

NATIONAL OPEN UNIVERSITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNLOGY

COURSE CODE: CIT 853

COURSE TITLE: INTERNET CONCEPTS AND WEB DESIGN

COURSE
GUIDE

CIT 853
INTERNET CONCEPTS AND WEB DESIGN

Course Team Mr. O. J. Oyelade (Course Developer/Writer) –

Covenant University, Ota

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 853 COURSE GUIDE

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by:
National Open University of Nigeria

Printed 2013

ISBN: 978-058-482-X

All Rights Reserved

Printed by:

ii

CIT 853 COURSE GUIDE

CONTENTS PAGE

Introduction ……………………………………………………. iv
What you will Learn in this Course …………………………… iv
Course Aims …………………………………………………… iv
Course Objectives ……………………………………………… iv
Working through this Course …………………………………... v
Course Materials ……………………………………………….. v
Study Units ……………………………………………………… vi
Textbooks and References ……………………………………… vii
Assignment File ………………………………………………… viii
Presentation Schedule ………………………………………….. viii
Assessment ……………………………………………………… viii
Tutor-Marked Assignment ……………………………………… ix
Final Examination and Grading ………………………………… ix
Course Marking Scheme ………………………………………... x
Course Overview ……………………………………………….. x
How to Get the most of this Course ……………………………. xi
Facilitators/Tutors and Tutorials ……………………………….. xiii
Summary ………………………………………………………… xiv

iii

CIT 853 COURSE GUIDE

iv

INTRODUCTION

Internet Concept and Web Design is a three- credit unit degree course
available to all students offering the Bachelor of Science (B.Sc.) in
Computer Science (CIT).

Internet Concept and Web Design is a specialised area in the field of
Computer Science. This course discusses the topics which include:
Overview of the Internet, Concepts of website design and how to
evaluate websites; JavaScript and VBScript; extensible Markup
language and introduction to Micromedia Dreamweaver. Students are
expected to complete extensive Internet and Web Design oriented
projects to demonstrate mastery of the skills discussed in this course.

WHAT YOU WILL LEARN IN THIS COURSE

This course guide tells you briefly what the course is all about, what
course materials you will be using and how you can work your way
with these materials. In addition, it advocates some general guidelines
for the amount of time you are likely to spend on each unit of the
course in order to complete it successfully.

It gives you guidance in respect of your Tutor-Marked Assignment
which will be made available in the assignment file. There will be
regular tutorials classes that are related to the course. It is advisable
for you to attend these tutorial sessions. The course will prepare you
for the challenges you will meet in the field of Computer Science.

COURSE AIM

The major aim of the course is to provide you with an understanding
of the introduction to Web design and Internet programming in the
field of Computer Science and also to expose you to practical
application of the Internet and Web Design in real life.

COURSE OBJECTIVES

To achieve this aim, the course has a set of objectives. Each unit has
specific objectives which are included at the beginning of the unit.
You should read these objectives carefully before you study the unit.
You may wish to refer to them during your study to check on your
progress. You should always look at the unit objectives after
completion of each unit. By doing so, you would have followed the
instruction in the unit.

CIT 853 COURSE GUIDE

v

Below are the comprehensive objectives of the course as a whole. By
meeting these objectives, you should have achieved the aim of the
course as a whole. In addition to the aim above, this course sets out to
achieve some objectives. Therefore, after going through the course,
you should be able to:

• explain the overview of the Internet
• describe the structure of web applications and its architecture
• explain the concept of client/server computing
• explain the fundamental of web design
• adding cascading style sheet to HTML
• format HTML with CSS font and text properties
• explain the concept of javascript and vbscript
• explain the fundamental of extensible markup language

(XML)
• explain the concept of document type definition and XML

schema
• explain the basic concept of micromedia dream weaver.

WORKING THROUGH THIS COURSE

To complete this course, you are required to read each study unit,
read the textbooks and read other materials which may be provided
by the National Open University of Nigeria. Each unit contains self-
assessment exercises and at certain points in the course you will be
required to submit assignments for assessment purposes. At the end
of the course there is a final examination. The course should take you
about a total of 17–18 weeks to complete. Below you will find listed
all the components of the course, what you have to do and how you
should allocate your time to each unit in order to complete the course
on time and successfully.

This course entails that you spend a lot of time to read. I would
advise that you avail yourself the opportunity of attending the tutorial
sessions where you have the opportunity of comparing your
knowledge with that of other people.

THE COURSE MATERIALS

The main components of the course are:

1. The Course Guide
2. Study Units
3. References/Further Reading
4. Assignments

CIT 853 COURSE GUIDE

vi

5. Presentation Schedule

STUDY UNITS

The study units in this course are as follows:

Module1 The Internet

Unit 1 Overview of the Internet
Unit 2 Introduction to the Web

Module 2 Web Design

Unit 1 Introduction to Web Design
Unit 2 Adding Graphics to Web Pages
Unit 3 Cascading Style Sheet (CSS)
Unit 4 Cascading Style Sheet Properties
Unit 5 Cascading Style Sheet Properties Continue

Module 3 JavaScript and Visual Basic Script (VBScript)

Unit 1 JavaScript
Unit 2 JavaScript and Object Oriented Programming (OOP)
Unit 3 Visual Basic Script
Unit 4 VBScript Object and Controlling VBScript Routines

Module 4 Extensible Markup Language (XML)

Unit 1 XML Basics
Unit 2 Document Type Definition (DTDs)
Unit 3 XML Schema Basics
Unit 4 XSLT Basics
Unit 5 Micromedia Dreamweaver

Module 1 consists of two units. In unit 1, it addresses the overview of
the Internet, that is, the definition, administration of the Internet,
domain name and IP addresses, information routing on the Internet
and application layer protocols. The second unit deals with the
introduction to the Web. Module 2 consists of five units; Unit 1 deals
with introduction to Web design where it discusses on the common
gateway interface, hypertext markup language(HTML) and element
of HTML. Unit 2 discusses on adding graphics to Web pages. Units
3, 4 and 5 deal with Cascading Style Sheet(CSS) where it discusses
on the brief history of CSS, defining global style in CSS, how to
insert CSS into HTML document, style sheet procedure rules, its
properties, CSS box properties and classification properties. Module

CIT 853 COURSE GUIDE

vii

3 consists of four units; unit 1 discusses on JavaScript such as types
of JavaScript, variables in JavaScript, the operators and JavaScript
control flow. Unit 2 deals with JavaScript and introduction to object
oriented programming, while units 3 and 4 focus on visual basic
script and how to control VBScript routines. Module 4 consists of
five units; Unit 1 introduces the XML basics, unit 2 discusses on
Document Type Definition (DTDs) where it focuses on creating a
DTDs and how to validate an XML document with a DTD, unit 3
focuses on XML schema basics where it discusses on the purpose and
power of XML schema, unit 4 discusses on XSLT basics and lastly
unit 5 deals with the introduction to micromedia dreamweaver.

Each unit consists of one or two weeks' work and include an
introduction, objectives, activities, conclusion, and summary, Tutor-
Marked Assignments (TMA), references and further reading. In
general, these activities test you on the materials you have just
covered or require you to apply it in some way and thereby assist you
to evaluate your progress and to reinforce your comprehension of the
material. Together with TMAs, these activities will help you in
achieving the stated learning objectives of the individual units and of
course in general.

TEXTBOOKS AND REFERENCES

Alberto, L. & Indra, W. (2000). Communications and Networking:

Fundamental Concepts and Key Architecture.. McGraw-Hill.

Brooks & David, R (2007). An Introduction to HTML and JavaScript
for Scientists and Engineers.

Charles, F. G. & Paul, P.(1998). The XML Handbook.. Prentice Hall

Computer Books.

David, F. (1998). JavaScript: The Definitive Guide (3rd ed.).. O'Reilly

Media.

David, S. M. (2006). Dreamweaver 8: The Missing Manual.

Don, J. &Jeffery, H. (2006). Advanced VBScript for Microsoft

Windows Administrators.. Microsoft Press.

Ed, Wilson (2006). “Microsoft VBScript: Step by Step”. Microsoft

Press.

Elliotte, R. H. & Scott, M.W. (2001). “XML in a Nutshell”.

CIT 853 COURSE GUIDE

viii

Janine, W. (2005). “Teach Yourself VISUALLY Macromedia
Dreamweaver 8”. Visual.

Larry, R.(2002). Programming the Web using XHTML and

JavaScript. McGrawHill.

Michael, M. (2001). “ HTML and XML for Beginners”

Richard, A. M.(2003). Introduction to Networkin. McGraw-Hill.

William, B. (2000). Distributed Systems Networks. .McGraw-Hill.

http://dev.opera.com/articles/view/4-the-web-standards-model-html-
css-a/

http://www.corewebprogramming.com

ASSIGNMENT FILE

These are of two types: the self-assessment exercises and the tutor-
marked assignment. The self-assessment exercises will enable you
monitor your performance by yourself, while the tutor-marked
assignment is a supervised assignment. The assignments take a
certain percentage of your total score in this course. The tutor-marked
assignments will be assessed by your tutor within a specified period.
The examination at the end of this course will aim at determining the
level of mastery of the subject matter. This course includes sixteen
tutor-marked assignments and each must be done and submitted
accordingly. Your best scores however, will be recorded for you. Be
sure to send these assignments to your tutor before the deadline to
avoid any penalty.

PRESENTATION SCHEDULE

Your course materials have important dates for the early and timely
completion and submission of your TMAs and attending tutorials.
You should remember that you are required to submit all your
assignments by the stipulated time and date. You should guard
against falling behind in your work.

ASSESSMENT

There are three aspects to the assessment of the course. First is made
up of self-assessment exercises, second consists of the tutor-marked
assignments and third is the written examination/end of course
examination.

CIT 853 COURSE GUIDE

ix

You are expected to do all the activities. In tackling the assignments,
you are expected to apply information, knowledge and techniques
you gathered during the course. The assignments must be submitted
to your facilitator for formal assessment in accordance with the
deadlines stated in the presentation schedule and assignment file. The
work you submit to your tutor for assessment will count for 30% of
your course work. At the end of the course you will need to sit for a
final or end of course examination of about three hour duration. This
examination will count for 70% of your total course work.

TUTOR-MARKED ASSIGNMENT

The TMA is a continuous assessment component of your course. It
accounts for 30% of the total score. You will be given four (4) TMAs
to answer. Three of these must be answered before you are allowed to
sit for the end of your course examination. The TMAs would be
given to you by your facilitator and returned after you have done the
assignment. Assignment questions for the units in this course are
contained in the assignment file. You will be able to complete your
assignment from the information and material contained in your
reading, references and study units. However, it is desirable in all
degree level of education to demonstrate that you have read and
researched more into your references, which will give you a wider
view point and may provide you with a deeper understanding of the
subject.

Make sure that each assignment reaches your facilitator on or before
the deadline given in the presentation schedule and assignment file. If
for any reason you cannot complete your work on time, contact your
facilitator before the assignment is due to discuss the possibility of an
extension. Extension will not be granted after the due date unless
there exceptional circumstances.

FINAL EXAMINATION AND GRADING

The end of course examination for Internet Concepts and Web
Design will be for about 3 hours and it has a value of 70% of the total
course work. The examination will consist of questions, which will
reflect the type of self-testing, practice exercise and tutor-marked
assignment problems you have previously encountered. All areas of
the course will be assessed.

Revise the whole course thoroughly before sitting for the
examination. You might find it useful to review your self-test, TMAs
and comments on them before the examination. The end of course
examination covers information from all parts of the course.

CIT 853 COURSE GUIDE

x

COURSE MARKING SCHEME

Assignment Marks

Assignment 1-4 Four assignments, best three marks of
the four count at 10% each-30% of
course marks

End of course examination 70% of overall course marks

Total 100% of course material

COURSE OVERVIEW

The course starts with an exploration of core protocols that underpin
the basic client-server model of the World Wide Web, leading to
consideration of the various technical standards and
recommendations that determine the tools and techniques employed
for the creation and deployment of digital information. An in-depth
introduction to the Internet and the World Wide Web for more
advanced studies in Web programming, Internet tools, and Web
document publishing including HTML and Cascading Style Sheets,
Internet design and communication protocols including: TCP/IP,
FTP, HTTP, SMTP, telnet and the tools that use them. The course
also provides a thorough grounding in the use of XHTML elements
and attributes for the creation of static content and Cascading Style
Sheets (CSS) style rules to control presentation. The course also
examines the technical requirements for usability and accessibility
and explores how different presentational structures have evolved to
meet the requirements of specific applications.

CIT 853 COURSE GUIDE

xi

Unit Title of Work Weeks
Activity

Assessment
(End of Unit)

 Course Guide Week 1
 Module1
1 Overview of the Internet Week 1 Assignment 1
2 Introduction to the web Week 2 Assignment 2

 Module2
1 Introduction to the web design Week 3 Assignment 3
2 Adding graphics to web pages Week 4 Assignment 4
3 Cascading style sheet (CSS) Week 5 Assignment 5
4 Cascading style sheet properties Week 6 Assignment 6
5 Cascading style sheet properties

continue
Week 7 Assignment 7

 Module3
1 JavaScript Week 8 Assignment 8

2 JavaScript and Object Oriented
Programming (OOP)

Week 9-
10

Assignment 9

3 Visual basic Script Week 11 Assignment 10
4 VbScript object and controlling

VbScript routines
Week 12-
13

Assignment 11

 Module4
1 XML Basics Week 14 Assignment 12
2 Document Type Définitions

(DTDs)
Week 15 Assignment 13

3 XML Schema Basics Week 16 Assignment 14
4 XSLT Basics Week 17 Assignment 15
5 Micromedia Dreamweaver Assignment 16

 Revision Week 18
 Examination Week 19
Total 19 weeks

HOW TO GET THE MOST FROM THIS COURSE

Prepare for the study units so that you will be more likely to predict
the organisation of the module. Check the course outline to see if the
tutor has listed the topic or key ideas in the next module. If so,
convert this information into questions, or structure your notebook
according to the headings provided in the outline.

Using a combination of course website, a book, and electronic guides,
you will study a range of techniques for creating web pages
comprising text, images, image maps, hyperlinks, tables, frames, and
forms. This will provide the knowledge and skills expected from you
in this course.

CIT 853 COURSE GUIDE

xii

Each of the study units follows a common format. The first item is
an introduction to the subject matter of the unit and how a particular
unit is integrated with the other units and the course as a whole. Next
is a set of learning objectives. These objectives enable you know
what you should be able to do by the time you have completed the
unit. You should use these objectives to guide your study. When you
have finished the units you must go back and check whether you have
achieved the objectives. If you make a habit of doing this you will
significantly improve your chances of passing the course.

Remember that your tutor’s job is to assist you. When you need help,
do not hesitate to call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.
2. Organise a study schedule. Refer to the ‘Course Overview’

for more details. Note the time you are expected to spend on
each unit and how the assignments relate to the units.
Whatever method you chose to use, you should decide on it
and write in your own dates for working on each unit. Once
you have created your own study schedule, do everything you
can to stick to it. The major reason that students fail is that
they lag behind in their course work.

3. Assemble the study materials. Information about what you
need for a unit is given in the ‘Overview’ at the beginning of
each unit. You will almost always need both the study unit
you are working on and one of your set of books on your desk
at the same time.

4. Work through the unit. The content of the unit itself has been
arranged to provide a sequence for you to follow. As you
work through the unit you will be instructed to read sections
from your set books or other articles. Use the unit to guide
your reading.

5. Review the objectives for each study unit to confirm that you
have achieved them. If you feel unsure about any of the
objectives, review the study material or consult your tutor.

6. When you are confident that you have achieved a unit’s
objectives, you can then start on the next unit. Proceed unit by
unit through the course and try to pace your study so that you
keep yourself on schedule.

7. After completing the last unit, review the course and prepare
yourself for the final examination. Check that you have
achieved the unit objectives (listed at the beginning of each
unit) and the course objectives (listed in this Course Guide).

CIT 853 COURSE GUIDE

FACILITATORS/TUTORS AND TUTORIALS

There are 16 hours of tutorials provided in support of this course.
You will be notified of the dates, times and location of these tutorials
as well as the name and phone number of your facilitator, as soon as
you are allocated a tutorial group.

Your facilitator will mark and comment on your assignments, keep a
close watch on your progress and any difficulties you might face and
provide assistance to you during the course. You are expected to mail
your Tutor-Marked Assignment to your facilitator before the
schedule date (at least two working days are required).They will be
marked by your tutor and returned to you as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you
need assistance.

The following might be circumstances in which you would find
assistance necessary, hence you would have to contact your facilitator
if:

• you do not understand any part of the study or the assigned

readings
• you have difficulty with the self-tests
• you have a question or problem with an assignment or with the

grading of an assignment.

You should endeavour to attend tutorials. This is the only chance to
have face to face contact with your course facilitator and to ask
questions which are answered instantly. You can raise any problem
encountered in the course of your study.

To gain much benefit from course tutorials prepare a question list
before attending them. You will learn a lot from participating actively
in discussions.

SUMMARY

Internet Concepts and Web Design is a course that intends to provide
concept of the discipline and is also concerned with the application of
it to real life. Upon completing this course, you will be equipped with
the basic understanding of the Internet, introduction to Web Design,
JavaScript and VBScript, basic knowledge of extensible Markup
language, and introduction to Micromedia Dreamweaver.

I wish you success in this course and I hope that you will find it both
interesting and useful.

xiii

MAIN
COURSE

CONTENTS PAGE

Module1 The Internet…………………………… 1

Unit 1

Overview of the Internet ……………… 1
Unit 2 Introduction to the Web ……………… 11

Module 2

Web Design………………………….. 22

Unit 1

Introduction to Web Design …………. 22
Unit 2 Adding Graphics to Web Pages ……… 35
Unit 3 Cascading Style Sheet (CSS) ………… 50
Unit 4
Unit 5

Cascading Style Sheet Properties …….
Cascading Style Sheet Properties
Continue ………………………………

58

68

Module 3

Javascript and Visual Basic Script
(VBSCRIPT)…………………………….

76

Unit 1
Unit 2

JavaScript ……………………………….
JavaScript and Object Oriented Programming
(OOP) ……………………………………

76

86
Unit 3
Unit 4

Visual Basic Script ………………………
VBScript Object and Controlling
VBScript Routines ………………………

100

114

Module 4

Extensible Markup Language (XML) 124

Unit 1

XML Basics ……………………………. 124
Unit 2 Document Type Definition (DTDs) …… 139
Unit 3 XML Schema Basics …………………... 149
Unit 4 XSLT Basics …………………………… 157
Unit 5 Micromedia Dreamweaver …………….. 179

CIT 853 MODULE 1

1

MODULE1 THE INTERNET

Unit 1 Overview of the Internet
Unit 2 Introduction to the Web

UNIT 1 OVERVIEW OF THE INTERNET

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Administration of the Internet
3.2 Domain Names and IP Addresses

3.2.1 Domain Names
3.2.2 IP Addresses
3.2.3 Address Classes

3.3 Information Routing on the Internet
3.3.1 The Internet Model

3.4 Application Layer Protocols
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The Internet came as a result of the crave for a robust, efficient, store
and forward, data network based on packets (packet- switching) as
against the circuit-switching (telephone network) previously in
existence. The Internet was developed by Paul Baran and Donald Davis
in 1962. This packet switching technology was first implemented in the
US Defense Advanced Research Projects Agency (DARPA) as
ARPANET, a large area network developed by the Advanced Research
projects Agency in late 60s. By early 70s ARPANET had spanned the
US continent and was extended to some parts of Europe by 1973 and
later to the rest of the world.

By 1986, the US Science Foundation (NSF) initiated a network called
NSFNET, which later became a major component of the Net. Similarly,
other networks were developed throughout the US through which the
rest of the world was connected to form a global network of systems and
network called the Internet.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

2

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• explain the Internet and its origin
• explain the administration of the Net
• describe the concepts of domain names and IP addresses
• describe the DoD reference model
• explain the various application layer protocols.

3.0 MAIN CONTENT

What is the Internet?

The Internet or simply the Net as it is often called, stands for
interconnected network of networks on a global scale. It makes it
possible for computers all over the world to, send and receive messages.
It is an internet-work of several hosts and their networks together to
form a larger network of global magnitude. It is therefore a global
collection of computers and networks that connects millions of peoples,
organisations, military, and government to a wide range of information
resources through a common protocol to communicate among
themselves.

Considering the global nature of the Internet, which involves several
systems, running on different platforms, intersystem communication
becomes an issue. This problem is solved using the transmission control
protocol/Internet protocol (TCP/IP), which defines the rules for
communication on the Net.

3.1 Administration of the Internet

To govern the activities of the Net, the Internet Activities Band (IAB)
was formed in 1983, with membership from professionals and
researchers with technical interest in the health and the evolution of the
entire Internet system. The committee was saddled with the
responsibility of coordinating design, engineering and management of
the Net. Figure 1.1gives a diagrammatic representation of Internet
organisation.

CIT 853 MODULE 1

3

Fig. 1.1: Organisation of the Net

The IAB has two task forces: The Internet Research Task Force (IRTF)
and the Internet Engineering Task Force (IETF). Also, there are two
organisations that liaise with IAB at the topmost level. They are the
Internet Society (IS) and the Federal Networking Council (FNC). The IS
draws its membership from the entire Internet community, while the
FNS is for all agencies of the US Federal Government. Both IS and FNC
are responsible for formulating policies and standards.

The IETF is responsible for formulating policies in areas of applications,
Internet, IP-Next generations, Network management, Operational
requirements, Routing, Security, Transport and User services.

3.2 Domain Names and IP Addresses

For the sake of our study, it is important to understand that all the
entities and inter-mediaries of the Net are given unique names for easy
identification and delivery of messages. Thus, all the hosts/nodes on the
Internet are identified through a unique identifier called domain names.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

4

NOTE: Hosts are the organisation who owns a particular network while
nodes are the various computers connected the Internet via the host.

The major parties involved in information dissemination are the users
(people) and the systems (IT equipment). Therefore, domain names must
be convenient and informative for all the parties to operate effectively.
Users prefer the alphabetic naming conventions to recognise the hosts,
while the computers or systems use the IP addresses.

3.2.1 Domain Names

Generally, domain names are composed of 3 or 4 parts namely:
Hostname, Organisation, Sub-domains (optional) and Country name.

e.g:
Hostname.Organisationname.Type of categorisation.Countryname
OR
Hostname.Domain.Top-level domain.International top-level domain.

Where the top-level domains include:
• .com for commercial
• .mil for military
• .edu for education
• .org for organisation
• .net for information services/network
• etc.
• and the international top-level domain use a 2-letter country code

such as:
 •

•
.ng for Nigeria
us for United States

• .uk for United Kingdom
• etc.

e.g:

1.

www.openuniversity.edu.ng
 2. www.openuniversity.ng
 3. www.google.com
 4. www.cs.ac.uk

CIT 853 MODULE 1

5

3.2.2 IP Addresses

IP addresses are unique four octet numbers expressed either as binary
dotted or decimal dotted. e.g.

10101110.00001011.00010000.01000001 Binary-dotted

179.11.16.65 Decimal-dotted

To convert IP address from binary to decimal form, we convert each of
the four 8-bits numbers in each octet according to the table below:

Table 1.1

Decimal Value 128 64 32 16 8 4 2 1 Decimal

Octet Value (1) 1 0 1 1 0 0 1 1 128+32+16+2+1=179

Octet Value (2) 0 0 0 0 1 0 1 1 8+2+1=11

Octet Value (3) 0 0 0 1 0 0 0 0 16

Octet Value (4) 0 1 0 0 0 0 0 1 64+1=65

3.2.3 Address Classes

There are five different classes of address designed to meet the needs of
different organisations. The various classes are given as A, B, C, D and
E. The classes are distinguished from each other by the decimal notation
of the first octet. The class range is presented in the table below:

Table 1.2

Class First Octet Net-ID Default Subnet
mask

Availability

A 1-126 First Octet 255.0.0.0 Available

B 128-191 First 2 Octet 255.255.0.0 Available

C 192-223 First 3 Octet 255.255.255.0 Available

D 224-239 N/A Reserved for multicasting

E 240-255 N/A Reserved

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

6

NB
127 is reserved for loopback (127.0.0.1) for internal testing on the local
machine. Web applications can be tested on the local machines using the
loopback (localhost) before deployment to the web.

Each system on a network or Internet is assigned a unique IP address by
which it is identified. Furthermore, for easy identification and operations
of the entire system, the domain name service (DNS), maintains a
database of computer names and IP addresses corresponding to each of
them. That is, the DNS is responsible for translating domain names to IP
addresses and vice versa as occasions demand between the users and the
systems.

For proper organisation and assignment of domain names and IP
addresses, the Internet Corporation for Assigned Names and Numbers
(ICANN), is saddled with the responsibility of managing and assigning
names and IP addresses. ICANN is a special organisation with a charter
from the US government to oversee the registration of names on the
Internet alongside some domain name Registrars such as
www.netsol.com and www.registrar.com to manage the process.

SELF-ASSESSMENT EXERCISE

Briefly explain the importance of Domain name and IP address.

3.3 Information Routing on the Internet

Data passage within an internet-work is via a router. That is, with the
unique IP addresses assigned each of the systems, a packet of data is
transmitted from one node to another through the router. Among the
various network interconnecting devices such as bridge, switch, hub,
repeater, gateway and router, the routers is the most ideal because of its
capability to handle complex situations like the Internet, although it is
the most expensive of them.

The router maintains a routing table, which contains the IP address of all
the adjacent nodes, the various subnets of the Internet. Similarly, it has
the capability of routing packets of data through the shortest route using
a number of routing algorithms. These make it a preferred candidate for
a complex network of great magnitude like the Internet.

CIT 853 MODULE 1

7

3.3.1 The Internet Model

This model predates the open standard interconnection (OSI) model. It
dates back to the ARPANET (the origin of the Internet) and hence, often
referred to as the department of defense (DoD) model. The OSI model is
composed of a seven-layered architecture along which network
communications are segmented. Each layer covers a specific type of
network activities, equipment or protocols. The layers are: Application,
Presentation, Session, Transport, Network, Data Link, and Physical.

The DoD model is a four-layered architecture that does not map the OSI
layer perfectly but can be relayed as follows:

OSI DoD

Application Layer
Process/ Application
Layer

Presentation
Layer
Session Layer
Transport Layer Host-to-Host Layer
Network Layer Internetwork Layer
Data-Link Layer Network Access

Layer Physical Layer

Fig. 1.2: ISO and DoD Reference Model

Layer 4 Process/Application Layer
This layer combines the functionality of the topmost three layers of the
OSI model. That is, application, presentation and session. The protocols
include: e-mail, telnet, network management and directory services
(NFS).

Layer 3 Host-to-Host Layer
This layer is the equivalent of the transport layer of the OSI model. It is
responsible for end-to-end data integrity. The two protocols here are
transmission control protocol (TCP) and the user datagram protocol
(UDP). TCP offers reliable services and full duplex connections, while
the UDP provides unreliable services that enhance throughout when
error connection is not involved.

Layer 2 Internet Layer
This Layer corresponds to the network layer of the OSI model. Thus, it
is responsible for routing packets within the internetwork. Gateways and
routers are used for that purpose.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

8

Application
TCP
IP
Hardware

Application
TCP
IP
Hardware

The TCP/IP protocol at this layer is the Internet protocol (IP) which
operates a system of logical host addresses called IP addresses.

Layer 1 Network Access Layer
This combines the functionalities of both the physical and data link
layers of the OSI model. It is responsible for exchange of data between a
host and the network as well as delivery of data between two devices on
the same network.

Communication between two systems through DoD model is as
illustrated in figure 1.3 below:

Computer A Computer B

192.10.4.50 119.70.34.7

Internet

Fig. 1.3: Packet Transmission through the Net

Communication between two systems over the Internet is described as
follows:

• The packet of data is sent down the four layers of the DoD model
from application, through TCP, IP to Hardware (network cable,
NIC) from where it is sent to the Internet and delivered to the
destination system via the hardware (network cable, NIC),
through IP, TCP and application.

• However, as the packet travels from one layer to another it
wrapped into an “envelope” with the necessary information to the
next layer. When received, it is unwrapped and rewrapped for the
next lower layer. The procedure is repeated down the layers of
the sending system and up the layers of the receiving system until
it gets to the specified IP address. The process of wrapping and
unwrapping packets of data is also known as encapsulation and
decapsulation respectively.

CIT 853 MODULE 1

9

3.4 Application Layer Protocols

1. HTTP – This is known as hypertext transfer protocol. It is a

connectionless text-based protocol through which clients (web
browsers) send requests to the web server for certain web pages
and images to be displayed. After servicing this request, the
connection between the client and the server across the Net is
disconnect. However, for another request from the client to be
serviced, another connection is sought.

2. Telnet – This is an application layer protocol that enables users to
execute terminal sessions with remote hosts. That is, it allows a
user to login to another host at remote location.

3. FTP – This stands for file transfer protocol. It enables transfer of
files between two hosts that are at remote locations to each other.
It performs basic file transfer between hosts.

