynamic decision support framework, that is, almost by
definition, always a work in progress.

4.1. OBIJECTIVES
To understand data warehousing as an active decision support framework
To understand the architectures of data ware houses
To understand data ware housing schemes

4.2, 'WHATIS A DATA WAREHOUSE?

A data warehouse is a relational database that is designed for query and analysis rather than for
transaction processing. It usually contains historical data derived from transaction data, but it
can include data from other sources. It separates analysis workload from transaction workload
and enables an organization to consolidate data from several sources. In addition to a relational
database, a data warehouse environment includes an extraction, transportation,
transformation, and loading (ETL) solution, an online analytical processing (OLAP) engine, client
analysis tools, and other applications that manage the process of gathering data and delivering
it to business users.

A common way of introducing data warehousing is to refer to the characteristics of a data
warehouse as set forth by William Inmon:

Subject Oriented

Integrated

Page | ccexxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Non-volatile
Time Variant
Subject Oriented

Data warehouses are designed to help you analyze data. For example, to learn more about your
company’s sales data, you can build a warehouse that concentrates on sales. Using this
warehouse, you can answer questions like "Who was our best customer for this item last year?"
This ability to define a data warehouse by subject matter, sales in this case, makes the data
warehouse subject oriented.

Integrated

Integration is closely related to subject orientation. Data warehouses must put data from
disparate sources into a consistent format. They must resolve such problems as naming
conflicts and inconsistencies among units of measure. When they achieve this, they are said to
ble integrated.

Non-volatile

Non-volatile means that, once entered into the warehouse, data should not change. This is
logical because the purpose of a warehouse is to enable you to analyze what has occurred.

Time Variant

In order to discover trends in business, analysts need large amounts of data. This is very much
in contrast to online transaction processing (OLTP) systems, where performance requirements
demand that historical data be moved to an archive. A data warehouse’s focus on change over
time is what is meant by the term time variant.

Contrasting OLTP and Data Warehousing Environments

Page | ccexxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 4.1 illustrates key differences between an OLTP system and a data warehouse.

OLTP Data Warehouse
Complex data
structures Multidimensional
(3NF databases) data structures
Few Indexes Many
Many Joins Some
MNormalized Duplicated Denormalized
DBMS Data DEMS
Fare Derived Data Commaon
and Aggregates

Figure 4.1: OLTP and Data Warehouse

One major difference between the types of system is that data warehouses are not usually in
third normal form (3NF), a type of data normalization common in OLTP environments.

4.3. DATA WAREHOUSE ARCHITECTURES

Data warehouses and their architectures vary depending upon the specifics of an organization's
situation. Three common architectures are:

Data Warehouse Architecture (Basic)
Data Warehouse Architecture (with a Staging Area)

Data Warehouse Architecture (with a Staging Area and Data Marts)

4.3.1. Data Warehouse Architecture (Basic)

In Figure 4.2, the metadata and raw data of a traditional OLTP system is present, as is an
additional type of data, summary data. Summaries are very valuable in data warehouses
because they pre-compute long operations in advance. For example, a typical data warehouse

Page | ccexxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

guery is to retrieve something like August sales. A summary in Oracle is called a materialized
view.

Data Sources Warehouse Users

Operational

Analysis
System Y

a

Reporting

Operational
System

Flat Files

Mining

Figure 4.2: Architecture of a Data Warehouse.

4.3.2. Data Warehouse Architecture (with a Staging Area)

In Figure 4.2, you need to clean and process your operational data before putting it into the
warehouse. You can do this programmatically, although most data warehouses use a staging
area instead. A staging area simplifies building summaries and general warehouse
management. Figure 4.3 illustrates this typical architecture.

Page | ccexxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM

2009

Data Staging
Sources Area Warehouse Users

Operational

System Analysis

s

] —

o
Operational Reporti
System eporting
——7—72
Flat Files Mining

Figure 4.3: Architecture of a Data Warehouse with a Staging Area

4.3.3. Data Warehouse Architecture (with a Staging Area and Data Marts)

Although the architecture in Figure 4.3 is quite common, you may want to customize your
warehouse’s architecture for different groups within your organization. You can do this by
adding data marts, which are systems designed for a particular line of business. Figure 4.4
illustrates an example where purchasing, sales, and inventories are separated. In this example,

a financial analyst might want to analyze historical data for purchases and sales.

Data Staging Data
Sources Area Warehouse Marts Users
T i

Operational Purchasing Analysis

System
n
a
A
S”B"Taw Raw Data
ata ;

Operational Sales Reporting

System

A |

Flat Files Inventory Mining

[

Page | ccexxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 4.4: Architecture of a Data Warehouse with a Staging Area and Data Marta

4.4. LOGICAL VERSUS PHYSICAL DESIGN IN DATA WAREHOUSES

Your organization has decided to build a data warehouse. You have defined the business
requirements and agreed upon the scope of your application, and created a conceptual design.
Now you need to translate your requirements into a system deliverable. To do so, you create
the logical and physical design for the data warehouse. You then define:

1. The specific data content

2. Relationships within and between groups of data

3. The system environment supporting your data warehouse
4. The data transformations required

5. The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the logical
design, you look at the logical relationships among the objects. In the physical design, you look
at the most effective way of storing and retrieving the objects as well as handling them from a
transportation and backup/recovery perspective.

Orient your design toward the needs of the end users. End users typically want to perform
analysis and look at aggregated data, rather than at individual transactions. However, end users
might not know what they need until they see it. In addition, a well-planned design allows for
growth and changes as the needs of users change and evolve.

By beginning with the logical design, you focus on the information requirements and save the
implementation details for later.

Creating a Logical Design

A logical design is conceptual and abstract. You do not deal with the physical implementation
details yet. You deal only with defining the types of information that you need.

One technique you can use to model your organization's logical information requirements is
entity-relationship modelling. Entity-relationship modelling involves identifying the things of
importance (entities), the properties of these things (attributes), and how they are related to
one another (relationships).

The process of logical design involves arranging data into a series of logical relationships called
entities and attributes. An entity represents a chunk of information. In relational databases, an
entity often maps to a table. An attribute is a component of an entity that helps define the
uniqueness of the entity. In relational databases, an attribute maps to a column.

Page | ccoxxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

To be sure that your data is consistent, you need to use unique identifiers. A unique identifier is
something you add to tables so that you can differentiate between the same items when it
appears in different places. In a physical design, this is usually a primary key.

While entity-relationship diagramming has traditionally been associated with highly normalized
models such as OLTP applications, the technique is still useful for data warehouse design in the
form of dimensional modelling. In dimensional modelling, instead of seeking to discover atomic
units of information (such as entities and attributes) and all of the relationships between them,
you identify which information belongs to a central fact table and which information belongs to
its associated dimension tables. You identify business subjects or fields of data, define
relationships between business subjects, and name the attributes for each subject.

Your logical design should result in (1) a set of entities and attributes corresponding to fact
tables and dimension tables and (2) a model of operational data from your source into subject-
oriented information in your target data warehouse schema.

You can create the logical design using a pen and paper, or you can use a design tool such as
Oracle Warehouse Builder (specifically designed to support modelling the ETL process) or
Oracle Designer (a general purpose modelling.

4.5. DATA WAREHOUSING SCHEMAS

A schema is a collection of database objects, including tables, views, indexes, and synonyms.
You can arrange schema objects in the schema models designed for data warehousing in a
variety of ways. Most data warehouses use a dimensional model. The model of your source
data and the requirements of your users help you design the data warehouse schema. You can
sometimes get the source model from your company's enterprise data model and reverse-
engineer the logical data model for the data warehouse from this. The physical implementation
of the logical data warehouse model may require some changes to adapt it to your system
parameters—size of machine, number of users, storage capacity, type of network, and
software.

Star Schemas

The star schema is the simplest data warehouse schema. It is called a star schema because the
diagram resembles a star, with points radiating from a centre. The centre of the star consists of
one or more fact tables and the points of the star are the dimension tables, as shown in Figure
4.5.

Page | ccexxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

products times

sales
{amount_sold,
quantity _sold)

Fact Table
customers channels

Dimension Table Dimension Table
Figure 4.5: Star Schema

The most natural way to model a data warehouse is as a star schema, only one join establishes
the relationship between the fact table and any one of the dimension tables.

A star schema optimizes performance by keeping queries simple and providing fast response
time. All the information about each level is stored in one row.

Other Schemas

Some schemas in data warehousing environments use third normal form rather than star
schemas. Another schema that is sometimes useful is the snowflake schema, which is a star
schema with normalized dimensions in a tree structure.

4.6. DATA WAREHOUSING OBJECTS

Fact tables and dimension tables are the two types of objects commonly used in dimensional
data warehouse schemas.

Fact tables are the large tables in your warehouse schema that store business measurements.
Fact tables typically contain facts and foreign keys to the dimension tables. Fact tables
represent data, usually numeric and additive, that can be analyzed and examined. Examples
include sales, cost, and profit.

Dimension tables, also known as lookup or reference tables, contain the relatively static data in
the warehouse. Dimension tables store the information you normally use to contain queries.
Dimension tables are usually textual and descriptive and you can use them as the row headers
of the result set. Examples are customers or products.

4.6.1. Fact Tables

A fact table typically has two types of columns: those that contain numeric facts (often called
measurements), and those that are foreign keys to dimension tables. A fact table contains
either detail-level facts or facts that have been aggregated. Fact tables that contain aggregated

Page | ccexxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

facts are often called summary tables. A fact table usually contains facts with the same level of
aggregation. Though most facts are additive, they can also be semi-additive or non-additive.
Additive facts can be aggregated by simple arithmetical addition. A common example of this is
sales. Non-additive facts cannot be added at all. An example of this is averages. Semi-additive
facts can be aggregated along some of the dimensions and not along others. An example of this
is inventory levels, where you cannot tell what a level means simply by looking at it.

Creating a New Fact Table

You must define a fact table for each star schema. From a modelling standpoint, the primary
key of the fact table is usually a composite key that is made up of all of its foreign keys.

4.6.2. Dimension Tables

A dimension is a structure, often composed of one or more hierarchies, that categorizes data.
Dimensional attributes help to describe the dimensional value.

They are normally descriptive, textual values. Several distinct dimensions, combined with facts,
enable you to answer business questions. Commonly used dimensions are customers, products,
and time.

Dimension data is typically collected at the lowest level of detail and then aggregated into
higher level totals that are more useful for analysis. These natural rollups or aggregations within
a dimension table are called hierarchies.

Hierarchies

Hierarchies are logical structures that use ordered levels as a means of organizing data. A
hierarchy can be used to define data aggregation. For example, in a time dimension, a hierarchy
might aggregate data from the month level to the quarter level to the year level. A hierarchy
can also be used to define a navigational drill path and to establish a family structure.

Within a hierarchy, each level is logically connected to the levels above and below it. Data
values at lower levels aggregate into the data values at higher levels. A dimension can be
composed of more than one hierarchy. For example, in the product dimension, there might be
two hierarchies—one for product categories and one for product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use hierarchies to
enable you to drill down into your data to view different levels of granularity. This is one of the
key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business structures. For
example, a divisional multilevel sales organization.

Page | ccexxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Hierarchies impose a family structure on dimension values. For a particular level value, a value
at the next higher level is its parent, and values at the next lower level are its children. These
familial relationships enable analysts to access data quickly.

Levels A level represents a position in a hierarchy. For example, a time dimension might have a
hierarchy that represents data at the month, quarter, and year levels. Levels range from general
to specific, with the root level as the highest or most general level. The levels in a dimension are
organized into one or more hierarchies.

Level Relationships Level relationships specify top-to-bottom ordering of levels from most
general (the root) to most specific information. They define the parent-child relationship
between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For example, the
database can aggregate an existing sales revenue on a quarterly base to a yearly aggregation
when the dimensional dependencies between quarter and year are known.

Typical Dimension Hierarchy
Figure 4.6 illustrates a dimension hierarchy based on customers.

Figure 4.6: Typical Levels in a Dimension Hierarchy

region

subregion

country_name

customer

Unique Identifiers
Unique identifiers are specified for one distinct record in a dimension table.

Artificial unique identifiers are often used to avoid the potential problem of unique identifiers
changing. Unique identifiers are represented with the # character. For example, #customer _id.

Relationships

Relationships guarantee business integrity. An example is that if a business sells something,
there is obviously a customer and a product. Designing a relationship between the sales

Page | ccexxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

information in the fact table and the dimension tables products and customers enforces the
business rules in databases.

Example of Data Warehousing Objects and Their Relationships

Relationship
roducts customers
Eprod id Fact Table #cust_id
_ sales cust_last_name
i cust_city L
E:-Eosgj_licé cust_state_province} Hierarchy
times channels
promotions
Dimension Table Dimension Table

Dimension Table

Figure 4.7: Typical Data Warehousing Objects

Figure 4.7 illustrates a common example of a sales fact table and dimension tables customers,
products, promotions, times, and channels.

