EXTRACTION OF METALS

MARKING SCHEME

1. a)	Iron is extracted from Iron pyrite / FeS ₂ siderite / FeCO ₃ , magnetite / Fe ₃	O_4
	and haematite / Fe_2O_3	
	Aluminium is extracted from Bauxite / Al ₂ O ₃ . 2H ₂ O	
	Feldspar / K_2O . Al_2O_3 . $6Si O_3$ and	
	Ruby (aluminum oxide) / Al_2O_3 ((1)
		• •

✓ 1/2
✓ 1/2

b) Electrolysis

2. (i) Al₂ O₃ 2H₂O ✓ ½ (ii) A- Aluminium Oxide B- Aluminium Chloride

C-Hydrogen ✓ ½

(iii) Cryolite is added to aluminium oxide to reduce its melting 1/2 point from 2000°c to 800°c 1/2

- 3. (a) U ✓1
 - (b) T 🖌 1
 - (c) U> S>T> ✓ 1

4. a) Haematite / Magnetite / Iron pyrites / Siderite(Any 1 x 1mk)b) $R\sqrt{\frac{1}{2}}$ c) Carbon (IV) oxide / Carbon (II) oxide / Nitrogen(Any 1 x $\frac{1}{2}mk$)d) To provide oxygen to react with coke to form carbon (IV) oxide $\sqrt{1}$

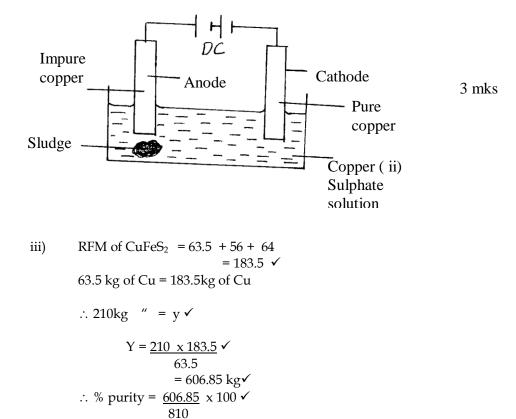
5. (a) - Cryolite \checkmark 1 / sodiumhexafluoroaluminate (III) / Na₃AlF₆

- Felsper, KALSi₃O₈ ✓ 1
- Kaolin, Al₂Si₂O₇.2H₂O
- Rubies/ Emeralds.
- (b) Electrolysis ✓ 1

(c) (i) - Silicon (IV) oxide / silica ✓ 1

- Iron (III) oxide ✓ 1
- (ii) grind the ore and mixture with Na₂CO₃ and heat the mixture \checkmark ¹/₂
- aluminium oxide reacts with Na₂CO₃ to give soluble aluminate
- impurities are filtered off and aluminium hydroxide is added to the filtrate to precipitate out $Al(OH)_{3(s)}$

- (d) To lower the temperature of aluminium oxide for best conduction of electricity \checkmark 1
- (e) this is due to the formation of unreactive oxide (Al₂O₃) ✓ 1 which coats the surface and prevents further reaction ✓ 1
- (f) High energy demand is reduced ✓1
 Less pollutant in form of gases are emitted into the atmosphere ✓1
- 6. a) i) Sulphur (iv) oxide (SO₂) \checkmark 1
 - ii) Copper (iv) Oxide (CO_2) $\checkmark 1$
 - b) i) $2CUFeS_{2(s)} + 4O_{2(g)} \rightarrow Cu_2S_{(s)} + 3SO_{2(g)} + 2FeO_{(s)} \checkmark 1$


ii)
$$SO_{3(g)} + H_2SO_{4(l)} \longrightarrow H_2S_2O_{7(s)} \checkmark 1$$

- c) i) Fe²⁺√1
 - Redox reaction√1
 Reason : Copper (I) oxide is reduced to copper whereas coke is oxidized to carbon (IV) oxide√1

d) i) Vanadium (V) Oxide
$$\checkmark 1$$
 (Reject formula)

- ii) Manufacture of fertilizers $\sqrt{1/2}$
 - Conc. Sulphuric is used as drying agent $\sqrt{1/2}$

i)

7.a) – Bauxite ✓ 1 - Al ₂ O ₃ . 2H ₂ O $✓$ 1	2 mks -letters in formula should not be joined	
Nrk		
b) Anode: $2O^{2-}$ $Q_{2(g)} + 4^{e-} \checkmark 1$		
Cathode: Al^{3+} + 3e- $Al_{1} \checkmark 1$		
c) $Al_2O_3 \checkmark 1$		
d) Lowers the melting point \checkmark 1 of aluminum from	1 mk acc.	
Lowers		
2050 to 900°C	melting point of	
alumina alone		
e) Extraction is not cost effective $\checkmark 1$		
f) <u>Reacts with $O_2 \checkmark 1$ to form carbon (IV) oxide due to high temperature of the second se</u>		
g) Does not corrode / Resistant to attack by cooking solutions \checkmark 1		
h) Forms an oxide $\checkmark \frac{1}{2}$ layer which prevents $\checkmark \frac{1}{2}$ attack by acids	and air 1 mk*	
i) $Q = It$ 3 x 270 \checkmark $\frac{1}{2}$ x 60		
$5 \times 270 \vee 42 \times 60$ = 48600c		
	2	
96500c deposits 27g ✓ ½ of aluminium mks*Nrk*	2	
48600c deposits <u>27 x 48600</u>		
96500		
= 13.598g		
1/2 *		