4. SMTP – This stands for simple mail transfer protocol. This is a
protocol that is used for exchanging electronic mail. It is used for
basic message delivery.

5. SNMP – This is known as simple network management protocol.
It is a protocol that is used to manage the network. It is used to
collect information from the connected devices on the network
for management purposes.

SELF-ASSESSMENT EXERCISE

i. Mention six network interconnecting devices.
ii. Mention the device most appropriate for transmitting information

over the Internet and why?
iii. Briefly explain its mode of operation.
iv. Describe the OSI model with reference to the DOD model.

4.0 CONCLUSION

The Internet simply stands for interconnected network of networks on a
global scale that makes it possible for computers all over the world to
send and receive messages. It is an internet-work of several hosts and
their networks together to form a larger network of global magnitude. It
is a global collection of computers and networks that connects millions
of peoples, organisations, military, and government to a wide range of
information resources through a common protocol to communicate
among themselves.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

10

5.0 SUMMARY

In this unit, we have learnt the:

• meaning of the Internet and its origin
• administration of the Net
• concepts of domain names and IP addresses
• DoD reference model and
• various application layer protocols.

6.0 TUTOR-MARKED ASSIGNMENT

i. Discuss the origin of the Internet
ii. Explain briefly the concept of Client-Server Computing in terms

of Layers and Tiers
iii. Explain briefly the application layer protocols.

7.0 REFERENCES/FURTHER READING

Alberto, L. & Indra, W. (2000). Communications and Networking:
Fundamental Concepts and Key Architecture. McGraw-Hill.

Richard, A. M. (2003). Introduction to Networking. McGraw-Hill.

William, B. (2000). Distributed Systems Networks. McGraw-Hill.

CIT 853 MODULE 1

11

UNIT 2 INTRODUCTION TO THE WEB

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Basic WEAPPS Architecture
3.1.1 The Web Browser (Client)
3.1.2 The Web Server (Middleware)
3.1.3 Database Server

3.2 Client/Server Computing
3.2.1 Layers

3.2.1.1 Thin Client
3.2.1.2 Fat Client

3.2.2 Tiers
3.2.2.1 Client
3.2.2.2 One-Tier Architecture
3.2.2.3 Two-Tier Architecture
3.2.2.4 Three-Tier Architecture

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The World Wide Web popularly called the “web” is a global collection
of interconnected documents on the Internet. Note that the web itself is
not the internet. The Web is a part of the Internet that uses the Hypertext
Transfer Protocol (HTTP) to display hypertext and images in a graphical
environment. The World Wide Web is a system of internet servers that
use HTTP (Hypertext Transfer Protocol) to transfer documents
formatted in HTML (Hypertext Mark-up Language).

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• explain the structure of web application
• identify some web servers available
• explain the concepts of 3-tier and N-tier architecture
• explain the concepts of layers and tiers architecture.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

12

3.0 MAIN CONTENT

The Structure of the Web Applications (WEBAPPS)

Webapps are applications that are accessed with a web browser over a
network such as the Internet or an intranet. Every Webapps is divided
into three major paths: the web browser, web server, and database
server. This shall be discussed in detailed at section 2.2. They are
popular because of the ubiquity of the browser as a client (thin client).

Similarly, the popularity is equally due to the possibility of updating and
maintaining the application without necessarily distributing and
installing it on every available client. Webapps are used to implement
webmail, online retail sales, online auctions, discussion boards and
weblogs among others.

Web developers often use client-side scripting to add functionality to the
webapps by creating an interactive site that does not require page
reloading. Webapps generate a series of web pages dynamically in a
standard format supported by common browsers such as the hypertext
markup language (HTML).

3.1 Basic WEAPPS Architecture

The web works based on the client/server Architecture. That is both the
server (web server or middleware) and the client (web browser)
applications are responsible for some sort of processing. Web
application is structured as a 3-tier application. That is web browser
constitutes the first tier, a middleware engine using some dynamic web
content technology such as: common gateway interface (CGI), hypertext
preprocessor (PHP), java servlets or java server page (JSP), active server
pages (ASP) constitute the middle-tier and the database which we earlier
called database server being the third tier. Figure 2.1 depicts the
structure of web application with example of tools at work in each tier.

Web Browser

(Netscape and

Internet

Net

Middleware

(PHP, Cold

fusion, ASP,

Database

(MySQL,

Oracle, MS

Fig. 2.1: Structure of Web Application

CIT 853 MODULE 1

13

3.1.1 The Web Browser (Client)

The web browser constitutes the client. It is a software application that
enables a user to display and interact with text, images and other
information that are located on the web page the web or a local area
network. Browsers are used for quick and easy access to information
contained in the web pages or at some websites by traversing some
links. Similarly, browsers can be used to access information on web
servers. Examples of web browsers are MS Internet Explorer, Mozilla
Firefox, Apple Safari, Netscape and Opera.

Web browser works by communicating with web servers using the
hypertext transfer protocol (HTTP). HTTP allows web browsers to
submit information to web servers as well as fetch web pages from
them. The primary language of browsers is the HTML, which consists of
tags that are used to describe a web page. HTML will be discussed in
detailed in module 2. Most browsers also have some level of support for
scripting languages like JavaScript and markup languages like
extensible markup language (XML).

3.1.2 The Web Server (Middleware)

All Web transactions take place on the servers. The web server is
responsible for communicating with the browser while the database
server is responsible for storing the required information. The web
server takes all requests from the clients, responds to the requests and
serves the appropriate web pages back to the clients.

Examples of web servers
There are several web servers but the most prominent of them are
Apache HTTP server and the Microsoft’s Internet Information Services
(IIS)

a Internet Information Services (IIS)
This is a major component of the Microsoft Server operating
system, particularly a component of its active server pages
(ASPs). IIS is recommended if both the middleware (ASP) and
the database Server (SQL Server) are Microsoft products. IIS is
the world’s second most popular Web server.

b Apache HTTP Server
This is most popular web server. It is a free software/opensource.
Apache runs on Unix, Linux, MS Windows, Novell Netware and
some other platforms.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

14

Apache serves over 68% of websites and serves both static and dynamic
contents on the web in a very reliable and secure manner. It offers
server-side programming language support for authentication schemes.
Some common web servers are presented in the table below.
Table 2.1 Web Servers

The middleware is composed of languages such as PHP, ASP,
ColdFusion, JSP and Perl. These languages work with web servers to
interpret requests from clients, process the requests and interact with
other programs that may be needed to fulfill the transactions and
indicate to the web server the actual page to serve the client.

The middle-tier may be multi-tiered. That is, it can be composed of
several other servers with designated responsibilities, hence the over-all
architecture is said to be N-tier. A fundamental rule in 3-tier
architecture is that the client has no direct line of communication with
the data tier. That is, all communications are routed through the
middleware tier.

3.1.3 Database Server

This is a program that provides database services to other computer
programs or computers. Database Management Systems (DBMS)
provide functionality to database servers. They are responsible for
storing, retrieving and manipulating the data in the database or other
repositories. Some popular DBMSs include: Oracle, Sybase, Informix,
SQL server, Db2 and Interbase.

3.2 Client/Server Computing

This section will discuss the possible arrangement of web components in
manners suitable for distributed computing. In this section, we shall also
understand the client/server inter-relationship

There is a separation of functionality in client/server technology. The
client (front–end) does data presentation and or processing, while the
server (back-end) does storage, security and major data processing.

The client/server inter-relationship is given in terms of Layers and
Tiers.

3.2.1 Layers

Layering describes the division of labour with the application codes
resident on a single machine. That is both the client application, the
server application, and the database sever is placed on different folders

CIT 853 MODULE 1

15

in the same machine. Layers involve code modules placed in different
folders or directories on the client/server. The client-side code can be
structured into 0-3 layer(s) of application code, while the server-side
code can be structured into 1-3 layers of application code. It fosters code
re-usability, security and convenience. It is a good software design.

The client-side can be categorised into

3.2.1.1 Thin Client

That is, a client with a zero code layer that has no custom application
code running on it. The server holds all the custom application codes.
This is shown in figure 2.2 below:

N o A p p lic a t io n C o d e

P o s s ib ly :

W e b B r o w s e r
W A P B r o w s e r

T o N e t w o r k a n d B a c k - e n d

Fig. 2.2: Thin Client Architecture

3.2.1.2 Fat Client

This is a Client with 1 to 3 application code running on it. The three
layers are:

a. Layer 1 Presentation Layer – The layer that interacts closely

with the user.
b. Layer 2 Business layer – The layer that handles the business

logic of the code.
c. Layer 3 Data access Layer – The layer that handles

communication with database or data source.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

16

Fig. 2.3: Fat Client (Layer 1)

Fig. 2.4: Fat Client (Layer 2)

Fig. 2.5: Fat Client (Layer 3)

It is possible to have more than three layers on either side – But it is not
encouraged for unwieldiness and difficulty to manage.

CIT 853 MODULE 1

17

SELF-ASSESSMENT EXERCISE

i. Write short note on the following: Web browser, web server and

database server,
ii. Distinguish between thin client and fat client.

3.2.2 Tiers

The Tiers describes the division of labour of application code on
multiple machines. The code modules are placed on different machines
in a distributed server environment. In a layered architecture, the various
modules are resident on one single machine. That is, the layers are
simply different folder of applications on one single computer.

However, in a tiered architecture, the codes are separated into three tiers
(modules) namely:

a. Tier 1 - Presentation tier (PT), it interacts closely with the user.
b. Tier 2 - Application tier (AT), it holds the business logic and the

data access logic.
c. Tier 3 - Database tier (DT), houses database or data source.

Each tier may be composed of several servers, e.g. in a large-scale web
application environment, the architecture could be composed of:

• Large number of inexpensive servers (PT)
• Small number of application servers (AT)
• Few (2) number of clustered db servers (DT)

The architecture can be scaled horizontally or vertically. The horizontal
scaling or scaling out involves the ability to add more servers. Vertical
scaling or scaling up involves the ability to add more powerful servers.

In large scale distributed web applications, tiers are bounded by
firewalls. One before (in front) presentation tier, another firewall before
(in front) application tier. That is, the presentation is sandwiched
between firewalls, generally termed demilitarised zone (DMZ).

Thus, the application and database tiers are shielded behind the second
firewall termed the Internet zone (IZ).

Tiering fosters security and enables larger establishments to shield their
internal systems from attacks. Without tiering, it is difficult securing
internal systems.

Tiers -Generally refers to server architectures and not clients.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

18

3.2.2.1 Clients

This includes virtually all devices such as: cell phones, research in
motion (RIM) devices, PDAs, tablet PCs, notebooks and PCs.

a Thin Clients
• No application code, but relies on the server
• Uses web and WAP browsers to display
• Web (HTML)
• WAP (WML)
• It is easier to maintain and support since no application

code or data is in them.
• It must be in constant communication with the server.

b Fat Clients
• It has 1-3 layers of application code
• It can operate for some time independent of the server
• It is useful in a situation where communication between

client and server is not guaranteed
• It can store information in local database before sending to

the server
• Client can work independent of the server

3.2.2.2 One-Tier Architecture

The three code layers exist on a single server

Fig. 2.6: One-Tier Architecture

Pros Cons
i Very convenient i Less scalable
ii Faster to develop and deploy ii Hard to secure

CIT 853 MODULE 1

19

3.2.2.3 Two-Tier Architecture

The three code layers exist on two (2) servers (Presentation/Application)
and DB servers.

Fig. 2.7: Two-Tier Architecture

Pros Cons
i Convenient i Less scalable
ii Allow database server specialisation ii Hard to secure

iii More expensive

3.2.2.4 Three-Tier Architecture

The three code layers exist on three (3) servers (Presentation,
Application and Database server.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

20

Fig. 2.8: Three-Tier Architecture

Pros Cons
i Scalable i Overkill
ii Secured behind firewalls and zones ii More difficult to develop
iii Allows database server specialisation iii More expensive

SELF-ASSESSMENT EXERCISE

i. Describe the tier architecture.
ii. Differentiate between tier and layer.

4.0 CONCLUSION

The World Wide Web is a global collection of interconnected
documents on the Internet. The web itself is not the internet but part of
the Internet that uses the Hypertext Transfer Protocol (HTTP) to display
hypertext and images in a graphical environment. The World Wide Web
is a system of internet servers that use HTTP (Hypertext Transfer
Protocol) to transfer documents formatted in HTML (Hypertext Mark-
up Language).

CIT 853 MODULE 1

21

5.0 SUMMARY

In this unit, we have learnt:

•
•

the structure of web application
some web servers available

• the concepts of 3-tier and N-tier architecture
• the concepts of layers and tiers architecture.

6.0

TUTOR-MARKED ASSIGNMENT

i.
ii.
iii.
iv.

Explain in detailed the structure of web application.
Describe two most popular web servers.
Distinguish between Layer and Tier.
Explain the advantages and disadvantages of
architecture.

three tier

7.0

REFERENCES/FURTHER READING

Alberto, L. & Indra, W. (2000). Communications and Networking:
Fundamental Concepts and Key Architecture. McGraw-Hill.

Richard, A. M.(2003). Introduction to Networking. McGraw-Hill.

William, B. (2000). Distributed Systems Networks .McGraw-Hill.

CIT 853 INTERNET CONCEPTS AND WEB DESIGN

22

MODULE 2 WEB DESIGN

Unit 1 Introduction to Web Design
Unit 2 Adding Graphics to Web Pages
Unit 3 Cascading Style Sheet (CSS)
Unit 4 Cascading Style Sheet Properties
Unit 5 Cascading Style Sheet Properties Continue

UNIT 1 INTRODUCTION TO WEB DESIGN

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Common Gateway Interface (CGI)
3.2 Mark-up Language
3.3 Hypertext Mark-up Language (HTML)

3.3.1 Hypertext Transfer Protocol (HTTP)
3.3.2 Web Clients/Browsers
3.3.3 Hyperlinks
3.3.4 Uniform Resource Locator (URL)
3.3.5 File Extensions used in Web Design

3.4 Elements of HTML Structure
3.4.1 Container Tags
3.4.2 Empty Tags

3.5 Testing a Web Application
3.6 Formatting Character Element
3.7 Creating Headers and Headlines
3.8 Implicit and Explicit Text Emphasis

3.8.1 Explicit Styles
3.8.2 Implicit HTML Tags
3.8.3 Preformatted Text

3.9 HTML Lists
3.9.1 Definition Lists (Indentations-Hanging)

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

23

CIT 753 MODULE 2

1.0 INTRODUCTION

Web applications can be structured into 3-tier or n-tier architecture. The
first tier is called the front-end, and it involves writing scripts in markup
language. Examples of scripting language include Common Gateway
Interface (CGI), Java Script, and Visual Basic Script (VB Script).

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• explain Markup language for client side programming
• describe Front-end scripting tools
• state HTML container and empty tags
• identify various formatting tags
• design a simple static web page.

3.0 MAIN CONTENT

Web Pages
A Web page is a file with an .htm or .html extension. It contains HTML,
but might also contain other code stored on a server.

• Basically, web pages are of two types: static or dynamic
Static Web pages contains only HTML tags. They only display
information and there content does not change when requested by
the user.

• Dynamic Web pages content changes depending on the user’s
request and preferences. Cannot be created using only mark-up
language. It requires using Client-side code and Server-side code

3.1 Common Gateway Interface (CGI)

The Common Gateway Interface, or CGI, is a standard for
communication between Web documents and CGI scripts you write.
CGI scripting, or programming, is the act of creating a program that
conforms to this standard of communication. A CGI script is simply a
program that in some way communicates with your Web documents.
CGI itself is not a language but its script can be written in any
programming language. We shall discuss in details other scripting
languages.

24

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

3.2 Mark-up Language

Standard Generalised Mark-up Language (SGML) is an
International Standard Organisation (ISO) Standard meta language in
which one can define mark-up languages for documents. It provides an
abstract syntax that can be implemented in much different concrete
syntax. For instance, angle bracket is used as tags delimiters. SGML is a
system for defining markup languages. Authors mark- up their
documents by representing structural, presentational, and semantic
information alongside content. HTML is one example of a mark-up
language.

Presently, standard markup language used by most web developer is
Hypertext Markup Language (HTML).

3.3 Hypertext Mark-up Language (HTML)

This is a standard language for creating web pages. It provides tags that
make documents look attractive using graphics, fonts and colours to
enhance presentation. The basic building block of an HTML page is
text, which are created using a Text Editor, while a Web Browser is used
to test the application. The available text editors include Notepad or
WordPad for Windows-based systems, while for Mac users, SimpleText
is the HTML editor. UNIX users can use VI or Emacs.

Coupled with HTML, the needed tools for web design can be described
as follows:

3.3.1 Hypertext Transfer Protocol (HTTP)

This is a protocol for communication on the web and it supports the
client-server model. The client-side communicates with the server-side
through HTTP.

3.3.2 Web Clients/browsers

The browsers interpret HTML documents. They are used to view texts,
videos and audios as well as graphics files on web pages.

3.3.3 Hyperlinks

Hypertext links provide links to other portions of the web documents.
When invoked, they forward requests to the server and the server
responds with the appropriate response (document) to the client and it is
displayed on the user’s screen.

25

CIT 753 MODULE 2

3.3.4 Uniform Resource Locator (URL)

URL is an address/file specifier. It locates the documents requested
through hyperlinks. Similarly, it may be used to point to a query, image
or a command. The URL (Uniform Resource Locator) is the global
address of documents and other resources on the web e.g.
http://www.who.int. The first part of the address indicates which
protocol to use e.g. http. The second part of the address identifies the
domain name or the internet address where the information is located.

Format:

• Scheme://host-domain/path/dataname
• http://www.openuniversity.ng/admissions/index.html

3.3.5 File Extensions Used in Web Design

File extension Data Type
Html/htm html text
text/txt ASCII text
gif composed graphics
jpeg/jpg composed graphics
mpeg/mpg digital video
avi digital video
wav/au digital video

3.4 Elements of HTML Structure

Basically, an HTML document is composed of tags or elements. The
tags are classified into container and empty tags.

3.4.1 Container Tags

Tags that are composed of both ON (<TAG>) and OFF (</TAG>) tags
are called container tags. They have both the beginning and the end tags.
These tags wrap around and format texts in the document and hold or
contain the texts between the two tags. The HTML, HEAD, TITLE and
BODY tags are all container tags.

a <HTML> ……………… </HTML>

This is a prologue document identifier that is used at the
beginning of an HTML document.

b <HEAD>……………….. </HEAD>
This element contains unordered collection of information about
HTML document. This tag is optional as it is used to identify the
portion of the file that describes the head element of the data.

26

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

c <TITLE>……………….. </ TITLE >
These tags are used to specify the title of the document on the
title bar.
<HTML>
<HEAD>
<TITLE> Introduction to HTML </TITLE>
</HEAD>
</HTML>

d </BODY> ……………… </BODY>
The tags contain all the texts and images that are contained on the
web page.
<html>
</body>My first experience with html coding </body>
</html>

e <P> ……………………………</P>
This is a paragraph tag that is used to demarcate one paragraph
from another. Without the tags, the texts within the web
document appear as on continuous piece, not segmented into
paragraphs.

3.4.2 Empty Tags

All other HTML tags fall into this category called empty tags. These
tags have only an ON tag, there are no OFF tags. The empty tags do not
act on blocks of text, instead, they perform an action on their own. E.g.
Horizontal rule <HR>, Line Break
, etc.

<HR> Horizontal Rule

 Line Breaks or Return
<!- Text --> Comment

SELF-ASSESSMENT EXECISE

i. Mention four text editors and their providers.
ii. Mention five file extensions and their use in web application.
iii. With relevant examples describe container tags and empty tags.

3.5 Testing a Web Application

The steps involved in testing html codes are:

1. Open the Notepad (text editor)
2. Start/All Programs/Accessory/Notepad
3. Type the html codes
4. Save the code with the extension (htm or html)
5. The file name takes on an icon similar to the Internet explorer

27

CIT 753 MODULE 2

6. Double-Click on the file icon to run the application.

3.6 Formatting Character Element

Generally, a web page is composed of a title bar, a menu bar and the
content of the page. The texts contained within the title tags are
displayed on the title bar, while the texts within the body tags are
displayed as the contents of the web page. Thus, the following tags are
used principally to format texts contained in web pages.

a text - Format text Bold

b <I> text </1> - Format text Italics
c <STRIKE> text </STRIKE> - Strike through text
d _{text or (no)} - Format text Subscripts
e. <U> text </U> - Format text Underline
f. <!This is CSC 312: Internet Concept and Web Design ---> -
 Comment

Example 1

• Now, let try an example on your Notepad. Type the following
HTML code:

• <html>
• <Head>
• <Title>My First HTML Practice</title>
• </head>
• <Body>My First Internet Programming Lecture</Body>
• </Html>

Note: Don’t forget to save your file with .html

Fig.1.1: Output of Example 1

28

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

3.7 Creating Headers and Headlines

Header tags are containers tags. They double as paragraph tags ranging
from level 1 to level 6. Headers enable designers to create different
levels of emphasised headlines to organise documents. The following is
an example:

Example 2

• <HTML>
• <HEAD>
• <TITLE> Web Designing</TITLE>
• </HEAD>
• <BODY>Examples of Headers!
• <Hl>First level is the largest for headlines or page titles</Hl>
• <H2> Second level is the next for headlines or page titles to HI

</H2>
• <H3> Third level is the next for headlines or page titles to H2

</H3>
• <P>other headers are like regular text. </P>
• <H4>The Forth level is about the same size as regular text, but

emphasised</H4>
• <H5>The Fifth level Five is the next for headlines or page titles

to H4 </H5>
• <H6> The Six is generally the smallest header</H6>
• </BODY>
• </HTML>

Fig.1.2: Output of Example 2

29

CIT 753 MODULE 2

3.8 Implicit and Explicit Text Emphasis

3.8.1 Explicit Styles

Explicit tags are referred to as physical tags. They specifically dictate
how the text should physically appear to the browser. The basic explicit
tags are containers that allow the user mark text as bold, italic, or
underlined.

3.8.2 Implicit HTML Tags

Implicit styles are referred to as logical styles. They give browsers some
level of freedom on how to display the text. These tags, like the header
tags, are generally relative to one another, depending on the browser
being used to view them.

Table 1: Basic Logical HTML Tags

Tag Meaning Remarks
, Emphasis Italic text
, < /STRONG
>

Strong
emphasis

Bold text

< TT>, </TT> Teletype Monospaced
text

3.8.3 Preformatted Text

The <PRE> (preformatted text) tag is designed to allow you to keep the
exact spacing and retains the format as presented, for instance, in a
mathematical formula, or table creation

Example3

• <HTML>
• <HEAD>
• <TITLE>Web Designing</TITLE>
• </HEAD>
• <BODY>Examples of Preformatted Texts and Explicity Styles!
• <HR>
• <H2><U>Course Price Per Study Center</U></H2>
• <PRE>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

30

Course CSC312 CSC313 CSC314
Ibadan N30,000 N40,000 N45,000
Lagos N60,000 N75,000 N55,000
Abuja N70,000 N80,000 N75,000

• <PRE>
• Registration commence after payment.
• </BODY>
• </HTML>

Fig.1.3: Example 3

3.9 HTML Lists

Lists are applied to groups of text and individual formatting tags within
them. HTML lists are created using the form:

• <LIST TYPE>
• <ITEM> First item in list
• <ITEM> Second item in list
• <ITEM> Third item
• </LIST TYPE>

Where:

a. LIST TYPE = The types of list (ordered or unordered)
b. Ordered List = Numbered list, denoted by
c. Unordered List = Bulleted list, denoted by
d. ITEM = The individual items to be listed, denoted by

CIT 753 MODULE 2

31

Example 4

• <HTML>
• <HEAD>
• <TITLE> Web Designing </TITLE>
• </HEAD>
• <BODY>Examples of Ordered and Unordered Lists!
• <H4>Ordered list: </H4>
•
• Study one.
• Study two.
•
• <H4>Unordered list: </H4>
•
• Internet Concept.
• Structure of Web Application.
•
• </BODY>
• </HTML>

Fig.1. 4: Example 4

3.9.1 Definition Lists (Indentations-Hanging)

Definition lists are also known as “Indentation Hanging” They are
purposely suited for definition of terms. They consist of a container tag
<DL> (definition list) and two empty tags:

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

32

a. <DT> (definition term or the term to define); and
b. <DD> (definition or the definition provided).

The <DT> tag is designed (ideally) to fit on a single line of your web
page, although it may wrap to the beginning of the next line if necessary.
The <DD> tag will accept a full paragraph of text, continuously
indented beneath the <DT> term.

Example 5

• <HTML>
• <HEAD>
• <TITLE> Web Designing</TITLE> </HEAD>
• <BODY>Examples of Definition Lists!
• <DL>
• <DT>Internet
• <DD>A collection of interconnected networks.
• <DT>Hypertext Markup Language
• <DD> This is a standard language for creating web pages. It

provides tags that make documents look attractive using graphics,
fonts and colours to enhance presentation. The basic building
block of an HTML page is text, which are created using a Text
Editor, while a Web Browser is used to test the application. The
available text editors include Notepad or WordPad for Windows-
based systems, while for Mac users, SimpleText is the HTML
editor. UNIX users can use VI or Emacs.

• </DL>
• </BODY>
• </HTML>

Fig.1. 5: Example 5

CIT 753 MODULE 2

33

SELF-ASSESSMENT EXERCISE

i. Describe the use of four HTML formatting elements.
ii. In a simple web page, demonstrate the use of HEAD tags and

DEFINITION tags.

4.0 CONCLUSION

Web applications can be structured into 3-tier or n-tier architecture. The
first tier is called the front-end which involves writing scripts in mark-up
language.

5.0 SUMMARY

In this unit, we have learnt:

• understanding of the markup language for client side
programming

• understanding of the front-end scripting tools
• structure of HTML document
• understanding of HTML container and empty tags
• various formatting tags
• ordered, unordered and definition lists
• creation of hyperlinks and insert graphics on web pages
• creation of forms and tables in web pages
• understanding of how to design a simple static web page.

6.0 TUTOR-MARKED ASSIGNMENT

i. Enumerate the steps involved in testing web application.
ii. State the HTML tags that can be used to describe the table below

 Individuals Organisations

S/N Features Yes No Yes No

1

Web Presence

148 (47%) 196 (50.3%) 88 (88%)
11
(11%)

2 Internet Access 283 (72.6%) 100 (25.3%) 97 (97%) 2 (2%)

3
Payment Cards
Availability

141 (36.2%) 241 (61.8%) NA NA

4
Participation in
online purchase

82 (21%) 296 (75.9%) *** ***

iii. Design a simple web page to list out five courses in your
program.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

34

7.0 REFERENCES/FURTHER READING

Michael, M. (2001). “ HTML and XML for beginners”

http://dev.opera.com/articles/view/4-the-web-standards-model-html-css-
a/

http://www.corewebprogramming.com

CIT 753 MODULE 2

35

UNIT 2 ADDING GRAPHICS TO WEB PAGES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Working with Web graphics
3.2 Embedding Graphics in Web Pages

3.2.1 Relative Path URL
3.2.2 Absolute Path URL

3.3 Other Image Tag Attributes
3.4 Creating Hypertext and Hypermedia Links
3.5 Creating HTML Form

3.5.1 Form Elements
3.5.2 Text Fields and Attributes of a Form

3.6 Creating Pop-Up and Scrolling Menus
3.6.1 Listbox

3.7 Creating Tables in HTML Documents
3.7.1 The <TABLE> Tags’ Attributes
3.7.2 Table Data and Rows Attributes

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The previous unit introduced you to HTML scripts. This unit discusses
how you can add graphics to web pages. This unit also discusses how
you can create hypertext and hypermedia link, table in HTML and also
the HTML form.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• explain how to work with Web graphics
• produce hypertext and hypermedia links
• prepare HTML Form
• produce pop-up and scrolling menus
• prepare tables in HTML documents.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

36

3.0 MAIN CONTENT

Types of Web Graphics File

There are two types graphics file: CompuServe Graphics Interchange
Format (GIF) and Joint Photographic Experts Group (JPEG).

GIFs are compressed graphics that tend to lose less image clarity than
JPEGs. GIFs are particularly well suited for images that have smaller
colour palettes (256 colours or fewer).

JPEG format is widely being used by web designers as it can be viewed
in most new graphical browsers without the help any special application.
JPEG has the advantage of viewing images that have more colours (up
to 16.7 million).

JPEGs are a little flexible than GIFs, that is high rate of compression
results in slightly lower image quality. JPEG files are usually smaller
and easily transmittable over the Internet more quickly.

3.1 Working with Web graphics

Web graphics can be obtained in different ways:

a. Creating graphics in a graphics application and saved as GIFs or
JPEG.

b. Downloading public-domain graphics such as the Internet or
public-domain clipart collections (that are available on CD-
ROM).

c. Using scanned photographs. Existing photographs can be scanned
into digital form for use on the site.

d. Using digital cameras to snap pictures that can be downloaded
directly from the camera to your computer.