Moving from Logical to Physical Design
Logical design is what you draw with a pen and paper or design with Oracle

Warehouse Builder or Designer before building your warehouse. Physical design is the creation
of the database with SQL statements.

Legical Physical (as Tablespaces)
] I I
Entities Tables Indexes
| ——— I I
_) Integrity Materialized
Relationships Constraints Views
- Primary Key
——————— - Foreign Key | ——
- Not Null))
Attributes Dimensicns
1 —_— 1
[Columns
Page | ccoxxxvi Unique B
|dentifiers

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 4.8: Logical Design with Physical Design

During the physical design process, you convert the data gathered during the logical design
phase into a description of the physical database structure. Physical design decisions are mainly
driven by query performance and database maintenance aspects. For example, choosing a
partitioning strategy that meets common query requirements enables Oracle to take advantage
of partition pruning, a way of narrowing a search before performing it.

Physical Design

During the logical design phase, you defined a model for your data warehouse consisting of
entities, attributes, and relationships. The entities are linked together using relationships.
Attributes are used to describe the entities. The unique identifier (UID) distinguishes between
one instance of an entity and another.

Figure 4.8 offers you a graphical way of looking at the different ways of thinking about logical
and physical designs.

During the physical design process, you translate the expected schemas into actual database
structures. At this time, you have to map:

Entities to tables

Relationships to foreign key constraints

Attributes to columns

Primary unique identifiers to primary key constraints

Unique identifiers to unique key constraints

Physical Design Structures

Once you have converted your logical design to a physical one, you will need to create some or
all of the following structures:

Tablespaces

Tables and Partitioned Tables
Views

Integrity Constraints
Dimensions

Some of these structures require disk space. Others exist only in the data dictionary.

Page | ccexxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Additionally, the following structures may be created for performance improvement:
Indexes and Partitioned Indexes
Materialized Views

Tablespaces

A tablespace consists of one or more datafiles, which are physical structures within the
operating system you are using. A datafile is associated with only one tablespace. From a design
perspective, tablespaces are containers for physical design structures.

Tablespaces need to be separated by differences. For example, tables should be separated from
their indexes and small tables should be separated from large tables.

Tablespaces should also represent logical business units if possible. Because a tablespace is the
coarsest granularity for backup and recovery or the transportable tablespaces mechanism, the
logical business design affects availability and maintenance operations.

Tables and Partitioned Tables

Tables are the basic unit of data storage. They are the container for the expected amount of
raw data in your data warehouse.

Using partitioned tables instead of non-partitioned ones addresses the key problem of
supporting very large data volumes by allowing you to decompose them into smaller and more
manageable pieces. The main design criterion for partitioning is manageability, though you will
also see performance benefits in most cases because of partition pruning or intelligent parallel
processing. For example, you might choose a partitioning strategy based on a sales transaction
date and a monthly granularity. If you have four years’ worth of data, you can delete a month’s
data as it becomes older than four years with a single, quick DDL statement and load new data
while only affecting 1/48th of the complete table. Business questions regarding the last quarter
will only affect three months, which is equivalent to three partitions, or 3/48ths of the total
volume.

Partitioning large tables improves performance because each partitioned piece is more
manageable. Typically, you partition based on transaction dates in a data warehouse. For
example, each month, one month’s worth of data can be assigned its own partition.

Data Segment Compression

You can save disk space by compressing heap-organized tables. A typical type of heap-
organized table you should consider for data segment compression is partitioned tables.

To reduce disk use and memory use (specifically, the buffer cache), you can store tables and
partitioned tables in a compressed format inside the database. This often leads to a better scale

Page | ccoxxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

up for read-only operations. Data segment compression can also speed up query execution.
There is, however, a cost in CPU overhead.

Data segment compression should be used with highly redundant data, such as tables with
many foreign keys. You should avoid compressing tables with much update or other DML
activity. Although compressed tables or partitions are updatable, there is some overhead in
updating these tables, and high update activity may work against compression by causing some
space to be wasted.

Views

A view is a tailored presentation of the data contained in one or more tables or other views. A
view takes the output of a query and treats it as a table. Views do not require any space in the
database.

Integrity Constraints

Integrity constraints are used to enforce business rules associated with your database and to
prevent having invalid information in the tables. Integrity constraints in data warehousing differ
from constraints in OLTP environments. In OLTP environments, they primarily prevent the
insertion of invalid data into a record, which is not a big problem in data warehousing
environments because accuracy has already been guaranteed. In data warehousing
environments, constraints are only used for query rewrite. NOT NULL constraints are
particularly common in data warehouses. Under some specific circumstances, constraints need
space in the database. These constraints are in the form of the underlying unique index.

Indexes and Partitioned Indexes

Indexes are optional structures associated with tables or clusters. In addition to the classical B-
tree indexes, bitmap indexes are very common in data warehousing environments. Bitmap
indexes are optimized index structures for set-oriented operations. Additionally, they are
necessary for some optimized data access methods such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning strategy is
not dependent upon the table structure. Partitioning indexes makes it easier to manage the
warehouse during refresh and improves query performance.

Materialized Views

Materialized views are query results that have been stored in advance so long-running
calculations are not necessary when you actually execute your SQL statements. From a physical
design point of view, materialized views resemble tables or partitioned tables and behave like
indexes.

Page | ccoxxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Dimensions

A dimension is a schema object that defines hierarchical relationships between columns or
column sets. A hierarchical relationship is a functional dependency from one level of a hierarchy
to the next one. A dimension is a container of logical relationships and does not require any
space in the database. A typical dimension is city, state (or province), region, and country.

4.7. SUMMARY

The data warehouse is an integrated subject-oriented, time-variant, non-volatile database that
provides support for decision making. The data warehouse is usually a read-only database
optimized for dart analysis and query processing. Business data analysts access the data
warehouse via front-end tools and end user application software to extract the data in usable
forms.

4.8. CONCLUSION

Although it is easy to focus on the data warehouse database as the DSS central data repository,
it is noteworthy that the decision support infrastructure includes hardware, software, people,
and procedures, as well as data.

4.9. TUTOR-MARKED ASSIGNMENT (TMA).

1. What is data warehouse?
2. What are the main characteristics of data warehouse?
3. Your data warehousing project group is acquiring data about prototyping a data

warehouse before its implementation. The project group members are especially concerned
about the need to acquire some data warehousing skills between implementing the enterprise-
wide data warehouse. What would you recommend? Explain your recommendations.

4.10.FURTHERREADINGS

Lane, P., Schupmann, V., [2002] Oracle9i Data Warehousing Guide, Release 2 (9.2), Oracle
Corporation, 2002.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts”, McGraw — Hill, 1986.

www.w3schools.com

Page | ccexl

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

UNIT 5: INTRODUCTION TO DATA MINING

5.0. INTRODUCTION

Data mining is the search for relationships and global patterns that exist in large databases but
are bidden in the vast amounts of data. In data mining, an analyst combines knowledge of the
data with advanced machine learning technologies to discover nuggets of knowledge hidden in
the data. Data mining software can find meaningful relationships that might take years to find
with conventional techniques. The software is designed to sift through large collections of data
and by using statistical and artificial intelligence techniques, identify hidden relationships. The
mined data typically include electronic point of sales records, inventory, customer transactions,
and customer records with matching demographics, usually obtained from an external source.
Data mining does not require the presence of a data warehouse. An organization can mine
data from its operational files or independent databases. However, data mining independent
files will not uncover relationships that exist between data in different files. Data mining will
usually be easier and more effective when the organization accumulates as much data as
possible in a single data store, such as a data warehouse. Recent advances in processing speeds
and lower storage costs have made large-scale mining of corporate data a reality.

Database marketing, a common application of data mining, is also one of the best examples of
the effective use of the technology. Database marketers use data mining to develop, test,
implement, measure, and modify tailored marketing programs. The intention is to use data to
maintain a lifelong relationship with a customer. The database marketer wants to anticipate
and fulfill the customer’s needs as they emerge. For example, recognizing that a customer buys
a new car every three or four years and with each purchase gets an increasingly more luxurious
car, the car dealer contacts the customer during the third year of the life of the current car with
a special offer on its latest luxury model.

5.1. OBIJECTIVES
To understand data mining as a tool for data analysis

To explore the applications and technologies of data mining

Page | ccexli

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

5.2. DATA MINING USES
There are many applications of data mining. For example:

Predicting the probability of default for consumer loan applications. Data mining can
help lenders to substantially reduce loan losses by improving their ability to predict bad
loans.

Reducing fabrication flaws in VLSI chips. Data mining systems can sift through vast
quantities of data collected during the semiconductor fabrication process to identify
conditions that are causing yield problems.

Predicting audience share for television programs. A market share prediction system
allows television programming executives to arrange sow schedules to maximize market
share and increase advertising revenues.

Predicting the probability that a cancer patient will respond to radiation therapy. By
more accurately predicting the effectiveness of expensive medical procedures, health-
care costs can be reduced without affecting quality of care.

Predicting the probability that an offshore oil well is going to produce oil. An offshore
oil well may cost N30Omillion. Data mining technology can increase the probability that
this investment will be profitable.

Identifying quasars from trillion of bytes of satellite data. This was one of the earliest
applications of data mining system as the technology was first applied in the scientific
community.

Fingerhut. One of the U.S’s oldest and largest catalog publishers, with sales of nearly N1.8
billion in 2000, claims to have collected data on 30 million households. However, it has not found a
complete data analysis package to meet its needs. Because different business problems require
different data analysis programs, the company has been creating a “toolbox” of these applications.
The most recent tool in the box is Quad-stone, a data-mining solution which is being used to
determine which customers should be contacted, how often, and what method works the best,
catalogs and mailers, phone centers, or the internet. The software provides workers, not just the

IAT managers, the capability to run analyses of model customer behaviour.

In addition. Fingerhut uses software from SAS and SPSS Inc, depending on which tool is
more applicable to the data. Regression techniques are used in the SAS modules to derive formulas
for customer habits. Sequences of events, such as the series of steps taken during a purchase, are
analyzed using SPSS. Another tool, called knowledge-seeker from Angoss, helps analyze customers
in categories, such as urban female shoppers. Around 100 data models are used-by Fingerhut to
analyze customer data and behaviour on a regular basis. In addition, at least 100 marketing

campaigns are undertaken each year.

S?”urce: Tillet L. S. 2001. Data tools for Fingerhut. Internet week. Mar 5 (851):19

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Figure 3.1 Creating a toolbox

5.3. DATA MINING FUNCTIONS
Based on the functions they perform, five types of data mining functions exist:
ASSOCIATIONS

An association function identifies affinities existing among the collection of items in a given set
of records. These affinities or relationships can be expressed by rules such as, 72 percent of all
the records that contain items A, B, and C also contain items D and E. Knowing that 85 percent
of customers who buy a certain brand of wine also buy a certain type of pasta can help
supermarkets improve use of shelf space and promotional offers. Discovering that fathers on
the way home from work on Friday often grab a six-pack of beer after buying some diapers,
enabled a supermarket to improve sales by placing beer specials next to diapers.

SEQUENTIAL PATTERNS

Sequential pattern mining functions identify frequently occurring sequences from given
records. For example, these functions can be used to detect the set of customers associated
with certain frequent buying patterns. Data mining might discover, for example, that 32
percent of female customers within six months of ordering a red jacket also buy a gray skirt. A
retailer with knowledge of this sequential pattern can then offer the red-jacket buyer a coupon
or other enticement to attract the prospective gray-skirt buyer.

CLASSFYING

Classifying divides predefined classes (e.g. types of customers) into mutually exclusive groups
such that the members of each group are as close as possible to one another and different
groups are as far as possible from one another, where distance is measured with respect to
specific predefined variables. The classification of groups is done before data analysis. Thus,
based on sales, customers may be first categorized as infrequent, occasional and frequent. A
classifier could be used to identify those attributes, from a given set, that discriminate among
the three types of customers. For example, a classifier might identify frequent customers as
those with incomes above N50,000 and having two or more children. Classification functions
have been used extensively in applications such as credit risk analysis, portfolio selection,
health risk analysis, and image and speech recognition. Thus, when a new customer is
recruited, the firm can use the classifying function to determine the customer’s sales potential
and accordingly tailor its market to that person.

CLUSTERING

Page | ccexliii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Whereas classifying starts with predefined categories, clustering starts with just the data and
discovers the hidden categories. These categories are derived from the data. Clustering divides
a dataset into mutually exclusive groups such that the members of each group are as close as
possible to one another and different groups are as far as possible from one another, where
distance is measured with respect to all available. The goal of clustering is to identify
categories. Clustering could be used, for instance, to identify natural groupings of customers by
processing all the available data on them. Examples of applications that can use clustering
functions are market segmentation, discovering affinity groups, and defect analysis.

PREDICTION

Prediction calculates the future value of a variable. For example, it might be used to predict the
revenue value of a new customer based on that person’s demographic variables.

