NAME:	••••••
SCHOOL:	
	DATE:

ELECTROCHEMISTRY

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in this paper in the spaces provided.

1. Below is a table of reduction potentials and volts of some half cells. The letters are not actual symbols but use them to answer the questions which follow

Reaction	volts
$A^{2+}_{(aq)}$ + 2e \longrightarrow $A_{(s)}$	-2.80
$B^+_{(aq)}$ + e \longrightarrow $B_{(s)}$	-1.50
$2C^+_{(aq)}$ + 2e \longrightarrow $C_{2(g)}$	0.00
$D_{2(g)}$ + 2e \longrightarrow 2D-(aq)	+3.20
$G^+_{(aq)}$ + e \longrightarrow $G_{(s)}$	+1.80

- (a) Select the species with the largest
 - (i) Oxidizing power (1mk)
 - (ii) Reducing power (1mk)

(b) Calculate the electrode potential (e.m.f) for a cell constructed using half-cells of A and B

(1mk)

- 2. What is the oxidation number of
 - (i) Chromium in $Cr_2O^{2-}_{7}$ (1mk)
 - (ii) Phosphorus in PO_4^{3-}

(1mk)

3. An element P has a relative atomic mass of 88. When a current of 0.5 amperes was passed through the fused chloride of P for 32 minutes and 10 seconds, 0.44g of P was deposited at the cathode. Determine the charge on an ion of P. (1 faraday = 96500 coulombs)

(3mks)

4. The setup below was used to show that metal P is more reactive than metal Q.

(a) **Show** the direction of flow of electrons on the diagram using an arrow. (1mark)

(b)	Explain your ans	wer in (a) above.		
5.A dry cell	is constructed using	g the following substances: Z IV) oxide mixed with carbor	inc metal, graphit	
(a)	•	f (i) ammonium chloride pas		(1mark)
		Oxide mixed with carbon po		
(b) Given th	at			
	$NH_{4(aq)}^{+} + 2e^{-}$	$\longrightarrow 2NH_{3(g)} + H_{2(g)}$	$E^{\theta} = +0.74V$	
	and $Zn_{(aq)}^{2+} + 2e^-$	$\longrightarrow Zn_{(s)}$	$E^{9} = -0.76V$	
Calcu	late the e.m.f of the	cell given Zinc forms the ne	gative electrode.	
				(1mark)
6. (a) Study	the table below and	indicate with a tick () wh	ere a reaction takes	s place or a cross
(X) where r	no reaction takes pla	ce.		
(2marks)				
	Metal	Solution Containing Ions	Of: Reaction	on/ No Reaction
	Cu	Zn ²⁺		
	Zn	Ag+		
	Μσ	C112+		

Mg²⁺

Ag

(1mark)

7. Fluorine can be obtained on large scale through electrolysis of potassium fluoride dissolved in
liquid hydrogen fluoride but not by electrolysis of KF dissolved in water. Explain. (2marks)

.....

- 8. a) Determine the oxidation state of sulphur in sodium thiosulphate, $Na_2S_2O_3$. (1mk)
 - b) Write the equation for the reaction of sodium thiosulphate and dilute hydrochloric acid. (1mk)
- c) Of what use is the reaction in (b) above in our school laboratory? (1mk)

9. Study the following electrode potentials, E⁰

$$Fe^{2+}_{(aq)} + 2e^{-}$$
 $Fe_{(s)}$
 $Ag^{+}_{(aq)} + e^{-}$ $Ag_{(s)}$

$$E^0 = -0.44v$$

 $E^0 = +0.80v$

$$Cu^{2+}_{(aq)} + 2e^{-}$$
 $Cu_{(s)}$

$$E^0 = +0.34v$$

$$Zn^{2+}_{(aq)} + 2e^{-}$$
 \longrightarrow $Zn_{(s)}$

$$E^0 = -0.76v$$

$$Mg^{2+}_{(aq)} + 2e^{-}$$
 \longrightarrow $Mg_{(s)}$

$$E^0 = -2.36v$$

$$\frac{1}{2} \text{Cl}_{2(g)} + e^{-}$$

$$E^0 = +1.36v$$

- a) Name:
- (i) The strongest reducing agent.