3.2 Embedding Graphics in Web Pages

The image tag is used to insert images into the web document.
This is done in two ways depending on the location of the image file:

3.2.1 Relative Path URL

This is used if the image file is located in the same folder as the HTML
document.

CIT 753 MODULE 2

37

Format:
E.g.

3.2.2 Absolute Path URL

This is used if the image file is located on a remote site outside the
folder that contains the HTML documents.

Format: Eg. <IMG
SRC="http://www.openuniversity.com/lectures/openImage.gif">
Or

3.3 Other Image Tag Attributes

1 The ALT Attribute
The ALT attribute for the tag gives the description of the
graphics in case the browser could not display the image. It
informs the users that the graphic exists and explains what the
graphic is all about.
E.g. <IMG SRC="openImage.gif" ALT= “National Open
University Logo”>

2 The ALIGN Attribute
It specifies the alignment of other elements such as top, middle,
or bottom of the graphic.
Eg.

Example 6
• <html>
• <head>
• <title> Web Design</title>
• </head>
• <body>
•

• <h3>Internet Programming</h3>
• <img border="0" src="CandPix.JPG" width="75"

height="50" align=”left”>
• </body>
• </html>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

38

3.4 Creating Hypertext and Hypermedia Links

Links are created in HTML using the anchor <A> tag
The Anchor <A> tag is used for creating hypertext and hypermedia
links. The links are embedded between <A> and .

Format
 Text describing link

HREF is an attribute for the anchor <A> tag. The hyperlink usually
appeared underlined and in different colour from the rest of the
documents.

Let look at the following, to see how to create a link:

1 Creating a link to the documents on the local computer
E.g. The Next and Back buttons.
Format: Product Information

2 Creating a link to other documents on the Internet
In this case, the URL must be specified.

Admission Information</ A>

3 Creating a link to other parts of the same document (Section
link)
This is useful for creating a link to other sections of the web page
such as top, bottom, etc without scrolling from top to bottom.
Format: Link to another section of
the document

4 Adding the <BASE> Tag
The tag is used when web pages are stored in different sub-
folders within a main folder. Thus, the tag directs the browser to
search the main folder on the machine as against the current
directory.

Format: <BASE HREF="absolute URL">
The <BASE> tag is designed to appear only between the
<HEAD> tags
<HEAD>
<BASE HREF= ''http://openuniversity.com/''>
< TITLE> Study One</TITLE>
</HEAD>
<BODY>
Back to Index
</BODY>

CIT 753 MODULE 2

39

5 Hyperlinks for E-Mail Messages

A hyperlinked e-mail address is accomplished using the mailto:
type of URL.
Format: text
e.g. <AHREF =mailto:oye@yahoo.com>Send me e-mail

Example 7: You are to create a simple web application to display an
image, navigate pages back and forward. Also, create an hyperlink to e-
mail.

• <html>
• <head>
• <title> Web Programming</title>
• </head>
• <body>
•

• <h3>Navigating through Web Pages</h3>
• <img border="0" src=”Picture 0009.JPG” width="75"

height="50" >
•

• <HR>
• Back to application 4

• Send Mail to

Author

• </body>
• </html>

3.5 Creating HTML Form

A form is an area that can contain form elements. Forms are used on the
web to accept information from the users. Doing any registration online,
you have to fill a form which its information is passed into the server.
The server hands it to a script that is designed to process the data and
generate an HTML page in response or store the information in the
database.

Forms are created within an HTML document using the <FORM>
container tags. The <FORM> tag has to attributes: and ACTION.

3.5.1 Form Elements

Form elements are elements that allow the user to enter information (like
text fields, textarea fields, drop-down menus, radio buttons, checkboxes,
etc.) in a form.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

40

Format: <FORM METHOD="how to send" ACTION="URL of
script">...form data... </FORM>

Where: - METHOD value "how_to_send" = Post or Get

"URL of script" = The address of the middleware to process the
information

The METHOD attributes refer to how the input data is transferred, while
the ACTION attribute refers to the relative address of the script to
process it.

The values for METHOD attributes are POST and GET, the difference
between them are as explained below:

a. The POST method will send data stream to the script when
requested.

b. The data sent by the POST method is invisible.

While
a. The GET method will send data in form of URL.
b. The data sent by the GET method is displayed on the address bar.
c. Data can be sent by the GET method without a form, but by

editing the URL.

Example
$variable=$ POST[‘variable’];
or
$variable=$ GET[‘variable’];

Where ‘variable’= the field(s) in the HTML form
And $variable= the field(s) in the database table with the dollar sign

3.5.2 Text Fields and Attributes of a Form

1 Text Area
This is used to accept multiple lines of text from a user. It
specifies the number of rows and columns.

Format:
• <TEXTAREA NAME="variable_name"

ROWS="number" COLS="number">
default text
</TEXTAREA>

Where

CIT 753 MODULE 2

41

• NAME = The variable name assigned to the TEXTAREA.
That is, the name passed to the database.

• ROWS = The number of rows required for the text box.
• COLS = The number of columns required for the text box.
• Default Text = The text to display in the text box as

default.

Example

• <TEXTAREA NAME="shortnote" ROWS="5"
COLS="60">
Type your lecture here.
</TEXTAREA>

2 The <INPUT> Tag
This is used to accept the user’s input from the form. It is the
most commonly used form attribute.

Format

<INPUT TYPE="type of box" NAME="variable"
SIZE="number" MAXLENGTH="number" VALUE = “Your
Entry”>

Where
• TYPE = denote the types of input (Text, Password,

Checkbox, Radio, Reset, and Submit)
• NAME = The name assigned to the variable
• SIZE = The field length of the entry
• MAXLENGTH = The maximum length of the entry

permitted
• VALUE = The default value to be displayed in the form.

Example

Last Name: <INPUT TYPE="TEXT" NAME="first_name"
SIZE="15" MAXLENGTH="25”>

Password
This is identical to the TEXT option, but the entries are replaced
with bullet points or a similar scheme (chosen by the browser) to
prevent the words from being displayed in plain text.

Format
Enter Password: <INPUT TYPE="PASSWORD"
NAME="password" SIZE="8" MAXLENGTH="8">

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

42

3 Checkbox
Checkboxes are well-suited for data entry that involves two
possible values for a given choice. A default choice is checked by
using the attribute CHECKED.

Example

• Sex: <INPUT TYPE="CHECKBOX" NAME="sex"
CHECKED> Male

• <INPUT TYPE="CHECKBOX" NAME="sex">
Female

The checked item is the default and more than one item could be
checked since the CHECKBOX evaluates each item separately
from any other ones.

4 Radio
The Radio button is designed to accept only one response from
among several options, unlike Checkbox that can have multiple
choices. RADIO attributes are similar to the CHECKBOX
attributes.

Example
• Faculty:<INPUT TYPE="RADIO" NAME="faculty"

VALUE="Art”> Art
• <INPUT TYPE="RADIO" NAME=" faculty"

VALUE="Science"> Science
• <INPUT TYPE="RADIO" NAME=" faculty"

VALUE="Education"> Education

5 Reset

This tag is used to clear all entries of an HTML form. It creates a
push button (named with the VALUE string) that resets all of the
elements in that particular FORM to their default values

Example
• <INPUT TYPE = "RESET" NAME="RES"

VALUE="RESET">
6 Submit

This is similar to the RESET button but differs in usage. It is used
to transfer or store the data entered into the HTML form to the
database. The VALUE attribute is used to rename the button (the
name that appears on the button).

Example
• <INPUT TYPE="SUBMIT" NAME="SUB"

VALUE="SUBMIT"

CIT 753 MODULE 2

43

Example 8: In this example, you are required to design a web
application that accept: i) Name, ii) Age, iii) Sex, iv) Programme, v)
Level, and vi) Study centre as inputs from the user, save the inputs and
also clear (reset) the form. Add other esthetics to beautify your form.

Solution: open your Notepad and type the following lines of code:

• <HTML> <!..........Student Registration....>
• <TITLE> Registration Form </TITLE>
• <BODY>
• <H1> National Open University Registration Form</H1>
• <FORM METHOD ="POST"><HR>

1. Last Name:$<INPUT TYPE ="TEXT" SIZE="25"
NAME="L_Name">

2. Other Names:<INPUT TYPE ="TEXT" SIZE="40"
NAME="O_Name" >

3. Age: INPUT TYPE ="TEXT" SIZE="3"
NAME="O_Name" >

4. Sex: <INPUT TYPE="CHECKBOX" NAME="sex"
CHECKED> Male
<INPUT TYPE="CHECKBOX" NAME="sex">
Female

5. Program:<INPUT TYPE="RADIO" NAME="Program"
VALUE="Accounting" CHECKED> Accounting
<INPUT TYPE="RADIO" NAME="Program"
VALUE="Business Admin"> Business Administration
<INPUT TYPE="RADIO" NAME="Program"
VALUE="Chem Eng"> Chemical Engineering

• <INPUT TYPE="SUBMIT" NAME="SUB"
VALUE="SUBMIT"

• <INPUT TYPE = "RESET" NAME="RES" VALUE="RESET">
• </FORM>
• </BODY>
• </HTML>

The output should like this below:

National Open University
Registration Form

1. Last Name:$

2. Other

Names:

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

44

3.6 Creating Pop-Up and Scrolling Menus

3.6.1 Listbox

The <SELECT> tag is a container tag that allows a user to select from a
Listbox .

Format:

<SELECT NAME="variable"> <OPTION SELECTED
VALUE="value"> Menu text <OPTION VALUE="value"> Menu text
... </SELECT>

Where

NAME = The name of the variable
SELECTED VALUE = The default value
OPTION VALUE = Other possible option
Etc

SELF-ASSESSMENT EXERCISE

i. Add the following lines of code just before the “SUBMIT” button
in to your program in Example 8 and produce the required
output.
a. Level:<SELECT NAME="LEVELS">
b. <Option Selected Value = 100> 100
c. <Option Value = 200> 200
d. <Option Value = 300> 300
e. <Option Value = 400> 400
f. </SELECT>

g. Address:<HR><TEXTAREA NAME="Addr" ROWS="4"

COLS="40">
h. Enter Your Home Address.</TEXTAREA>

NOTE: To allow multiple selections the world MULTIPLE is added to
the first line as:

<SELECT NAME="variable" MULTIPLE>

3.7 Creating Tables in HTML Documents

Just as you can create table with rows and columns in various text
applications, you can also create tables in HTML using the tags and its
attributes.

CIT 753 MODULE 2

45

The table tags include:

<TABLE> HTML Table </TABLE>

<TR> Table Row </TR>

<TD> Table Data </TD>

<TH> Cell Header </TR>

<CAPTION> Caption of the Table </CAPTION>

Format

• <TABLE>
<CAPTION>Caption text for table</CAPTION>
<TR>

• <TH>column1</TH>
• <TH>column2</TH>
• <TH>column3</TH>
• </TR>

<TR>
• <TD>row1data1</TD>
• <TD>row1data2</TD>
• <TD>row1data3</TD>
• </TR>

<TR>
• <TD>row2data1</TD>
• <TD>row2data2</TD>
• <TD>row2data3</TD>
• </TR>

...
</TABLE>

3.7.1 The <TABLE> Tags’ Attributes

1 ALIGN: The ALIGN attribute specifies the location of the table

in the browser window. Valid options are ALIGN=LEFT and
ALIGN=RIGHT.

2 WIDTH: The WIDTH attribute specifies the width of the table in
the browser window.

3 COLS: The COLS attribute specifies the number of columns in
your table, allowing the browser to draw the table as it
downloads.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

46

4 BORDER: The BORDER attribute defines the width of the
border surrounding the table.

5 CELLSPACING: The CELLSPACING attribute specifies the
space to include between the walls of the table and between
individual cells.

6 CELLPADDING. The CELLPADDING attribute specifies how
much space to give data elements away from the walls of the cell.

7 <CAPTION> Tags’ Attributes
The <CAPTION> tag has one attribute, ALIGN. It is either
ALIGN="TOP" or ALIGN="BOTTOM". The TOP is the default
setting.

We shall see examples of all these later.

3.7.2 Table Data and Rows Attributes

There are four attributes ALIGN, VALIGN, COLSPAN, and
ROWSPAN.

Format:

• <TABLE BORDER= # of pixels> </TABLE> <!.... 0 to 5…>
• <CAPTION ALIGN= “alignment”</CAPTION <!....TOP,

BOTTOM….>
• <TD ROWSPAN= “#”</TD> <! . A cell that spans # rows..>
• <TD COLSPAN=”#”</TD> <! . A cell that spans # cols..>
• <TH ROWSPAN=”#”</TH> <! A cell HEADER that spans

rows..>
• <TH COLSPAN=”#”</TH> <!. A cell HEADER that

spans # rows..>
• <TD ALIGN=”alignment”</TD> <!. Aligns Left, Right,

Centre..>
• <TD VALIGN=”alignment”</TD> <!. Aligns Top, Middle,

Bottom..>
• <TD WIDTH=”#” HEIGHT= “#” </TD><!.

height of cells..>
Sets width and

• <TH WIDTH=”#” HEIGHT= “#” </TD><!.
height of header..>

Sets width and

Note: You can also embed Links and Graphics within a table

Example 9

• <HTML> <!..........Student Registration....>
• <TITLE> Using Tables and Its Attributes </TITLE>

CIT 753 MODULE 2

47

• <BODY>
• <TABLE BORDER>
• <TR>
• <TH>Student</TH>
• <TH>CSC 311</TH>
• <TH>CSC 312</TH>
• <TH>GPA</TH>
• </TR>
• <TR>
• <TH>Adeoye T. Y.</TH><TD>80</TD>
• <TD>75</TD>
• <TD ROWSPAN="3">N/A</TD>
• </TR>
• <TR>
• <TH>Susan N.</TH><TD>70</TD>
• <TD>90</TD>
• </TR>
• <TR>
• <TH>Babs L. </TH><TD COLSPAN="2">Dropped

Course</TD>
• </TR>
• </TABLE>
• </HTML>

The output looks like this below:

Student CSC 311 CSC 312 GPA

Adeoye T. Y. 80 75

N/A Susan N. 70 90

Babs L. Dropped Course

SELF-ASSESSMENT EXERCISE

i. Distinguish between relative and absolute URI path.
ii. To Example 8 above, include the logo of National Open

University and align it to the left.

4.0 CONCLUSION

This unit discusses how you can add graphics to web pages and how you
can create hypertext and hypermedia link, table in HTML and also the
HTML form.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

48

5.0 SUMMARY

In this unit, we have learnt:

• how to work with Web graphics
• creating hypertext and hypermedia links
• creating HTML Form
• creating pop-up and scrolling menus and
• creating Tables in HTML Documents.

6.0 TUTOR-MARKED ASSIGNMENT

i. You have just been employed as a web developer in an Order
Processing Organisation. Using HTML code, design a form to
Register Customers for Order Placement.

ii. Include a link called HOME to 1 above.
iii. Create a web page titles home consisting of the Organisation logo

and a brief description of the Company.

7.0 REFERENCES/FURTHER READING

Michael Morrison (2001), “ HTML and XML for beginners”

http://dev.opera.com/articles/view/4-the-web-standards-model-html-css-
a/

http://www.corewebprogramming.com.

CIT 753 MODULE 2

49

UNIT 3 CASCADING STYLE SHEET (CSS)

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 CSS Syntax
3.1.1 Grouping
3.1.2 The Class Selector

3.2 Defining Global Style Class
3.3 Adding Styles to Elements with Particular Attributes

3.3.1 The id Selector
3.3.2 CSS Comments

3.4 Inserting CSS
3.4.1 External Style Sheet
3.4.2 Internal Style Sheet
3.4.3 Inline Styles

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Cascading Style Sheets (CSS) is a style sheet language used to describe
the presentation semantics (i.e. the look and formatting) of a document
written in a markup language. CSS is designed primarily to enable the
separation of document content (written in HTML or a similar markup
language) from document presentation, including elements such as the
colours, fonts, and layout. This helps to improve content accessibility
and control in the separation of presentation characteristics. CSS also
helps to improve flexibility and enable multiple pages to be shared
thereby reducing complexity and repetition in the structural content.
CSS can also allow the same markup page to be presented in different
styles for different rendering methods, such as on-screen, in print, by
voice (when read out by a speech-based browser or screen reader) and
on Braille-based, tactile devices.

CSS specifies a priority scheme to determine which style rules apply if
more than one rule matches against a particular element. In this so-
called cascade, priorities or weights are calculated and assigned to rules,
so that the results are predictable.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

50

• CSS, Level 3 (currently under development): focused on
modularisation of the CSS specification.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• explain the structure of web application design style sheet rules
• create external and inline style specification
• format HTML with CSS font and text proprieties
• explain foreground and background property.

3.0 MAIN CONTENT

Brief History of CSS
Style sheets have existed in one form or another since the beginnings of
SGML in the 1970s. CSS were developed as a means for creating a
consistent approach to providing style information for web documents.
Until this present moment, CSS has gone through three developmental
stages each with its specified focus.

• CSS, Level 1 (1996): concerned with applying simple styles to
HTML elements. http://www.w3.org/TR/REC-CSS1

• CSS, Level 2 (1998): supports media-specific styles sheets
(visual browsers, aural device, printers, and Braille devices).
http://www.w3.org/TR/REC-CSS2

http://www.w3.org/TR/CSS3-roadmap/

3.1 CSS Syntax

Designing simple style sheet is easy but requires a little understanding
of HTML. The CSS rule is made up of three parts: a selector, a property,
and a value:

Format: selector{ property:value }
Or
selector { property1: value1;

property2: value2;
….
property; valueN }

Where:
a. Selector = normal HTML element/tag you wish to define. It is the

link between the HTML document and the style sheet.
b. Property = the attribute of the tag intended to change.

NOTE: each property must have and a value and the property and value
are separated by colon (:)

CIT 753 MODULE 2

51

Example:
H1 {text-align: center;

colour; black }

3.1.1 Grouping

You can group selector. Separate each selector with a comma. For
example:

H1,H2,H3,H4
{
Colour:blue
}

3.1.2 The Class Selector

With the class selector you can define different styles for the same type
of HTML element.

For instance, you may like to have two types of paragraphs in your
document: one right aligned and one center-aligned paragraph. You will
have to use the class attribute in your HTML document

<p class="right">This paragraph will be right-aligned.</p>
<p class="center">This paragraph will be center-aligned.</p>

More than one class can also be applied to a given element. For
example:

<p class=”center bold”>this paragraph is aligned center and bolden</p>

The paragraph above will be styled by the class “center” AND the class
“bold”.

3.2 Defining Global Style Class

You can define a style that will be used by all HTML elements having a
certain class. This is done by omitting the tag name in the selector.

Format:
• .green { colour: green; font-weight: italics }. To use this, simple

specify the class in CLASS attribute of the HTML.
• Example:
• <h3 class="green">This heading will be coloured green</h3>

<p class="green">This paragraph will also be coloured
green.</p>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

52

Here, both h3 and p element have class =”center”. This means that both
elements will follow the rules in the “.center” selector:

Note: Do not start a class name with a number

3.3 Adding Styles to Elements with Particular Attributes

Styles can also be applied to HTML elements with particular attributes
For example, the style rule below will match all input elements that have
a type attribute with a value of “text”

Input[type=”text”] {background-colour: blue}

3.3.1 The Id Selector

An ID is like a class but can be applied only once in a document. The id
selector is defined as #.

Format for id style rule:

• #green { colour:green}

Note: Do not start an ID name with a number!

3.3.2 CSS Comments

As in mark-up languages and programming languages comments are
used to explain your code. A CSS comment begins with “/*”, and ends
with “*/”.

Example:
• /* This is a comment*/
• Body
• {background: blue}

Having gone through CSS rules (syntax) now let us see how to include
CSS in our HTML code.

3.4 Inserting CSS

There are three ways to inserting a style sheet:

a. External style sheet
b. Internal style sheet
c. Inline style

CIT 753 MODULE 2

53

3.4.1 External Style Sheet

Using an external style sheet, the CSS code is written in a file saved
with CSS. An external style sheet is ideal when the style is applied to
many pages. Changing the look of an entire web site is done by
changing only the CSS file. Each page must link to the style sheet using
<link> tag. The <link> is placed inside the head section.

Example:
• <head>
• <title>Cascading Style Sheet Class</title>
• <link rel=”stylesheet” type=”text/css” href=”myCSSFile.css” />
• </head>
• The <link> tag has three attribute: rel, type and href. It is an

empty tag so “/” must precede the second angle bracket (“>”).

3.4.2 Internal Style Sheet

This should be used when the CSS rule is to be applied to a single Web
page. You define the internal styles in the head section of an HTML
page, by using the <style> tag.

Example:
<head>
<style type="text/css">
hr {colour:sienna}
p {margin-left:20px}
</style>
</head>

3.4.3 Inline Styles

To use an inline styles you use the style attribute in the relevant tag. The
style attribute can contain any CSS property.

Example:<p style=”colour:brown; margin-left:20px”>This is a
paragraph</p>

Using an inline styles loses many of the advantages of style sheets by
mixing content with presentation. This method is not recommended to
be used often.

Example 1: Example of using internal style sheet
• <HEAD>
• <TITLE>Document Title</TITLE>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

54

• <STYLE TYPE="text/css">
• <!--
• body {background-colour: yellow}
• h1 {font-size: 36pt}
• h2 {colour: blue}
• p {margin-left: 50px}
• -->
• </STYLE>
• </HEAD>
• <BODY>
• <H1>Adding CSS to HTML document</H1>
• <H2>Module 3: HTML and Cascading Style Sheet</H2>

Cascading Style Sheets (CSS) is a style sheet language used to describe
the presentation semantics (i.e. the look and formatting) of a document
written in a markup language. CSS is designed primarily to enable the
separation of document content (written in HTML or a similar markup
language) from document presentation, including elements such as the
colours, fonts, and layout.

</BODY>
</HTML>

Fig.3.1: Result of Example 1

Looking at the above illustration, the style rules:

• Body {background-colour: yellow}
• h1 {font-size: 36pt}
• h2 {colour: blue}

CIT 753 MODULE 2

55

• P {margin-left: 50px} are placed inside style tags <STYLE>

</STYLE> in the HEAD part of HTML document. The CSS
rules are also written inside the HTML comment tag because the
browser will not interpret any element that is not HTML tag.

SELF-ASSESSMENT EXERCISE

i. Carry out example1 using External Style Sheet method. Also, add

background image to your work.
ii. Add a comment to include your name on the page and change the

background colour to brown.

4.0 CONCLUSION

CSS is a style sheet language used to describe the presentation semantics
of a document written in a markup language. It is designed to enable the
separation of document content (written in HTML or a similar markup
language) from document presentation, which helps to improve content
accessibility and control in the separation of presentation characteristics.
CSS also helps to improve flexibility and enable multiple pages to be
shared.

5.0 SUMMARY

In this unit, we have learnt:

• specify style sheet rules
• create external and inline style specification
• format HTML with CSS font and text proprieties
• control foreground and background property.

6.0 TUTOR-MARKED ASSIGNMENT

i. Using Internal CSS format in your Tutor- Marked Assignment 1

in module two unit two to include background colour, heading of
colour blue with 32pt.

ii. Marge the page to 100px left margin.

7.0 REFERENCES/FURTHER READING

Michael Morrison (2001), “ HTML and XML for beginners”

http://dev.opera.com/articles/view/4-the-web-standards-model-html-css-

a/

http://www.corewebprogramming.com

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

56

UNIT 4 CASCADING STYLE SHEET PROPERTIES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Style Sheet Precedence Rules
3.2 CSS Properties

3.2.1 Notation for property Values
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The previous unit introduced us to the CSS rules. This unit discusses
properties that CSS use to define the outlook of web pages. Such
property include: text, font, box model, border, outline etc. These
properties helps designer to control the look of their web pages. It also
discusses the type of precedence that can be given to CSS rules.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• outline the use of: Background, Text, Font, Box Model, font,
Border Outline Margin, Padding, List, and Table property

• use more than one style sheet for a document (cascade)
• describe how to create Style Sheet Layer
• enumerate the Style Sheet Precedence rules.

3.0 MAIN CONTENT

When using CSS, more than one style sheet can influence the
presentation of a web page simultaneously. There are two main reasons
for this:

1 Modularity
A style sheet designer can combine several (partial) style sheets
to reduce redundancy:
• @import url(http://www.openuniversity.org/css1);
• @import url(http://www.openuniversity.org/css11);
• H1 { colour: red } /* override imported sheets */

CIT 753 MODULE 2

57

2 Author/Reader balance

Both readers and authors (script writer) can influence the
presentation through style sheets. To do so, they use the same
style sheet language thus reflecting a fundamental feature of the
web.
• However, conflicts may sometimes arise between the style

sheets that influence a web page presentation. To resolve
this, conflict resolution is based on giving each style rule a
priority. By default, the priority of the reader’s rules is less
than the priority of rules in the author's documents i.e., if
there are conflicts between the style sheets of an incoming
document and the reader's personal sheets, the author's
rules will be used. Both reader and author rules override
the web browser's default values.

• The imported style sheets also cascade with each other, in
the order they are imported, according to the cascading
rules defined below. Any rules specified in the style sheet
itself override rules in imported style sheets. That is,
imported style sheets are lower in the cascading order than
rules in the style sheet itself. Imported style sheets can
themselves import and override other style sheets,
recursively.

• In CSS 1, all '@import' statements must occur at the start
of a style sheet, before any declarations. This makes it
easy to see that rules in the style sheet itself override rules
in the imported style sheets.

3.1 Style Sheet Precedence Rules

This help to define the cascading order of CSS rules. In situations where
conflict can occur between style sheets these precedence rules helps to
determine the order in which the style sheets are implemented. There are
four types of precedence:

• Rules marked “important” have the highest priority. This is rarely
used. Example: H1{ colour:black !important; font-family:Times
New Romans” }.

• Author rules have precedence over readers’ rules. This means
style sheet rules override browser preferences.

More specific rules have precedence over less specific rules. Examples:

• #foo { …} //ID selector highest priority
• P.big H1 { … } //Class higher over element
• P STRONG { … } //Two tags higher than single tag
• STRONG { …}

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

58

In case of tie, the last rule has priority

3.2 CSS Properties

Style sheets influence web document outlook by assigning values to
style properties. Here we will discuss style properties and their
respective list of possible values.

3.2.1 Notation for Property Values

The allowed values for each property are listed with syntax like the
following:

• Value: N | NW | NE
•

Value: [<length> | thick | thin]{1,4}
•

Value: [<family-name> ,]* <family-name>
•

Value: <url>? <colour> [/ <colour>]?
•

Value: <url> || <colour>

The words between “<” and “>” give a type of value. This includes:
<length>, <percentage>, <url>, <number>, and <colour>. Other words
are keywords that must appear literally, without quotes the slash (/) and
the comma (,) must also appear literally.

a. A bar (|): use to separate alternatives; one of them must be true;
b. A double bar (A||B): means that either A or B or both must occur;

• Brackets ([]): use for grouping;

Every type, keyword, or bracketed group may be followed by one of the
following modifiers:

a. An asterisk (*) indicates that the preceding type, word or group is
repeated zero or more times.

b. A plus (+) indicates that the preceding type, word or group is
repeated one or more times.

c. A question mark (?) indicates that the preceding type, word or
group is optional.

d. A pair of numbers in curly braces ({A,B}) indicates that the
preceding type, word or group is repeated at least A and at most
B times.

CIT 753 MODULE 2

59

1 Font properties
Setting font properties will be among the most common uses of
style sheets.
Font-weight
Relative weight (boldness) of font
• normal | lighter | bold | bolder | 100 | 200 | … | 900
• Example:
• H1{ font-weight:200}
• H2 { font-weight:bolder}

font-style
• font face type within a family
• normal italic | oblique
• Example:
• P { font-style:normal
font-size
• Either relative or absolute size of font
• pt, pc, in, cm, mm | em, ex, px, % | xx-large | x-large |

large | medium |small | x-small
• Example:
• P {font-size:14pt }
• SRTONG {font-size:80% }
font-family
• Typeface family for the font
Example:
• H1 { font-family:Arial }

2 Text properties
word-spacing
• Format: Value:normal |<length>
• The length unit indicates an addition to the default space

between words. Value can be negative, but there may be
implementation-specific limits.

Example: H1 { word-spacing:1em }.
• Here, the word-spacing between each word in ‘H1’

elements would be increased by ‘1em’
• The browser is free to select the exact spacing algorithm.

Text-align property may also be added to word spacing.
letter-spacing
• Format: Value:normal |<length>
• Just like the word-spacing, the length unit indicates an

addition to the default space between words. Value can be
negative, but there may be implementation-specific limits.
The browser is free to select the exact spacing algorithm.
Text-align property may also be added to word spacing.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

60

Example: BLACKQUOTE { letter-spacing:0.1em }.
• Here, the word-spacing between each word in ‘H1’

elements would be increased by ‘1em’
• With a value of 'normal', the UAs may change the space

between letters to justify text. This will not happen if
'letter-spacing' is explicitly set to a <length> value.

text-decoration
• Value: none | [underline || overline || line-through || blink]
• This property describes decorations or additions that are

added to the text of an element. If the element has no text
(e.g. the 'IMG' element in HTML) or is an empty element
(e.g. ''), this property has no effect. A value
of 'blink' causes the text to blink.