These various data mining techniques can be used together. For example, a sequence pattern
analysis could identify potential customers (e.g. red jacket leads to gray skirt), and then
classifying could be used to distinguish between those prospects who are converted to
customers and those who are (i.e. did not follow the sequential pattern of buying a gray-skirt).
This additional analysis should enable the retailer to further its marketing strategy to increase
the conversion rate of red jacket customers to gray skirt purchasers.

5.4. DATA MINING TECHNOLOGIES
Data miners use technologies that are based on statistical analysis and data visualization:
DECISION TREES

Tree-shaped structures can be used to represent decisions and rules for the classification of a
dataset. As well as being easy to understand, tree-based models are suited to selecting
important variables and are best when many of the predictors are irrelevant.

GENETIC ALGORITHMS

Genetic algorithms are optimization techniques that use processes such as genetic
combination, mutation, and natural selection in a design based on the concepts of evolution.
Possible solutions for a problem compete with each other. In an evolutionary struggle of the
survival of the fittest, the best solution survives the battle. Genetic algorithms are suited for
optimization problems with many candidate variables (e.g. candidates for a long).

K-NEAREST NEIGHBOR METHOD

The nearest neighbor method is used for clustering and classification. In the case of clustering,
the method first plots each record in n-dimensional space, where attributes are used in the
analysis. Then, it adjusts the weights for each dimension to cluster together data points with
similar goal features. For instance, if the goal is to identify customers who frequently switch

Page | ccexliv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

phone companies, the k-nearest method would adjust weights for relevant variables (such as
monthly phone bill and percentage of non-U.S. calls) to cluster switching customers in the same
neighborhood. Customers who did not switch would be clustered some distance apart.

NEURAL NETWORKS

A neural network, mimicking the neurophysiology of the human brain, can learn from examples
to find patterns in data and classify data. While neural networks can be used for classification,
they must first be trained to recognize patterns in a sample dataset. Once trained, a neural
network can make predictions from new data. Neutral networks are suited to combining
information from many predictor variables and work well when many of the predictors are
partially redundant. One shortcoming of a neural network is that it can be viewed as a black
box with no explanation of the results provided. Often managers are reluctant to apply models
they do not understand, and this can limit the applicability of neural networks.

Figure 5.2: The SAS data mining method

DATA VISUALIZATION

Page | ccexlv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Data visualization can make it possible for the analyst to gain a deeper, intuitive understanding
of data. Because they present data in a visual format, visualization tools take advantage of our
capability to rapidly discern visual pattern. Data mining can enable the analyst to focus
attention on important pattern and trends and explore these in dept

A senior statistician at SAS Institute, a large supplier of statistical analysis software,

advocates a five-step process to data mining, which he calls SEMMA.

Sample: extract a portion of the dataset for data mining. This set should be large
enough to contain significant data and small enough for rapid data

mining.

Explore: search for unanticipated trends and relationships to gain insights to the

data and ideas for further exploration.

Modify: create, select, and transform variables with the intention of building a
model.

Model: specify a relationship of variables that reliably predicts a desired goal.

Assess: evaluate the practical value of the findings and the model resulting from

the data mining effort.

Source: SAS Institute, 1996. Data mining reveals the diamonds in your database.

Figure 3.2 The SAS mining method

using visualization techniques. Data mining and data visualization work especially well
together.

5.5. SUMMARY

Organizations are increasingly realizing that data are a key resource. It is necessary for the daily
operations of a business and its future success. Recent developments in hardware and
software have given organizations the capability to accumulate and process vast collections of
data using organizational intelligence technologies. Data warehouse software supports the
creation and management of huge data stores. The two approaches to exploiting data are

Page | ccexlvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

verification and discovery. DSS, EIS and OLAP are mainly data verification methods. Data
mining, a data discovery approach, uses statistical analysis techniques to discover bidden
relationships. The relational model was not designed for OLAP, and the MDDB is the
appropriate data store to support OLAP, MDDB design is based on recognizing variable and
identifier dimensions.

5.6. CONCLUSION

Data management is a rapidly evolving discipline. Where once the spotlight was clearly on TPSs
and the relational model, there are now multiple centers of attention. In an information
economy, the knowledge to be gleaned from data collected by routine transactions can be an
important source of competitive advantage. The more an organization can learn about its
customers by studying their behaviour, the more likely it can provide superior products and
services to retain existing customers and lure prospective buyers. As a result, data managers
now have the dual responsibility of administering database that keep the organization in
business today and tomorrow. They must now master the organizational intelligence
technologies described in this unit.

5.7. TMA
1. What is data mining?
2. How does data mining differ from traditional decision support systems (DSS) tools?

5.8. FURTHER READINGS

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[2000]. “Database System Concepts”, 4th ed., McGraw — hill,
2000.

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB [1992.

www.w3schools.com

Page | ccexlvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

UNIT 1: EMERGING DATABASE MODELS

1.0. INTRODUCTION

Applications in domains such as Multimedia, Geographical Information Systems, and digital
libraries demand a completely different set of requirements in terms of the underlying
database models. The conventional relational database model is no longer appropriate for
these types of data. Furthermore the volume of data is typically significantly larger than in
classical database systems. Finally, indexing, retrieving and analyzing these data types require
specialized functionality not available in conventional database systems. The unit will cover the
some requirements of these emerging databases such as multimedia databases, spatial
databases, temporal databases and biological/genome databases, their underlying
technologies, data models and languages.

1.1. OBJECTIVES

To understand the various database models and their limitations
To understand temporal management concepts, design, and challenges
To understand the design & Implementation of temporal databases

1.2. LIMITATIONS OF CONVENTIONAL DATABASES

Page | ccexlviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Conventional databases typically consist of many tables, each of which is composed of a
number of columns. The definition of those tables and columns determine the storage
capabilities of the database, whereas the relations between the columns define the kinds of
facts that can be stored in such a database. Those columns and relations determine the
database structure that defines the expression capabilities of the database. Similar rules apply
for the structure of data exchange files and thus for the information that is exchanged in
electronic data files. This conventional database technology has some major constraints:

When data was not covered during the database design and thus is not included in the data
model, then such data cannot be stored in the database nor exchanged via such a data file
structure. Different databases have different data structures, which causes that data in one
database cannot be integrated with data from other databases nor exchanged between
databases without dedicated data conversion. A database modification or extension requires
redesign of the database structure, modification of software and data conversion, which makes
it a relatively complicated and costly exercise.

Another characteristic of conventional databases is that there are hardy international standards
available or used for the content of the databases, being the data that is entered by its users.
This typically means that local conventions are applied to limit the diversity of data that may be
entered in those databases. As local conventions usually differ from other local conventions this
has as disadvantage that data that are entered in one database cannot be compared or
integrated with data in other databases, even if those database structures are the same and
even if the application domain of the databases is the same. For example, within a company
there may be various implementations of the same system in various sites for the storage of
data about equipment, whereas for example the performance data about the same type of
equipment still cannot be compared with the performance data in another location, because
the equipment types have different names and the properties are also different.

Characteristics of a Gellish Database

A Gellish database does not have the semantic limitations that conventional databases have,
because of the flexible and open Gellish language and because of its standard universal data
structure (grammar), which is simple, computer and human interpretable. A Gellish database
consists of one or more database tables, each of which has the same table structure (column
definitions). The fact that those Gellish Database tables are standardized and universally
applicable makes a Gellish database application independent. A standardized Gellish database
table is universally applicable because it enables the application of the following two
fundamental principles:

Explicit classification of individual things or explicit specialization of classes, with an unlimited
number of classes in a dictionary. The Gellish database table enables to store any kind of
object; because any individual object can be introduced by specification of an explicit
classification relation between the object and a class, whereas classes (kinds of objects or
concepts) can be selected from the very large number of classes that are already defined in the
Gellish English Dictionary and if the proper class is not available it can be added by specification

Page | ccexlix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

of a subtype-supertype relation with a direct supertype of the new class. This is fundamentally
different from conventional databases that predefine the object types (classes) about which
information can be stored by defining a limited number of entity types and attribute typesin a
fixed data model.

Explicit classification of relations (facts), by an extensible unlimited number of standardized
relation types. The Gellish database table enables to store any kind of fact about any kind of
object, because any fact is expressed by a relation, whereas those relations are explicitly
classified by relation types that can be selected from the standardized relation types that are
defined in the Gellish Dictionary or by relation types that are added to the dictionary as
proprietary extensions. This is fundamentally different from conventional databases.

1.3. WHATIS A MULTIMEDIA DATABASE?

A multimedia database is a database that hosts one or more primary media file types such as
.xt (documents), .jpg (images), .swf (videos), .mp3 (audio), etc. And loosely fall into three main
categories:

Static media (time-independent, i.e.

images and handwriting)

Dynamic media (time-dependent, i.e. video and sound bytes)

Dimensional media (i.e. 3D games or computer-aided drafting programs- CAD) All
primary media files are stored in binary strings of zeros and ones, and are encoded according to
file type. The term "data" is typically referenced from the computer point of view, whereas the
term "multimedia" is referenced from the user point of view.

Types of Multimedia Databases
There are numerous different types of multimedia databases, including:

The Authentication Multimedia Database (also known as a Verification Multimedia
Database, i.e. retina scanning), is a 1:1 data comparison

The Identification Multimedia Database is a data comparison of one-to-many (i.e.
passwords and personal identification numbers

A newly-emerging type of multimedia database, is the Biometrics Multimedia Database; which
specializes in automatic human verification based on the algorithms of their behavioral or
physiological profile. This method of identification is superior to traditional multimedia
database methods requiring the typical input of personal identification numbers and
passwords. Due to the fact that the person being identified does not need to be physically
present, where the identification check is taking place. This removes the need for the person

Page | cccl

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

being scanned to remember a PIN or password. Fingerprint identification technology is also
based on this type of multimedia database.

Difficulties Involved with Multimedia Databases

The difficulty of making these different types of multimedia databases readily accessible to
humans is:

The tremendous amount of bandwidth they consume;

Creating Globally-accepted data-handling platforms, such as Joomla, and the special
considerations that these new multimedia database structures require.

Creating a Globally-accepted operating system, including applicable storage and
resource management programs need to accommodate the vast Global multimedia
information hunger.

Multimedia databases need to take into accommodate various human interfaces to
handle 3D-interactive objects, in an logically-perceived manner (i.e. SecondLife.com).

Accommodating the vast resources required to utilize artificial intelligence to its fullest
potential- including computer sight and sound analysis methods.

The historic relational databases (i.e. the Binary Large Objects - BLOBs- developed for SQL
databases to store multimedia data) do not conveniently support content-based searches for
multimedia content. This is due to the relational database not being able to recognize the
internal structure of a Binary Large Object and therefore internal multimedia data components
cannot be retrieved.

Basically, a relational database is an "everything or nothing" structure- with files retrieved and
stored as a whole, which makes a relational database completely inefficient for making
multimedia data easily accessible to humans. In order to effectively accommodate multimedia
data, a database management system, such as an Object Oriented Database (OODB) or Object
Relational Database Management System (ORDBMS). Examples of Object Relational Database
Management Systems include Odaptor (HP), UniSQL, ODB-II, and lllustra. The flip-side of the
coin, is that unlike non-multimedia data stored in relational databases, multimedia data cannot
be easily indexed, retrieved or classified, except by way of social bookmarking and ranking-
rating, by actual humans. This is made possible by metadata retrieval methods, commonly
referred to as tags, and tagging. This is why you can search for dogs, as an example, and a
picture comes up based on your text search term. This is also referred to a schematic mode.
Whereas doing a search with a picture of a dog to locate other dog pictures is referred to as
paradigmatic mode.

However, metadata retrieval, search, and identify methods severely lack in being able to
properly define uniform space and texture descriptions, such as the spatial relationships
between 3D objects, etc.

Page | cccli

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The Content-Based Retrieval multimedia database search method (CBR), however, is specifically
based on these types of searches. In other words, if you were to search an image or sub-image;
you would then be shown other images or sub-images that related in some way to your the
particular search, by way of color ratio or pattern, etc.

1.4 TEMPORAL DATABASES: MODELING TEMPORAL DATA; TEMPORAL SQL
1.4.1 Introduction

A wide range of database applications manage time-varying data. In contrast, existing database
technology provides little support for managing such data. The research area of temporal
databases aims to change this state of affairs by characterizing the semantics of temporal data
and providing expressive and efficient ways to model, store, and query temporal data. This unit
offers a brief introduction to temporal database research. It concisely introduces fundamental
temporal database concepts, surveys state-of-the-art solutions to challenging aspects of
temporal data management, and also offers a look into the future of temporal database
research.

Temporal database management is a vibrant field of research, with an active community of
several hundred researchers who have produced some 2000 papers over the last two decades.
Most of these papers are listed in a series of seven cumulative bibliographies (the newest one
provides pointers to its predecessors). The field has produced a comprehensive glossary of
terminology , an edited volume which captures state of the art circa 1993, and three workshop
proceedings. The near complete SQL3 standard includes a Part 7, SQL/Temporal. The topic of
temporal databases is now covered in textbooks and in encyclopedia.

