NA	ME	ADM NO	•••••••
SC	100L	DATE	••••••
ST	JDENT'S SIGNATURE		
Pŀ	IYSICS		
	AE: 2 ½ HOURS rch 2017		
1. 1.	TRUCTIONS TO STUDENTS Answer all questions in this question paper . All your answers must be written in the SHEETS provided What is meant by the term 'basic quantities'	d. (1 mk)	
2.	Define length and state its SI unit	(1 mk)	

» () - ()

3. 	Name two types of errors and state how each is mining	nized when measuring the length of objects. (4 r	mks)
1.	Describe how you would estimate the thickness of on ruler only	e paper in a given book if you are provided with a r	metre
 5.	State three limitations of using the displacement met	hod when determining the volume of an irregular s	solid
		(3 mks)	
ō.	A wire of radius 6 mm and length 400 is melted into a	sphere. Calculate the radius of the sphere in centii	mete
7.	Convert 5 g/cm ³ to the SI unit.	(2 mks)	
3.	Using the following masses and volumes of substance a) 200 mg, 0.0004m ³	es, calculate their densities in SI unit. (2 mks)	

	b) 0.86 kg, 1000000 mm ³	(2 mks)
9.	$100~\text{cm}^3$ of water is mixed with $50~\text{cm}^3$ of concentrated acid of density $1.2~\text{g/cm}^3$. As find the average density of the mixture. (Take density of water = $1.0~\text{g/cm}^3$) (4 mks)	
10.	A density bottle weighs 70 g when filled with water and 94 g when filled with a liquidate A given that the density of water is 1000 kg/m³. (5 mks)	d A. Find the density of liquid
11.	State four effects of forces	(4 mks)
12.	State three types of forces that act between objects that are not in contact	(3 mks)

LJ.	Describe two types of molecular forces	(4 mks)
		(111110)
17.		
15.	State three areas of application of capillary rise.	(3 mks)
16.	Distinguish between mass and weight and state SI units	(4 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)
17.	Differentiate between vector quantities and scalar quantities	(2 mks)