• The colour(s) required for the text decoration should be
derived from the 'colour' property value.

• This property is not inherited, but elements should match
their parent. E.g., if an element is underlined, the line
should span the child elements. The colour of the
underlining will remain the same even if descendant
elements have different 'colour' values.

• A:link, A:visited, A:active { text-decoration: underline }.
This example will underline the text of all links.

text-transform
• Value: capitalise | uppercase | lowercase | none
• 'capitalise': uppercases the first character of each word
• 'uppercase': uppercases all letters of the element
• 'lowercase': lowercases all letters of the element
• 'none': neutralises inherited value.
Example: H1 { text-transform: uppercase }
vertical-align
• Determines how elements are positioned vertically.
• Value: baseline | sub | super | top | text-top | middle |

bottom | text-bottom | <percentage>
• ‘baseline’
• align the baseline of the element (or the bottom, if the

element doesn't have a baseline) with the baseline of the
parent

• ‘middle’
• Align the vertical midpoint of the element (typically an

image) with the baseline plus half the x-height of the
parent

• ‘sub’
• subscript the element
• ‘super’
• superscript the element

CIT 753 MODULE 2

61

• ‘text-top’
• align the top of the element with the top of the parent

element's font
• ‘text-bottom’
• align the bottom of the element with the bottom of the

parent element's font
• ‘%’
• Percentage values refer to the value of the 'line-height'

property of the element itself.
text-align
• Determines how paragraphs are positioned horizontally
• Value:left | right | center | justify
text-indent
• specify the indentation of the first line of the paragraph.
• Value:<length> | <percentage>. The value of 'text-indent'

may be negative, but there may be implementation-
specific limits. Possible values of “length” and
“percentage” include: +/-pt, in, cm, mm | +/-em, ex, px, %

Example: P {text-indent:-25px}
line-height
• specifies the distance between two consecutive baselines

in a paragraph
• value:normal | number |pt, pc, in, cm, mm | em, ex, px, %
Example: .double { line-height:20% }
• DIV { line-height:1.5em }
• Having gone through font and text properties, now let us

see how they work
Example 1:
Letter.html
• <html>
• <title>Application Letter</title>
• <LINK REL="STYLESHEET" HREF="Letter.CSS"

TYPE="text/css">
• <head>
• <body>
• <P CLASS="rhead">
• May 1, 2009<HR>
• <P CLASS="rhead">
• 050020011

• Adeoye Joseph

• 400L Computer Science
• <P CLASS="1head">
• Director Academic Planning

• National Open University

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

62

• Victoria Island Lagos

• Nigeria.
• <P>
•

• Dear Sirs,
• <P CLASS ="body">

I am writing to inform you that, due to financial difficulties, I will
need two weeks more before I will be able to pay my tuition fees.
Sir, I will like you to use your office to grant me permission to be
attending lectures pending the completion of that two
weeks.

• <P CLASS ="foot">
• Yours sincerely,

• Adeoye Joseph
• </body>
• </html>
Letter.CSS
• p.{ margin-top:5px}
• P.rhead{text-align: right; margin-right: 0.5in; font-family:

Lucida Sans}
• P.1head{font-family: Lucida Sans}
• P.body{ text-align:Justify; text-indext:0.5in}
• P.foot {margin-left:70%; line-height:300%}

The output is displayed below:

CIT 753 MODULE 2

63

SELF-ASSESSMENT EXERCISE

Add title to the letter in Example 1 above, underline it and justify it to
the center with STRONG font- size 12.

3 Background property
colour
• colour the text or foreground colour
• value:colour name |#RRGGBB | #RGB | rgb(rrr, ggg, bbb)

| rgb(rrr%, ggg%, bbb%)
• Example: P { colour: blue }
• H3 {colour: rgb(255, 0, 0) } /* red */

Background-image
• specifies an image to use as the background of region
• value:<url> | none
• example: Body { background-image: url (Bluce.gif);}

background-repeat
• specifies how to tile the image in the region
• Value: repeat | repeat-x | repeat-y | no-repeat

A value of 'repeat' means that the image is repeated both horizontally
and vertically. The 'repeat-x' ('repeat-y') value makes the image repeat
horizontally (vertically), to create a single band of images from one side
to the other. With a value of 'no-repeat', the image is not repeated.

BODY {

background: red url(pendant.gif);
background-repeat: repeat-y;

}
In the example above, the image will only be repeated vertically.

background-position

If a background image has been specified, the value of 'background-
position' specifies its default position.

Value: [<percentage> | <length>]{1,2} | [top | center | bottom] || [left |
center | right]
default: 0% 0%

With a value pair of '0% 0%', the upper left corner of the image is placed
in the upper left corner of the box that surrounds the content of the
element (i.e., not the box that surrounds the padding, border or margin).
A value pair of '100% 100%' places the lower right corner of the image

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

64

in the lower right corner of the element. With a value pair of '14% 84%',
the point 14% across and 84% down the image is to be placed at the
point 14% across and 84% down the element.

With a value pair of '2cm 2cm', the upper left corner of the image is
placed 2cm to the right and 2cm below the upper left corner of the
element.

If only one percentage or length value is given, it sets the horizontal
position only, the vertical position will be 50%. If two values are given,
the horizontal position comes first. Combinations of length and
percentage values are allowed, e.g. '50% 2cm'. Negative positions are
allowed.

One can also use keyword values to indicate the position of the
background image. Keywords cannot be combined with percentage
values, or length values. The possible combinations of keywords and
their interpretations are as follows:

• 'top left' and 'left top' both mean the same as '0% 0%'.
• 'top', 'top center' and 'center top' mean the same as '50% 0%'.

Example:
• BODY {background: url(banner.jpeg) right top } /* 100% 0%

*/
• BODY {background: url(banner.jpeg) top center } /* 50% 0%

*/
• background

The 'background' property is a shorthand property for setting the
individual background properties (i.e., 'background-colour',
'background-image', 'background-repeat', 'background-attachment' and
'background-position') at the same place in the style sheet.

Format: Value: <background-colour> || <background-image> ||
<background-repeat> || <background-attachment> || <background-
position>

Example: Body {background: red }

SELF-ASSESSMENT EXERCISE

Using CSS code, place the logo of Open University as the background
image in Example 1 above.

CIT 753 MODULE 2

65

4.0 CONCLUSION

This unit discusses some properties of CSS use to define the outlook of
web pages such as text, font, box model, border, outline etc. These
properties helps designer to control the look of their web pages. It also
discusses the type of precedence that can be given to CSS rules.

5.0 SUMMARY

In this unit, we have learnt:

• the use of: Background, Text, Font, Box Model, font, Border
Outline, Margin, Padding, List, and Table property

• using more than one style sheet for a document (cascade)
• how to create style sheet layer
• the style sheet precedence rules.

6.0 TUTOR-MARKED ASSIGNMENT

i. Develop a web page display names of 5 colleagues from your

class using external style sheet. Hint [specify the heading to be
H3, colour the horizontal line to be “blue” and insert the image of
your favorite colleague].

ii. Using external CSS format, specify the background colour, font-
size, font-family, text-align and margin of your output of tutor
marked assignment in Unit 3.

7.0 REFERENCES/FURTHER READING

Michael Morrison (2001), “ HTML and XML for beginners”

http://dev.opera.com/articles/view/4-the-web-standards-model-html-css-

a/

http://www.corewebprogramming.com

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

66

UNIT 5 CASCADING STYLE SHEET PROPERTIES
CONTINUE

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Box Property
3.2 Classification Properties

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

This unit continues on cascading style sheet properties. Now we are
going to discuss the Box Model property, Border property, Outline
property, Margin, padding property, List property, and Table property.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• describe the use of: box model property
• create outline property, margin and padding property, list and

table property.

3.0 MAIN CONTENT

3.1 Box property

CSS assume that all elements result in one or more rectangular regions.
This is referred to as bounding box. Styles can specify the margins,
border, and padding of the bounding box. The size of the margin, border
and padding are set using the following format:

• 'margin'
• Value: [<length> | <percentage> | auto]{1,4}

The 'margin' property is a shorthand property for setting 'margin-top',
'margin-right', 'margin-bottom' and 'margin-left' at the same place in the
style sheet.
If four length values are specified they apply to top, right, bottom and
left respectively.

CIT 753 MODULE 2

67

If there is only one value, it applies to all sides,

If there are two or three, the missing values are taken from the opposite
side.

For example: H1 {margin-top: 2em }, sets all margin to 2em.

A negative value is allowed, but there may be implementation-specific
limits.

'padding-top'
Value: <length> | <percentage>

default value: 0;

Percentage values: refer to width of closest block-level ancestor

This property sets the top padding of an element.

Example: BLOCKQUOTE {padding-top: 0.3em }
• 'padding-bottom'
• Value: <length> | <percentage>
• Initial: 0
• Percentage values: refer to width of closest block-level ancestor

This property sets the bottom padding of an element.

a. Using only ‘padding’ property is a short form of setting padding
for top, bottom, left, and right at the same place in the style sheet.

b. If four values are specified, they applied to all the four sides: top,
bottom, left, and right.

c. Example: H3 { background:blue; padding: 2em 2em }
d. The above example sets padding 2em vertically (top and bottom)

and 2em horizontally (right and left).

SELF-ASSESSMENT EXERCISE

i. Open your text editor and type the following lines of codes.

a. <html>
b. <head>
c. <style type="text/css">
d. p.ex1 {padding:2cm}
e. p.ex2 {padding:0.5cm 3cm}
f. </style>
g. </head>
h. <body>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

68

i. <p class="ex1">This text has equal padding on each side.
The padding is 2cm.on each sides</p>

j. <p class="ex2">This text has a top and bottom padding of
0.5cm and a left and right padding of 3cm.</p>

k. </body>
l. </html>

This practice shows us, how the padding properties work and the output
should be like the figure below.

• 'border-width'
• Value: thin | medium | thick | <length>
• default value: 'medium'

The 'border' property is a shorthand property for setting ‘border-right-
width', ‘border-left-width' ‘border-top-width' ‘border-bottom-width' at
the same place in the style sheet.

There can be from one to four values, with the following interpretation:

a. one value: all four border widths are set to that value;
b. two values: top and bottom border widths are set to the first

value, right and left are set to the second;
c. three values: top is set to the first, right and left are set to the

second, bottom is set to the third;
d. four values: top, right, bottom and left, respectively;

In the examples below, the comments indicate the resulting widths of
the top, right, bottom and left borders:

CIT 753 MODULE 2

69

• H1 { border-width: thin } /* thin thin thin thin */
• H1 { border-width: thin thick } /* thin thick thin thick */
• H1 { border-width: thin thick medium } /* thin thick medium

thin */
• H1 { border-width: thin thick medium thin } /* thin thick

medium thin */

NOTE: margin, padding, and border-width cannot be negative.

• 'border-colour'
• Value: <colour>{1,4}
• default: the value of the 'colour' property

The 'border-colour' property sets the colour of the four borders. 'border-
colour' can have from one to four values, and the values are set on the
different sides as for 'border-width' above.

If no colour value is specified, the value of the 'colour' property of the
element itself will take its place:

• P {
• colour: black;
• background: white;
• border: solid;
• }
• 'border-style'

a. Value: none | dotted | dashed | solid | double | groove |
ridge | inset | outset

b. default: none

The 'border-style' property sets the style of the four borders. It can have
from one to four values, and the values are set on the different sides as
for 'border-width' above.

• #xy34 {border-style: solid dotted }
• 'border'

a. Value: <border-width> || <border-style> || <colour>
b. default: not defined for shorthand properties

The 'border' property is a shorthand property for setting the same width,
colour and style on all four borders (top, bottom, right, and left) of an
element.

For example, P {border: solid red } is equivalent to the set of four rules
shown below:

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

70

• P {
• border-top: solid red;
• border-right: solid red;
• border-bottom: solid red;
• border-left: solid red
• }

Example 2: In this example, we want to see how border property works.
Open your note pad and type the following lines of code:

• <html>
• <head>
• <style type="text/css">
• p.one
• {
• border-style:solid;
• border-colour:red;
• }
• p.two
• {
• border-style:solid;
• border-colour:#98bf21;
• }
• </style>
• </head>
• <body>
• <p class="one">A solid red border</p>
• <p class="two">A solid green border</p>
• <p>Note: The "border-colour" property does not work if

it is used alone. Use the "border-style" property to set the borders
first. </p>

• </body>
• </html>

CIT 753 MODULE 2

71

The output is displayed below:

Unlike the shorthand 'margin' and 'padding' properties, the 'border'
property cannot set different values on the four borders. To do so, one or
more of the other border properties must be used.

3.2 Classification Properties

These properties classify elements into categories more than they set
specific visual parameters.

• 'display'
a. Value: block | inline | list-item | none
b. default: block

This property describes how/if an element is displayed on the canvas
(which may be on a printed page, a computer display etc.).

An element with a 'display' value of 'block' opens a new box. The box is
positioned relative to adjacent boxes

Elements like 'H1' and 'P' are of type 'block'. A value of 'list-item' is
similar to 'block' except that a list-item marker is added.

An element with a 'display' value of 'inline' results in a new inline box
on the same line as the previous content. The box is dimensioned
according to the formatted size of the content.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

72

Example:
• P { display: block }
• EM { display: inline }
• LI { display: list-item }
• IMG { display: none }

The last rule turns off the display of images.

'list-style-type'
• Value: disc | circle | square | decimal | lower-roman | upper-roman

| lower-alpha | upper-alpha | none
• Applies to elements with ‘display’ value ‘list-item’

This property is used to determine the appearance of the list-item marker
if 'list-style-image' is 'none' or if the image pointed to by the URL cannot
be displayed.

Example:
• OL { list-style-type: decimal } /* 1 2 3 4 5 etc. */
• OL { list-style-type: lower-alpha } /* a b c d e etc. */
• OL { list-style-type: lower-roman } /* i ii iii iv v etc. */

'list-style-image'
• Value: <url> | none
• default: none

This property sets the image that will be used as the list-item marker.
When the image is available it will replace the marker set with the 'list-
style-type' marker.

Example:
UL { list-style-image: url(http://png.com/ellipse.png) }
'list-style-position'
Value: inside | outside
Initial: outside
Applies to: elements with 'display' value 'list-item'

The value of 'list-style-position' determines how the list-item marker is
drawn with regard to the content.

'list-style'
• Value: [disc | circle | square | decimal | lower-roman | upper-

roman | lower-alpha | upper-alpha | none] || [inside | outside] ||
[<url> | none]

• Applies to: elements with 'display' value 'list-item'

CIT 753 MODULE 2

73

• The 'list-style' property is a shorthand notation for setting the

three properties 'list-style-type', 'list-style-image' and 'list-style-
position' at the same place in the style sheet.

• UL { list-style: upper-roman inside }
• UL UL { list-style: circle outside }

SELF-ASSESSMENT EXERCISE

i. Modify the Activity A with border-style:solid, border-colour:red

and border-style:solid, border-colour:#98bf21for p.ex1 and p.ex2
respectively.

ii. Using CSS list type property, develop a simple web page that
shows the full name of ten (10) classmates.

4.0 CONCLUSION

This unit continues on cascading style sheet properties in the previous
unit. The box model property, border property, outline property, margin,
padding property, list property, and table property were discussed.

5.0 SUMMARY

In this unit, we have learnt:

• Use of: Box model property
• Outline property, margin and
• Padding property, List and Table property.

6.0 TUTOR-MARKED ASSIGNMENT

Create a web page named HOME linked to module two unit two. On
the page:

i. Write a brief note welcoming customers to the site.
ii. Using appropriate list-style property, itemise the goods available

for order.
iii. Create a heading “PHONEX ONLINE MOBILE PHONE

SHOP”. Merge the heading to center with Solid red colour
border.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

74

7.0 REFERENCES/FURTHER READING

Michael Morrison (2001), “ HTML and XML for beginners”

http://dev.opera.com/articles/view/4-the-web-standards-model-html-css-
a/

http://www.corewebprogramming.com

75

CIT 753 MODULE 3

MODULE 3 JAVASCRIPT AND VISUAL BASIC

SCRIPT (VBSCRIPT)

Unit 1 JavaScript
Unit 2 JavaScript and Object Oriented Programming (OOP)
Unit 3 Visual Basic Script
Unit 4 VBScript Object and Controlling VBScript Routines

UNIT 1 JAVASCRIPT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Types of JavaScript
3.2 Placing Scripts
3.3 Comment TAGS
3.4 Hiding JavaScripts from Old Browser
3.5 JavaScript Variables
3.6 Operators
3.7 JavaScript Control Flow

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Scripting language are simple interpreted programming languages. Most
popular among these scripting languages is JavaScript. JavaScript helps
to make web pages more interactive. With JavaScript web pages are no
longer static. Unlike Java programming, JavaScript is simpler and need
not be complied.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• identify where to put your scripts in an HTML document
• create how to hide scripts from old web browsers
• create how to put comments in scripts
• create how to display messages using alert, confirm, and prompt

boxes
• create how to call functions with a button.

76

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

3.0 MAIN CONTENT

JavaScript Files

JavaScript is a scripting language that can be used on both client and
server side. JavaScript add interactivity to Web pages. It assists in
completion and checking of forms and also provides user control with
client-side of page appearance and content.

3.1 Types of JavaScript

1 Client side - runs in browser
2 Server side - runs on server - embedded in web page but

processed on server.

3.2 Placing Scripts

If the JavaScript code is short, it can be included in the HTML
document.

1 in Head tag - this prevents user triggered errors during

downloading
2 in body - including within body tag as an attribute
3 within forms as Event handlers - script tag not required

It can be also placed in a separate .js file

• To add clarity to an HTML document.
• To share JavaScript code across multiple HTML documents.
• To hide the script code.

In this case, viewer can only see the location of the script file but not the
contents.

Scripts are embedded in pages between <script> </script>tags

Format <script type=”text/JavaScript”>
Statement;

</script>

NOTE: src attribute can also be placed in the script tag but this is not
supported by Internet Explorer.

77

CIT 753 MODULE 3

3.3 Comment TAGS

JavaScript supports two types of comment:

• // for single line comment
• /* */ for multiple line comments

Adding comment to your script is very important so that you and other
will know what various sections of code is used for.

3.4 Hiding JavaScripts from Old Browser

Browsers that were created before the script tag was invented will
correctly ignore tags they do not understand. Such browsers will treat
script language as ordinary plain text. To get around this, the script code
can be written inside HTML comment tag (<!—this is a comment.-->).
Let see how this is done.

Example 1:
• <HTML>
• <HEAD>
• <TITLE>The Scripting Language</TITLE>
• <SCRIPT Language = “JavaScript”>
• <!-- //Hide Script from non-script browsers
• document.write ("<P>Older browser that do not understand the

SCRIPT tag will ignore it ")
• document.write ("and treat the script statements inside the

SCRIPT tags as HTML</P>")
• // -->
• </SCRIPT>
• </HEAD>
• <BODY>
• <H1>The Script Tag: Example 3</H1>
• <P>
• <SCRIPT Language="JavaScript">
• <!--
• document.write("To do this we also surround the script

statements ")
• document.write("with HTML comments. We also must preface

the closing ")
• document.write("HTML comment tag with a JavaScript comment

//")
• // -->
• </SCRIPT>
• </P>

78

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

• </BODY>
</HTML>

Fig.1.1: Example 1

SELF-ASSESSMENT EXERCISE

Create another file for Example 1 above; remove the HTML comment
tags that used to wrap the JavaScript. Run the code and compare the
output with Example1 above.

If your output is the same with Example 1 output above, it means your
browser is a recent version. So you can continue to run your script
without putting the script statements in HTML comment tag.

NOTE:
If you are using Window Vista or latest Internet explorer like Explorer 7
and above, you will have to right click on “allow blocked content” and
click yes for your browser to display script content as displayed below.

79

CIT 753 MODULE 3

3.5 JavaScript Variables

JavaScript accepts the following types of variables:

• Numeric: Any numeric value, whether a whole number (an
integer) or a number that includes a fractional part (a real), e.g.,
23, 2.412

• String: collection of characters e.g. Titi, University.
• Boolean: a True or False

Note:
• JavaScript is not strongly types like java programming.
• Type of variables are not declared
• Variable names are case sensitive in JavaScript!
• Must start with letter or "_". Any combination of letters,

numbers, "_"
• When a new variable is created or declared, it must be preceded

by the word var
• No need to end statements with a semicolon
• New line is assumed to be a new statement
• Examples of JavaScript variables:
• var age = 25 (numeric)
• var surname = “Oyebade” (String)
• var married = True (Boolean)

3.6 Operators

Operators are types of command. They act on variables and/or literals
and produce results.

1 Binary Operators: binary operators are operators that accept

only two inputs. JavaScript support the following operators:
• +Addition
• Subtraction
• / Division
• Multiplication
• % Modulus

2 Unary Operators: unary are operators that requires only one
value as input
• ++ Increment Increase value by 1
• -- Decrement Decrease value by 1
• - Negation Convert positive to negative,

or vice versa

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

80

Examples:
• 5++ = 5 increase 5 by 1
• 6-- = 5 decrease 6 by 1
• -5 = -5 negate 5 so it becomes -5

3 Comparison Operator: As well as needing to assign values to
variables, we sometime need to compare variables or literals.
Comparison Operators compare two values and produce an
output which is either true or false. Different from the assignment
operator, the comparison operator tests to see if variables (values)
are already equal to one another. The following are comparison
operators supported by Jascript:
• == (two equals signs): it means ‘is equal to’.
• e.g. registeredStudents == totalStudents
• != (an exclamation mark followed by equals sign): it

means ‘is NOT equal to’.
• e.g. registeredStudents != totalStudents
• < means ‘less than’
 means ‘greater than’
• <= means ‘less than or equal to’
• >= means ‘greater than or equal to’

4 Assignment operator (=): which means 'becomes equal to. The
assignment operator makes two things equal to one another.

5 Combined Operators: we can also combine these operators and
the assignment operator in following ways:
• + = ‘becomes equal to itself plus’
• -= ‘becomes equal to itself minus’
• *= ‘becomes equal to itself multiplied by’
• /= ‘becomes equal to itself divided by’
• %= ‘becomes equal to the amount which is left when it

is divided by’
Example:
total += Sum
Means:
total = total + sum

6 Logical Operators: these operators are used to combine results
of other conditional tests. They are:
&& Logical AND
| | Logical OR
Example:
if (x > 2 && x < 10)
Placing the && between the two conditions means that if
statement will only be carried out if BOTH conditions are true. If
only one of the conditions is true (e.g., x is greater than 0 but also
greater than 10) the condition will return false and the if
statement won't be carried out.

CIT 753 MODULE 3

81

7. Concatenation operator (+): the character concatenation

operator + is used to join text, number and characters. This is
commonly used when you have to combine long sentence or
words taking from different input fields.

3.7 JavaScript Control Flow

The power of programming languages comes from their ability to
respond in different ways depending upon the data they are given. Every
programming language that supports dynamic content includes
statements which allow ‘decisions’ based on data given. JavaScript
supports loop and conditional construct

I. The for Loop: it allows you to carry out a particular operation a

fixed number of times. The for is controlled by setting three
values:
• an initial value
• a final value
• an increment
Format:
For (initial value; final value; increment)
{

Statements(s);
}
Example:
for (x=5; x>=0; x--)
{

alert(‘x = ‘ + x);
}

2 If …Else statement: it makes decision to be made between
alternative choices based on one condition. The If-Else statement
in JavaScript has the following syntax:
if (condition)

{

}
Else
{

};

statement;
Statement

statement;
Statement

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

82

The condition is the information on which we are basing the
decision. The browser first interpret the condition, if it is true, the
browser will carry out the statements within the if... section; if the
condition is false it will carry out the statements within the else...
section.
NOTE: Always observe the positioning of the semi-colons.
If you are using both the if... and the else... parts of the statement,
it is important NOT to put a semi-colon at the end of the if... part.
If you do, the else... part of the statement will never be used.
A semi-colon is normally placed at the very end of the if...else...
statement, although this is not needed if it is the last or only
statement in a function.

3 The While Loop: The while loop like the for loop allow you to
carry out a particular operation a number of times.
Format:
While (condition)
{

Statement(s);
}
Example:
var x = 30;
alert (“Count …”);
while (x > 0)
{
x--;
};
Alert (“Finished!”);

Here, x is initially set to a high value (30). It is then reduced by one each
time through the loop using the decrement operator (x--). So long as x is
greater than zero the loop will continue to operate, but as soon as x
reaches zero the loop condition (x > 0) will cease to be true and the loop
will end.

Example 2: Open your notepad and type the following lines of code. At
the end of this practice, you will practically see how loops work in
JavaScript.

• <HTML>
• <HEAD>
• <TITLE>Testing JavaScript Loop Statement</TITLE>
• </HEAD>
• <BODY>
• <PRE>
• A for loop that writes out the numbers from 0 through 9 and

labels them as being odd or even.

CIT 753 MODULE 3

83

• <SCRIPT Language="JavaScript">
• <!--
• for (i=0; i < 10; i++) {
• if (i%2 != 0)
• document.writeln(i + " is odd")
• else
• document.writeln(i + " is even")
• }
• // -->
• </SCRIPT>
• </PRE>
• </BODY>
• </HTML>

Fig.1.2: Example2 Output

SELF-ASSESSMENT EXERCISE

Modify the script in example two to write out only the even numbers
from 0 through 9.

4.0 CONCLUSION

Scripting language are interpreted programming languages. JavaScript is
the most popular among the scripting languages. It makes web pages
more interactive and dynamic.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

84

5.0 SUMMARY

In this unit, we have learnt:

• where to put your scripts in an HTML document
• how to hide scripts from old web browsers
• how to put comments in scripts
• how to display messages using alert, confirm, and prompt boxes
• calling functions with a button.

6.0 TUTOR-MARKED ASSIGNMENT

Carry out example 2 using While loop statement for both odd and even
numbers.

7.0 REFERENCES/FURTHER READING

Brooks & David, R. (2007). An Introduction to HTML and JavaScript
for Scientists and Engineers.

David, F. (1998). JavaScript: The Definitive Guide. (3rd ed.). O'Reilly

Media.

Larry, R. (2002).“Programming the Web Using XHTML and
JavaScript”, McGraw-Hill.

CIT 753 MODULE 3

85

UNIT 2 JAVASCRIPT AND OBJECT ORIENTED

PROGRAMMING (OOP)

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Creating and Initialising Objects
3.1.1 Creating an Object

3.2 Functions in JavaScript
3.2.1 JavaScript Standard Function
3.2.2 User Defined Functions

3.3 JavaScript Events
3.4 JavaScript Form and Functions
3.5 Events Handling
3.6 Getting and Setting Text Field
3.7 JavaScript Frame

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

One important characteristic of JavaScript is its ability to work with
objects. Objects are convenient means to package information and
methods of working with this information.

Objects are important tools. There advantages include:

• Breaking down difficult programming problems into simpler
problems that can solved by inventing different types of objects
to solve the smaller parts of the problem

• Grouping or collection of data and ways of working with data
into logically cohesive objects that do not interfere with other
parts of your script. This allows you to work on small separate
pieces that work together in simple and well defined ways rather
than one large program all at once

• Objects can be reused or modified easily for reuse allowing
programmers to avoid rewriting too much code from scratch
when a new program is needed.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

86

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define the meaning of Object-Oriented Programming
• create and initialise objects in JavaScript
• create JavaScript forms and functions
• create event handling in JavaScript
• create getting and Setting Text Field in JavaScript.

3.0 MAIN CONTENT

What is Object- Oriented Programming?

The act of creating objects that collaborate to solve a programming
problem is called object-oriented programming (OOP). OOP concept
has been around for a while and has constituted an important way to
construct programs. JavaScript is not designed to force you to use
object-oriented design techniques but does make it possible to use many
object-oriented design methods.

In order to access or change the attributes and contents of a Web page,
JavaScript provides a convenient object called the document object.
According to Netscape, it "contains information on the current
document, and provides methods for displaying HTML output to the
user."

In the Web browser, certain parts of the document are considered as
objects. This includes the browser window, forms, buttons, text boxes,
etc. JavaScript facilitates accessing and modifying objects in a
document:

Format:
document.write()document
An application object that contains information about the document
loaded into a window. In the JavaScript documentation the information
about an object is referred to as its properties.

The dot between the document object and the write() method is
significant. The dot operator allows you to access information (object
properties) and methods for working with that information in an object.
The method or property of an object is on the right side of the dot and
the object is on the left side. For example document.bgColour is use to
set background colour of a document.

CIT 753 MODULE 3

87

write() write() is a method (also called a function) belonging to the
document object. write() will output a string of text to the document.
Any JavaScript expression can be placed inside the round brackets. The
expression will be evaluated and the result written into the Web page.