1.4.2 Temporal Data Semantics

Before we proceed to consider temporal data models and query languages, we examine, in data
model-independent terms, the association of times and facts, which is at the core of temporal
data management.

Initially, a brief description of terminology is in order. A database models and records
information about a part of reality, termed either the modeled reality or the mini-world.
Aspects of the mini-world are represented in the database by a variety of structures that we
will simply term database entities. We will employ the term “fact” for any (logical) statement
that can meaningfully be assigned a truth value, i.e., that is either true or false. In general,
times are associated with database entities.

The facts recorded by the database entities are of fundamental interest. Several different
temporal aspects may be associated with these. Most importantly, the valid time of a fact is the
collected times—possibly spanning the past, present, and future—when the fact is true in the
mini-world. Valid time thus captures the time-varying states of the mini-world. All facts have a
valid time by definition. However, the valid time of a fact may not necessarily be recorded in

Page | ccclii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

the database, for any of a number of reasons. For example, the valid time may not be known,
or recording it may not be relevant for the applications supported by the database. If a
database models different possible worlds, the database facts may have several valid times,
one for each such world.

Next, the transaction time of a database fact is the time when the fact is current in the
database. Unlike valid time, transaction time may be associated with any database entity, not
only with facts. For example, transaction time may be associated with objects and values that
are not facts because they cannot be true or false in isolation. To be more concrete, the value
“63” may be stored in a database, but does not denote a logical statement. It is meaningful to
associate transaction time with “63,” but not valid time. Thus, all database entities have a
transaction-time aspect. This aspect may or may not, at the database designer’s discretion, be
captured in the database. The transaction-time aspect of a database entity has a duration: from
insertion to deletion, with multiple insertions and deletions being possible for the same entity.
As a consequence of the semantics of transaction time, capturing this aspect of database
entities renders deletions purely logical. Deleting an entity does not physically remove the
entity from the database; rather, the entity remains in the database, but ceases to be part of
the database’s current state. Transaction time captures the time-varying states of the database,
and applications that demand accountability or "traceability" rely on databases that record
transaction time.

Observe that the transaction time of a database fact, say “F,” is the valid time of the related
fact, “Fis current in the database.” This would indicate that supporting transaction time as a
separate aspect is redundant. However, both valid and transaction time are aspects of the
content of all databases, and recording both of these is essential in a wide range of
applications. In addition, transaction time, due to its special semantics, is particularly well-
behaved and may be supplied automatically by the DBMS. Specifically, the transaction times of
facts stored in the database are bounded by the time the database was created at one end of
the time line and by the current time at the other end. This provides the rationale for the focus
of most temporal database research on providing improved support for valid time and
transaction time as separate aspects.

In addition, some other times have been considered, e.g., decision time . But the desirability of
building decision time support into temporal database technologies is unclear, because the
number and meaning of “the decision time(s)” of a fact varies from application to application
and because decision times, unlike transaction time, generally do not exhibit specialized
properties. The valid and transaction time values of database entities are drawn from some
appropriate time domain. There is no single answer to how to perceive time in reality and how
to represent time in a database, and different time domains may be distinguished with respect
to several orthogonal characteristics. First, the time domain may or may not stretch infinitely
into the past and future. Second, time may be perceived as discrete, dense, or continuous.
Some feel that time is really continuous; others contend that time is discrete and that
continuity is just a convenient abstraction that makes it easier to reason mathematically about
discrete phenomena. In databases, a finite and discrete time domain is typically assumed, e.g.,

Page | cccliii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

in the SQL standards. Third, a variety of different structures have been imposed on time. Most
often, time is assumed to be totally ordered, but various partial orders have also been
suggested, as having cyclic time.

An aspect of time that has been intriguing philosophers for centuries and that is difficult to
describe fully is the concept of the current time, which we term now . This concept is unique to
time; indeed, there really does not exist any other notion quite like it. Among its properties, the
current time is ever-increasing, all activity is trapped at the current time, and the current time
separates the past from the future. The spatial equivalent, here, simply fails to enjoy the
properties of now. As Merrick Furst puts it, “The biggest difference between time and space is
that you can’t reuse time.” The uniqueness of now is one of the reasons why techniques from
other research areas are not readily, or not at all, applicable to temporal data; now offers new
data management challenges, which are particular to temporal databases.

Much research has been conducted on the semantics and representation of time, from quite
theoretical topics such as temporal logic and infinite periodic time sequences to more applied
guestions such as how to represent time values in minimal space. Substantial research has been
conducted that concerns the use of different time granularities and calendars in general, as well
as the issues surrounding the support for indeterminate time values. Also, there is a significant
body of research on time data types, e.g., time points, time intervals (or “periods”), and
temporal elements (sets of intervals) .

Designing Temporal Databases

The design of appropriate database schemas is critical to the effective use of database se
technology and the construction of effective information systems that exploit this technology.
Database schemas capturing time-referenced data are often particularly complex and thus
difficult to design.

The first of the two traditional contexts of database design is the data model of the DBMS to be
used for managing the data. This data model, generally a variant of the relational model, is
assumed to conform to the ANSI/X3/SPARC three-level architecture. In this context, database
design must thus be considered at each of the view, logical, and physical (or, “internal”) levels.
In the second context, a database is modeled using a high-level, conceptual design model,
typically the Entity-Relationship model. This model is independent of the particular implemen-
tation data model that is eventually to be used for managing the database, and it is designed
specifically with data modeling as its purpose, rather than implementation or data
manipulation, making it more attractive for the DBMS to be used.

1.4.3 Temporal Data Models and Query Languages

Temporal data management can be very difficult using conventional (non-temporal) data
models and query languages. Accommodating the time-varying nature of the enterprise is
largely left to the developers of database applications, leading to ineffective and inefficient ad-
hoc solutions that must be reinvented each time a new application is developed. The result is

Page | cccliv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

that data management is currently an excessively involved and error-prone activity. unit 1.4.3.1
considers temporal data models, and unit 1.4.3.2 then covers query languages that are based
on these data models. The subsequent step of providing support for temporal data modeling
and database design is covered in unit 1.4.3.4.

We proceed to consider in turn logical and conceptual design of temporal databases.
1.4.3.1 Logical Design

A central goal of conventional relational database design is to produce a database schema
consisting of a set of relation schemas. In normalization theory, normal forms constitute
attempts at characterizing “good” relation schemas, and a wide variety of normal forms has
been proposed, the most prominent being third normal form and Boyce-Codd normal form. An
extensive theory has been developed to provide a solid formal footing for relational database
design, and most database textbooks expose their readers to the core of this theory.

In temporal databases, there is an even greater need for database design guidelines. However,
the conventional normalization concepts are not applicable to temporal relational data models
because these models employ relational structures different from conventional relations. New
temporal normal forms and underlying concepts that may serve as guidelines during temporal
database design are needed. In response to this need, a range of temporal normalization
concepts have been proposed, including temporal dependencies, keys, and normal forms. The
relation in Figure 1.0 also rules out any of the dependencies when we apply regular
dependencies directly. Considering that the different representations of the CheckedOut
relation model the same miniworld and are capable of recording the same information, it may
reasonably be assumed that these different representations would satisfy the same
dependencies. At any point in time, a customer may have checked out several tapes. In
contrast, a tape can only be checked out by a single customer at a single point in time. With this
view, TapeNumtemporally determines CustomerID, but the reverse does not hold.

If we consider the information contents of a temporal relation, independent of its actual
format, to be the set of conventional snapshot relations it logically comprises, we achieve a
means of applying the conventional relational normalization theory that leads to a temporal
theory, which naturally generalizes conventional dependencies and may be applied to
dependencies other than functional. Specifically, a temporal relation satisfies a temporal
dependency if all its snapshots satisfy the corresponding conventional dependency.

With this notion of temporal dependency based on snapshots, a temporal normalization theory
may be built that parallels conventional normalization theory and that is independent of any
particular representation of a temporal relation. However, the resulting theory, while temporal
in that it applies to temporal databases, is actually atemporal, in that it applies to each
snapshot of a temporal relation in isolation. This theory therefore fails to account for
“temporal” aspects of data. Temporal data models generally define timeslice operators, which
may be used to determine the snapshots contained in a temporal relation. Accepting a tem-
poral relation as their argument and a time point as their parameter, these operators return

Page | ccclv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

the snapshot of the relation corresponding to the specified time point. For example, a timeslice
operator for temporal relations like the one in Figure 1.0 may take a point (s in bitemporal
space as its parameter. It returns the tuples of the argument relation that contain this time
point, but omitting the timestamp attribute. It is also relevant to consider dependencies and
associated normal forms that effectively hold between time points. One approach to achieve
this is to build the notion of time granularity into the normalization concepts. As a result, it not
only is possible to consider snapshots computed at non-decomposable time points, but it is also
possible to consider snapshots computed at coarser granularities. In our example relations, we
have used day as the finest granularity; with the generalized theory, weeks and months may
also be considered.

Another approach to taking the temporal aspects of data into account during database design is
to introduce new concepts that capture the temporal aspects of data and may form the basis
for new database design guidelines .

Perhaps most prominently, time patterns may be used for capturing when the values of an
attribute for an entity change in the modeled reality and in the database. For example, the set
of tapes checked out by a customer may be expected to change substantially more frequently
than the customer’s address, meaning that the addresses of customers and their checked out
video tapes should be stored in separate relations. (In this example, the temporal counterpart
of Boyce-Codd normal form may reasonably be assumed to also imply such a decomposition,
but this does not apply generally.)

Next, the concept of lifespan, that captures when an attribute of an entity has values, also has
implications for database design. Specifically, if the lifespan of two attributes differ, null values
of the unattractive “do not exist” variety result unless the attributes are stored in separate
relations. Assuming that the temporal data model used timestamps tuples, attributes should
also be stored separately when different temporal aspects need to be captured for them or
when the temporal aspects are captured with differing precisions (resulting in different
timestamp granularities).

1.4.3.2 Conceptual Design

By far, most research on the conceptual design of temporal databases has been in the context of
the Entity-Relationship (ER) model. This model, in its varying forms, is enjoying a remarkable,
and increasing, popularity in industry. Building on the example introduced in unit 1.5.3.1, Figure
1.0 illustrates a conventional ER diagram for video rentals. The research on temporal ER
modeling is well motivated. It is widely known that the temporal aspects of the mini-world are
very important in a broad range of applications, but are also difficult to capture using the ER
model. Put simply, diagrams that would be intuitive and easy to comprehend without the
temporal aspects become obscure and cluttered when an attempt is made to capture the
temporal aspects.

Page | ccclvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM ‘ 2009

0,1
) Customer

(0,n)

VideoTape CheckedOut

Figure 1.0: Non-temporal Conventional ER Diagram for Video Rentals

The diagram in Figure 1.0 is non-temporal, modeling the mini-world at a single point in time.
Attempting to capture the temporal aspects that are essential for this application complicates
matters. It is necessary to capture the time when a customer has checked out a video tape. And
since it is possible for the same customer to have checked out the same tape at different times,
the CustomerID and TapeNum attributes do not identify a single instance of CheckedOut.
Instead, it is necessary to make CheckedOut a ternary relationship type, start introducing a
new, somewhat artificial, entity type that captures the times of rentals. Including start and end
time attributes on this entity type, the CustomerID, TapeNum, and StartTime attributes identify
instances of CheckedOut. But simply requiring that these three attributes be a key of a relation
representing rentals does not ensure the integrity of this relation—it remains possible for the
same tape to be checked out more than once at the same point in time. As another issue, rental
prices may vary over time, e.g., due to promotions and films getting old. Finally, including
transaction time leads to further complications. As a result, some industrial users simply choose
to ignore all temporal aspects in their ER diagrams and supplement the diagrams with textual
phrases to indicate that a temporal dimension to data exists, e.g., “full temporal support.” The
result is that the mapping of ER diagrams to relations must be performed by hand; and the ER
diagrams do not document fully the temporally extended relational database schemas used by
the application programmers. The research community’s response to this predicament has
been to develop temporally enhanced ER models. Indeed, about a dozen such models have
been reported in the research literature . These models represent attempts at modeling the
temporal aspects of information more naturally and elegantly. The proposed extensions are
based on quite different approaches.

One approach is to give all existing ER model constructs temporal semantics, basically following
the “applies to all snapshots” approach used for making conventional normalization concepts
“(a)temporal” in the previous unit. In its extreme form, this approach does not result in any
new syntactical constructs— all the original constructs have simply become temporal. The
simplicity of this wholesale approach is attractive. However, this approach rules out databases
with non-temporal parts; and legacy diagrams are no longer valid, i.e., while their syntax
remains valid, their semantics have changed, and they therefore no longer describe the existing
relational databases.

Page | ccclvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Another approach is to devise new notational shorthand that replace some of the patterns that
occur frequently in ER diagrams when temporal aspects are being modeled. One example is the
pattern that occurs when modeling a time-varying attribute in the ER model (e.g., the
RentalPrice in our example). With this approach, it is possible to retain the existing ER-model
constructs with their old semantics. This type of model may be more difficult to understand,
but it does not invalidate legacy diagrams, and it is also possible to design non-temporal
databases as well as databases where some parts are non-temporal while others are temporal.