(1mk)

.....

	(ii) The strongest oxidiz	ing agent.	(1mk)
	b) Write the cell notation	n for combination of half-cells that	t would give the highest e.m.f.
	(1mk)		
w.	Metals zinc, copper and	silver were placed in different solu	utions as shown in the table
	Metal	Solution containing ion of	Reaction / No reaction
	Cu	Zn ²⁺	
	Zn	Ag +	
	Ag	Pb ²⁺	
	a) Indicate with a tick (vertakes place, in the table	() where a reason takes place or a above.	cross (x) where no reaction ($1 \frac{1}{2}$ mks)

11. Chromium (IV) ion and chromium (III) ion exist in equilibrium as shown below.

$$Cr_2O_7^{2-}_{(aq)} + 14 H^+_{(aq)} \Rightarrow 2Cr^{3+}_{(aq)} + 7H_2O_{(l)}$$

State and explain the observation that would be made when a few drops of hydrochloric acid solution is added to the solution.

(211113)
 •

(2mks)

12. Study the set up below and answer the questions that follows

(a)	What observations would be made at electrode L	(½ mk)
(b)	Write an ionic equation for the reaction at electrode. T.	(½ mk)
••••		

(c)		_	nrough the molten lead et at electrode T. (Pb =	
				(1½mks
	e ionic equations be symbols of element	_	uestions that follow. L	etters used are not
	$A_{2(g)} + 2B_{(aq)}$	2A-(aq) + B _{2(g)}	E = +0.34v	
	$B_{2(g)} + 2c^{-}_{(aq)}$	$2B^{-}_{(aq)} + C_{2(g)}$	E = +0.66v	
a) Ider	ntify the least reacti			(1mk)
b) Ca		l reduction potential	of B given that $E = +1.42v$	
	$A_{2(g)} + 2e$	→ 2A ⁻ (aq)	E = +1.42V	
				(2mks)
	•••••			

14.	Determine the oxidation number of	
	(a) Manganese in KMnO ₄	(1mk)
	(b) Sulphur in Na ₂ SO ₃	
	(·) I	
		(1mk)
15.	During electrolysis of copper(II) Sulphate solution, a current of 4.0 Amperes w	as passed
thro	ugh the solution for Y minutes to deposit 2.39g of copper at the cathode. Determin	e the value
of Y	(Cu=64, 1F=96,500C).	(2mks)
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •

16. The table below gives the standard reduction potentials of some elements represented by letters U,V,W,X and Z. (They are not the actual symbols)

Element	Standard electrode potentials (volts)
U	-2.36
V	+0.34
W	+0.79
X	0.00
Z	-0.76

- a) (i) Identify the strongest reducing agent. Give a reason for your answer. 2mks
 - (ii) Which two half cells would produce the highest e.m.f? Determine the e.m.f that would be produced. 2mks
 - (iii) What would element X represent?

1mk

b) Elements V and Z were connected to form an electrochemical cell as shown in the diagram below.

1mk

Metal V electrode	1mk

1mk

- (ii) Write the cell representation for the above electrochemical cell.
- (iii) Determine the e.m.f of the above cell.
- iv) Write the overall cell reaction indicating the e.m.f
- v) Give one use of electrochemical cells. 1mk
- vi) State one use of a salt bridge, and name two salts that can be used in the salt bridge.