3.1 Creating and Initialising Objects

3.1.1 Creating an Object

To create your own JavaScript objects you need to:

• call a function using the key word: new
• either write a special "constructor" function or call the Object(),

Array(), Date() or other predefined constructor function.

Why writing your own function, it is often useful to create an object
with a standard set of properties and methods. Because the function adds
one set of properties and methods it in effect constructs an object of a
certain type. If a particular type of object is wanted a constructor
function can be designed to create it as needed. For example suppose we
want to create an online quiz. A nice approach to this problem is to
create a series of question objects that contain properties that include the
question and the correct answer. Rather than creating each object and
then adding properties one-by-one, we can pass the property values into
the question function:

• function Question(question, answer){
• this.question = question
• this.answer = answer
• }

The Question = new Question("What is the sum of 5 and 3?", 8)
In this example the function named Question() expects two parameters:
question and answer. These are assigned to the properties this.question
and this.answer.

The keyword this refers to the object that has just been created by the
new operator. The properties of the object are created and receive values
in the two assignment statements in the Question() function.

Example 1
• <HTML>
• <HEAD>
• <TITLE>Experiments with Simple Objects.</TITLE>
• <SCRIPT Language="JavaScript">

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

88

• <!--
• function Question(question, answer){
• this.question = question
• this.answer = answer
• }
• q1 = new Question("What is the sum of 5 and 3?", 8)
• q2 = new Question("What is the sum of 8 and 3?", 11)
• userAnswer = prompt(q1.question, "")
• if (userAnswer == q1.answer){
• alert("Correct")
• }
• else {
• alert("Not Correct")
• }
• userAnswer = prompt(q2.question, "")
• if (userAnswer == q2.answer){
• alert("Correct")
• }
• else {
• alert("Not Correct")
• }
• //-->
• </SCRIPT>
• </HEAD>
• <BODY>
• </BODY>
• </HTML>

Fig.2.1: Example 1

Brief Explanation
In this practice, a Question object is constructed using the Question()
function; a hint property is added to the Question object; a reference to

CIT 753 MODULE 3

89

the question object is passed to the showObjectProperties() function that
displays all the properties and values of the object.

3.2 Functions in JavaScript

3.2.1 JavaScript Standard Function

• JavaScript two provides predefined functions: parseInt() and
parseFloat().

• parseInt():converts, where possible, a string to a number.

Example:
• result = parseInt("2.14 Welcome")

This statement shows how parseInt() can be used. In this example, the
string "2.14 Welcome" will be checked by the parseInt() function to see
if it begins with text that can be converted to an integer. So the number 4
will be assigned to the variable result in this case.

parseFloat(): convert a string to a number that may include decimal
number

Example:
• result = parseFloat("2.14 Welcome"). This works exactly like

parseInt but will return 2.14 as the value of result because it
allows fractional number.

NOTE: If either function does not find text it can convert to a number at
the beginning of the string it returns a special number value NaN that
means "not-a-number."

3.2.2 User- Defined Functions

The parseInt() and parseFloat() are JavaScript prewritten functions and
are designed for their specific purpose. JavaScript also have the
capability that allows users to create new functions within scripts. These
functions are named segments of JavaScript statements. They usually
have a single purpose, such as performing a complex calculation or
verifying the data entered into an HTML form. Functions can be passed
copies of variables or references to objects to work with.

User defined functions can be placed inside script tags anywhere in the
document. However, they should be placed in the head of the document
to guarantee they are loaded before being called from script statements
in the body of the document.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

90

Format:
• function functionName(parameter_1, parameter_2, ..

parameter_n)
• {
• statement1
• statement2
• statementn
• }

NOTE:
The keyword function precedes the name of the function.

A function name is like a variable name in (it must start with a character
and must not be the same as a JavaScript key word).

The parameter list is a comma separated list of variable names inside
round brackets immediately following the function name.

The statements to be executed when the function is called are contained
inside the function body and are contained within curly braces.

Example 2: this example demonstrates the use of function block and
if…else statement.

Open your notepad and type the following code:

• <HTML>
• <HEAD>
• <TITLE></TITLE>
• <SCRIPT Language="JavaScript">
• <!--

function maxNum(a, b){
if (a < b)

return b
else

return a
}
// -->
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT Language="JavaScript">
<!--
document.write("<P>")

CIT 753 MODULE 3

91

document.write("The largest number of 8 or 10 is: " + maxNum(8, 10))
document.write("</P>")

// -->
</SCRIPT>
</BODY>
</HTML>

Fig.2.2: Output of Example 2

3.3 JavaScript Events

• Events are actions occurring as a result of users’ interaction with
web page.

• Keyboard and mouse events
• Capturing a mouse event is simple
• Load events
• The page first appears on the screen: “Loads”, leaves: “Unloads”
• Form-related events
• onFocus() refers to placing the cursor onto a certain element.
• Others
• Errors, window resizing, etc

Example 3
• <html><head>
• <title>Simple JavaScript Button</title>
• <script language="JavaScript">
• <!--
• function ClickMe() {
• alert("You are right, that is an event!");
• }
• -->
• </script>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

92

• </head>
• <body>
• <h1>Simple JavaScript Button</h1>
• <form>
• <input type="button" value="Click Me" onClick="ClickMe()">
• </form>
• </body></html>
• Output

Fig.2.3: Example 3

SELF-ASSESSMENT EXERCISE

Using JavaScript function, develop a simple web page to compute
circumference of a circle

3.4 JavaScript Form and Functions

JavaScript extends the functionality of HTML forms. It allows writing
code that can check user input and display additional information to the
user. This is achieved in two ways:

a. First, declaration of named functions much like in C/C++/Java.

These functions are designed to perform specific task such as
checking user input for errors, are called when certain events
occur. Examples of event includes: user pressing a submit button
in an HTML form or merely placing the cursor over a hypertext
link.

b. Second, special HTML tag attributes called event handlers are
placed in HTML tags. When an event occurs that the attribute is
designed to handle, a short script in the handler is executed.
Event handlers contain statement(s) that just call a function or
two.

CIT 753 MODULE 3

93

NOTE: To achieve this, you must both define the function to correctly
get information from the form and place the call to the function in an
event handler in an HTML form.

In previous practice we saw how JavaScript used function to display
information by through ordinary clicking of a button. Now let see how
to work with accepting user input

3.5 Event- Handling

Events occur when the user does something with the browser. This
includes placing or moving mouse over a hypertext link, clicking a radio
button in a form, clicking a check button in a form, or loading a page
into a window. These events can trigger JavaScript code, giving browser
the ability to respond to user actions when they occur. Events that occur
when a user manipulates an HTML form are normally handled using
HTML event handler attributes. These attributes are an extension to
HTML that provides a method for the browser to invoke JavaScript code
when the events they refer to occur.

Format: <HTMLTAG eventHandler="statement1; statement2;
statementn">

NOTE: the semicolons separate the different JavaScript statements
allowing more than one to be placed in the same line.

So far we have only being placing placed JavaScript inside
<SCRIPT></SCRIPT> tags. JavaScript statements can also be placed in
the quotes following an event handler attribute. Here are the meanings
of each part of the tag:

HTMLTAG HTML tags including: FRAMESET, BODY, FORM,
SELECT, INPUT tags such as text, radio, checkbox,
password, submit, reset, and button, and A.

eventHandler Any of: onBlur, onClick, onChange, onFocus, onLoad,
onMouseOver, onMouseOut, onSelect, onSubmit,
onUnload, etc.

“statement1;
….”

JavaScript statements. Substitute single quotes for where
you would normally put double quotes. Most often there
are one or two statements, one of which is a function
call.

Example: <INPUT TYPE=”Button” VALUE=”ClickMe”
onClick=”clickIt(this.form)”>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

94

The statement in quote in the onClick is executed when someone clicks
the button.

The function clickIt is called when the user clicks the button.this refers
to the current JavaScript object that reflects the tag, in this case a button
object. this.form refers to the form the button is in. clickIt is being
passed a reference to the object representing the form the button is in.

3.6 Getting and Setting Text Field

Getting and setting the text in an input text field is done by using the
value property of the input field. For instance, the text of an input field
named firstName in a form named stuName can be accessed like this:

• result = document.stuName.firstName.value

Similarly text can be placed in the field this way:

• document.stuName.firstName.value = "Titi"

It is unusual to see this form in a function designed to perform some
operation with a form. Most often a reference to a form object, an input
object, or a text value is passed to a function from the event handler that
calls it. This is what happens in this example. A function is called by the
onClick="" handler in the input button tag:

• onClick="showAndClearField(this.form)"

The keyword this refers to the input tag. For convenience each input
object has a property named form that refers to the form it is in.
Therefore this.form holds a reference to the form object and that is what
is passed to the function.

Example 4
• <HTML>
• <HEAD>
• <TITLE>JavaScript Form - Input Text Field</TITLE>
• <SCRIPT Language="JavaScript">
• <!--//
• function showAndClearField(frm)
• {
• if (frm.firstName.value =="" && frm.lastName.value=="")
• alert("Hey! You didn't enter anything!")
• else

CIT 753 MODULE 3

95

• alert("The fields contain text: " + frm.firstName.value + " " +

frm.lastName.value)
• frm.firstName.value = ""; frm.lastName.value = ""
• }
• //-->
• </SCRIPT>
• </HEAD>
• <BODY>
• <FORM NAME="stuName">
• <H2>Enter something into the field and press the button.

• <P>Enter your First Name: <INPUT TYPE="TEXT"

NAME="firstName">

• Enter your Last Name: <INPUT TYPE="TEXT"

NAME="lastName">

• <INPUT TYPE="Button" Value="Show and Clear Input"

onClick="showAndClearField(this.form)">
• </P>
• </FORM>
• </BODY>
• </HTML>

NOTE: In this practice function is passed a reference to the form. Since
the parameter list of the function contains a variable named frm the
reference to the form will be copied into frm. The data in the text field
can now be read using:
frm.firstName.value

Fig.2.4: Example 4

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

96

function showAndClearField(frm)
This function is called when the button in the form is pushed. The frm
parameter is supposed to receive a reference to the form. The reference
in this case is equivalent to document.stuName which is another way to
refer to the form - as a property of the document object. The function is
designed to report what is in the text field and then clear it.

if (frm.firstName.value == "")
This line checks to see if the text input field has been left empty.
frm.firstName refers to the input text field named firstName in the
form. frm.firstName.value refers to the value in the field.

alert("The field contains the text: " + frm.firstName.value)
Here frm.firstName.value also retrieves the value that has been entered
into the firstName input field. In this case it is concatenated to another
string and displayed in an alert dialog box.

frm.firstName.value = ""
Near the end of this short function the field is cleared by setting its value
to an empty string.

<FORM NAME="stuName">
Since this example never uses document.stuName to access the form it
is not really necessary to actually name the form. However, it is a good
practice to do this.

<INPUT TYPE="TEXT" NAME="firstName">
<INPUT TYPE="TEXT" NAME="lastName">
In order to refer to the input text field the HTML tag that creates it must
have a name attribute.

<INPUT TYPE="Button" Value="Show and Clear Input"
onClick="showAndClearField(this.form)">

The button tag contains the onClick="" event handler. As a result
whenever the button is pressed (or "clicked") the JavaScript inside the
quotes is executed. In this case the function named showAndClearField
is called and it passed the parameter this.form. Whenever you see the
word this used in an event handler in an HTML tag the word this refers
to the JavaScript object that reflects (or represents) the HTML object
created by the tag. In this case this refers to the button. Every form
element also has a property that refers to the form it is in. So this.form
is a reference to the form object the button is in. Thus we are passing a
reference to the form to the function.

CIT 753 MODULE 3

97

3.7 JavaScript Frame

The default Window object contains a frames property holding an array
of frames (other Window objects) contained by the current window or
frame.

It also has parent and top properties referring to the directly enclosing
frame or window and the top-level window, respectively

All of the properties of Window can be applied to any of these entries.

SELF-ASSESSMENT EXERCISE

Using JavaScript form and function to create a simple web page that
takes course code as input and display the course unit in return.

4.0 CONCLUSION

JavaScript has the ability to work with objects which are convenient
ways to package information and methods of working with this
information.

5.0 SUMMARY

At the end of this unit, we have discussed the following:

• The meaning of Object-Oriented Programming, Creating and

Initialising Objects in JavaScript, JavaScript Forms and
Functions, Event Handling in JavaScript and Getting and Setting
Text Field in JavaScript.

6.0 TUTOR-MARKED ASSIGNMENT

Using JavaScript Form and Function, develop an order processing web
application for PHONEX ONLINE MOBILE PHONE SHOP in
module 2 unit 2.

7.0 REFERENCES/FURTHER READING

Brooks & David, R. (2007). “An Introduction to HTML and JavaScript

for Scientists and Engineers.”

David, F. (1998). “JavaScript: The Definitive Guide” (3rd ed.). O'Reilly
Media.

Larry, R. (2002).“Programming the Web using XHTML and

JavaScript”, McGraw-Hill.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

98

UNIT 3 VISUAL BASIC SCRIPT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Where to Put the VBScript
3.2 VBScript Data Type, Variables, and Operators

3.2.1 Data Types
3.2.2 Variables

3.2.2.1Declaring Variables
3.2.2.2Variable Naming Rules

3.2.3 Variants and Subtypes
3.2.3.1Assigning Values
3.2.3.2Scope of Variables
3.2.3.3Constants

3.2.4 VBScript Array Variable
3.2.4.1Multiple Dimensions Array
3.2.4.2Dynamic Array

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

VBScript is a scripting language, like JavaScript it was designed as an
extension to HTML. VB is a light version of Microsoft’s programming
language Visual Basic. The web browser receives scripts along with the
rest of the web document. It is the browser's responsibility to parse and
process the scripts. Just like JavaScript, VBScript requires a little
understanding of HTML.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define VBScript Data types
• describe VBScript Variables
• identify VBScript Operators
• explain VBScript Program Control statements.

CIT 753 MODULE 3

99

3.0 MAIN CONTENT

Placing VBScript in an HTML Document

When a VBScript is inserted into a HTML document, the Internet
browser will read the HTML and interpret the VBScript. The VBScript
can be executed immediately, or at a later event.

• Head section: Usually all the "functions" are placed in the head
section. The reason for this is to be sure that the script is loaded
before the function is called.

• Body section: Scripts in the body section are executed when the
page is loading.

Example of script in the Head section

• <html>
• <head>
• <script type="text/VBScript">
• some statements
• </script>
• </head>
• Example of script in the body section
• <html>
• <head>
• </head>
• <body>
• <script type="text/VBScript">
• some statements
• </script>
• </body>
• Script in both body and the head section
• <html>
• <head>
• <script type="text/VBScript">
• some statements
• </script>
• </head>
• <body>
• <script type="text/VBScript">
• some statements
• </script>
• </body>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

100

3.1 Where to Put the VBScript

Scripts in a page will be executed immediately while the page loads into
the browser. This is not always what we want. Sometimes we want to
execute a script when a page loads, other times when a user triggers an
event.

Let us see an example of using VBScript in the body of HTML
documents

Example 1: Open a notepad and type the following lines of code:

• <HTML>
• <HEAD>
• <TITLE>Working with VBScript: Exercise 1</TITLE>
• </HEAD>
• <BODY>
• <H1>Your First VBScript Exercise</H1>
• <P> VBScript can be placed at either the body or the head of

html document. Let’s see how it is placed in the body.
• <p> By utilising VBScript you can give your Web pages actions.
• Click on the button below to see what we mean. </P>
• <FORM NAME="frmExercise1">
• <INPUT TYPE="Button" NAME="cmdClickMe" VALUE="Cli

ck Me">
• <SCRIPT FOR="cmdClickMe" EVENT="onClick" LANGUAG

E="VBScript">
• MsgBox "A simple example of VBScript in action."
• </SCRIPT>
• </FORM>
• </BODY>
• </HTML>

CIT 753 MODULE 3

101

Fig.3.1: Example 1

Brief Explanation
We will explain these three lines of code:

Line

a. 1:<SCRIPT FOR="cmdClickMe" EVENT="onClick" LANGUA

GE="VBScript">
b. Line 2: MsgBox "A simple example of VBScript in action."

</SCRIPT>

1. The first line defines a script.

The FOR argument specifies that this script is for the button
named cmdClickMe, the name we have given our command
button with the HTML <INPUT> tag.
The EVENT argument says that this script should be run when the
button is clicked.
The LANGUAGE argument states that this is a VBScript module.

2. The second line is the only line of VBScript in this HTML
document.
The MsgBox function simply displays a message dialog. We shall
discuss more on this later.

3. The third line marks the end of the script.
In this practice, we simply inserted the VBScript module right
after the HTML tag that defined the command button. While this
method is functional, it is not the recommended approach. A
better approach is to place all your script together within the
HTML document. This will not make your HTML document
more complex to read.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

102

Preferred Method to Include VBScript

SELF-ASSESSMENT EXERCISE

i. Re-open the HTML document that you created in Example 1 and
remove the three VBScript lines i.e.:
a. <SCRIPT FOR="cmdClickMe" EVENT="onClick" LAN

GUAGE="VBScript">
b. MsgBox "A simple example of VBScript in action."
c. </SCRIPT>
d. Then modify the document by adding the scripting lines as

shown below:
e. <HTML>
f. <HEAD>
g. <TITLE>Working With VBScript: Exercise 1</TITLE>
h. <SCRIPT LANGUAGE="VBScript">
i. <!-- Instruct non-

IE browsers to skip over VBScript modules.
j. Sub cmdClickMe_OnClick
k. MsgBox "A simple example of VBScript in action."
l. End Sub
m. -->
n. </SCRIPT>
o. </HEAD>
p. <BODY>
q. <H1>Your First VBScript Exercise</H1>
r. <P> By utilising VBScript you can give your Web pages a

ctions.
s. Click on the button below to see what we mean. </P>
t. <FORM NAME="frmExercise1">
u. <INPUT TYPE="Button" NAME="cmdClickMe" VALU

E="Click Me">
v. </FORM>
w. </BODY>
x. </HTML>

ii. Then, run the script program and compare the output with the one
created in Example 1.

3.2 VBScript Data Type, Variables, and Operators

3.2.1 Data Types

Most languages define types and sizes of number, characters, strings,
float, decimal as distinct data types. But VBScript treats all data as one
of two fundamental types: numbers or strings. Most of the time
VBScript figures out how to make the conversions based on context.

CIT 753 MODULE 3

103

When you need explicit control over data types VBScript has conversion
functions and data type functions that return the type of variables and
expressions.

3.2.2 Variables

Variables are used to store data items that can change (e.g. "vary")
during the lifetime of a program. The data is actually stored in numbered
memory addresses in the computer's Random Access Memory (RAM),
however variables in high-level languages like VBScript provide
convenient names for the memory addresses. In VBScript, all variables
have one variable type called variant.

3.2.2.1 Declaring Variables

Variables in VBScript do not have to be "declared" before they are used,
they spring to life when you first use them. This seems convenient, but it
is now generally considered a bad idea, it mostly used in older VBScript
version.

However, VBScript supports two methods for declaring variables;
explicitly and implicitly.

1 The Dim statement allows you to explicitly declare the variables

you intend to use. The Option Explicit is also supported, which
forces you to use the Dim statement for all variables. When used,
Option Explicit must be the first executable statement in the
program.
Example: Dim Name
This statement declares the variable Student. You can also
declare multiple variables on one line for example:
Dim Name, Department, Program, Level
NOTE: it is preferable to declare each variable separately.

2 Variables can be declared implicitly by simply using the variable
name within your script. This practice is not recommended. It
leads to code that is prone to errors and more difficult to debug.
Also note that VBScript variable names are not case sensitive.
The variables SumTotal, Sumtotal, and sumtotal, SUMTOTAL
all refers to the same variable.

Variable names can be made up of letters, digits, and the underscore
character only (no spaces); must begin with a letter; and cannot be the
same as VBScript key words such as For, While, etc.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

104

3.2.2.2 Variable Naming Rules

When naming variables the following rules apply:

• they must begin with an alphabetic character
• they cannot contain embedded periods
• they must be unique within the same scope. There is more on

scopes later in this lesson
• they must be no longer than 255 characters.

3.2.3 Variants and Subtypes

As earlier mentioned, VBScript has a single data type called a variant.
Variants have the ability to store different types of data. The types of
data that a variant can store are referred to as subtypes. The table below
describes the subtypes supported by VBScript.

Subtype Description of Uses for Each Subtype

Byte Integer numbers between 0 to 255

Boolean True and False

Currency Monetary values

Date Date and time

Double Extremely large numbers with decimal points

Empty The value that a variant holds before being used

Error An error number

Integer Large integers between -32,768 and 32,767

Long Extremely large integers (-2,147,483,648 and 2,147,483,647)

Object Objects

Null No valid data

Single Large numbers with decimal points

String Character strings

3.2.3.1 Assigning Values

You assign a value to a variable by using the following format:

a. Variable name = value
b. The following examples demonstrate assigning values to

variables:
c. Name = "Larry Roof"
d. WorkHour = 50

CIT 753 MODULE 3

105

e. Overtime = True

3.2.3.2 Scope of Variables

The scope of a variable determines where it can be used in your script. A
variable's scope is determined by where it is declared. In terms of scope
there are two types of variables

Procedure-level variables: variables declared within a procedure. It is
referred to as a procedure-level variable and can only be used within
that procedure.

Script-level variables: If it is declared outside of any procedure, it is a
script-level variable and can be used throughout the script.

The example below demonstrates both script-level and procedure-level
variables.

• <SCRIPT>
• Dim count
• Sub cmdButton_onClick
• Dim Num
• End Sub
• </SCRIPT>

The variable count is a script-level variable and can be utilised
throughout the script. The variable Num exists only within the
cmdButton_onClick sub-procedure.

3.2.3.3 Constants

VBScript does not provide support for constants, such as you find in
other programming languages. This can be manipulated by assigning
values to variables that you have defined. For example TAX_RATE in
the below script is a constant.

• <SCRIPT>
• Dim TAX_RATE
• TAX_RATE = .06
• Function CalculateTaxes
• CalculateTaxes = CostOfGoods * TAX_RATE
• End Function
• </SCRIPT>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

106

3.2.4 VBScript Array Variable

The VBScript language provides support for arrays. An array is a type
of variable that can hold a list of single variables that are referenced by
their numerical index starting at 0. The index, also called a subscript, is
an integer. Because indexing starts at 0 the first element in an array is
ArrayElement(0), the second is ArrayElement(1), etc. The index of the
last element in an array will always be 1 less than the number of
elements in the array and is called the upper bound. The lower bound is
always 0. You declare arrays with a Dim statement (whether or not
Option Explicit is used) indicating the upper bound so that the correct
amount of memory can be reserved:

Dim Courses (50)
The statement above creates an array with 51 elements. Why 51?
Because VBScript arrays are zero-based, meaning that the first array
element is indexed 0 and the last is the number specified when declaring
the array.

You assign values to the elements of an array just as you would a
variable, but with an additional reference (the index) to the element in
which it will be stored:

• Courses (2) = “CSC121”
• Courses (4) = “ACC222”

3.2.4.1 Multiple Dimensions Array

Arrays can have multiple dimensions-VBScript supports up to 60.
Declaring a two dimensional array for storing 51 states and their capitals
could be done as follows:

• Dim StateInfo(50,1)
• To store values into this array you would then reference both

dimensions.
• StateInfo(18,0) = "Ikeja"
• StateInfo(18,1) = "Kano"

3.2.4.2 Dynamic Array

These are arrays whose size may need to change as the script is
executing. A dynamic array is declared without specifying the number
of elements it will contain:

• Dim Courses()

CIT 753 MODULE 3

107

• The ReDim statement is then used to change the size of the array

from within the script:
• ReDim Courses (100)

There is no limit to the number of times an array can be re-dimensioned
during the execution of a script. To preserve the contents of an array
when you are re-dimensioning, use the Preserve keyword:

• ReDim Preserve Courses (100)
• <HTML>
• <HEAD>
• <TITLE>Working with VBScript Variables: Exercise

1</TITLE>
• <SCRIPT LANGUAGE="VBScript">
• <!-- Add this to instruct non-IE browsers to skip over VBScript

modules.
• Option Explicit
• Sub cmdCalculate_OnClick
• Dim AmountofTax
• Dim CRLF
• Dim Message
• Dim Subtotal
• Dim TABSPACE
• Dim TAX_RATE
• Dim TotalCost
• ' Define our constant values.
• TAX_RATE = 0.06
• CRLF = Chr(13) & Chr(10)
• TABSPACE = Chr(9)
• ' Perform order calculations.
• Subtotal = document.frmExercise2.txtQuantity.value _
• document.frmExercise2.txtUnitPrice.value
• AmountofTax = Subtotal * TAX_RATE
• TotalCost = Subtotal + AmountofTax
• ' Display the results.
• Message = "The total for your order is:"
• Message = Message & CRLF & CRLF
• Message = Message & "Subtotal:" & TABSPACE & "#" &

Subtotal & CRLF
• Message = Message & "Tax:" & TABSPACE & "#" &

AmountofTax & CRLF
• Message = Message & "Total:" & TABSPACE & "#" &

TotalCost
• MsgBox Message,,"Your Total"

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

108

• End Sub
• -->
• </SCRIPT>
• </HEAD>
• <BODY>
• <H1>My First Practice in Working with VBScripts

Variables</H1>
• <P> Variables can be used to store and manipulate values. To
• see a demonstration of this enter a quantity and unit price
• in the fields below and click the "Calculate Cost" button.</P>
• <FORM NAME="frmExercise2">
• <TABLE>
• <TR>
• <TD>Quantity:</TD>
• <TD><INPUT TYPE="Text" NAME="txtQuantity"

SIZE=5></TD>
• </TR>
• <TR>
• <TD>Unit price:</TD>
• <TD><INPUT TYPE="Text" NAME="txtUnitPrice"

SIZE=5></TD>
• </TR>
• </TABLE>
•

• <INPUT TYPE="Button" NAME="cmdCalculate"

VALUE="Calculate Cost">
• </FORM>
• </BODY>
• </HTML>

CIT 753 MODULE 3

109

Fig.3.2: Example 2

Brief explanation
After the starting <SCRIPT> tag and HTML comment we find:

Option Explicit
This statement forces you to declare all of your variables.
Next we create a sub procedure for the click event of the cmdCalculate
button.

Sub cmdCalculate_OnClick
Following that seven variables were declared, three of which were used
as constants. They were identified by the fact that they are all in
uppercase. In VBScript, case doesn't matter (though it does in
JavaScript). Note also that the variables are procedure-level since they
are declared within a procedure.

In VBScript, anything after an apostrophe is a comment. As such, they
are ignored when the script is processed. Comments can appear on a line
by themselves or at the end of a line of script. Comments at the end of a
line are referred to as inline comments.

' Define our constant values.
The constants are assigned values in the following lines. Chr() is a
VBScript function that returns the character associated with a specified
ASCII code. ASCII codes 13, 10 and 9 are carriage return, line feed and
tab, respectively.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

110

• CRLF = Chr(13) & Chr(10)
• TABSPACE = Chr(9)

The next line demonstrates how values are taken from a form on a web
page, and used within a script. The two fields on our form were named
txtQuantity and txtUnitPrice in their HTML <INPUT> tags. The form
was named frmExercise2. Here we are referencing our web document,
then the form, then the input field and finally the value of that field. The
value associated with each field contains what the user entered into that
field on the web page. The * says to multiply the value of the first field,
txtQuantity, by the second field, txtUnitPrice.

Note
The commonly used VBScript operands are + for addition, - for
subtraction, * for multiplication and / for division.

The result of this calculation is then stored in the variable Subtotal. Next
we perform some additional calculations. Finally, we display the result
of our calculations using the MsgBox function. The ampersand
character, &, is used to concatenate the two strings.

As with the previous lesson, don't get too worried about understanding
all of the details of this example right now. As you continue to work
with VBScript you will begin to "pickup" the language.

SELF-ASSESSMENT EXERCISE

i. What are the benefits web pages achieve by using VBScript.
ii. List the browsers supported by VBScript.
iii. How does VBScript differ from JavaScript and which proves

better. State the reason for the same.

4.0 CONCLUSION

At the end of this unit, we have discussed the VBScript Data types,
Variables, and VBScript Program Control statements.

5.0 SUMMARY

VBScript is a scripting language which was designed as an extension to
HTML. It is a light version of Visual Basic programming language.
VBScript also requires a little understanding of HTML.

CIT 753 MODULE 3

111

6.0 TUTOR-MARKED ASSIGNMENT

i. Develop the order processing page for PHONEX ONLINE

MOBILE PHONE SHOP in Module Two Unit Two using
VBScript. Include a hyperlink called “VIEW STOCK” for
customers to access available items.

ii. Develop a page for the link “VIEW STOCK” above using the
information below

NAME MODEL SELLING PRICE
Nokia 2600 #8,500
Samsung S510 #12,000
Motorola M4100 13,000
Nokia 5100c 12,800

7.0 REFERENCES/FURTHER READING

Ed, W. (2006). “Microsoft VBScript: Step by Step”. Microsoft Press.