In brief, the ideal temporal ER model is easy to understand in terms of the ER model; does not
invalidate legacy diagrams and database applications; and does not restrict the database to be
temporal, but rather permits the designer to mix temporal and non-temporal parts. The
existing models typically assume that their schemas are mapped to schemas in the relational
model that serves as the implementation data model. The mapping algorithms are constructed
to add appropriate time-valued attributes to the relation schemas. None of the models have
one of the many time-extended relational models as their implementation model. These
models have data definition and query language capabilities that better support the
management of temporal data and would thus constitute natural candidate implementation
platforms. Also, mappings to emerging models (e.g., SQL3) are missing. It remains a challenge
to design mappings that maximally exploit these and other candidate implementation
platforms.

1.5TEMPORALDBMSIMPLEMENTATION

There has been a vast amount of work in storage structures and access methods for temporal
data, and a dozen-odd temporal DBMS prototypes have been reported . Two basic approaches
may be discerned. Traditionally, an integrated approach has been assumed, in which the
internal modules of a DBMS are modified or extended to support time-varying data. More
recently, a layered approach has also received attention . Here, a software layer interposed
between the user-applications and a conventional DBMS effectively serves as an advanced
application that converts temporal query language statements into conventional statements
that are subsequently executed by the underlying DBMS, which is itself not altered. While the
former approach ensures maximum efficiency, the latter approach is more realistic in the short
and medium term. Consistent with the vast majority of papers on temporal DBMS
implementation, this unit assumes an integrated approach utilizing timestamping of tuples with
time intervals, unless explicitly stated otherwise.

1.5.1. Query Processing

A query formulated in some high-level, user-oriented query language is typically translated into
an equivalent query, formulated in a DBMS-internal, algebraic query language. The DBMS then
optimizes this algebraic expression by transforming it into an equivalent expression that is
expected to be more efficient to process, the result being better query processing performance.

Optimization of temporal queries offers new challenges over optimization of conventional
queries. At the core of the matter, temporal database queries are often large and complex. A

Page | ccclviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

recent book offers a wide range of examples of typical temporal database queries that are
generally very complex . Because of this added complexity, it is not only more important, but
also more challenging, to optimize temporal database queries.

Specifically, the predicates used in temporal queries make these queries difficult to optimize. In
non-temporal database applications, predicates are often equality predicates. As a reflection of
this, much research in query processing has concentrated on equality predicates, and existing
DBMSs are optimized for equality predicates (which occur in, e.g., equi-joins and natural joins).
In contrast, temporal queries typically involve numerous inequality predicates. The perhaps
most prominent source of such predicates is the test of overlap among two intervals. Inherent
in temporal joins, this test occurs frequently in temporal queries and results in two equality
predicates. Specifically, two intervals

and

overlap if the begin value of

is less than or equal to the end value of

and the begin value of

is less than or equal to the end value of

. Conventional DBMSs typically resort to nested-loop implementations of joins involving such
inequality predicates, with their associated inefficiency. Other challenges posed by the
complexity of temporal queries concern the coalescing of data and the interactions among
coalescing, duplicate removal, and ordering .

There are new and unexploited opportunities for query optimization when time is present. The
current time advances continuously; and for transaction time, the time value used most
recently in updates is the largest value used so far. This implies that a natural clustering or sort
order will manifest itself. If relations are partitioned so that current and logically deleted tuples
are stored separately, the relation with current tuples will be clustered on their transaction-
time start values, while the tuples in the relation with logically deleted tuples will be clustered
on their end times. Characteristics such as these can be exploited during query optimization
and evaluation.

As another example of an optimization opportunity, the integrity constraint that the begin
value of an interval is less than or equal to its end value holds for all intervals in the database.
Next, for many relations, the intervals associated with a key value are contiguous in time, with
one interval starting exactly when the previous interval ended. Semantic query optimization
can exploit these integrity constraints, as well as additional ones that can be inferred.

1.5.2. Implementing Algebraic Operators

Page | ccclix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

As explained earlier, a user-specified query is translated into an internal, algebraic form, which is
then optimized using equivalence-preserving transformations. The DBMS has available a library
of algorithms that implement the operations that occur in the resulting algebraic formulation of
the query. As the next step, algorithms are chosen from the library for each operation, upon
which the query is ready for execution. Good performance is dependent on the availability of
good implementations of the operations.

Focus has been on a number of temporal algebraic operators, including selection, joins,
aggregates, and duplicate elimination. Conventional approaches to computing these operators
typically have poor performance, and new opportunities exist for efficiently implementing
these operators. The selection operator is examined in the next unit, as its implementation
often involves a temporal index.

A wide variety of binary joins have been considered, including time-join and time-equijoin (TE-
join), event-join and TE-outerjoin, contain-join, containsemijoin and intersect-join,and temporal
natural join . The various algorithms proposed for these joins have generally been extensions to
nested loop or merge joins that exploit sort orders or local workspace, as well as partitioning-
based joins, but incremental techniques have also been proposed.

More generally, these latter techniques are particularly attractive for implementing operators
on relations capturing transaction time, because these relations retain complete records of
their past states. Incremental techniques cache results of previous computations and at later
times reuse these results, together with records of the updates to the underlying relations that
have occurred since the results were cached, to efficiently compute the up-to-date results.
With support for transaction time, the records of updates are already contained in the relations

Next, time-varying aggregates are especially challenging. While there has been much work on
the topic in the data warehousing context, only a few papers have considered the more general
problem. Finally, coalescing is an important operation in temporal databases. Coalescing
merges value-equivalent tuples with adjacent intervals (and possibly also value-equivalent
tuples with intervals that overlap). This operation may be implemented by first sorting the
argument relation on the explicit attribute values as well as the valid time. In a subsequent
scan, the merging is then accomplished.

1.5.3. Indexing Temporal Data

A variety of conventional indexes have long been used to reduce the need to scan an entire
relation to access a subset of its tuples, to support the conventional selection algebraic
operator and temporal joins. Similarly, a number of temporal indexing strategies are available .
Many of the indexes are based on B*-trees, which index on values of a single key; most of the
remainder are based on R-trees, which index on ranges (intervals) of multiple keys. The worst-
case performance for most proposals has been evaluated in terms of total space required,

Page | ccclx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

updates per change, and several important types of queries. Most of this work is in the context
of the selection operator. As also mentioned, indexes may be used to efficiently implement
temporal joins and also coalescing and aggregates—this is an area of active investigation.

1.6. OUTLOOK

Although many important insights and results have been reported, many research challenges
still remain in temporal database management, some of which are considered here. The lack of
consideration of some of these challenges has reduced the potential of earlier results. In many
cases, core concepts have been established, but it remains to be shown how they may be
combined and applied, to simplify and automate the management of time-referenced data in
practice.

There is a need for increased legacy-awareness in a number of areas within temporal
databases. Research is needed that takes into account the reality that most databases are in
fact legacy temporal databases and that the applications running on them are in fact legacy
temporal database applications. In contrast, most research so far has assumed that applications
will be designed using a new temporal data model, implemented using novel temporal query
languages, and run on as yet nonexistent temporal DBMSs. In the short to medium term, this is
an unrealistic assumption. Indeed, perhaps in part because of this and despite the obvious need
in the marketplace, as yet no prominent commercial temporal relational DBMS exists.

The recent growth in database architectures, including the various types of middleware,
prompts a need for increased architecture-awareness. Studies are needed that provide the
concepts, approaches, and techniques necessary for third-party developers to efficiently and
effectively implement temporal database technology while maximally exploiting available
architectural infrastructure, as well as the functionality already offered by existing DBMSs. The
resulting temporal DBMS architectures will provide a highly relevant alternative to the standard
integrated architecture that is generally assumed. As a next step, research is needed on how to
exploit existing and novel performance-improving advances, such as temporal algebraic
operator implementations and indices, in these architectures. Finally, approaches for
transitioning legacy applications will become increasingly sought after as temporal technology
moves from research to practice.

The results on the conceptual design of temporal databases have potential for finding
application in practice, but additional research is needed. When database designers actually
understand the core temporal database concepts, perhaps most prominently valid and
transaction time, they are able to design better databases using existing models and tools. A
central challenge is to provide complete conceptual models, with associated design tools, that
cover all aspects of designing a temporal database; empirical evaluation of these by real users is
needed to provide essential insights. Reengineering of legacy databases is also a very relevant
challenge in this context.

Page | ccclxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Concerning performance, more empirical studies are needed to compare temporal algebraic
operator implementations, and to possibly suggest even more efficient implementations.
Indexing techniques is an important aspect. While preliminary performance studies have been
carried out for all or most of the proposed temporal indexes in isolation, there has been little
effort to empirically compare them. More work is also needed on exploiting temporal indexes
in algebraic operations other than selection. Finally, there has been little work in refining and
validating cost models of temporal operators, or of developing and maintaining database
statistics. For example, the cardinality (number of specific values) of an attribute is less useful
than the average cardinality at a point in time. Another useful statistic is the number of long-
lived tuples, the presence of which is the bane of some index structures and temporal algebraic
operators.

A number of research areas that are either separate within temporal databases, overlap with
this area, or take temporal databases as their point of departure also pose important
challenges. Although not mentioned exhaustively in the coverage below, these areas are slated
to offer ample challenges to those researchers concerned with effective and efficient
implementation of advanced database functionality.

These may be extended to take into account prior history and temporal trends. For example, an
absolute temperature reading in a nuclear power plant may be acceptable if it is part of a
decreasing trend, but may signal a problem if it represents an increase. Some initial work has
been reported in this area, but as yet there has been little integration

For example, many “moving objects” such as people, animals, cars, aircraft, and ships will be
equipped with wireless devices (e.g., GPS) that track their positions and make these available
for storage in databases. The continued advances in wireless communications hardware and
software constitute powerful drivers for these types of applications. While we are already
witnessing the appearance of traffic-related systems (e.g., for tracking taxi’s or fleet
management), a very substantial growth can be expected in the number, sizes, diffusion, and
diversity of these applications.

Next, multimedia presentations and virtual reality scenarios are in fact special breeds of
spatiotemporal databases. And, again, there are powerful enablers of these kind of
spatiotemporal database applications. We are witnessing continued advances in data storage,
processor, network, and user interaction technologies. In short, the integration of temporal
databases with spatial databases offers exciting new challenges and promises to become an
important research area in the future. To mention just one example challenge, no index seems
to accommodate well the past, current, and anticipated future positions of moving objects such
as those mentioned above.

The area of temporal data mining is a relatively new one, where exploration has only recently
started in earnest. While extracting static associations from a mass of data is an important goal,
more effort needs to be focused on associations that capture time-varying behavior, such as
“when stock A goes up, stock B goes up within two weeks.” The fairly recent focus among
vendors, users, and researchers alike on data warehousing has brought new prominence to

Page | ccclxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

temporal databases. W. H. Inmon who is known as the founder of data warehousing cites time
variance as one of four salient characteristics of a data warehouse , and there is general
consensus that a data warehouse is likely to contain several years of time-referenced data.
Being temporal, data warehouses are thus prime candidates to benefit from the advances in
temporal databases. But cross-fertilization between temporal databases and data warehousing
is largely absent. In fact, some of the original impetus for a separate data model and query
language for data warehouses arose from a perceived lack of temporal support in the relational
model and SQL. Few attempts have been made to exploit the advances in temporal databases
in the context of data warehousing, although exceptions do exist. The special architecture of a
data warehouse and the emphasis on supporting advanced query functionality, e.g., application-
specific time-series analysis, bring novel challenges to temporal database researchers.
Reconciling the differences between general relational database schemas and specialized star
schemas would help enable users and developers to achieve an integrated view of an
enterprise. Another active area of commercial products is that of time-series abstract data types
(i.e., Informix’s datablades, Oracle’s cartridges). These data type extensions are highly useful for
specialized applications, particularly in the financial sphere, but do not address the general
problem of easy expression of the temporal constraints, queries, and modification. Rather, a
more comprehensive approach along the lines of the extensions being considered for
SQL/Temporal appears to be attractive.

1.8. CONCLUSION

Adopting a longer term and more abstract perspective, it is likely that new database
management technologies and application areas will continue to emerge that provide
‘temporal’ challenges. Due to the ubiquity of time and its importance to most database
management applications, and because built-in temporal support generally offers many benefits
and is challenging to provide, research in the temporal aspects of new database management
technologies will continue to flourish for existing as well as new application areas.

1.8. SUMMARY

This unit has briefly introduced you to temporal data management, emphasizing central
concepts, surveying important results, and describing the challenges faced. This unit briefly
summarizes the current state-of-the-art. A great amount of research has been conducted on
temporal data models and query languages, which has shown itself to be an extraordinarily
complex challenge with subtle issues. The (snapshot-based) semantics of standard temporal re-
lational schemas are well understood, as are the implications for database design. The
Bitemporal Conceptual Data Model is gaining acceptance as a desirable model in which to
consider data semantics and as a good foundation for a temporal query language.