8.	a)	Extraction of copper		1mk
	b)	Provide large surface area		1mk
	c) d)	Froath flotation I Sinks earthly impurities and float the ore II Covers the ore and enable the ore to float on water III Aerates the ore and sinks earthly impurities	1mk	3mks
	e)	$FeO_{(s)}$ + $SiO_{2(s)}$ FeSiO _{3(s)}		1mk
1mk	f)	Cu^{2+} , H^+		

g) 1mk	Ι	Good electric conductivity
	II	Good thermal conductivity
1mk		, i i i i i i i i i i i i i i i i i i i

9.

(a) Bauxite (1mk)

(b)
$$Al_2O_{3(s)} + NaOH_{(aq)} + 3H_2O_{(l)} \rightarrow 2Al(OH)^-_{4(aq)}$$
 (1mk)

- (c) Iron (III) oxide (1mk)
- (d) Filtration (1mk)
- (e) Strong heating (1mk)

(f) Anode
$$2O_{(l)}^{2^-} - 4e^- \rightarrow O_{2(g)} // 2O_{(l)}^{2^-} \rightarrow O_{2(g)} + 4e^-$$
 (1mk)

$$Al_{(l)}^{3+} + 3e^- \rightarrow Al_{(l)}$$
 (1mk)

- (g) Heating the electrolyte to keep it molten. (1mk)
- (h) The melting point of aluminium oxide in cryolite is much higher than the melting point of aluminium metal
 (2mks)

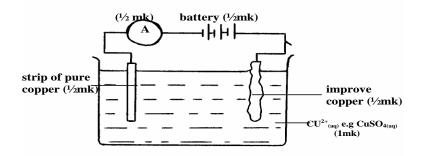
(i)
$$2Al_{(s)} + 6HCl_{(g)} \rightarrow 2AlCl_3 + 3H_{2(g)}$$
 (1mk) with the conditions)

(j) Uses of aluminium

- manufacture of: utensils
- overhead mains electricity supply cables
- Aluminium foil for wrapping chocolates
- For painting of roofs and water storage tanks
- Extraction of small amounts of metals like chromium

(1mk for any one

correct use)

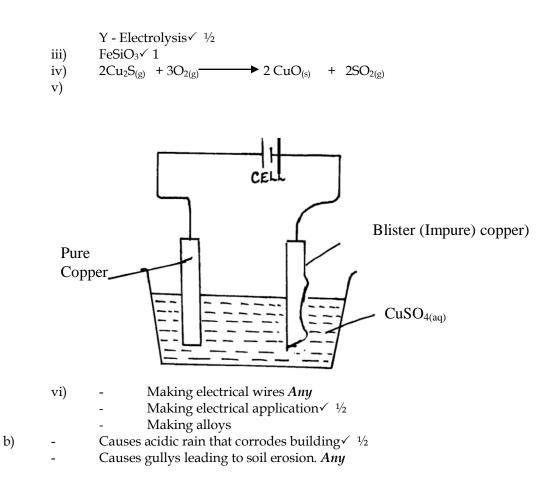

 $\begin{array}{ll} \mbox{(k)} & \mbox{Effervescence occurs because aluminium Sulphate hydrolyses in aqueous} \\ & \mbox{solution forming $H^+_{(aq)}$ which liberates $CO_{2(g)}$ from Na_2CO_3} \end{tabular} \end{tabular}$

10.

(a)	Copper pyrites ($\frac{1}{2}$ mark) CuFeS ₂	(½ mark)	
	Copper glance (½ mark) Cu ₂ S	(½ mark)	

- (b) Crushing the Ore (1mark) - Froth floatation (1mark)
- (c) $2CuFeS_{2(s)} + 4O_{2(g)} \longrightarrow Cu_2S_{(s)} + 3SO_{2(g)} + 2FeO_{(s)}$ (1mark) $FeO_{(s)} + SiO_{2(s)} \longrightarrow FeSiO_{3(l)}$ (1mark)
- (d) By heating the copper (i) sulphade obtained in a controlled amount of air (1mark)
 Silver and gold are the common impurities in blister copper. (1mark)

(e)


(f) (i) Anode:
$$Cu_{(s)} \longrightarrow Cu_{(aq)}^{2+} + 2e^{-}$$

(ii) Cathode:
$$Cu_{(aq)}^{2+} + 2e^{-} \longrightarrow Cu_{(s)}$$

(g) Uses of copper

- Manufacture dynamo windings for conveyance of electrical power
- Construction of condensers for chemical plants and car radiators
- Brass an alloy of copper and Zinc used for making headlamp reflectors and working parts of clocks & watches
- Bronze (alloy of copper & tin) is used for watch springs and galvanometer suspensions.(any 2, one mark each)

11. a) i) Copper pyrites $\checkmark \frac{1}{2}$ ii) Froth floatation $\checkmark \frac{1}{2}$

