NAMIE:	•••••	
SCHOOL:		
	DATE:	•

ENERGY CHANGES IN CHEMICAL REACTIONS

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in this paper in the spaces provided.

1. Use the information below to answer the questions that follow:

	<u>Equation:</u>	Enthalpy of formation.
(i)	$H_{2(g)} + \frac{1}{2} O_{2(g)} H_2 O_{(l)}$	$\Delta H_1 = -286 \text{kJmol}^{-1}$
(ii)	$C_{(s)}$ + $O_{2(g)}$ $CO_{2(g)}$ \longrightarrow	$\Delta H_2 = -394 \text{kJmol}^{-1}$
(iii)	$2C_{(s)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow C_2H_5OH_{(l)}$	$\Delta H_3 = -277 \text{kJmol}^{-1}$

Calculate the molar enthalpy of combustion of ethanol. Given that:

$$C_2H_5OH_{(l)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(l)}$$

(3mks)

2. Study the information in the table below and answer the questions that follow

Bond	Bond energy (KJmol-1)
С-Н	414
CI - CI	244
C - Cl	326
H - Cl	431

Calculate the enthalpy change of the reaction

$$CH_{4(g)}$$
 + $2Cl_{2(g)}$ \longrightarrow $CH_2Cl_{2(g)}$ + $2HCl_{(g)}$

(3mks)

- 3. When 25 cm³ of 0.5MHCl is added to 25 cm³ of 0.5 M NaOH the temperature of the solution rose from 25° C to 26° C. Given that the density of the solution is 1g cm⁻³ and its specific heat capacity is 4.2 jg⁻¹k⁻¹,
 - (a) **Determine** the amount of heat evolved that caused the temperature rise. (1mark)

(b) Work out the molar enthalpy of neutralization for this reaction. (2marks)

4.	Study the following equilib	rium equat	tion.		
	$2A_{2(g)} + B_2$	(g) =	$2A_2B_{(g)}$	$\Delta H = -197 KJ mol^{-1}$	
	a) Suggest two ways of inco	reasing the	yield of A ₂ F	3.	(2mks)
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
			••••••		••••••
			•••••		•••••
	b) Draw the energy level dia	agram for t	the forward	reaction.	
					(1mk)
5.	Use the data below to calcu	late the ent	halpy of for	mation of propane.	(3mks)
	$C_{(g)} + O_{2(g)}$	\rightarrow CO _{2(g)})	ΔH =-393.5KJmol ⁻¹	
	$H_{2(g)} + \frac{1}{2} O_{2(g)}$ —	→H ₂ O _(l))	$\Delta H = -285.9 \text{KJ} \text{mol}^{-1}$	
	$C_3H_{8(g)} + SO_2$	→ 3CO ₂₍	$(g) + 4H_2O_{2(1)}$	ΔH=-2220.0KJmol ⁻¹	

6. Study bond energies shown below and answer the questions that follow.

Bond	Bond Energy KJmol ⁻¹
C - C	348
C - H	412
Cl - Cl	242
C - Cl	338
H - Cl	431

a)	Calculate the enthalpy change (ΔH) for the reaction given below.	
	$C_3H_{8(g)} + Cl_{2(g)} \longrightarrow C_3H_7Cl + HCl$	(2mks
b)	State the condition necessary for the above reaction to occur.	(1mk)

7. 10.0g of ethanol (C_2H_5OH) were completely burnt in air. The heat evolved caused the temperature of 400cm^3 of water to rise from $22^{\circ}C$ to $87^{\circ}C$. Calculate the molar heat of combustion of ethanol (H=1, C=12, O=16, specific heat capacity of water = $4.2 \text{ kJkg}^{-1}\text{k}^{-1}$; Density of water = 1gcm^{-3})

(3mks)

8. (a) Consider the following reaction:
$$A_{2(g)} + B_{2(g)}$$

$$A_{2(g)} + B_{2(g)} \qquad \qquad \Rightarrow \quad 2AB_{(g)} \quad DH = 75KJ$$

Sketch an energy level diagram showing the relative activation energies for the catalysed and uncatalysed reactions using the axes below. (2 marks)

(b)

Given
$$\Delta H_f(Al_2O_3) = -1590 \, KJ \, mol^{-1}$$

 $\Delta H_f(Cr_2O_3) = -1134 \, KJ \, mol^{-1}$

Calculate the heat of reaction for

$$2Al_{(s)} + Cr_2O_{3(s)} \longrightarrow Al_2O_3 + 2Cr_{(s)}$$
 (2marks)

(c) The following data was obtained during an experiment

Mass of ethanol burnt = 0.2g

Mass of water in the calorimeter = 200g

Specific heat capacity of water = $4.2 \text{ j g}^{-1}\text{k}^{-1}$ Initial temperature of water = $23.5 \text{ }^{\circ}\text{C}$

Final temperature of water = $28.0 \,^{\circ}\text{C}$

(1)	How was the mass of ethanol that burnt determined? (1mark
(ii)	How much heat was required to raise the temperature of water from 23.5 °C to 28.0°C? (2marks
 (iii)	Two assumptions were made in calculating the enthalpy of combustion for ethanol. State them . (1mark)
(iv)	Determine the molar enthalpy of combustion of ethanol (2marks) (C= 12, H=1, O= 16)
(v)	Write a thermochemical equation for the combustion of ethanol given the accurate value for enthalpy of combustion is -1368 Kj mol ⁻¹ .
	(1mark

9. Iron fillings were thoroughly mixed with sulphur then placed in two test tubes as shown below.

Both test tubes were cooled to room temperature then $3\mathrm{cm}^3$ of 2M Hydrochloric acid was added.

a) What is the general name given to the substance in.	2mks)
(i) Test tube A	
(ii) Test tube B	
b) Identify the gas produced when 2M Hydrochloric acid was added to test tube A	١.
Explain your answer. (2mks)
	• • • • • • • • • • • • • • • • • • • •

c) Write an equation for the reaction that takes place when 2M Hydrochloric acid is	
added to test tube B.	(1mk)
d) In another experiment excess iron powder was added to 25.0cm ³ of 0.2M cosulphate solution in a plastic cup wrapped in tissue paper. The temperature cosolution rose from 21.5°C to 31.5°C.	
(i) What was the main reason for using a plastic cup wrapped in tissue paper	? (1mk)
(ii) Give reason for using excess iron powder.	(1mk)
(iii) State two other observations made in the above experiment.	(2mks)
(iv) Calculate the molar enthalpy of displacement of copper II ions by iron po (3mks) (Density of solution =1.0gcm ⁻³ heat capacity of soln 4.2J/g/k.)	

v) Write a Thermo chemical equation for the reaction that took place.	(1mk)
	••••••