Many languages have been proposed for querying temporal databases, half of which have a
formal basis. The numerous types of temporal queries are fairly well understood. The TSQL2
guery language has consolidated many years of research results into a single, comprehensive
language. New languages employ so-called statement modifiers, which offer a wholesale
approach to giving temporal semantics to query language statements. Constructs from TSQL2,

Page | ccclxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

enhanced with statement modifiers, are being incorporated into the part of SQL3 called
SQL/Temporal . The semantics of the time domain, including its structure, dimensionality, and
indeterminacy, are quite well understood, and representational issues of timestamps have
recently been resolved. Operations on timestamps are now well understood, and efficient
implementations exist.

Temporal joins, aggregates, and coalescing are well understood, and efficient implementations
exist. More than a dozen temporal index structures have been proposed, supporting valid time,
transaction time, or both. A handful of prototype temporal DBMS implementations have been
developed.

1.9. TUTOR-MARKED ASSIGNMENT (TMA)

1. What is a multimedia database?
2. Enumerate the limitations of conventional database.
3. Mention other database models you know and discuss their limitations.

1.10. FURTHER READINGS

Date, C. [1995] An Introduction Database System, 7th ed; Addison-Wesly 2000.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4" ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[1986]. “Database System Concepts, McGraw—Hill, 1986.

V. J. Tsotras and X. S. Wang. Temporal Databases. Encyclopedia of Electrical and Electronics
Engineering, John Wiley and Sons, 1999.

X. S. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical Design for Temporal Databases with
Multiple Granularities. ACM Transactions on Database Systems, 22(2):115-171, June 1997.

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB [1992.

Page | ccclxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

UNIT 2: THE MAJOR APPLICATION DOMAINS

2.0. INTRODUCTION

So far, we have discussed a variety of issues related to the modeling, design, and function of
databases as well as to the internal representation issues related to databases management
systems. Applications in domains such as Multimedia, Geographical Information Systems, and
digital libraries demand a completely different set of requirements in terms of the underlying
database models. The conventional relational database model is no longer appropriate for
these types of data. Furthermore the volume of data is typically significantly larger than in
classical database systems. Finally, indexing, retrieving and analyzing these data types require
specialized functionality not available in conventional database systems. The module will cover
the requirements of these emerging database technologies and the major application domains,
such as multimedia databases, spatial databases, temporal databases and biological/genome
databases, their underlying technologies, data models and languages.

2.1. OBIECTIVES
To gain insight into emerging database technologies and their application domains.
To appreciate the role of Genetics in information technology.

2.2. DATABASE ON THE WORLD WIDE WEB

In Web technology, a basic client-servers in publicly accessible shared files encoded using Hyper
Text Markup Language (HTML). A number of tolls enable users to create Web pages formatted
with HTML tags, freely mixed with multimedia content from graphics to audio and even to
video. A page has many intersperse hyperlinks-literally a link that enables user to “browse” or
move from one page to another across the internet. This ability has given a tremendous power
to end users in searching and navigating related information-often across different
containments. Information on the web is organized according to a Uniform Resource Locator
(URL)-something similar to an address that provides the complete pathname of a file. The
pathname consists of a string of machine and directory names separated slashes and ends in a
filename.

2.3.GISAPPLICATION

Page | ccclxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

It is possible to divide GIS s into categories: (1) cartographic applications (2) digital terrain
modeling applications, and (3) geographic applications

In cartographic and terrain modeling applications, variations in spatial attributes are captured-
for example, soil characteristics, crop density, and air quality. In geographic objects application,
objects of interest are identified from a physical domain — for example, power plants, electoral
districts, property parcels, product distribution districts, and city landmarks. These power
consumption, voting patterns, property sales volumes, product sales volume and traffic density.
The first two categories of GIS applications require a field-based representation, whereas the
third category requires and object-based one. The cartographic approach involves special
functions that can include the overlapping of layers of maps to combine attribute data that will
allow, for example, the measuring or distances in three-dimensional space and the
reclassification of data on the map. Digital terrain modeling requires a digital representation of
parts of earth’s surface using land elevations at sample points that are connected to yield a
surfaces model such as a three-dimensional net (connected observed points as well as
visualization. In object-based geographic applications, additional spatial functions are needed
to deal with data related to roads, physical pipelines, communication cables, power lines, and
such. For example, for a given region, comparable maps can be used for comparison at various
points of time to show changes in certain.

2.3.1. SPECIFIC GIS DATA OPERATION
GIS Applications are conducted through the use of special operators such as the following:

Interpolation: The process derives elevation data for points at which no samples have
been taken. It includes computation at single points, computation for a rectangular grid
or along a contour, and so forth. Most interpolation methods are based on triangulation
that uses the TIN method for interpolating elevation s inside the triangle based on those
of its vertices.

Interpretation Digital terrain modeling involves the interpretation of operations on
terrain data such as editing, smoothing, reducing details, and enhancing. Additional
operations involve patching or zipping the borders of triangles (in TIN data), and
merging, which implies combining overlapping models and resolving conflicts among
attribute data. Conversions among grid models, contour models, and TIN data are
involved in the interpretation of the terrain.

Proximity analysis: Several classes of proximity analysis include computations of “zones
of interest” around objects, such as the determination of a buffer around a car on a
highway. Shortest path algorithms using 2D or 3D information is an important class of
proximity analysis.

Raster image processing: This process can be divided into two categories map algebra,
which is used to integrate geographic features on different map layers to produce new
maps algebraically, and digital image analysis, which deals with analysis of a digital

Page | ccclxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

image for features such as edge detection and object detection. Detecting roads in
stalling image of city is an example of the latter.

Analysis of networks: Networks occur in GIS as many contexts that must be analyzed
and may be subjected to segmentations overlays, and so on. Network overlay refers to a
type of spatial join database for example, accident locations to yield, in this case a
profile of high-accident roadways.

Other Database Functionality: The functionality of a GIS database is also subject to other
considerations.

Extensibility: GISs are required to be extensible to accommodate a variety of constantly
evolving applications and corresponding data types. If a standard DBMS is used, it must
allow a core set of data types with a provision for defining additional types and methods
for those types.

Data quality control: A sin many other applications, quality of source data is of
paramount importance for providing accurate result to queries. This problems is
particularly significant in the GIS content because of the variety of data, sources and
measurement techniques involved and the absolute accuracy expected by application
users.

Visualization: A crucial function in GISs related to visualization the graphical distributes
to go with it. Major visualization techniques includes contouring through the uses of
isoclines, spatial units of lines or arcs of equal attributes values: hill shading an
illumination method used for qualitative relief depiction using perspective projection
methods from computer graphics. These techniques impose cartographic data and
other three-dimensional objects on terrain data providing animated scene renderings
such as those in flight simulations and animated movies.

Such requirements clearly illustrate that standard RDBMSs or ODBMSs do not meet the special

needs of GIS. It is therefore necessary to design systems that support the vector and raster

representations and the spatial functionality as well as the required RDBMS functionality in the

INFO part of the system, is briefly discussed in the subsection that follows. More systems are

likely to be designed in the future to work with relational or object databases that will contain

some of the spatial and most of the conceptual information.

2.3.2 An Example of A GIS: Arc-Info

ARC/INFO-A popular GIS LAUCHED IN 1981 BY environmental system research institute (ESRI)-

uses they are node model to store spatial data. A geographic layer - called coverage in ARC /

INFO-consists of three primitive. nodes(points), arcs (similar to lines), topological information.

An arc has a start node and an end node (and it therefore has direction too). In addition, the
polygons to the left and the right of the shape of arc are also stored along with each arc. The
database managed by the INFO RDBMS thus consists of three required tables: (1) node
attribute table (NAT), (2)are attribute table(ATT), and(3) polygon attribute

Page | ccclxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

table(PAT).Additional information can be stored in separate tables and joined with any of these
three tables.

The NAT contains an internal ID for the node, a user-specified ID, the coordinates of the node,
and any other information associated with that node, and any other information associated
with that node (e.g. names of the intersection). The AAT contains an internal ID for the arc, a
user-pacified ID, the internal ID of the start and end notes, the internal ID of polygons to the
left and the tight, a series of coordinates of shape points (if any), the length of the arc, any
other data associated with arc (e.g., the name of the road the arc represent). The PAT contains
an internal ID for the polygon, a user-specified ID, the area of the polygon, the perimeter of the
polygon, and any other associated data (e.g. name of the country the polygon represent).

Typical spatial queries are related to adjacency, containment, and connectivity. The arc node
model has enough information to satisfy all three types of queries, but the RDBMS is not ideally
suited for this type of querying. A simple example will highlight the number of times a relational
database has to be queried to extract adjacency information. Assume that we are trying to
determine whether two polygons, A and B, are adjacent to each other. We would have to
exhaustively look at the ATT to determine whether there is an edge that has A on one side and
B on the other. The search cannot be limited to the edges of either polygon as we do not
explicitly store all the acts that make a polygon in the PAT. Storing all the arcs sin the PAT would
redundant because all the information is already there in the AAT.

ESRI has released Arc Storm (Arc Store Management) which allows multiple users to use the
same GIS, handles distributed database, and integrates with other commercial RDBMS s like
ORCLE, INFORMIX, and SYBASE. While it offers many performance and function advantage over
ARC/INFOR, it is essentially an RDBMS embedded within a GIS.

2.4. GENOME DATA MANAGEMENT
2.4.1 BIOLOGICAL SCIENCES AND GENETICS

The biologic sciences encompass an enormous variety of information. Environment scence
gives us a view of how species live and interacting world filled with natural phenomena. Biology
and ecology study particular species. Anatomy focuses on the overall structure of an organism,
documenting the physical aspects of individual bodies. Traditional medicine and physiology
break the organism into systems and tissues and strive to collect information on the workings
of these systems and the organism as a whole. Histology and cell biology delve into the tissue
and cellular levels and provide knowledge about the inner structure and function of the cell.
This wealth of information that has only recently become a major application of database
technology.

Genetic has emerged as an ideal field for the application of information technology. In a broad
sense, it can be thought of as the construction of models based on information about genes-
which can be defined as basic units of heredity-and populations and the seeking out of
relationships in that information. The study of genetics can be divided into three branches: (1)

Page | ccclxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Mendelian genetics, (2) molecular genetics, and (3) population genetics. Mendelian genetics is
the study of the transmission of traits between generations. Molecular generics are the study of
the chemical structure and function of genes at the molecular genetics is the study of how
genetic information varies across population of organism.

Molecular genetics provides a more detailed look at genetic information by allowing researchers
to examine the composition, structure and function of genes. The origins of molecular genetics
can be traced to two important discoveries. The first occurred in 1869 when Friedrich Melcher
discovered unclean and its primary component, deoxyribonucleic acid (DNA). Subsequent
Research DNA and a related compound, ribonucleic acid (RNA), were found to be composed of
nucleotides (a sugar a phosphate, and a base, which combined to form nucleic acid) linked into
long polymers via the sugar and phosphate. The second discovery was the demonstration in
1944 by Oswald Avery that DNA was is compose chains of nucleic arranged information. Genes
were thus shown to be composed of chins of nucleic acids arranged linearly on chromosomes
and to serve three primary functions: (1) replicating genetic information between generations,
(2) providing blueprints for the creation of polypeptides, and (3) accumulating changes thereby
allowing evolution to occur.

2.4.2 CHARACTERISTICS OF BIOLOGICAL DATA

Biological data exhibits many special characteristics that make management of biological
information a particularly challenging problem. We will thus begin by summarizing the
characteristics related to biological information and focusing on a multidisciplinary field called
bioinformatics that has emerged, with graduate degree programs now in plaoce in several
universities. Bioinformatics address information management of genetic information with
special emphasis on DNA sequence analysis. It needs to be broadened into a wider scope to
harness all types of biological information-its modeling, storage, retrieval, and management.

Characteristics 1: Biological data is highly complex when compared with most other domains
on applications. Definitions of such data must thus be able to represent a complex substructure
of data as well as relationships and to ensure that no information is lost during biological data
modeling. The structure of biological data often provides an additional context for
interpretation of the information. Biological information systems must be able to represent any
level of complexity in any data sheme relationship or shema substructure-not just hierarchical,
binary, or table data. As an example MITOMAP is a database documenting the human
mitochondral genome. This single genome is a small, circular encoding messenger RNA,
ribosomal RNA, and transfer RNA; 1,000 known population variants: over 60 known disease
association; and a limited set of knowlegde on the complex molecular interactions of the
biochemical energy producing pathway of oxidant phosphorylation. As might be expected, its
management has encoutered a large number of problems; we have been unable to use the
traditional RDBMS traditional RDBMS or ODBMS approaches to capture all aspects of the data.