17. The standard electrode potential of some half cells (in volts) are given below.

(i)
$$Zn^{2+}(aq) + 2e \rightleftharpoons Zn_{(s)}$$
 -0.76

(ii)
$$Cr^{3+}_{(aq)} + 3e \rightleftharpoons Cr_{(s)} -0.74$$

(iii)
$$Sn^{2+}_{(aq)}$$
 +2e \rightleftharpoons $Sn_{(s)}$ -0.14

$$(iv)2B_{(aq)}^{+}+2e \implies B_2$$
 0.00

(v)
$$Cu^{2+}_{(aq)}$$
 +2e \leftarrow $Cu_{(s)}$ +0.34

(vi)
$$Fe^{3+}_{(aq)} + 2e = Fe^{2+}_{(aq)} + 0.77$$

$$(vii)Br_{2(aq)} +2e \rightleftharpoons 2Br +1.07$$

a) Which element is represented by letter B? Explain.	(1 mark)
b) Identify the strongest reducing agent and strongest oxidizing agent. (i) Strongest reducing agent	(1 mark)
(ii) Strongest oxidizing agent	
c) Write the equation and calculate the e.m.f of the electrochemical cell cohalf cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above. d) Write the cell representation for the electrochemical cell made using h	(2 marks)
half cells in b(i) and (ii) above.	(2 marks)
half cells in b(i) and (ii) above. d) Write the cell representation for the electrochemical cell made using h	(2 marks)

f) A current of 1.8 A was passed through molten aluminium oxide for 3	hrs. Calculate
i) the number of faradays used.(F=96500C)	(2 marks)
ii) The moles of aluminium deposited	(2 marks)
iii) The mass of aluminium deposited ($Al = 27$)	(2 marks)

(3 marks)

e) Draw the diagram for the cell represented in (d) above.

a) (i) Which of the following metals could be use	ed as a sacrificial anode in o	rder to
prevent the corrosion of iron? Explain your answ	ver.	
Magnesium, zinc, lead, copper.	(2mks)	
(ii) An iron becomes conted when placed in a co	lution of conner (II) culphot	to CuSO
•		ie, Cu5O _{4(aq)} .
Write half equations for the oxidation / reductio	n reaction involved.	(2mks)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	prevent the corrosion of iron? Explain your answ Magnesium, zinc, lead, copper. (ii) An iron becomes coated when placed in a so. Write half equations for the oxidation / reduction	a) (i) Which of the following metals could be used as a sacrificial anode in opervent the corrosion of iron? Explain your answer. Magnesium, zinc, lead, copper. (2mks) (ii) An iron becomes coated when placed in a solution of copper (II) sulphat Write half equations for the oxidation / reduction reaction involved.

b) Study the diagram and the data on the table to answer the questions that follow.

Using the above arrangement the results obtained were:-

Test metal	Voltmeter deflection units
Sodium	2.5 to the right
Magnesium	1.6 to the right
Metal X	0.8 to the right
Iron	0.6 to the right
Tin	0.4 to the right
Copper	0.0
Silver	0.4 to the left

(i) What was the reference metal for which the results were based?	(1mk)
(ii) Identify <u>two</u> aqueous solutions in which an observable chemical change wou	
when metal X is added to them.	(1mk)

voltmeter deflection of 0.2 to the left	n, what would be the test metal which	(1mk)
	l at a cathode by a current of 2 Amps fl	
minutes? ($Cu = 64$, IF = 96500C).		(2mks)
d) Use the std electrode potentials	below to answer the questions that foll	.ow.
Ion discharge reaction	${f E}^0({f v})$	
$X^{+}_{(aq)} + e \longrightarrow X_{(s)}$	- 2.92	
$Y^{2+}_{(aq)} + 2e \longrightarrow Y_{s)}$	-2.34	
$A^+_{(aq)} + e \longrightarrow A(s)$	+ 0.80	
$R^{2+}_{(aq)} + 2e$	+0.34	
	ne strongest reducing agent. Explain.	, ,
(ii) Is it appropriate to keep aqueous	s solution of the chloride of X in a conta	ainer made of
R? Explain.		(1mk)
(iii) Write down the cell representat	ion for the pair that would give the lar	gest e.m.f.
showing the position of the salt brid	ge. (1 ½ mks)