Don, J. & Jeffery, H. (2006). Advanced VBScript for Microsoft
Windows Administrators. Microsoft Press.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

112

UNIT 4 VBSCRIPT OBJECT AND CONTROLLING
VBSCRIPT ROUTINES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Linking VBScript with Objects
3.2 Conditional Statement

3.2.1 If..Then..Else
3.2.2 Select Case

3.3 Controlling your VBScript Routines
3.3.1 Looping Statement

3.3.1.1 For..Next
3.3.1.2 For Each..Next
3.3.1.3 Do...Loop

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

This unit is divided into two parts: i) Objects and VBScript Objects and
ii) controlling your VBScript Routines. Objects both in the form of Java
applets and ActiveX controls, enhances the functionality that is provided
with HTML. By using VBScript objects you can extend the capabilities
of controls, integrating and manipulating them from within your scripts.

Controlling Routines: VBScript allows you to control how your scripts
process data through the use of conditional and looping statements. By
using conditional statements you can develop scripts that evaluate data
and use criteria to determine what tasks to perform.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• outline the use of: Background, Text, Font, Box Model, font,
describe how to utilise the power of objects in VBScript

• explain how to add ActiveX controls
• explain how the script process the data through the use of control

statements.

CIT 753 MODULE 3

113

3.0 MAIN CONTENT

Adding Objects to your Web Pages

Scripting with objects involves two steps:

Adding the object to your web page using HTML
Writing script procedures to respond to events that the object provides
Objects, whether they're Java applets or ActiveX controls are added to a
page with the <OBJECT> tag. The properties, or characteristics, of the
object are configured using the <PARAM> tag. Typically you will see
an object implemented using a single <OBJECT> tag along with several
<PARAM> tags. The following HTML code demonstrates how an
ActiveX control might appear when added to a page:

• <OBJECT ID="lblTotalPay" WIDTH=45 HEIGHT=24
• CLASSID="CLSID:978C9E23-D4B0-11CE-BF2D-

00AA003F40D0">
• <PARAM NAME="ForeColour" VALUE="0">
• <PARAM NAME="BackColour" VALUE="16777215">
• <PARAM NAME="Caption" VALUE="">
• <PARAM NAME="Size" VALUE="1582;635">
• <PARAM NAME="SpecialEffect" VALUE="2">
• <PARAM NAME="FontHeight" VALUE="200">
• <PARAM NAME="FontCharSet" VALUE="0">
• <PARAM NAME="FontPitchAndFamily" VALUE="2">
• <PARAM NAME="FontWeight" VALUE="0">

3.1 Linking VBScript with Objects

Once you have added a control to your web page, it can be configured,
manipulated and responded to through its properties, methods and
events. Properties are the characteristics of an object. They include
items like a caption, the foreground colour and the font size. Methods
cause an object to perform a task. Events are actions that are recognised
by an object. For instance, a command button recognises an onclick
event.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

114

Fig.4.1: Example 1

Brief Explanation
This Example 1 was just a modification of Example 2 in unit three. It
contains three ActiveX label controls named lblSubtotal, lblTaxes and
lblTotalCost. There were minimal changes involving variable
declarations and the defining of constant values. The way results are
displayed is different in Example 2 in unit three. The script has been
modified to remove the MsgBox function and in its place we set the
caption property of three label controls.

' Display the results.

a. document.frmExercise3.lblSubtotal.caption = Subtotal
b. document.frmExercise3.lblTaxes.caption = AmountofTax
c. document.frmExercise3.lblTotalCost.caption = TotalCost

The format used when referencing properties is:

Document Our web document

frmExercise3 The form on which the ActiveX controls were
placed

lblTaxes The name of the control

Caption The property to set

CIT 753 MODULE 3

115

3.2 Conditional Statement

VBScript provides two forms of conditional statements:

• If..Then..Else
• Select..Case

3.2.1 If..Then..Else

The If..Then..Else statement is used, first to evaluate a condition to see if
it is true or false and second, depending upon the condition, to execute a
statement or set of statements.

The simplest version of an if statements is one that contains only one
condition and a single statement. For example:

• If AmountPurchased > 10000 Then ‘a condition to check if the
amount purchased is greater than 10000

• DiscountAmount = AmountPurchased * .10 ‘statement to be
executed if the condition is true.

A more complicated version of the If statement executes a series of
statements when the condition is true, for example:

• If AmountPurchased > 10000 Then
• DiscountAmount = AmountPurchased * .10
• Subtotal = AmountPurchased - DiscountAmount
• End If

In this form of the If statement, one or more statements can be executed
when the condition is true, by placing them between the If statement on
top and the End If statement on the bottom.

The next form of the If statement uses the If..Then..Else format. This
version of the If statement differs from the two previous versions in that
it will perform one set of statements if the condition is true and another
set when the condition is false:

• If AmountPurchased > 10000 Then
• DiscountAmount = AmountPurchased * .10
• Subtotal = AmountPurchased - DiscountAmount
• Else
• HandlingFee = AmountPurchased *.03
• Subtotal = AmountPurchased + HandlingFee
• End If

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

116

3.2.2 Select Case

The Select Case statement provides an alternative to the If..Then..Else
statement, providing additional control and readability when evaluating
complex conditions. It is well suited for situations where there are a
number of possible conditions for the value being checked. Like the If
statement the Select Case structure checks a condition, and based upon
that condition being true, executes a series of statements.

The syntax of the Select Case statement is:

• Select Case condition
• Case value
• Case value
• ...
• Case Else
• End Select

For example, the following Select statement assigns different lecture
fees based upon the course unit where the order is being sent:

• Select Case Document.frmOrder.txtState.Value
• Case "1-Unit"
• LectureFee= 500
• Case "2-Unit"
• LectureFee = 1,000
• Case Else
• LectureFee = 1,500
• End Select

The Select Case statement checks each of the Case statements until it
finds one that will result in the condition being true. If none are found to
be true, it executes the statements within the Case Else.

Note
Even though it is not required, always include a Case Else when
working with Select Case statements to process conditions that you may
not have considered possible.

Example 2:
• <html>
• <body>
• <script type="text/VBScript">
• d=weekday(Date)

CIT 753 MODULE 3

117

• Select Case d
• Case 1
• document.write("Sleepy Sunday")
• Case 2
• document.write("Monday again!")
• Case 3
• document.write("Just Tuesday!")
• Case 4
• document.write("Wednesday!")
• Case 5
• document.write("Thursday...")
• Case 6
• document.write("Finally Friday!")
• Case Else
• document.write("Super Saturday!!!!")
• End Select
• </script>
• <p>This example demonstrates the "Select Case" statement.

• You will receive a different greeting based on what day it is.

• Note that Sunday=1, Monday=2, Tuesday=3, etc.</p>
• </body>
• </html>

Fig.4.2: Output of Example 2

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

118

SELF-ASSESSMENT EXERCISE

i. Distinguish between the followings: property, method, and
events.

ii. Develop a simple web page to output the model and prices of
phones available when a particular name (e.g. Nokia) is enter.
(HINT: use SELECT CASE Statement).

3.3 Controlling Your VBScript Routines

3.3.1 Looping Statement

VBScript provides three forms of looping statements:

• For..Next
• For Each..Next
• Do..Loop

These four statements can be divided into two groups. The For
statements (For..Next and For Each..Next) are best used when you want
to perform a loop a specific number of times. The Do..While statements
is best used to perform a loop an undetermined number of times.

3.3.1.1 For..Next

The For..Next structure is used when you want to perform a loop a
specific number of times. It uses a counter variable, which is
incremented or decremented with each repetition of the loop. Example:

• For counter = 1 To 12
• result = 5 * counter
• MsgBox counter & " times 5 is " & result
• Next counter

In this example, the variable counter is the numeric value being
incremented or decremented. The number 1, defines the start of the loop,
12 the end of the loop. When this loop executes it will display twelve
dialog box messages, each containing the product of multiplying five
times the counter as it runs from 1 to 12.

You can also control how you want your counter to be modified through
the addition of the Step argument. Example:

• For counter = 1 To 12 Step 2
• result = 5 * counter

CIT 753 MODULE 3

119

• MsgBox counter & " times 5 is " & result
• Next counter

This little modification to the loop results in only the products of the odd
numbers between 1 and 12 being displayed because the loop will
execute by increasing the counter by 2 at each execution.

3.3.1.2 For Each..Next

The For Each..Next is similar to the For..Next loop but instead of
repeating a loop for a certain number of times, it repeats the loop for
each member of a specified collection.

3.3.1.3 Do...Loop

If you don't know how many repetitions you want, use a Do...Loop
statement.

The Do...Loop statement repeats a block of code while a condition is
true, or until a condition becomes true.

There are three variant of Do..Loop:

• Do..While

You use the While keyword to check a condition in a Do...Loop
statement.

Format:

• Do While i>10
• some code
• Loop
• Do..Until
• Format:
• Do
• some code
• Loop Until i=10
• or
• Do Until i=10
• i=i-1
• If i<10 Then Exit Do
• Loop

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

120

Example 3

Develop a simple web page using VBScript to loop through the six
headings in HTML.

• Solution
• <html>
• <body>
• <script type="text/VBScript">
• For i=1 To 6
• document.write("<h" & i & ">This is header " & i & "</h" & i &

">")
• Next
• </script>
• </body>
• </html>

The output is displayed below:

Fig.4.3: Output of Example 3

SELF-ASSESSMENT EXERCISE

In Activity A above, add functionality that allows Customers to supply
quantity as input and output the total price in return.

4.0 CONCLUSION

In this unit, we discussed: i) Objects and VBScript Objects and ii)
Controlling your VBScript Routines which enhances the functionality
that is provided with HTML. By using VBScript objects you can extend
the capabilities of controls, integrating and manipulating them from
within your scripts.

CIT 753 MODULE 3

121

5.0 SUMMARY

In this unit, we have learnt:

• how to utilise the power of objects in VBScript
• how to add ActiveX controls
• how the script process the data through the use of control

statements.

6.0 TUTOR-MARKED ASSIGNMENT

Modify your web page in Unit 3, Tutor- marked assignment 2 to accept:
phone model and quantity as input and consequently compute and
display: subtotal, taxes, and total cost.

7.0 REFERENCES/FURTHER READING

Ed, Wilson (2006). Microsoft VBScript: Step by Step. Microsoft Press.

Don, J. & Jeffery, H. (2006).Advanced VBScript for Microsoft Windows
Administrators. Microsoft Press.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

122

MODULE 4 EXTENSIBLE MARKUP LANGUAGE
(XML)

Unit 1 XML Basics
Unit 2 Document Type Definition (DTDs)
Unit 3 XML Schema Basics
Unit 4 XSLT Basics
Unit 5 Micromedia Dreamweaver

UNIT 1 XML BASICS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The 10 Primary XML Design Goals
3.2 Benefits of XML

3.2.1 XML Holds Data
3.2.2 XML Separates Structure from Formatting
3.2.3 XML Promotes Data Sharing
3.2.4 XML is Human-Readable
3.2.5 XML is Free

3.3 XML in Practice
3.3.1 Content Management
3.3.2 Web Services
3.3.3 RDF / RSS Feeds

3.4 XML Documents
3.4.1 The XML Declaration
3.4.2 Processing Instructions
3.4.3 Comments
3.4.4 A Document Type Declaration

3.5 Elements
3.5.1 Empty Elements

3.6 Attributes
3.7 CDATA
3.8 White Space

3.8.1 xml:Space Attribute
3.9 XML Syntax Rules

3.9.1 Special Characters
3.10 Creating a Simple XML File

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

123

CIT 753 MODULE 4

1.0 INTRODUCTION

XML stands for Extensible Mark-up Language. A mark-up language
specifies the structure and content of a document. Because it is
extensible, XML can be used to create a wide variety of document types.
XML (eXtensible Mark-up Language) is a meta-language; that is, it is a
language in which other languages are created. In XML, data is "marked
up" with tags, similar to HTML tags. XML is used to store data or
information. This unit will introduce you to XML basics, XML benefits.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define XML
• explain the benefits XML
• list XML syntax rules
• describe how to create a simple XML file.

3.0 MAIN CONTENT

Definition of XML
XML stands for Extensible Mark-up Language. A mark-up language
specifies the structure and content of a document. XML is a subset of
the Standard Generalised Mark-up Language (SGML) which was
introduced in the 1980s. SGML is very complex and can be costly.
These reasons led to the creation of Hypertext Mark-up Language
(HTML), a more easily used mark-up language. XML can be seen as
sitting between SGML and HTML – easier to learn than SGML, but
more robust than HTML.

3.1 The 10 Primary XML Design Goals

1. XML must be easily usable over the Internet
2. XML must support a wide variety of applications
3. XML must be compatible with SGML
4. It must be easy to write programs that process XML documents
5. The number of optional features in XML must be kept small
6. XML documents should be clear and easily understood
7. The XML design should be prepared quickly
8. The design of XML must be exact and concise
9. XML documents must be easy to create
10. Keeping an XML document size small is of minimal importance.

124

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

3.2 Benefits of XML

Initially, XML received a lot of excitement, which has now died down.

This is not because XML is not as useful, but rather because it does not
provide instant attractive factor that others technology, such as HTML
do. When you write an HTML document, you see a nicely formatted
page in a browser - instant gratification. When you write an XML
document, you see an XML document - not so exciting. However, with a
little more effort, you can make that XML document more robust.

This section discusses some of the major benefits of XML.

3.2.1 XML Holds Data

XML does not really do much of anything. Rather, developers can create
XML-based languages that store data in a structure way. Applications
can then use this data to do any number of things.

3.2.2 XML Separates Structure from Formatting

One of the difficulties with HTML documents, Word Processor
documents, Spreadsheets, and other forms of documents is that, they
mix structure with formatting. This makes it difficult to manage content
and design, because the two are intermingled.

As an example, in HTML, there is a <u> tag used for underlining text.
Very often, it is used for emphasis, but it also might be used to mark a
book title. It would be very difficult to write an application that searched
through such a document for book titles.

In XML, the book titles could be placed in <book title> tags and the
emphasied text could be place in tags. The XML document does
not specify how the content of either tag should be displayed. Rather,
the formatting is left up to an external styleSheet. Even though the book
titles and emphasised text might appear the same, it would be relatively
straight forward to write an application that finds all the book titles. It
would simply look for text in <book_title> tags. It also becomes much
easier to reformat a document; for example, to change all emphasised
text to be italicised rather than underlined, but leave book titles
underlined.

125

CIT 753 MODULE 4

3.2.3 XML Promotes Data Sharing

Very often, applications that hold data in different structures must share
data with one another. It can be very difficult for a developer to map the
different data structures to each other. XML can serve as a go between.
Each application's data structure is mapped to an agreed-upon XML
structure. Then all the applications share data in this XML format. Each
application only has to know two structures, its own and the XML
structure, to be able to share data with many other applications.

3.2.4 XML is Human-Readable

XML documents are (or can be) read by people. Perhaps this doesn't
sound so exciting, but compare it to data stored in a database. It is not
easy to browse through a database and read different segments of it as
you would a text file. Take a look at the XML document below.

• Code Sample: oyelade.xml
• <?xml version="1.0"?>
• <person>
• <name>
• <firstname>Olanrewaju</firstname>
• <lastname>Oyelade</lastname>
• </name>
• <job>Lecturer</job>
• <gender>Male</gender>
• </person>

Code explanation
It is not hard to tell from looking at this that the XML is describing a
person named Olanrewaju Oyelade, who is a Lecturer and is a male.

3.2.5 XML is Free

XML doesn't cost anything to use. It can be written with a simple text
editor or one of the many freely available XML authoring tools, such as
XML Notepad. In addition, many web development tools, such as
Dreamweaver and Visual Studio .NET have built-in XML support.
There are also many free XML parsers, such as Microsoft's MSXML
(downloadable from microsoft.com) and Xerces (downloadable at
apache.org).

126

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

3.3 XML in Practice

3.3.1 Content Management

Almost all of the leading content management systems use XML in one
way or another. A typical use would be to store a company's marketing
content in one or more XML documents. These XML documents could
then be transformed for output on the Web, as Word documents, as
PowerPoint slides, in plain text, and even in audio format. The content
can also easily be shared with partners who can then output the content
in their own formats.

Storing the content in XML makes it much easier to manage content for
two reasons.

Content changes, additions, and deletions are made in a central location
and the changes will cascade out to all formats of presentation. There is
no need to be concerned about keeping the Word documents in sync
with the website, because the content itself is managed in one place and
then transformed for each output medium.

Formatting changes are made in a central location. To illustrate, suppose
a company had many marketing web pages, all of which were produced
from XML content being transformed to HTML. The format for all of
these pages could be controlled from a single XSLT and a sitewide
formatting change could be made modifying that XSLT.

3.3.2 Web Services

XML Web services are small applications or pieces of applications that
are made accessible on the Internet using open standards based on XML.
Web services generally consist of three components:

• SOAP - an XML-based protocol used to transfer Web services
over the Internet.

• WSDL (Web Services Description Language) - an XML-based
language for describing a Web service and how to call it.

• Universal Discovery Description and Integration (UDDI) - the
yellow pages of Web services. UDDI directory entries are XML
documents that describe the Web services a group offers. This is
how people find available Web services.

127

CIT 753 MODULE 4

3.3.3 RDF / RSS Feeds

RDF (Resource Description Framework) is a framework for writing
XML-based languages to describe information on the Web (e.g. web
pages). RSS (RDF Site Summary) is an implementation of this
framework; it is a language that adheres to RDF and is used to describe
web content. Website publishers can use RSS to make content available
as a "feed", so that web users can access some of their content without
actually visiting their site. Often, RSS is used to provide summaries with
links to the company's website for additional information.

3.4 XML Documents

An XML document is made up of the following parts:

a. An optional prolog
b. A document element, usually containing nested elements
c. Optional comments or processing instructions.

3.4.1 The XML Declaration

The XML declaration, if it appears at all, must appear on the very first
line of the document with no preceding white space. It looks like this.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

This declares that the document is an XML document. The version
attribute is required, but the encoding and standalone attributes are not.
If the XML document uses any markup declarations that set defaults for
attributes or declare entities then standalone must be set to no.

3.4.2 Processing Instructions

Processing instructions are used to pass parameters to an application.
These parameters tell the application how to process the XML
document. For example, the following processing instruction tells the
application that it should transform the XML document using the XSL
stylesheet oyelade.xsl.

<?xml-stylesheet href="oyelade.xsl" type="text/xsl"?>
As shown above, processing instructions begin with <? and end with ?>.

128

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

3.4.3 Comments

Comments can appear throughout an XML document. Like in HTML,
they begin with <!-- and end with -->.
<!--This is a comment-->

3.4.4 A Document Type Declaration

The Document Type Declaration (or DOCTYPE Declaration) has three
roles:

• it specifies the name of the document element
• it may point to an external Document Type Definition (DTD)
• it may contain an internal DTD.

The DOCTYPE Declaration shown below simply states that the
document element of the XML document is beatles.
<!DOCTYPE beatles>

If a DOCTYPE Declaration points to an external DTD, it must either
specify that the DTD is on the same system as the XML document itself
or that it is in some public location. To do so, it uses the keywords
SYSTEM and PUBLIC. It then points to the location of the DTD using a
relative Uniform Resource Indicator (URI) or an absolute URI. Here are
a couple of examples.

Syntax
• <!--DTD is on the same system as the XML document-->
• <!DOCTYPE beatles SYSTEM "dtds/oyelade.dtd">

Syntax
• <!--DTD is publicly available-->
• <!DOCTYPE oyelade PUBLIC "-//Openuniversity//DTD

Oyelade 1.0//EN"
• "http://www.openuniversity.com/oyelade/DTD/oyelade.dtd">

As shown in the second declaration above, public identifiers are divided
into three parts:

a. An organisation (e.g, Openuniversity)
b. A name for the DTD (e.g, Oyelade 1.0)
c. A language (e.g. EN for English).

129

CIT 753 MODULE 4

3.5 Elements

Every XML document must have at least one element, called the
document element. The document element usually contains other
elements, which contain other elements, and so on. Elements are
denoted with tags. Let's look again at the Oyelade.xml.

• Code Sample: Oyelade.xml
• <?xml version="1.0"?>
• <person>
• <name>
• <firstname>Olanrewaju</firstname>
• <lastname>Oyelade</lastname>
• </name>
• <job>Lecturer</job>
• <gender>Male</gender>
• </person>

Code Explanation
The document element is person. It contains three elements: name, job
and gender. Further, the name element contains two elements of its own:
firstname and lastname. As you can see, XML elements are denoted
with tags, just as in HTML. Elements that are nested within another
element are said to be children of that element.

3.5.1 Empty Elements

Not all elements contain other elements or text. For example, in
XHTML, there is an img element that is used to display an image. It
does not contain any text or elements within it, so it is called an empty
element. In XML, empty elements must be closed, but they do not
require a separate close tag. Instead, they can be closed with a forward
slash at the end of the open tag as shown below.

The above code is identical in function to the code below.

SELF-ASSESSMENT EXERCISE

i. What is the difference(s) between XML and HTML.
ii. State ten Primary goals of XML Design.
iii. What are the benefits of XML over HTML.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

130

iv. Write short notes on the following:
a. SOAP
b. UDDI and
c. WSDL

3.6 Attributes

XML elements can be further defined with attributes, which appear
inside of the element's open tag as shown below.

• Syntax
• <name title="Sir">
• <firstname>Olanrewaju</firstname>
• <lastname>Oyelade</lastname>
• </name>

3.7 CDATA

Sometimes it is necessary to include sections in an XML document that
should not be parsed by the XML parser. These sections might contain
content that will confuse the XML parser, perhaps because it contains
content that appears to be XML, but is not meant to be interpreted as
XML. Such content must be nested in CDATA sections. The syntax for
CDATA sections is shown below.

Syntax
<![CDATA[

This section will not get parsed

by the XML parser.
]]>

3.8 White Space

In XML data, there are only four white space characters.

• Tab
• Line-feed
• Carriage-return
• Single space
• There are several important rules to remember with regards to

white space in XML.

CIT 753 MODULE 4

131

• White space within the content of an element is significant; that

is, the XML processor will pass these characters to the
application or user agent.

• White space in attributes is normalised; that is, neighbouring
white spaces are condensed to a single space.

• White space in between elements is ignored.

3.8.1 xml:space Attribute

The xml:space attribute is a special attribute in XML. It can only take
one of two values: default and preserve. This attribute instructs the
application how to treat white space within the content of the element.
Note that the application is not required to respect this instruction.

3.9 XML Syntax Rules

XML has relatively straightforward, but very strict, syntax rules. A
document that follows these syntax rules is said to be well-formed.

There must be one and only one document element.

Every open tag must be closed.

If an element is empty, it still must be closed.

Poorly-formed: <tag>
Well-formed: <tag></tag>
Also well-formed: <tag />

Elements must be properly nested.

Poorly-formed: <a>
Well-formed: <a>

Tag and attribute names are case sensitive.
Attribute values must be enclosed in single or double quotes.

3.9.1 Special Characters

There are five special characters that can not be included in XML
documents. These characters are replaced with predefined entity
references as shown in the table below.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

132

Special Characters

Character Entity Reference

< <

> >

& &

" "

' '

3.10 Creating a Simple XML File

The following is relatively simple XML file describing the Oyelades.
• Code Sample: Oyelade.xml
• <?xml version="1.0"?>
• <oyelades>
• <oyelade link="http://www.olanrewajuoyelade.com">
• <name>
• <firstname>Olanrewaju</firstname>
• <lastname>Oyelade</lastname>
• </name>
• </oyelade >
• <oyelade link="http://www.johnlennon.com">
• <name>
• <firstname>John</firstname>
• <lastname>Lennon</lastname>
• </name>
• </oyelade >
• <oyelade link="http://www.georgeharrison.com">
• <name>
• <firstname>George</firstname>
• <lastname>Harrison</lastname>
• </name>
• </oyelade>
• <oyelade link="http://www.ringostarr.com">
• <name>
• <firstname>Ringo</firstname>
• <lastname>Starr</lastname>
• </name>
• </oyelade>
• <oyelade link="http://www.openuniversity.com" real="no">
• <name>
• <firstname>Dada</firstname>

CIT 753 MODULE 4

133

• <lastname>Ojo</lastname>
• </name>
• </oyelade>
• </oyelades>

The output of Oyelade.xml is shown below:

SELF-ASSESSMENT EXERCISE

i. In this Activity, you will be modifying an existing XML file.
ii. Open Xml101.xml
iii. Add a required prerequisite: "Experience with computers".

Add the following to the topics list:

• XML Documents
• The Prolog Elements
• Attributes
• CDATA
• XML Syntax Rules
• Special Characters
• Creating a Simple XML File
• Add a modifications element that shows the modifications you've

made.

Note: The required file is given below

• Code Sample: Xml101.xml
• <?xml version="1.0"?>
• <course>
• <head>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

134

• <title>Internet Concept and Web Design</title>
• <course_num>CIT853</course_num>
• <course_unit>3 </course_unit>
• </head>
• <body>
• <prerequisites>
• <prereq>Experience with Word Processing</prereq>
• <prereq optional="true">Experience with HTML</prereq>
• <!-- Add a required prerequisite: "Experience with computers" --

>
• </prerequisites>
• <outline>
• <topics>
• <topic>XML Basics
• <topics>
• <topic>What is XML?</topic>
• <topic>XML Benefits
• <topics>
• <topic>XML Holds Data, Nothing More</topic>
• <topic>XML Separates Structure from Formatting</topic>
• <topic>XML Promotes Data Sharing</topic>
• <topic>XML is Human-Readable</topic>
• <topic>XML is Free</topic>
• </topics>
• </topic>
• <!--

Add the following to the topics list ("XML Documents" and "Creating a
Simple XML File" should be siblings of "What is XML?" and "XML
Benefits"):

• XML Documents
• The Prolog
• Elements
• Attributes
• CDATA
• XML Syntax Rules
• Special Characters
• Creating a Simple XML File
-->
</topics>
</topic>
</topics>
</outline>

CIT 753 MODULE 4

135

</body>
<foot>
<creator>Olanrewju Oyelade</creator>
<date_created>2009-08-25</date_created>
<modifications madeby="George Germond" date="2009-09-05">
<modification type="insert">Added HTML prerequisite</modification>
<modification type="edit">Fixed some typos</modification>
</modifications>
<!--
Add a modifications element that shows the modifications you've made.
-->
</foot>
</course>

4.0 CONCLUSION

XML stands for Extensible Mark-up Language which can be used to
create a wide variety of document types. XML (eXtensible Mark-up
Language) is a meta-language; and it is used to store data or
information.

5.0 SUMMARY

In this unit, we have learnt:

• the benefits of XML
• how XML is used, and
• how to write a well-formed XML document.

6.0 TUTOR-MARKED ASSIGNMENT

Edit and modify the XML document below using any text editor, display
it on a web browser and debug the file with the help of a browser.

Hits.txt
<?XML VERSION="1.0" encoding="UTF-8" standalone="yes" ?>
<!-- This file has some errors. Find and fix errors. Add your name and
the current date here -->
<CD>
<CDTITLE>All time greatest hits <!--Live music </CDTITLE> -->
<ARTIST>Louis Armstrong</artist>

<track>What a wonderful world</track>
<track>Hello Dolly</track>
<track>Kiss in fire</track>
<track>Mack the knife</track>

</CD>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

136

To complete this task, the students should do the following steps:
i. Using any text editor, create the Hits.txt document and save the

document as Hits.xml.
ii. Within the document’s prolog, insert the name and the date.
iii. Check the syntax of elements and comments. Fix errors and save

the document with the same name.
iv. Open the Hits.xml in a Web browser. If a syntax error is found,

an error message will be displayed instead of the document’s
contents.

v. Open Hits.xml in the text editor and fix the error. Save the
document with the same name. Repeat steps 4 and 5 until the
document’s content are displayed.

vi. Check the content and find any logical errors or missing data.
Fix logical errors. Save the document with the same name.

vii. Print correct version of Hits.xml and the web page generated by
the browser.

7.0 REFERENCES/FURTHER READING

Brooks & David, R. (2007). An Introduction to HTML and JavaScript
for Scientists and Engineers.

David, F. (1998). JavaScript: The Definitive Guide. (3rd ed.). O'Reilly

Media.

Larry, R. (2002).“Programming the Web Using XHTML and
JavaScript”, McGraw-Hill.