Page | ccclxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Characteristics 2: The amount and range of variability in data is high. Hence, biological system
must be flexible in handling data types and values. With such a wide range of possible data
values, placing constraints on data types must be limited since this many exclude unexpected
values-e.g. outlier values-that are particularly common in the biological domain. Exclusion of
such values results in a loss of information. In addition, frequent expectations of biological data
structures may require a choice of data types to available for given piece of data.

Characteristics 3: Schemas in biological databases change at a rapid pace. Hence, for improved
information flow between generations or releases of database, shema evolution and data
object migration must be supported. The ability to extend schema, a frequent occurrence in the
biological setting, is unsupported in most relational and object database systems. Presently
systems such as Genbank release the entire database with new schemas once or twice a year
rather than incrementally change the system as new schemas once or twice a year rather than
incrementally changing the system as changes become neccesary. Such an evolutionary
database would provide a timely and orderly mechanism of following change to individual data
entities in biological database over time. This sort tracking is important for biological
researchers to be able to access and reproduce previous results.

Characteristics 4: Representations of the same data by different biologists will likely be
different (even when using the same system). Hence, mechanisms for “aligning” different
biological schemas or different versions of schemas should be supported. Given the complexity
of biological data, there are a multitude of modeling any given entity, with the results often
reflecting the particular focus of the scientist. While two individuals may produce different data
models will likely have numerous points in common. In such situations, it would be useful to
biological investigators to be able to run queries across these common pints. By linking data
elements in a network of schema, this could be accomplished.

Characteristics 5: Most users of biological data do not require write access to the database;
read-only access is adequate. Write access is limited to privileged users called curators. For
example, the database created as part of the MITOMAP project has no average more than
15,000 users per month on the Internet. There are fewer than twenty noncurator generated
submission to MITOMAP every month. In other words, the number of users requiring write
access is small. Users generate a wide variety of read-access pattern into the database, but
these patterns are not the same as those seen in traditonal relational database. User requested
ad hoc searches demand indexing of often unexpected combinations of data instance classes.

Characteristics 6: Most biologists are into likely to have any knowlegde of the internal structure
of the database or about schema design. Biological database interfaces should sideplay
information to users in a manner that is applicableto the problem they are trying to address
and that reflects the underlying data structure. Biological users usually know which data they
require, but they have no technical knowledge of the data structure or how a DBMS represents
the data. They rely on technical user to provide them with view into the database. Relational
schemas fail to provide cues or any intuitive information to the user regarding the meaning of
their schema. Web interface in particular often provide present search interfaces, which may
limit access into the database. However, if these interfaceses are generated directly from

Page | ccclxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

database structures, they are likely tp produce a wider posible range of access, although they
may not guarrantee usablity.

Chracteristic 7: The context of data meaning for its use in biological applications. Hence,
context must be maintained and conveyed to the user when appropriate. In addition, it should
be posible to integrate as many context as possible to maximize theintepretation of a biological
data value. Isolated values are of less use in bological systems. For example, the sequence of a
DNA strand is not particularly useful without additional information describing its organisation,
funtion, and such a single neuclotide on a DNA strands, for example seen in context with no
disease causing strands could be seen as a causative element for sickle cell anaemia.

Characteristic 8: Defining and representing complex queries is extremly important to the edge
of the data structure (see Characteristics 6), average users cannot construct a complex query
across data sets on their own. Thus, in order to be truly useful, systems must provide some
tools for building these queries. As mentioned previously, many systems provide predefined
query templates.

Characteristic 9: User of biological information often require access to”old” values of the data-
particularly when verifying previously reported results. Hence, changes to the values of data in
the database must be surpported through a system archives. Access to the both the most
recent version of a data value and its previous version are important in the biological domain.
Investigators consistently want the most up-to-data, but they must also be able to reconstruct
previous work and revaluate prior and current information. Consequently, values that are
about to be updated in a biological database cannot simply be thrown away.

All of these characteristics clearly point to the fact that today’s DBMS do not fully cater to the
requirements of complex biological data. A new direction in database management system is
necessary.

2.4.3 THE HUMAN GENOME PROJECT AND EXISTING BIOLOGICAL DATABASES

The term genome is defined as the total genetic information that can be obtained about an
entity. The human genome, for example generally refers to the complete set of genes required
to create a human being-estimated to be between 100,000 and 300,000 genes spread over 23
pairs of chromosomes, with an estimated 3-4 billion nucleotides. The goal of the Human
Genome Project (HGP) is to obtain the complete sequence-the ordering of the base-of those
nucleotides. At present only 8,000 genes have been identified and and less than 10 percent of
the human genome has been sequenced. However, the entire sequence is expected to the
completed by the year 2002. In isolation, the human DNA sequence is not particularly useful.
The sequence can however be combined with other data and useful and used as a powerful
tool to help address questions in genetics, biochemistry medicine,anthropology, and
agriculture. In the existing genome databases, the focus has been on”’curating” (or collecting
with some initial scrunity and quality check) and classifying information about genome,
numerous organism such as E.coli, Dropsophila, and C.elegan have been investigated. We will

Page | ccclxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

briefly discuss some of the existing database systems that are supporting or have grown out of
the Human Genome Project.

Benbank. The preminent DNA requence database in the world today is Genback, maintained by
the National Center for Biotechnology Information (NCBI) of the National Library of Medicine
(NLM). It was established in 1978 as a central repository for DNA sequence data. Since then it
has expanded somewhat in scope to include expressed sequence tag data, protein sequence
data, three-dimensional protein structure, taxonomy and links to the literature (MEDLINE). Its
latest release contains over 602,000,000 nucleotide base of more than 920,000 sequences form
over 16,000 species with roughly ten new organism being added each day. The database size has
double approximately every eighteen months for five years.

While it is a complex, comprehensive database, the scope of its coverage is focused on human
sequences and links to the literature. Other limited data sources (e.g. three-dimensional
structure and OMM, disscused PDB databases and redesigned the structure of the Genbank
system to accommodate these new data sets. The system is maintained as a combination of flat
files, relational databases, and files containing Abstract Syntax Notation One (ASN.1)-a syntax
for defining data structure developed for the telecommunications industry. Each Genback entry
is assigned a unique identifier by the UCBI. Updates are assigned a new identifier, with the
identifier of the original entity remaining unchanged for archival purposes. Older refrence to an
entity thus do not inadvertently indicate a new and possible inapproapriate values. The most
current concepts also receive a second set of unique identifiers (UIDs), which marks the most
up-to-date form of a concepts while allowing older version to be accessed via there original
identifier.

The average user of the database is not able to access the structure of the data directly for
guerying or other functions, although complete snapshots of the database are available for
export in a number of formats, including ASN.1 the query mechanism provide a via the enter
application (or its world wide web version), which allows keywords, sequences, and Genbank
UDID searching through a static interface.

The Genome Database (GDB). Created in 1989, the genome database (GDB) is a catalog human
genome mapping data, a process that assocciates a piece of information with a particular
location location on the human genome. The degree of precision of this location on the
mapdepends upon the source of the data, but it is usually not at the level of Individual
necleotide bases GDB data includes data describing primarly map information (distance and
confidence limits), and Polymerase China Reaction (PCR) probe data (experimental
conditions,PCR primer, and reagents used). More recently efforts have been made to add data
on mutation linked to genetic lock, cell lines used in experiments, DNA probe libraries, and
some limited polymorphism and population data.

The GDB systems is built around SYBASE, a commercial relational DBMS, and its data are
modeled using standard Entity-Relationship techniques. The implementers of GDB have noted
difficulties in using this model to capture more than simple map and probe data. In order to
improve data integrity and to simplify the programming for the application writer, GDB

Page | ccclxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

distributes a Database Access Toolkits. However, most users use a web interfaces to search the
ten interlinked data managers. Each manager keeps tracks of the link (relationships) for one of
the ten tables within the GDB system. As with Genbank, users are given only a very high-level
veiw of the data at the time of searching and thus cannot easily make use of any knowlegde
gleaned from the structure of the GDB tables. Search methods are most useful when users are
simply looking for an index into map or probe data.Expoloratory ad hoc searching of the
database is not encouraged by present interfaces. Integration of the database structures of
GDB and OMM was never fully established.

2.5. DIGITAL LIBRARIES

Digital libraries are an important and active research area. Conceptually, a digital library is an
analog of a traditional library-a large collection of information soucres in various media-coupled
with the advantages of traditional technologies. However, digital libraries differ from their
traditional counter-parts in significant ways: storage is digital, remote access is quick and easy,
and materials are copied from a master version. Furthermore, keeping extra copies on hand is
easy and is not hampered by budget and storage restrictions, which are major problems in
traditional libraries. Thus, digital technologies overcome many of the physical and economic
limitations of traditional libraries.

The introduction to the April 1995 communications of the ACM special issues on digital libraries
describes them grandly as the “opportunity...to fulfill the age-old dread of every human being:
gaining ready access to humanity’s store of information. Unlike the related data in a database, a
digital library encompasses as multitude of sources, mainly unrelated. Logically, databases can
be components of digital libraries.

The Digital Library Initiative (DLI), jointly fuced by SNF, DARPA, and NASA, has been a major
accelerator of the development of digital libraries. This initiative provided significant funding to
six major projects at six universities in its first phase covering a broad spectrum of enabling
technologies (as will be discussed below). The initiative’s web page
(sedli.grainger.uiuc.edu/national.htm) define its focus as “dramatically advance the means to
collect, store, and organize information in digital forms, and make it available for searching,
retrieval, and processing via communication networks-all in user-friendly ways.

The manitude of these data collections as well as their diversity and multiple formats provides
challenges on a new scale. The future progression of the development of digital libraries is likely
to move from the present technology of retrieval via the internet, though Net searches of
ondexed information in reprositiories, to a time of information correlation and analysis by
intellegent networks. Techniques for collecting information, storing it, and organizing it to
support informational requirements learned in decades of design and implementation of
database will provide the baseline for development of approaches appropriate for digital
libraries. Search, retrieval, and processing of many formss of digital information.

2.6. CONCLUSION

Page | ccclxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Applications in domains such as Multimedia, Geographical Information Systems, and digital
libraries demand a completely different set of requirements in terms of the underlying
database models which conventional relational database can no longer handle. The
conventional relational database model is no longer appropriate for these types of data.
Furthermore the volume of data is typically significantly larger than in classical database
systems. Finally, indexing, retrieving and analyzing these data types require specialized
functionality not available in conventional database systems. Hence, a new direction, such as
described above, in DBMS is necessary.

2.7. SUMMARY

The requirements of these emerging database technologies and the major application domains,
such as multimedia databases, spatial databases, temporal databases and biological/genome
databases, their underlying technologies, data models and languages have been covered in this
unit.

2.8. FURTHER READINGS

G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Query Plans for Conventional and Temporal
Queries Involving Duplicates and Ordering. In Proceedings of the 16th International Conference
on Data Engineering, San Diego, California, February/March 2000, to appear.

J. Bair, M. H. Bohlen, C. S. Jensen, and R. T. Snodgrass. Notions of Upward Compatibility of
Temporal Query Languages. Wirtschaftsinformatik, 39(1):25-34, February 1997.

J. Clifford and A. Tuzhilin (eds.). Recent Advances in Temporal Databases: Proceedings of
the International Workshop on Temporal Databases. Workshops in Computing Series. Springer-
Verlag 1995.

J. Wijsen. Temporal FDs on Complex Objects. ACM Transactions on Database Systems, 24(1):
127-176, March 1999.

K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum Approaches to Temporal DBMS
Implementation. In Proceedings of the 1998 International Database Engineering and
Applications Symposium, pp. 4—13, Cardiff, Wales, UK, July 1998.

M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond. Springer-
Verlag 1999.

O. Etzion, S. Jajodia, and S. Sripada (eds.). Temporal Databases: Research and Practice. LNCS
1399, Springer-Verlag 1998.

Page | ccclxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann
Publishers 2000.

Rob, P., and Coronel, C. [2000] Database Systems, Design, Implementation, and Management,
4™ ed., Course Technology, 2000.

Silberwschatz., A., and Korth, H.,[2000]. “Database System Concepts”, 4th ed., McGraw — hill,
2000.

Zobel, J., Moffat, A., and Sacks—Davis, R., [1992]. “An Efficient Indexing Technique for Full — Text
Database Systems,” in VLDB [1992.

www.w3schools.com

Page | ccclxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

UNIT 3: POSTGRESQL

3.0

3.1

INTRODUCTION

PostgreSQL is the most advanced open source database server. In this section, you will
learn about database operation on the open source software, alongside the history of
PostgreSQL.

Three basic office productivity applications exist: word processors, spreadsheets, and
databases. Word processors produce text documents critical to any business.
Spreadsheets are used for financial calculations and analysis. Databases are used
primarily for data storage and retrieval. You can use a word processor or spreadsheet to
store small amounts of data. However, with large volumes of data or data that must be
retrieved and updated frequently, databases are the best choice. Databases allow
orderly data storage, rapid data retrieval, and complex data analysis.

OBJECTIVE

To understand the meaning and functionalities of the PostgreSQL

Page | ccclxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.2 Whatis POSTGRESQL?

