Chlorine and its compounds

- 1. (i) It catches fine or presence white fumes (ii) PCl₃ // Phosphorous Trichloride (iii) PCl₅ // Phosphorous Pentachloride
- 2. (a) In water hydrogen chloride dissociates to form hydrogen (H+) and chloride (CL) ions.
 The presence of H⁺ ions in aqueous solution of hydrogen chloride is responsible for acidic properties which turns blue litmus paper red
 - (b) To increase the surface area for the dissolution of the gas - Prevent suck back (Award full 1mk for any one given)
- 3. a) Refrigeration √1
 Maintains pressure in aerosol cans and enables sprays tobe sprayed in liquid form
 b) They deplete the ozone layer. √1
 They cause green house effect/Global warming.
- 4. a) Acidify water with nitric acid $\sqrt{\frac{1}{2}}$. Add aqueous lead nitrate/AgNO₃ $\sqrt{\frac{1}{2}}$ Formation of a white ppt. Show presence of Cl⁻¹ white ppt of PbCl₂ or AgCl formed.
- 5. a) Yellow solid deposit of sulphur on the wall of boiling tube

b) $H_2S_{(g)} + CL_{2g} = 2 HCl_{(g)} + S_{(s)}$

- c) Done in fume chamber/ open air -Poisonous gases
- 6. i) $2Fe_{(S)} + 3Cl_{2(g)}$ 2 $FeCL_{3(g)}$ $Fe_{(s)} + 2HCl_{(g)}$ FeCL_{2(g)} + $H_{2(g)}$ N.B Must be balanced State symbol must be correct Chemical symbols must be correct
 - *ii)* In the absence of moisture, chlorine cannot form the acidic solution, hence no effect on the blue litmus paper
- 7 a) Heat is necessary * <u>REJECT</u> high temperature <u>ACCEPT</u>, <u>BOIL</u> or if implied
 o MnO₂ is a <u>weak oxidizing</u> agent.
 b) Cl₂O_(g) + H₂O_(l) 2HOCl (aq) C.A.O
- 8. (a) Chlorine gas (b) $HCl_{(aq)} + MnO_2$ $MnCl_{2(aq)} + Cl_{2(g)} + 2H_{2(g)}$ (c) The petals turn to white due to the bleaching effect of NaOCl(sodium hypochlorite) 10. (a) (i) MnO_{2} (s) + 4HCl_(l) $MnCl_{2(aq)} + 2H_2O + Cl_{2(g)}$ Penalize ¹/₂mk if state symbols are not correct $\sqrt{1}$ (ii) $KMnO_4$ or PbO₂ (iii) The Chloride are easy he dried by preside it through a symbol bettle of $\sqrt{1}$ extracted such that the set of $\sqrt{1}$ (iii) $KMnO_4$ or PbO₂

(iii) The Chloride gas can be dried by passing it through a wash-bottle of concentrated sulphuric acid and is then collected by downward delivery. $\sqrt{1}$

(b)(i) A- Aluminium (III) Chloride (ii) $2Al_{(s)} + 3Cl_{2(g)}$ $2AlCl_{3(s)}$ Penalize $\frac{1}{2}mk$ for wrong state symbols (iii) Moles A_1 used from the equation in b(ii) $\sqrt{\frac{1}{2}}$

$$= \frac{0.84}{27} = 0.031 Moles$$

Moles of Cl₂ used = $\frac{0.031}{2} \times 3 = 0.047$

Mark consequently from the equation

- 11. (a) $Cl_{2(g)} + H_2S_{(g)}$ $HCl_{(g)} + S_{(s)}$
 - (b) Yellow solid particles deposited in the flask
 - (b) Yellow solid particles deposited in the flask $\sqrt{\frac{1}{2}}$ (c) Excess chlorine and hydrogen sulphide gas should not be emitted into the atmosphere because they are pollatants /harmful
- *12*. (a) Chlorine gas
 - (b) (i) Remove traces of hydrogen chloride gas (ii) Drying agent
- (a) Fe³⁺ *13*. (b) It is an oxidizing agent 🗸 (c) $2Fe(OH)_{3 (s)}$
- $Fe_2O_{3(s)} + 3H_2O_{(l)}$ (i) Anhydrous Calcium Chloride 14. $(\frac{1}{2}mks)$
 - (ii) A white ppt is formed

HCl gas forms Cl⁻ ions solution which react with silver ions to form silver Chloride which is insoluble **O**R

 $Hcl_{(aq)} + AgNO_{3(aq)}$ $HNO_{3(aq)} = AgCl_{(s)}$ $AgCl_{(s)}$ $Cl_{(aq)} + Ag^{+}_{(aq)}$ \checkmark