CIT 753 MODULE 4

137

UNIT 2 DOCUMENT TYPE DEFINITION (DTDS)

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Purpose of DTDs
3.2 Creating DTDs

3.2.1 The Document Element
3.2.2 Child Elements
3.2.3 Other Elements
3.2.4 Choice of Elements
3.2.5 Empty Elements
3.2.6 Mixed Content
3.2.7 Location of Modifier
3.2.8 Using Parentheses for Complex Declarations

3.2.8.1Declaring Attributes
3.3 Validating an XML Document with a DTD

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

This unit introduces the use of Document Type Definitions (DTDs)
which is used to ensure that all required elements are present in the
document and also to prevent undefined elements from being used and
enforce a specific data structure. It also specifies the use of attributes
and defines their possible values and also defines default values for
attributes. DTD also describe how the parser should access non-XML or
non-textual content.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• state the difference between well-formed and valid XML

documents.
• describe the purpose of DTDs
• explain how to create internal and external DTDs
• explain how to validate an XML document according to a DTD.
• enumerate the limitations of DTDs.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

138

3.0 MAIN CONTENT

Well-formed vs. Valid
A well-formed XML document is one that follows the syntax rules
described in "XML Syntax Rules". A valid XML document is one that
conforms to a specified structure. For an XML document to be
validated, it must be checked against a schema, which is a document that
defines the structure for a class of XML documents. XML documents
that are not intended to conform to a schema can be well-formed, but
they cannot be valid.

3.1 The Purpose of DTDs

A Document Type Definition (DTD) is a type of schema. The purpose
of DTDs is to provide a framework for validating XML documents. By
defining a structure that XML documents must conform to, DTDs allow
different organisations to create shareable data files.

Imagine, for example, a company that creates technical courseware and
sells it to technical training companies. Those companies may want to
display the outlines for that courseware on their websites, but they do
not want to display it in the same way as every other company who buys
the courseware. By providing the course outlines in a predefined XML
format, the courseware vendor makes it possible for the training
companies to write programs to read those XML files and transform
them into HTML pages with their own formatting styles (perhaps using
XSLT or CSS). If the XML files had no predefined structure, it would
be very difficult to write such programs.

3.2 Creating DTDs

DTDs are simple text files that can be created with any basic text editor.
Although they look a little cryptic at first, they are not terribly
complicated once you get used to them.

A DTD outlines what elements can be in an XML document and the
attributes and subelements that they can take. Let's start by taking a look
at a complete DTD and then dissecting it.

• Code Sample: DTDs/Demos/Oyelade.dtd
• <!ELEMENT oyelades (oyelade+)>
• <!ELEMENT oyelade (name)>
• <!ATTLIST oyelade
• link CDATA #IMPLIED
• real (yes|no) "yes">
• <!ELEMENT name (firstname, lastname)>

CIT 753 MODULE 4

139

• <!ELEMENT firstname (#PCDATA)>
• <!ELEMENT lastname (#PCDATA)>

3.2.1 The Document Element

When creating a DTD, the first step is to define the document element.

<!ELEMENT oyelades (oyelade+)>

The element declaration above states that the oyelades element must
contain one or more oyelade elements.

3.2.2 Child Elements

When defining child elements in DTDs, you can specify how many
times those elements can appear by adding a modifier after the element
name. If no modifier is added, the element must appear once and only
once. The other options are shown in the table below.

Modifier Description
? Zero or one times.
+ One or more times.
* Zero or more times.

It is not possible to specify a range of times that an element may appear
(e.g. 2-4 appearances).

3.2.3 Other Elements

The other elements are declared in the same way as the document
element - with the <!ELEMENT> declaration. The Oyelade DTD
declares four additional elements.

Each oyelade element must contain a child element name, which must
appear once and only once.

<!ELEMENT oyelade (name)>

Each name element must contain a firstname and lastname element,
which each must appear once and only once and in that order.

<!ELEMENT name (firstname, lastname)>

Some elements contain only text. This is declared in a DTD as
#PCDATA. PCDATA stands for parsed character data, meaning that the

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

140

data will be parsed for XML tags and entities. The firstname and
lastname elements contain only text.

<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>

3.2.4 Choice of Elements

It is also possible to indicate that one of several elements may appear as
a child element. For example, the declaration below indicates that an
img element may have a child element name or a child element id, but
not both.

<!ELEMENT img (name|id)>

3.2.5 Empty Elements

Empty elements are declared as follows.
<!ELEMENT img EMPTY>

3.2.6 Mixed Content

Sometimes elements can have elements and text intermingled. For
example, the following declaration is for a body element that may
contain text in addition to any number of link and img elements.

<!ELEMENT body (#PCDATA | link | img)*>

3.2.7 Location of Modifier

The location of modifiers in a declaration is important. If the modifier is
outside of a set of parentheses, it applies to the group; whereas, if the
modifier is immediately next to an element name, it applies only to that
element. The following examples illustrate.

In the example below, the body element can have any number of
interspersed child link and img elements.

<!ELEMENT body (link | img)*>

In the example below, the body element can have any number of child
link elements or any number of child img elements, but it cannot have
both link and img elements.

<!ELEMENT body (link* | img*)>

CIT 753 MODULE 4

141

In the example below, the body element can have any number of child
link and img elements, but they must come in pairs, with the link
element preceding the img element.

<!ELEMENT body (link, img)*>

In the example below, the body element can have any number of child
link elements followed by any number of child img elements.

<!ELEMENT body (link*, img*)>

SELF-ASSESSMENT EXERCISE

i. Write short notes on the followings:

a. DOCTYPE declaration in XML document
b. #PCDATA
c. Well-formed XML document
d. Valid XML document

3.2.8 Using Parentheses for Complex Declarations

Element declarations can be more complex than the examples above.
For example, you can specify that a person element either contains a
single name element or a firstname and lastname element. To group
elements, wrap them in parentheses as shown below.

<!ELEMENT person (name | (firstname,lastname))>

3.2.8.1 Declaring Attributes

Attributes are declared using the <!ATTLIST > declaration. The syntax
is shown below.

• <!ATTLIST ElementName
• AttributeName AttributeType State DefaultValue?
• AttributeName AttributeType State DefaultValue?>
• ElementName is the name of the element taking the attributes.
• AttributeName is the name of the attribute.
• AttributeType is the type of data that the attribute value may

hold. Although there are many types, the most common are
CDATA (unparsed character data) and ID (a unique identifier). A
list of options can also be given for the attribute type.

• DefaultValue is the value of the attribute if it is not included in
the element.

• State can be one of three values: #REQUIRED, #FIXED (set
value), and #IMPLIED (optional).

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

142

The oyelade element has two possible attributes: link, which is optional
and may contain any valid XML text, and real, which defaults to yes if it
is not included.

• <!ATTLIST oyelade
• link CDATA #IMPLIED
• real (yes|no) "yes">

3.3 Validating an XML Document with a DTD

The DOCTYPE declaration in an XML document specifies the DTD to
which it should conform. In the code sample below, the DOCTYPE
declaration indicates the file should be validated against Oyelade.dtd in
the same directory.

• Code Sample: DTDs/Oyelade.xml
• <?xml version="1.0"?>
• <!DOCTYPE beatles SYSTEM "Oyelade.dtd">
• <oyelades>
• <oyelade link="http://www.paulmccartney.com">
• <name>
• <firstname>Paul</firstname>
• <lastname>McCartney</lastname>
• </name>
• </oyelade>
• <oyelade link="http://www.johnlennon.com">
• <name>
• <firstname>John</firstname>
• <lastname>Lennon</lastname>
• </name>
• </oyelade>
• <oyelade link="http://www.georgeharrison.com">
• <name>
• <firstname>George</firstname>
• <lastname>Harrison</lastname>
• </name>
• </oyelade>
• <oyelade link="http://www.webucator.com" real="no">
• <name>
• <firstname>Nat</firstname>
• <lastname>Dunn</lastname>
• </name>
• </oyelade>
• </oyelades>

CIT 753 MODULE 4

143

SELF-ASSESSMENT EXERCISE

In this activity, you will write a DTD for the business letter shown
below. You will then give your DTD to another student, who will mark
up the business letter as a valid XML document according to your DTD.
Likewise, you will markup the business letter according to someone
else's DTD. Make sure that the XML file contains a DOCTYPE
declaration.

Code Sample : BusinessLetter.txt
November 29, 2009

Johnson Olanrewaju
National Open University,
291 Broadway Ave.
Victoria Island, Lagos
Nigeria.

Dear Dr. Olanrewaju:

Along with this letter, I have enclosed the following items:

• two original, execution copies of the Webucator Master Services
Agreement

• two original, execution copies of the Webucator Premier Support
for

• Developers Services Description between
• Lockwood & Lockwood and Webucator, Inc.

Please sign and return all four original, execution copies to me at your
earliest convenience. Upon receipt of the executed copies, we will
immediately return a fully executed, original copy of both agreements to
you.

Please send all four original, execution copies to my attention as
follows:

• Webucator, Inc.
• 4933 Allen Aven. Rd.
• Jamesville, Lagos, Nigeria
• Attn: Bill Smith

If you have any questions, feel free to call me at 08035755778
or e-mail me at bsmith@webucator.com.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

144

4.0 CONCLUSION

A DTD can be used to:

• ensure all required elements are present in the document
• prevent undefined elements from being used
• enforce a specific data structure
• specify the use of attributes and define their possible values
• define default values for attributes
• describe how the parser should access non-XML or non-textual

content.

5.0 SUMMARY

In this unit, you have learned:

• the difference between well-formed and valid XML documents
• the purpose of DTDs
• how to create internal and external DTDs
• how to validate an XML document according to a DTD
• the limitations of DTDs.

6.0 TUTOR-MARKED ASSIGNMENT

Oyelade has created another XML document Authors.xml. This
document contains a list of authors. For each author he has recorded the
author name, the author ID, and the phone number. He forgot to ask
Samantha Tracey his phone number. For each author he has entered the
information about books. For each published book, he recorded the book
ID, the book name, the publisher, and the book version number. Some
books do not have a version number. Each author and each book should
have a unique ID. He asked you to create an internal DTD that declares
all of the elements and attributes in the document. You should also use
XML Spy to validate your document against the rules you set up in the
DTD.

Authors.xml

<?xml version="1.0" ?>
<!-- document type declaration follows -->

<AUTHORS>

<AUTHOR AUTHORID="A001">

<AUTHOR_Name Title="Mr.">

CIT 753 MODULE 4

145

<First>Ivor</First>
<Last>Horton</Last>

</AUTHOR_Name>
<PHONE>212-443-8875</PHONE>

<books>

<book bookID="B0001" version="1.1">
<book_name>Java Programming for beginners</book_name>
<Publisher>Course Technology</Publisher>

</book>
<book bookID="B0002" version="1.2">

<book_name>Java Programming for
professionals</book_name>

<Publisher> Course Technology </Publisher>
</book>

</books>
</AUTHOR>

<AUTHOR AUTHORID="A002">

<AUTHOR_Name Title="Ms.">
<First>Samantha</First>
<Last>Tracey</Last>

</AUTHOR_Name>

<books>
<book bookID="B0028">

<book_name>XML and DTD</book_name>
<Publisher> Course Technology.</Publisher>

</book>
<book bookID="B0029" version="1.1">

<book_name>XML and Schemas</book_name>
<Publisher> Course Technology </Publisher>

</book>
</books>

</AUTHOR>

To complete this task, the students should do the following steps:

i. Using any text editor, open Authors.xml and create the document

type declaration.
ii. Create element declarations for all of the elements.

a. The top-most element in the document is the AUTHORS
element may contain one or more occurrences.

b. The AUTHOR element has 3 child elements:
AUTHOR_Name, PHONE, and books. Remember that
PHONE is optional.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

146

c. AUTHOR_Name has 2 child elements: First, and Last.
d. The First, Last, and Phone elements can only contain

character data.
e. Next, add declaration for the books element, which must

contain at least one occurrence of the book element.
f. Each book has 2 child elements: book name, and

Publisher. Both of them contain character information.
iii. Insert the attribute declarations right below the declaration for the

element that contains the attribute.
a. Insert the declaration for AUTHORID (required element).
b. Title is an optional element that can have one of three

possible values: Mr., Mrs., or Ms.
c. Add the attribute declaration for bookID (required).
d. Insert the attribute declaration for version. This is an

optional element. The default value is “1.1”.
iv. When you created a DTD, save your file with the same name.
v. Open your XML file in XML Spy and validate your document

against the rules you set up in the DTD.
vi. If you get an error message, examine the reason for the error and

then make the necessary corrections.
vii. After confirming that Authors.xml is a valid document, close

XML Spy.

7.0 REFERENCES/FURTHER READING

Charles, F. G., Paul, P. (1998). “The XML Handbook”, Prentice Hall
Computer Books.

Elliotte, R. H. & Scott, M. W. (2001). “XML in a Nutshell”.

.Michael, M. (2001). “HTML and XML for Beginners”.

CIT 753 MODULE 4

147

UNIT 3 XML SCHEMA BASICS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Power of XML Schema
3.2 A Simple XML Schema
3.3 Validating an XML Instance Document

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

This unit introduces an XML Schema which is an XML document that
defines the content and structure of one or more XML documents. An
XML schema defines element and attribute names for a class of XML
documents. The schema also specifies the structure that those documents
must adhere to and the type of content that each element can hold.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• identify the purpose of XML Schema.
• state the limitations of DTDs
• explain the power of XML Schema.
• describe how to validate an XML Instance with an XML schema.

3.0 MAIN CONTENT

The Purpose of XML Schema
XML Schema is an XML-based language used to create XML-based
languages and data models. An XML schema defines element and
attribute names for a class of XML documents. The schema also
specifies the structure that those documents must adhere to and the type
of content that each element can hold.

XML documents that attempt to adhere to an XML schema are said to
be instances of that schema. If they correctly adhere to the schema, then
they are valid instances. This is not the same as being well formed. A
well-formed XML document follows all the syntax rules of XML, but it
does necessarily adhere to any particular schema. So, an XML document

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

148

can be well formed without being valid, but it cannot be valid unless it is
well formed.

3.1 The Power of XML Schema

You may already have some experience with DTDs. DTDs are similar to
XML schemas in that they are used to create classes of XML
documents. DTDs were around long before the advent of XML. They
were originally created to define languages based on SGML, the parent
of XML. Although DTDs are still common, XML Schema is a much
more powerful language.

As a means of understanding the power of XML Schema, let's look at
the limitations of DTD:

a. DTDs do not have built-in datatypes
b. DTDs do not support user-derived datatypes
c. DTDs allow only limited control over cardinality (the number of

occurrences of an element within its parent)
d. DTDs do not support Namespaces or any simple way of reusing

or importing other schemas.

An XML schema describes the structure of an XML instance document
by defining what each element must or may contain. An element is
limited by its type. For example, an element of complex type can
contain child elements and attributes, whereas a simple-type element can
only contain text. The diagram below gives a first look at the types of
XML Schema elements.

CIT 753 MODULE 4

149

Schema authors can define their own types or use the built-in types.
Throughout this course, we will refer back to this diagram as we learn to
define elements. You may want to bookmark this page, so that you can
easily reference it.

The following is a high-level overview of Schema types:

• elements can be of simple type or complex type
• simple type elements can only contain text. they can not have

child elements or attributes
• all the built-in types are simple types (e.g, xs:string)
• schema authors can derive simple types by restricting another

simple type. for example, an email type could be derived by
limiting a string to a specific pattern

• simple types can be atomic (e.g. strings and integers) or non-
atomic (e.g. lists)

• complex-type elements can contain child elements and attributes
as well as text

• by default, complex-type elements have complex content,
meaning that they have child elements

• complex-type elements can be limited to having simple content,
meaning they only contain text. they are different from simple
type elements in that they have attributes

• complex types can be limited to having no content, meaning they
are empty, but they may have attributes

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

150

• complex types may have mixed content - a combination of text
and child elements.

SELF-ASSESSMENT EXERCISE

i. What is an XML Schema?
ii. State the limitation of DTD over XML Schema.

3.2 A Simple XML Schema

Let's take a look at a simple XML schema, which is made up of one
complex type element with two child simple type elements.

• Code Sample: SchemaBasics /Author.xsd
• <?xml version="1.0" encoding="UTF-8"?>
• <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
• <xs:element name="Author">
• <xs:complexType>
• <xs:sequence>
• <xs:element name="FirstName" type="xs:string" />
• <xs:element name="LastName" type="xs:string" />
• </xs:sequence>
• </xs:complexType>
• </xs:element>
• </xs:schema>

Code Explanation
As you can see, an XML schema is an XML document and must follow
all the syntax rules of any other XML document; that is, it must be well
formed. XML schemas also have to follow the rules defined in the
"Schema of schemas," which defines, among other things, the structure
of an element and attribute names in an XML schema.

Although it is not required, it is a common practice to use the xs
qualifier to identify schema elements and types.

The document element of XML schemas is xs:schema. It takes the
attribute xmlns:xs with the value of
http://www.w3.org/2001/XMLSchema, indicating that the document
should follow the rules of XML Schema. This will be clearer after you
learn about namespaces.

In this XML schema, we see a xs:element element within the xs:schema
element. xs:element is used to define an element. In this case it defines
the element author as a complex type element, which contains a

CIT 753 MODULE 4

151

sequence of two elements: FirstName and LastName, both of which are
of the simple type, string.

3.3 Validating an XML Instance Document

In the section 3.2, you saw an example of a simple XML schema, which
defined the structure of an Author element. The code sample below
shows a valid XML instance of this XML schema.

Code Sample: SchemaBasics/MarkTwain.xml

• <?xml version="1.0"?>
• <Author xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
• xsi:noNamespaceSchemaLocation="Author.xsd">
• <FirstName>Mark</FirstName>
• <LastName>Twain</LastName>
• </Author>

Code Explanation
This is a simple XML document. Its document element is Author, which
contains two child elements: FirstName and LastName, just as the
associated XML schema requires.

The xmlns:xsi attribute of the document element indicates that this XML
document is an instance of an XML schema. The document is tied to a
specific XML schema with the xsi:noNamespaceSchemaLocation
attribute.

There are many ways to validate the XML instance. If you are using an
XML authoring tool, it very likely is able to perform the validation for
you. Alternatively, a couple of simple online XML Schema validator
tools are listed below.

• http://tools.decisionsoft.com/schemaValidate.html provided by
DecisionSoft.

• http://apps.gotdotnet.com/xmltools/xsdvalidator provided by
GotDotNet.

SELF-ASSESSMENT EXERCISE

i. Differentiate between a simple type XML schema and a complex

type XML schema
ii. Modify a simple XML schema in section 3.2 which made up of

one complex type with three child simple type elements.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

152

iii. Validate your XML schema you created by following the
procedure in section 3.3.

4.0 CONCLUSION

XML Schema is an XML document that defines the content and
structure of one or more XML documents and defines element and
attribute names for a class of XML documents. The schema also
specifies the structure that those documents must adhere to and the type
of content that each element can hold.

5.0 SUMMARY

In this unit, you have learned to create a very simple XML Schema and
to use it to validate an XML instance document. You are now ready to
learn more advanced features of XML Schema in the next unit.

6.0 TUTOR-MARKED ASSIGNMENT

James created two documents named News.xml and NewsDisplay.htm.
He has already created the basic format for the Web page. He needs
your help in binding a single record from News.xml file with the Web
page and binding the XML elements to the HTML tags. The Web page
should display the news title, author’s name and one paragraph with
news text.

NewsDisplay.htm

<html>
<head>
<!--NewsDisplay.htm -->
<title>News Display</title>
<style>
body {background-colour:rgb(255,255,192)}
#News_Title (font-family:Ariel, Helvetica, sans-serif; font-size:40pt)
#News_Author (font-family:Ariel, Helvetica, sans-serif)
#News_Text (font-family:Ariel, Helvetica, sans-serif)
</style>
</head>

<body>
<div id="News_Text"> Add your name and the date here.</div>
<div id="News_Title">Title</div>
<div id="News_Author">Author Name</div>
<div id="News_Text">Text</div>
</body>

CIT 753 MODULE 4

153

</html>

News.xml
<?xml version ="1.0"?>
<!--News.xml-->

<Information>

<Title> Recognise the components of the Visual Basic Editor
</Title>

<Author>Garry Gibson </Author>
<Newsdata>

<![CDATA[
Visual Basic for Applications is an excellent built-in tool for
customising or automating operations within the Microsoft Office
application packages as well as many non-Microsoft software packages.
The Visual Basic Editor is actually a set of three windows: the main, the
Project Explorer and Properties windows. The main window comprised
of the title bar, menu bar and the standard toolbar appears at the top of
the screen. The properties window includes characteristics for each
object controlling its appearance and behaviour. Within the Project
explorer window is the code window that is opened whenever VBA
instructions called a procedure are entered as a block of code.
]]>
</Newsdata>

</Information>

To complete the project students should take the following steps:

i. Using any text editor, open News.xml and NewsDisplay.htm.

Take some time to view these documents, becoming familiar with
their contents and structures.

ii. Insert your name and the date into NewsDisplay.htm for display
on a Web page.

iii. In NewsDisplay.htm, create data island “News_Info” that points
to the file News.xml.

iv. Bind the page title, author, and text to the Title, Author, and
Newsdata of the News_Info data island.

v. Save the changes to the file.
vi. Using Internet Explorer, open NewsDisplay.htm and verify that it

shows all the information from News.xml data source.
vii. Correct any syntax/logical errors, save your file and verify the

content with Internet Explorer.
viii. Print NewsDisplay.htm and the web page, generated by Internet

Explorer.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

154

7.0 REFERENCES/FURTHER READING

Charles, F. G.,& Paul, P. (1998). “The XML Handbook”, Prentice Hall
Computer Books.

Elliotte, R. H. & Scott, M. W. (2001). “XML in a Nutshell”.

Michael, M. (2001). “HTML and XML for Beginners”.

CIT 753 MODULE 4

155

UNIT 4 XSLT BASICS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Transformation Process
3.2 An XSLT Stylesheet
3.3 xsl:template
3.4 xsl:value-of
3.5 Whitespace and xsl:text
3.6 Inserting Whitespace with xsl:text
3.7 Output Types

3.7.1 Literal Result Elements
3.7.2 HTML

3.8 Elements and Attributes
3.8.1 Attributes and Curly Brackets

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In 1998, the W3C developed the Extensible Style sheet Language, or
XSL. XSL is composed of XSL-FO (Extensible Style sheet Language –
Formatting Objects) and XSLT (Extensible Style sheet Language
Transformations).

XSL-FO is used to implement page layout and design XSLT is used to
transform XML content into another presentation format. An XSLT
style sheet contains instructions for transforming the contents of an
XML document into another format.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• explain the purpose of XSLT.
• design a simple XSLT transform.
• explain and work with whitespace
• describe how to choose the output mode
• describe how to output elements and attributes.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

156

3.0 MAIN CONTENT

eXtensible Stylesheet Language
The eXtensible Stylesheet Language is divided into two sub-languages:
eXtensible Stylesheet Language Transformations (XSLT) and
eXtensible Stylesheet Language - Formatting Objects (XSL-FO). In this
lesson, we will be looking at the basics of XSLT, which is used to
transform XML documents.

XSLT documents are well-formed XML documents that describe how
another XML document should be transformed. For XSLT to work, it
needs an XML document to transform and an engine to make the
transformation take place. In addition, parameters can be passed in to
XSLTs providing further instructions on how to do the transformation.

The diagram below shows how this all works.

3.1 The Transformation Process

An XSLT looks at an XML document as a collection of nodes of the
following types:

1. Root node
2. Element nodes
3. Attribute nodes
4. Text nodes

CIT 753 MODULE 4

157

5. Processing instruction nodes
6. Comment nodes.

An XSLT document contains one or more templates, which are created
with the <xsl:template /> tag. When an XML document is transformed
with an XSLT, the XSLT processor reads through the XML document
starting at the root, which is one level above the document element, and
progressing from top to bottom, just as a person would read the
document. Each time the processor encounters a node, it looks for a
matching template in the XSLT.

If it finds a matching template it applies it; otherwise, it uses a default
template as defined by the XSLT specification. The default templates
are shown in the table below.

Default Templates

Node Type Default Template

Root Apply templates for child nodes.

Element Apply templates for child nodes.

Attribute Output attribute value.

Text Output text value.

Processing Instruction Do nothing.

Comment Do nothing.

In this context, attributes are not considered children of the elements that
contain them, so attributes get ignored by the XSLT processor unless
they are explicitly referenced by the XSLT document.

3.2 An XSLT StyleSheet

Let's start by looking at a simple XML document and an XSLT
styleSheet, which is used to transform the XML to HTML.

Code Sample: ayodele.xml
• <?xml version="1.0"?>
• <?xml-stylesheet href="beatle.xsl" type="text/xsl"?>
• <person>
• <name>
• <firstname>Ayodele</firstname>
• <lastname>Oyelade</lastname>
• </name>
• <job>Singer</job>
• <gender>Female</gender>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

158

• </person>

Code Explanation
This is a straightforward XML document. The processing instruction at
the top indicates that the XML document should be transformed using
beatle.xsl (shown below).

Code Sample:beatle.xsl
• <?xml version="1.0"?>
• <xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"><xsl:outp
ut method="html"/>

• <xsl:template match="child::person">
• <html>
• <head>
• <title>
• <xsl:value-of select="descendant::firstname" />
• <xsl:text> </xsl:text>
• <xsl:value-of select="descendant::lastname" />
• </title>
• </head>
• <body>
• <xsl:value-of select="descendant::firstname" />
• <xsl:text> </xsl:text>
• <xsl:value-of select="descendant::lastname" />
• </body>
• </html>
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
Note that the document begins with an XML declaration. This is
because XSLTs are XML documents themselves. As with all XML
documents, the XML declaration is optional.

The second line (shown below) is the document element of the XSLT. It
states that this document is a version 1.0 XSLT document.

<xsl:stylesheetversion="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

The third line (shown below) indicates that the resulting output will be
HTML.

<xsl:output method="html"/>

CIT 753 MODULE 4

159

The fourth line is an open <xsl:template> element. The match attribute
of this tag takes an XPath, which indicates that this template applies to
the person node of the XML document. Because person is the document
element of the source document, this template will only run once.

There are then a few lines of HTML tags followed by two <xsl:value-of
/> elements separated by one <xsl:text> element. The <xsl:value-of />
tag has a select attribute, which takes an XPath pointing to a specific
element or group of elements within the XML document. In this case,
the two <xsl:value-of /> tags point to firstname and lastname elements,
indicating that they should be output in the title of the HTML page. The
<xsl:text> element is used to create a space between the first name and
the last name elements.

<xsl:value-of select="descendant::firstname" />
<xsl:text> </xsl:text>
<xsl:value-of select="descendant::lastname" />

There are then some more HTML tags followed by the same XSLT tags,
re-outputting the first and last name of the Beatle in the body of the
HTML page.

3.3 xsl:template

The xsl:template tag is used to tell the XSLT processor what to do when
it comes across a matching node. Matches are determined by the XPath
expression in the match attribute of the xsl:template tag.

Code Sample: XsltBasics/FirstName.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="text"/>
• <xsl:template match="firstname">
• We found a first name!
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
If we use this XSLT to transform firstname.xml, which has the same
XML as ayodele.xml , the result will be:

• We found a first name!
• OyeladeSingerMale

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

160

The text "We found a first name!" shows up only once, because only
one match is found. The text "OyeladeSingerMale" shows up because
the XSLT engine will continue looking through an XML document until
it is explicitly told to stop. When it reaches a text node with no matching
template, it uses the default template, which simply outputs the text.
"Oyelade", "Singer" and "Male" are the text node values inside the
elements that follow the FirstName element.

Let's see what happens if we transform an XML document with multiple
FirstName elements against this same XSLT. Take, for example, the
XML document below.

Code Sample:beatles.xml
• <?xml version="1.0"?>
• <?xml-stylesheet href="firstName.xsl" type="text/xsl"?>
• <beatles>
• <beatle link="http://www.ayodeleoyelade.com">
• <name>
• <firstname>Ayodele</firstname>
• <lastname>Oyelade</lastname>
• </name>
• </beatle>
• <beatle link="http://www.olanreoyelade.com">
• <name>
• <firstname>Olanrewaju</firstname>
• <lastname>Oyelade</lastname>
• </name>
• </beatle>
• <beatle link="http://www.peculiaroyelade.com">
• <name>
• <firstname>Peculiar</firstname>
• <lastname>Oyelade</lastname>
• </name>
• </beatle>
• <beatle link="http://www.adamsmith.com">
• <name>
• <firstname>Adam</firstname>
• <lastname>Smith</lastname>
• </name>
• </beatle>
• <beatle link="http://www.openuniversity.com" real="no">
• <name>
• <firstname>Nat</firstname>
• <lastname>Dunn</lastname>

CIT 753 MODULE 4

161

• </name>
• </beatle>
• </beatles>

Code Explanation
The resulting output will be as follows.

a. We found a first name! Oyelade
b. We found a first name! Oyelade
c. We found a first name! Oyelade
d. We found a first name! Smith
e. We found a first name! Dunn

Each time a firstname element is found in the source XML document,
the text "We found a first name!" is output. For the other elements with
text (in this case, only lastname elements), the actual text is output.

SELF-ASSESSMENT EXERCISE

i. Mention the types of eXtensible Stylesheet Language
ii. Write short notes on the following:

a. XSLT StyleSheet
b. xsl:template
c. xsl:value-of
d. XPath.

3.4 xsl:value-of

The xsl:value-of element is used to output the text value of a node. To
illustrate, let's look at the following example.