POSTGRESQL is an enhancement of the Postgres management system, a next-
generation DBMS research prototype. While POSTGRESQL retains the powerful data
model and rich data types of Postgres, it replaces the POSTQUEL query language
with an extended subset of SQL. POSTGRESQL is free and the complete source is
available.

POSTGRESQL development is performed by a team of Internet developers who all
subscribe to the POSTGRESQL development mailing list. This team is responsible for
all development of POSTGRESQL.

Page | ccclxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

The authors of POSTGRESQL 1.01 were Andrew Yu and Jolly Chen. Many others

have contributed to the porting, testing, debugging, and enhancement of the code.

The original Postgres code, from which POSTGRESQL is derived, was the effort of
many graduate students, undergraduate students, and staff programmers working
under the direction of Professor Michael Stonebraker at the University of California,
Berkeley.

The original name of the software at Berkeley was Postgres. When SQL functionality
was added in 1995, its name was changed to Postgres95. The name was changed at
the end of 1996 to POSTGRESQL.

Page | ccclxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

It is pronounced Post-Gres-Q-L.

3.3 POSTGRESQL and other DBMS

There are several ways of measuring software: features, performance, reliability,
support, and price.

3.3.1 Functions

Functions allow blocks of code to be executed by the server. Although these blocks can
be written in SQL, the lack of basic programming operations which existed prior to
version 8.4, such as branching and looping, has driven the adoption of other languages
inside of functions. Some of the languages can even execute inside of triggers. Functions
in PostgreSQL can be written in the following languages:

A built-in language called PL/pgSQL resembles Oracle's procedural language PL/SQL.
Scripting languages are supported through PL/Lua, PL/LOLCODE, PL/Perl, pIPHP, PL/
Python, PL/Ruby, PL/sh, PL/Tcl and PL/Scheme.
Compiled languages C, C++, or Java (via PL/Java).
The statistical language R through PL/R.
PostgreSQL supports row-returning functions, where the output of the function is a set
of values which can be treated much like a table within queries. Custom aggregates and
window functions can also be defined.

Page | ccclxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Functions can be defined to execute with the privileges of either the caller or the user
who defined the function. Functions are sometimes referred to as stored procedures,
although there is a slight technical distinction between the two.

3.3.2 Indexes

PostgreSQL includes built-in support for B+-tree, hash, GiST and GiN indexes. In
addition, user-defined index methods can be created, although this is quite an involved
process. Indexes in PostgreSQL also support the following features:

PostgreSQL is capable of scanning indexes backwards when needed; a separate
index is never needed to support ORDER BY field DESC.

Expression indexes can be created with an index of the result of an expression or
function, instead of simply the value of a column.

Partial indexes, which only index part of a table, can be created by adding a
WHERE clause to the end of the CREATE INDEX statement. This allows a smaller
index to be created.

The planner is capable of using multiple indexes together to satisfy complex
queries, using temporary in-memory bitmap index operations.

3.3.3 Triggers

Triggers are events triggered by the action of SQL DML statements. For example, an
INSERT statement might activate a trigger that checked if the values of the statement
were valid. Most triggers are only activated by either INSERT or UPDATE statements.

Triggers are fully supported and can be attached to tables but not to views. Views can
have rules, though. Multiple triggers are fired in alphabetical order. In addition to calling
functions written in the native PL/PgSQL, triggers can also invoke functions written in
other languages like PL/Perl.

3.3.4 MVCC

PostgreSQL manages concurrency through a system known as Multi-Version
Concurrency Control (MVCC), which gives each user a "snapshot" of the database,
allowing changes to be made without being visible to other users until a transaction is
committed. This largely eliminates the need for read locks, and ensures the database
maintains the ACID principles in an efficient manner.

3.3.5 Rules

Page | ccclxxx

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Rules allow the "query tree" of an incoming query to be rewritten. One common usage
is to implement updatable views.

3.3.6 Data types
A wide variety of native data types are supported, including:

Variable length arrays (including text and composite types) up to 1GB in total

storage size.

Arbitrary precision numerics

Geometric primitives

IPv4 and IPv6 addresses

CIDR blocks and MAC addresses

XML supporting Xpath queries (as of 8.3)

UUID (as of 8.3)
In addition, users can create their own data types which can usually be made fully
indexable via PostgreSQL's GiST infrastructure. Examples of these are the geographic
information system (GIS) data types from the PostGIS project for PostgreSQL.

3.3.7 User-defined objects
New types of almost all objects inside the database can be created, including:

Casts

Conversions

Data types

Domains

Functions, including aggregate functions
Indexes

Operators (existing ones can be overloaded)
Procedural languages

3,3,8 Inheritance

Tables can be set to inherit their characteristics from a "parent" table. Data in child
tables will appear to exist in the parent tables, unless data is selected from the parent
table using the ONLY keyword, i.e. select * from ONLY PARENT_TABLE. Adding a column
in the parent table will cause that column to appear in the child table.

Page | ccclxxxi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Inheritance can be used to implement table partitioning, using either triggers or rules to
direct inserts to the parent table into the proper child tables.

This feature is not fully supported yet—in particular, table constraints are not currently
inheritable. As of the 8.4 release, all check constraints and not-null constraints on a
parent table are automatically inherited by its children. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

Inheritance provides a way to map the features of generalization hierarchies depicted in
Entity Relationship Diagrams (ERD) directly into the PostgreSQL database.

3.3.9 Performance

POSTGRESQL runs in two modes. Normal fsync mode flushes every completed
transaction to disk, guaranteeing that if the OS crashes or loses power in the next
few seconds, all your data is safely stored on disk. In this mode, we are slower than
most commercial databases, partly because few of them do such conservative
flushing to disk in their default modes. In no-fsync mode, we are usually faster than

Page | ccclxxxii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

commercial databases, though in this mode, an OS crash could cause data

corruption. We are working to provide an intermediate mode that suffers less

performance overhead than full fsync mode, and will allow data integrity within 30
seconds of an OS crash.

In comparison to MySQL or leaner database systems, we are slower on
inserts/updates because we have transaction overhead. Of course, MySQL doesn't
have any of the features mentioned in the Features section above. We are built for
flexibility and features, though we continue to improve performance through

Page | ccclxxxiii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

profiling and source code analysis. There is an interesting Web page comparing

POSTGRESQL to MySQL at http://openacs.org/why-not-mysql.html.

We handle each user connection by creating a Unix process. Backend processes
share data buffers and locking information. With multiple CPU's, multiple backends
can easily run on different CPU's.

3.3.10 Reliability

We realize that a DBMS must be reliable, or it is worthless. We strive to release well-
tested, stable code that has a minimum of bugs. Each release has at least one month
of beta testing, and our release history shows that we can provide stable, solid

Page | ccclxxxiv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

releases that are ready for production use. We believe we compare favorably to

other database software in this area.

3.3.11 Support

Our mailing list provides a large group of developers and users to help resolve any
problems encountered. While we can not guarantee a fix, commercial DBMS's don't
always supply a fix either. Direct access to developers, the user community,
manuals, and the source code often make POSTGRESQL support superior to other
DBMS's. There is commercial per-incident support available for those who need it.
(See support FAQ item.)

Page | ccclxxxv

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.3.12 Price

We are free for all use, both commercial and non-commercial. You can add our code to
your product with no limitations, except those outlined in our BSD-style license stated
above.

3.3.13 psql

The primary front-end for PostgreSQL is the psql command-line program, which can be
used to enter SQL queries directly, or execute them from a file. In addition, psql
provides a number of meta-commands and various shell-like features to facilitate
writing scripts and automating a wide variety of tasks; for example tab completion of
object names and SQL syntax.

3.3.14 pgAdmin

pgAdmin is a free and open source graphical front-end administration tool for
PostgreSQL, which is supported on most popular computer platforms. The program is
available in more than a dozen languages, and is released under the Artistic License. The
first prototype, named pgManager, was written for PostgreSQL 6.3.2 from 1998. The
stable release (named pgAdmin Il) was first released on 16 January 2002. The current
version is pgAdmin lll, which is released under the Artistic License.

3.3.15 phpPgAdmin

phpPgAdmin is a web-based administration tool for PostgreSQL written in PHP and
based on the popular phpMyAdmin interface originally written for MySQL
administration.

Page | ccclxxxvi

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.3.16 Proprietary

A number of companies offer proprietary tools for PostgreSQL. They often consist of a
universal core that is adapted for various specific database products. These tools mostly
share the administration features with the open source tools but offer improvements in
data modelling, im/exporting or reporting. Among them are Navicat, SQL Maestro as
well as pure data modeling tools like DeZign for Databases or ModelRight.

3.3.17 Benchmarks

Many informal performance studies of PostgreSQL have been done but the first
industry-standard and peer-validated benchmark was completed in June 2007 using the
Sun Java System Application Server (proprietary version of GlassFish) 9.0 Platform
Edition, UltraSPARC T1 based Sun Fire server and Postgres 8.2. This result of 778.14
SPECjAppServer2004 JOPS@Standard compares favourably with the 874
JOPS@Standard with Oracle 10 on an Itanium based HP-UX system.

In August 2007, Sun submitted an improved benchmark score of 813.73
SPECjAppServer2004 JOPS@Standard. With the system under test at a reduced price,
the price/performance improved from SUS 84.98/JOPS to SUS 0.57/JOPS.

3.3.18 Prominent users

Yahoo! for web user behavioural analysis, storing 2 petabytes and claimed to be the
largest data warehouse using a heavily modified version of PostgreSQL with an
entirely different column-based storage engine and different query processing
layer. While for performance, storage, and query purposes the database bears little
resemblance to PostgreSQL, The front-end maintains compatibility so that Yahoo
can use many off-the-shelf tools already written to interact with PostgreSQL.
OpenStreetMap, a collaborative project to create a free editable map of the world.
Afilias, domain registries for .org, .info and others.

Sony Online multiplayer online games.

BASF, shopping platform for their agribusiness portal.

hi5.com social networking portal.

Skype VolIP application, central business databases.

Sun xVM, Sun's virtualization and datacenter automation suite

Evergreen, an open source integrated library system providing an Online Public
Access Catalogue and cataloguing, management, and other functions for hundreds
of libraries in the United States, Canada, and elsewhere

Page | ccclxxxvii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

NextBus, provider of arrival-time prediction and GPS tracking systems for public
transportation

Snooth, a wine database, featuring millions of reviews and hundreds of thousands
of wines.

The Weather Channel Cable television network.

3.4 OPEN SOURCE SOFTWARE

POSTGRESQL is open source software. The term “open source software" often confuses people.
With commercial software, a company hires programmers, develops a product, and sells it to
users. With Internet communication, however, new possibilities exist. Open source software
has no company. Instead, capable programmers with interest and some free time get together
via the Internet and exchange ideas. Someone writes a program and puts it in a place everyone
can access. Other programmers join and make changes. When the program is sufficiently
functional, the developers advertise the program's availability to other Internet users. Users
find bugs and missing features and report them back to the developers, who, in turn, enhance
the program.

It sounds like an unworkable cycle, but in fact it has several advantages:

A company structure is not required, so there are no overhead and no economic
restrictions.

Program development is not limited to a hired programming staff, but taps the
capabilities and experience of a large pool of Internet programmers.

User feedback is facilitated, allowing program testing by a large number of users in a
short period of time.

Program enhancements can be rapidly distributed to users.

3.5 CONCLUSION

Page | ccclxxxviii

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

Postgresql has been seen to be a very resourceful application for the management of
databases.

3.6 SUMMARY

This unit has explored the long history of POSTGRESQL, starting with its roots in university
research. POSTGRESQL would not have achieved its success without the Internet. The
ability to communicate with people around the world has allowed a community of unpaid
developers to enhance and support software that rivals commercial database offerings. By
allowing everyone to see the source code and contribute to its ongoing development,
POSTGRESQL continues to improve every day.

3.7 TUTOR MARKED ASSIGNMENT (TMA)
What is the primary frontend for PostgreSQL?

Explain the term open source software

Page | ccclxxxix

CIT 744 ADVANCED DATABASE MANAGEMENT SYSTEM 2 009

3.8 FURTHER READING

Douglas, Korry (August 5, 2005). PostgreSQL (Second ed.). Sams. pp. 664. ISBN0672327562.

http://www.informit.com/store/product.aspx?isbn=0672327562.

Gilmore, W. Jason; Treat, Robert (February 27, 2006). BeginningPHPandPostgreSQL8:From
NovicetoProfessional. Apress. pp. 896. ISBN1590595475. http://www.apress.com/book/view/
1590595475.

Matthew, Neil; Stones, Richard (April 6, 2005). BeginningDatabaseswithPostgreSQL (Second
ed.). Apress. pp. 664. 1ISBN1590594789. http://www.apress.com/book/view/9781590594780.

Worsley, John C.; Drake, Joshua D. (January 2002). Practical PostgreSQL. O'Reilly Media.
pp- 636.ISBN 1565928466. http://oreilly.com/catalog/9781565928466/.

Page | ccexc