Code Sample: valueo11.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="text"/>
• <xsl:template match="firstname">
• We found a first name and it's <xsl:value-of select="."/>
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
If we use this XSLT to transform beatles-vo1.xml, which has the same
XML as beatles.xml, the result will be:

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

162

a. We found a first name and it's AyodeleOyelade
b. We found a first name and it's OlanrewajuOyelade
c. We found a first name and it's PeculiarOyelade
d. We found a first name and it's AdamSmith
e. We found a first name and it's NatDunn

The select attribute takes an XPath, which is used to indicate which
node's value to output. A single dot (.) refers to the current node (i.e. the
node that was matched by the template).

Don't let the last names at the end of each line confuse you. These are
not part of the output of the xsl:value-of element. They are there as a
result of the default template, which outputs the text value of the
element found.

To illustrate this, let's look at another example.

Code Sample: XsltBasics/ValueOf2.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="text"/>
• <xsl:template match="firstname">
• We found a first name and it's <xsl:value-of select="."/>
• </xsl:template>
• <xsl:template match="lastname">
• We found a last name and it's <xsl:value-of select="."/>
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
If we use this XSLT to transform beatles-VO2.xml, which has the same
XML as beatles.xml , the result will be:

a. We found a first name and it's Ayodele
b. We found a last name and it's Oyelade
c. We found a first name and it's Olanrewaju
d. We found a last name and it's Oyelade
e. We found a first name and it's Peculiar
f. We found a last name and it's Oyelade
g. We found a first name and it's Adam
h. We found a last name and it's Smith
i. We found a first name and it's Nat
j. We found a last name and it's Dunn

CIT 753 MODULE 4

163

This XSLT has a template for both firstname and lastname and so it
never uses the default template.

3.5 Whitespace and xsl:text

Whitespace in an XSLT template is output literally. If you're not careful,
this can lead to undesirable results. To illustrate, let's look at the
following XML and XSLT documents.

Code Sample: whitespace1.xml
• <?xml version="1.0" encoding="UTF-8"?>
• <?xml-stylesheet type="text/xsl" href="WhiteSpace1.xsl"?>
• <example>
• <blurb>
• Hello World!
• </blurb>
• </example>

Code Sample: whitespace1.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="text"/>
• <xsl:template match="blurb">
• Literal Text
• </xsl:template>
• </xsl:stylesheet>

When whitespace1.xml is transformed against whitespace1.xsl, the
output looks like this:

There is an empty line before and after the text. There are also two tabs
preceding the text. This is because the whitespace between
<xsl:template match="blurb"> and Literal Text and the whitespace
between Literal Text and </xsl:template> is output literally.

If you did not want that extra whitespace to show up in the output, you
could use the following XSLT instead.

Code Sample: WhiteSpace2.xsl

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

164

• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="text"/>
• <xsl:template match="blurb">
• <xsl:text>Literal Text</xsl:text>
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
When WhiteSpace2.xml, which has the same XML as WhiteSpace1.xml
, is transformed against WhiteSpace2.xsl, the output looks like this:

Because whitespace between open tags (e.g, between <xsl:template
match="blurb"> and <xsl:text>) and whitespace between close tags (e.g,
</xsl:text> and </xsl:template>) is ignored, the only content that is
output is the text between the open and close xsl:text tags.

3.6 Inserting Whitespace with xsl:text

The examples above illustrate how xsl:text can be used to remove
whitespace. It can also be used to add whitespace where there otherwise
wouldn't be any. Let's take a look at another example.

Code Sample:WhiteSpace3.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="text"/>
• <xsl:template match="name">
• <xsl:value-of select="firstname"/>
• <xsl:value-of select="lastname"/>
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
When Beatles-WS3.xml, which has the same XML as Beatles.xml , is
transformed against WhiteSpace3.xsl, the output looks like this:

CIT 753 MODULE 4

165

Clearly, this isn't the desired output. We'd like to have each Beatle on a
separate line and spaces between their first and last names like this:

However, because whitespace between two open tags and between two
close tags is ignored, we don't get any whitespace in the output. We can
use xsl:text to fix this by explicitly indicating how much whitespace we
want in each location.

Code Sample: WhiteSpace4.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="text"/>
• <xsl:template match="name">
• <xsl:value-of select="firstname"/>
• <xsl:text> </xsl:text>
• <xsl:value-of select="lastname"/>
• <xsl:text>
• </xsl:text>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

166

• </xsl:template>
• </xsl:stylesheet>

Code Explanation
Notice that the second close xsl:text hugs the left border. If we were to
put any space before it on that line, that space would show up in the
output. To see the desired result, transform Beatles-WS4.xml against
WhiteSpace4.xsl.

3.7 Output Types

The type of output is determined by the method attribute of the
xsl:output element, which must be a direct child of the xsl:stylesheet
element.
• Text
• <xsl:output method="text"/>

As we have seen in the examples thus far, XSLT can be used to output
plain text. However, XSLT is much more commonly used to transform
one XML structure into another XML structure or into HTML.

• XML
• <xsl:output method="xml"/>

The default output method (in most cases) is XML. That is, an XSLT
with no xsl:output element will output XML. In this case, XSLT tags are
intermingled with the output XML tags. Generally, the XSLT tags are
prefixed with xsl:, so it is easy to tell them apart. The output XML tags
may also be prefixed, but not with the same prefix as the XSLT tags.

3.7.1 Literal Result Elements

The output XML tags are called literal result elements. That is because
they are output literally rather than used by the XSLT to determine what
or how something should be output.

CIT 753 MODULE 4

167

Useful xsl:output Attributes When Outputting XML

Attribute Description

Method Should be set to xml.

Indent
Yes or no. If yes, the resulting XML document will be
pretty printed. The default is usually no.

Omit-xml-
declaration

Yes or no. If no, the resulting XML document will
begin with an XML declaration. The default is usually
no.

Version
Specifies the XML version of the resulting XML
document.

The documents below show how XSLT can be used to output XML.

Code Sample: Name.xml
• <?xml version="1.0"?>
• <?xml-stylesheet href="Name.xsl" type="text/xsl"?>
• <person>
• <name>
• <firstname>Ayodele</firstname>
• <lastname>Oyelade</lastname>
• </name>
• </person>
• Code Sample: Name.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="xml" indent="yes" version="1.0"/>
• <xsl:template match="name">
• <Matches>
• <Match>We found a name!</Match>
• <Name><xsl:value-of select="."/></Name>
• </Matches>
• </xsl:template>
• </xsl:stylesheet>
• Code Sample: NameResult.xml
• <?xml version="1.0" encoding="UTF-8"?>
• <Matches>
• <Match>We found a name!</Match>
• <Name>AyodeleOyelade</Name>
• </Matches>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

168

3.7.2 HTML

<xsl:output method="html"/>
It is very common to use XSLT to output HTML. In fact, XSLT even
has a special provision for HTML: if the document element of the
resulting document is html (not case sensitive) then the default method
is changed to HTML. However, for the sake of clarity, it is better code
to specify the output method with the xsl:output tag.

The documents below show how XSLT can be used to output HTML.

Code Sample: NameHTML.xml
• <?xml version="1.0"?>
• <?xml-stylesheet href="NameHTML.xsl" type="text/xsl"?>
• <person>
• <name>
• <firstname>Ayodele</firstname>
• <lastname>Oyelade</lastname>
• </name>
• </person>
• Code Sample: NameHTML.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="html"/>
• <xsl:template match="name">
• <html>
• <head>
• <title>We found a name!</title>
• </head>
• <body>
• <h1>
• <xsl:value-of select="firstname"/>
• <xsl:text> </xsl:text>
• <xsl:value-of select="lastname"/>
• </h1>
• </body>
• </html>
• </xsl:template>
• </xsl:stylesheet>

CIT 753 MODULE 4

169

Code Explanation
If you open NameHTML.xml in Internet Explorer, you'll see the
following result.

3.8 Elements and Attributes

When outputting XML or HTML, you will need to output tags and
attributes. We saw earlier that you can output tags using literal result
elements.

xsl:element
The xsl:element tag can be used to explicitly specify that an element is
for output. You will notice that the xsl:element tag takes the name
attribute, which is used to specify the name of the element being output.
Also, as shown, xsl:element tags can be nested within each other.

Code Sample: Name2.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="xml" indent="yes" version="1.0"/>
• <xsl:template match="name">
• <xsl:element name="Matches">
• <xsl:element name="Match">We found a

name!</xsl:element>
• <xsl:element name="Name">
• <xsl:value-of select="."/>
• </xsl:element>
• </xsl:element>
• </xsl:template>
• </xsl:stylesheet>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

170

When Name2.xml, which has the same XML as Name.xml , is
transformed against Name2.xsl, the output looks the same as we saw
when we used literal result elements earlier in the lesson.

The xsl:element tag is most useful when the tag name itself is generated.
If the tag name is not generated, it is generally easier to use literal result
elements.

xsl:attribute
The xsl:attribute element is similar to the xsl:element element. It is used
to explicitly output an attribute. However, it is more commonly used
than xsl:element. To see why, let's first look at an example in which an
attribute is output literally.

Code Sample: NameLREwithAtt.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="xml" indent="yes" version="1.0"/>
• <xsl:template match="name">
• <Matches>
• <Match Name="Some Name">We found a name!</Match>
• </Matches>
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
Notice that the value of the Name attribute is just "Some Name". We
would like to generate this value from the source XML document by
doing something like this:

• <!--THIS IS POORLY FORMED-->
• <Match Name="<xsl:value-of select='.'/>">
• We found a name!
• </Match>
• Code Sample: NameWithAtt.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="xml" indent="yes" version="1.0"/>
• <xsl:template match="name">
• <Matches>
• <Match>
• <xsl:attribute name="Name">
• <xsl:value-of select="firstname"/>

CIT 753 MODULE 4

171

• <xsl:text> </xsl:text>
• <xsl:value-of select="lastname"/>
• </xsl:attribute>We found a name!</Match>
• </Matches>
• </xsl:template>
• </xsl:stylesheet>

Code Explanation
The xsl:attribute tag applies to the element that it is nested within; in this
case, the match element. When NameWithAtt.xml, which has the same
XML as Name.xml, is transformed against NameWithAtt.xsl, the output
looks like this:

Code Sample: NameWithAttResult.xml
• <?xml version="1.0" encoding="UTF-8"?>
• <Matches>
• <Match Name="AyodeleOyelade">We found a name!</Match>
• </Matches>

3.8.1 Attributes and Curly Brackets

Because using xsl:attribute can be a bit laborious, an abbreviated syntax
is available. An XPath within curly brackets ({}) can be embedded as
the value of an attribute in the open tag. The following example
illustrates this.

Code Sample: NameWithAttAbbr.xsl
• <?xml version="1.0" encoding="UTF-8"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="xml" indent="yes" version="1.0"/>
• <xsl:template match="name">
• <Matches>
• <Match Name="{firstname} {lastname}">We found a

name!</Match>
• </Matches>
• </xsl:template>
• </xsl:stylesheet>
• Code Explanation

This will have the exact same result as NameWithAtt.xsl , but it is much
quicker and easier to write. To see the result, transform
NameWithAttAbbr.xml against this XSLT.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

172

SELF-ASSESSMENT EXERCISE

i. XML
Start by creating a well-formed XML file, such as books.xml (as
shown below) in your text editor:
• <!-- This is books.xml -->
• <?xml version="1.0" encoding="ISO-8859-1"?>
• <bib>
• <book isbn="1112223330">
• <year>1994</year>
• <title>TCP/IP Illustrated</title>
• <author>
• <last>Stevens</last>
• <first>W.</first>
• </author>
• <publisher>Addison-Wesley</publisher>
• <price>65.95</price>
• </book>
• <book isbn="1112223331">
• <year>1992</year>
• <title>Advanced Programming in the Unix

environment</title>
• <author><last>Stevens</last><first>W.</first></author>
• <publisher>Addison-Wesley</publisher>
• <price>65.95</price>
• </book>
• <book isbn="1112223332">
• <year>2000</year>
• <title>Data on the Web</title>
• <author>
• <last>Abiteboul</last>
• <first>Serge</first>
• </author>
• <author>
• <last>Buneman</last>
• <first>Peter</first>
• </author>
• <author>
• <last>Suciu</last>
• <first>Dan</first>
• </author>
• <publisher>Morgan Kaufmann Publishers</publisher>
• <price>39.95</price>
• </book>

CIT 753 MODULE 4

173

 •

•
<book isbn="1112223333">
<year>1999</year>

•
•
•

<title>The Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last>

•
•
•

<first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>

•
•
•

<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>

ii.
•
XSL

</bib>

Create an XSL file (books.xsl) as shown below:
• </xsl:stylesheet>
• <?xml version="1.0" encoding="ISO-8859-1"?>
• <xsl:stylesheet version="1.0"
• xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:template match="/">
• <html>
• <html>
• <head>
• <style type="text/css">
• table {font-family: arial}
• </style>
• </head>
• <body>
• <h2>My Favorite Books</h2>
• <table>
• <tr bgcolour="#9acd32">
• <th>Title</th>
• <th>Author</th>
• <th>Price</th>
• </tr>
• <xsl:for-each select="bib/book">
• <tr>
• <td><xsl:value-of select="title"/></td>
• <xsl:choose>
• <xsl:when test="price < 50">
• <td bgcolour="#ff00ff">
• <xsl:value-of select="author"/>
• </td>
• </xsl:when>
• <xsl:when test="price > 50 and price < 100">

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

174

• <td bgcolour="#cccccc">
• <xsl:value-of select="author"/></td>
• </xsl:when>
• <xsl:otherwise>
• <td><xsl:value-of select="author"/></td>
• </xsl:otherwise>
• </xsl:choose>
• <td><xsl:value-of select="price"/></td>
• </tr>
• </xsl:for-each>
• </table>
• </body>
• </html>
• </xsl:template>

Add the following line of code to the books.xml file in 1 above
(after the line
<?xml version="1.0" encoding="ISO-8859-1"?>) and resave the
file as books_xsl.xml:

<!DOCTYPE note SYSTEM "books.xsl ">

iii. Validate the program books.xsl which is used to display the
contents of an XML file (books_xsl.xml)

The output should look like the one shown below:

4.0 CONCLUSION

XSL is composed of XSL-FO (Extensible Style sheet Language –
Formatting Objects) and XSLT (Extensible Style sheet Language
Transformations). XSL-FO is used to implement page layout and design
and XSLT is used to transform XML content into another presentation
format. An XSLT style sheet contains instructions for transforming the
contents of an XML document into another format.

CIT 753 MODULE 4

175

5.0 SUMMARY

In this unit, you have learned the basics of creating XSLTs to transform
XML instances into text, HTML and other XML structures.

6.0 TUTOR-MARKED ASSIGNMENT

Project.xml into HTML document. The result document should display
Student’s name using the <h1> tag, date using the <h2> tag, the
objective name using the <h4> tag, and the description using the <div>
tag. Display it on a web browser and change the appearance of the file
by modifying the XSLT style sheet.

Project.xml

<?xml version="1.0"?>
<!-- XML Project --> Janet has created an XML document
Project.xml. Janet asks students to create an XSLT style sheet style.css
to transform

<project>
<student>Student</student>
<date>Date</date>
<objective>
<name>Working with XSL</name>
<description>XSL is composed of three parts: XSL-FO
(Extensible Style sheet Language - Formatting Objects),
XSLT (Extensible Style sheet Language Transformations),
and XPath. XSL-FO is used to implement page layout and design.
XSLT is used to transform XML content into another presentation
format.
XPath is used to locate information from an XML document and
perform operations and calculations upon that content.
</description>
</objective>
<objective>
<name>Introducing XSLT style sheets and processors</name>
<description>An XSLT style sheet contains instructions for
transforming the contents of an XML document into another format. An
XSLT style sheet document is itself an XML document, but has an
extension .xsl.
An XSLT style sheet converts a source document of XML content into
a result document containing the markup codes and other instructions
for formatting.
</description>
</objective>

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

176

<objective>
<name>Creating an XSLT style sheet</name>
<description>To attach an XML file to the style sheet, insert the
processing instruction following the first line in the document. An
XSLT style sheet has the general structure of all XML documents.
</description>
</objective>
</project>

To complete this task, the students should do the following steps:
i. To attach an XSLT style sheet to the XML document, add the

processing instruction to the XML file, save it as
Projectstyle.xml, and close.

ii. Using any text editor, create a new XSLT style sheet document
style.css.

iii. Create the general structure of an XSLT style sheet.
iv. Create the root template.
v. Specify the output method to transform the source document into

an HTML document.
vi. Insert node values into the result document.
vii. Open Projectstyle.xml using your browser and verify that it

displays the result document correctly.
viii. Print all your documents and the result document view generated

by the browser.

7.0 REFERENCES/FURTHER READING

Charles, F. G.,& Paul, P. (1998). “The XML Handbook”, Prentice Hall
Computer Books.

Elliotte, R. H. & Scott, M. W. (2001). “XML in a Nutshell”.

Michael, M. (2001). “HTML and XML for Beginners”.

CIT 753 MODULE 4

177

UNIT 5 MICROMEDIA DREAMWEAVER

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Opening and Saving Documents
3.1.1 Opening Document

3.2 Dreamweaver Workspace Elements
3.3 The Elements of Insert Bar
3.4 The Document Window
3.5 Working with Dreamweaver
3.6 Creating New Files in Dreamweaver

3.6.1 How to Create a New Blank Document:
3.7 Saving Files in Dreamweaver
3.8 Opening Files in Dreamweaver

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Dreamweaver is a web page editor, for creating web pages. It includes
many new features that help you build websites and applications with a
minimal amount of time and effort. Dreamweaver makes complex
technologies simple and accessible, helping you accomplish more in less
time. Additional features were added to Dreamweaver 8 from its
predecessor Dreamweaver MX 2004.

Following are a few of the key new features in Dreamweaver 8 such as
Zoom tool and guides, Visual XML data binding, New CSS Styles
panel, CSS layout visualisation, Code collapse, Coding toolbar,
Background file transfer, and Insert Flash Video command.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• describe how to get started with Dreamweaver 8.
• describe the opening and saving documents in Dreamweaver 8.
• state Dreamweaver workspace elements
• describe how to work with Dreamweaver
• create new files in Dreamweaver
• explain opening and saving files in Dreamweaver

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

178

3.0 MAIN CONTENT

How to Get Started With Dreamweaver 8

From the Start button normally located in the bottom left
corner of the screen. Place the cursor on the Start button and click, the
start menu will open, select All Programs and then another list will
appear with the programs that are installed in your computer, look for
Macromedia, then select Macromedia Dreamweaver 8, and the
program will be opened.

From the Dreamweaver 8 shortcut on the desktop . You can double
click to open Dreamweaver.

Either of the two above give the Macromedia Dreamweaver 8 home
page (figure 1)

Fig.5.1: Dreamweaver Home Page

The start page enables you to open a recent document or create a new
document. From the Start page you can also learn more about
Dreamweaver by taking a product tour or a tutorial.

3.1 Opening and Saving Documents

3.1.1 Opening Document

Macromedia Dreamweaver front page consists of three captions: Open a
Recent Item, Create New, and Create from Samples

CIT 753 MODULE 4

179

Open a Recent Item: this option serve as shortcut to opening recent used
files in Dreamweaver.

Create New: options here include HTML, PHP, XML, etc depending on
the type of file you intend to create. Clicking on any option in “Create
New” opens the workspace layout

The Workspace Layout
Dreamweaver provides an all-in-one-window integrated layout. In the
integrated workspace, all windows and panels are integrated into a
single larger application window.

Fig.5.2: Dreamweaver Workspace

3.2 Dreamweaver Workspace Elements

This section briefly describes some elements of the Dreamweaver
workspace.

NOTE
Dreamweaver provides many other panels, inspectors, and windows. To
open Dreamweaver panels, inspectors, and windows, use the Window
menu. If you can’t find a panel, inspector, or window that’s marked as
open, select Window > Arrange Panels to neatly lay out all open panels.

The Insert bar contains buttons for inserting various types of "objects,"
such as images, tables, and layers, into a document. Each object is a
piece of HTML code that enables you to set various attributes as you
insert it. For example, you can insert a table by clicking the table button
in the insert bar. If you prefer, you can insert objects using the insert
menu instead of the insert bar.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

180

The document toolbar contains buttons that provide options for different
views of the document window (such as Design view and Code view),
various viewing options, and some common operations such as
previewing in a browser.

The standard toolbar (not displayed in the default workspace layout)
contains buttons for common operations from the File and Edit menus:
New, Open, Save, Save All, Cut, Copy, Paste, Undo, and Redo. To
display the Standard toolbar, select View > Toolbars > Standard.

The coding toolbar (displayed in Code view only) contains buttons that
let you perform many standard coding operations.

The Style Rendering toolbar (hidden by default) contains buttons that let
you see how your design would look in different media types if you
used media-dependent style sheets. It also contains a button that lets you
enable or disable CSS styles.

The Document window displays the current document as you create and
edit it.

The Property inspector lets you view and change a variety of properties
for the selected object or text. Each kind of object has different
properties. The property inspector is not expanded by default in the
coder workspace layout.

The tag selector in the status bar at the bottom of the document window
shows the hierarchy of tags surrounding the current selection. Click any
tag in the hierarchy to select that tag and all its contents.

Panel groups are sets of related panels grouped together under one
heading. To expand a panel group, click the expander arrow at the left of
the group’s name; to undock a panel group, drag the gripper at the left
edge of the group’s title bar.

The files panel enables you to manage your files and folders, whether
they are part of a Dreamweaver site or on a remote server. The files
panel also enables you to access all the files on your local disk, much
like Windows Explorer (Windows) or the Finder (Macintosh).

3.3 The Elements of Insert Bar

The insert bar contains buttons for creating and inserting objects such as
tables, layers, and images. When you roll the pointer over a button, a
tooltip appears with the name of the button.

CIT 753 MODULE 4

181

The insert bar is organised in the following categories:

a. The Common category enables you to create and insert the most

commonly used objects, such as images and tables.
b. The Layout category enables you to insert tables, div tags, layers,

and frames. You can also choose among three views of tables:
Standard (default), Expanded Tables, and Layout. When Layout
mode is selected, you can use the Dreamweaver layout tools:
Draw Layout Cell and Draw

Layout Table
a. The Forms category contains buttons for creating forms and

inserting form elements.
b. The Text category enables you to insert a variety of text- and list-

formatting tags, such as b, em, p, h1, and u.
c. The HTML category enables you to insert HTML tags for

horizontal rules, head content, tables, frames, and scripts.
d. Server-code categories are available only for pages that use a

particular server language, including ASP, ASP.NET, CFML
Basic, CFML Flow, CFML Advanced, JSP, and PHP. Each of
these categories provides server-code objects that you can insert
in Code view.

e. The Application category enables you to insert dynamic elements
such as recordsets, repeated regions, and record insertion and
update forms.

f. The Flash elements category enables you to insert Macromedia
Flash elements.

g. The Favorites category enables you to group and organise the
insert bar buttons you use the most in one common place.

NOTE
The Windows workspace also has a Coder option, which docks the
panel groups on the left side and displays the Document window in
Code view by default.

3.4 The Document Window

This is the Dreamweaver work area. It two view: Design view and Code
view.

Design view is a design environment for visual page layout, visual
editing, and rapid application development. In this view, Dreamweaver
displays a fully editable, visual representation of the document, similar
to what you would see viewing the page in a browser.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

182

Code view is a hand-coding environment for writing and editing HTML,
JavaScript, server-language code--such as PHP or ColdFusion Markup
Language (CFML)--and any other kind of code.

Fig.5.3: Dreamweaver Document Window

Dreamweaver provides the basic code for all application it supports. The
programmer is only required to add to details to suit their needs.

3.5 Working with Dreamweaver

Here we will discuss how to accomplish basic tasks such as creating,
opening, and saving files. Let start with files

Dreamweaver Files
You can work with a variety of file types in Dreamweaver. The primary
kind of file you will work with is the HTML file. You can save HTML
files with either the .html or .htm extension. The default is .html
extension.

Other files include:
a. CSS, or Cascading Style Sheet files, have a .css extension. They

are used to format HTML content and control the positioning of
various page elements.

b. GIF, or Graphics Interchange Format files, have a .gif extension.
The JPEG format is best for digital or scanned photographs,
images using textures, images with gradient colour transitions,
and any images that require more than 256 colours.

CIT 753 MODULE 4

183

c. XML, or Extensible Markup Language files, have a .xml

extension.
d. XSL, or Extensible Stylesheet Language files, have an .xsl or

.xslt extension. They are used to style XML data that you want to
display on a web page.

e. CFML, or ColdFusion Markup Language files, have a .cfm
extension. They are used to process dynamic pages.

f. ASPX, or ASP.NET files, have an .aspx extension. They are used
to process dynamic pages. PHP, or PHP: Hypertext Preprocessor
files, have a .php extension. They are used to process dynamic
pages.

3.6 Creating New Files in Dreamweaver

3.6.1 How to create a new blank document

1. Select File from the Menu Bar, click on New.
2. The New Document dialog box appears. The general tab is

already selected.
3. From the category list, select Basic Page, Dynamic Page,

Template Page, Other, or Framesets; then, from the list on the
right, select the type of document you want to create.

4. For example, select Basic Page to create an HTML document, or
select Dynamic page to create a ColdFusion or ASP document,
and so on.

5. For more information about options in this dialog box, click the
Help button in the dialog box.

6. Click the Create button.
7. The new document opens in the Document window.
8. Save the document.

3.7 Saving Files in Dreamweaver

To save a new document:

1. Select File from Menu bar, click on save.
2. TIP: In the dialog box that appears, navigate to the folder where

you want to save the file.
3. In the File Name text box, type a name for the file.

NOTE: - It’s a good idea to save your file in a Dreamweaver site.
Avoid using spaces and special characters in file and folder names and
do not begin a filename with a numeral. In particular, do not use special
characters (such as é, ç, or ¥) or punctuation (such as colons, slashes, or
periods) in the names of files you intend to put on a remote server; many

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

184

servers change these characters during upload, which will cause any
links to the files to break.

Click Save.

3.8 Opening Files in Dreamweaver

1. Dreamweaver allows you open and edit your documents.
2. To open a file:
3. Select File > Open.
4. In the Open dialog box, select the file and click open.
5. SELF-ASSESSMENT EXERCISE
6. List the step to follow to accomplish the following:
7. Creating new document
8. Opening files, and
9. Saving files in Dreamweaver.

Example 1: Creating a simple web page using Dreamweaver

Steps 1:
1. Go to start, click All Programs
2. Select Macromedia and click Macromedia Dreamweaver 8
3. Under Create New, select HTML. The resulting page looks like

figure 3(Dreamweaver Document Window) above :
4. You will observe that the standard HTML tags such as the

HTML, title, head and body tags have been written.
Dreamweaver provides you the basic code. All you need to do is
to add you’re the required code that will give you what you
intend to achieve.

Step 2:
1. To rename the file: go to file menu, click save as
2. On the save as dialog window, go to directories (Save in)

navigate to My Computer, Local Disk (C:), then select wwwroot
3. At the file name, type Student.html
4. At the save as type: select All Documents
5. Click Save

Step 3:
1. Now edit the code window to suit your purpose. Remember the

Dreamweaver document window is divided into two: the code
window (shown in figure 3) and the design window, which
displays your web page as it will appear on normal web browsers.

2. Inside the body tag (<body>, </body>),

CIT 753 MODULE 4

185

Fig.5.4: Sample HTML Code inside Dreamweaver Code

Window for Practice 1

Step 4: view the output of your work in the design window as

shown in figure 5

Fig.5.5: Dreamweaver Design Window for Example 1

Note: that any changes made to your program when it is on design view
will alter the code window

Step 5: Run your program

Locate the wwwroot and open the Student.html file using Internet
Explorer. Figure 7 shows the output.

CIT 753 INTERNET CONCEPTS AND WEB DESIGN

186

Fig.5.7: Browser Output of Example 1

SELF-ASSESSMENT EXERCISE

Create a simple web page of your choice using Dreamweaver by
following the same procedures for Example 1 above.

4.0 CONCLUSION

Dreamweaver is a web page editor, for creating web pages which
includes many new features that help you build websites and
applications with a minimal amount of time and effort. Dreamweaver
makes complex technologies simple and accessible, helping you
accomplish more in less time. Additional features were added to
Dreamweaver 8 from its predecessor Dreamweaver MX 2004.

5.0 SUMMARY

In this unit, you have learned how to get started with Dreamweaver,
Opening and saving documents in Dreamweaver, Dreamweaver
workspace elements, how to work with Dreamweaver, Creating new
files in Dreamweaver and Opening and saving files in Dreamweaver.

6.0 TUTOR-MARKED ASSIGNMENT

Using Dreamweaver environment, develop a web site for an Online Gift
Items Shop, displaying their available goods and prices.

CIT 753 MODULE 4

187

7.0 REFERENCES/FURTHER READING

David, S. M. (2006). “Dreamweaver 8: The Missing Manual.”

Janine, W. (2005). “Teach Yourself VISUALLY Macromedia

Dreamweaver 8”. Visual.

