When a magnesium ribbon is heated in air it combines with oxygen forming magnesium oxide.

When potassium manganate (VII) is heated it decomposes giving off oxygen which escapes in air

2. RFM of NaOH =
$$40$$

Moles of NaOH = $\frac{8}{40}$ = $0.2M_{\checkmark}$
Moles of NaOH in 25cm3
 $\frac{25 \times 0.2}{1000}$ = 0.005
Mole ratio 1:2
Moles of acid = $\frac{0.005}{2}$
= 0.0025
 $\frac{1 \times 0.245}{0.0025}$ = 98 \checkmark

3. No. Of moles of HNO₃ acid
$$\frac{50 \times 2}{1000} = 0.1 \text{ moles}$$
Mole ratio 1:1 \checkmark
The KOH will have 0.1 moles; $0.1 \times 100 = 0.2 \text{ moles}$

$$\frac{0.1 \times 100}{50} = 0.2 \text{ moles}$$
Then D grams is 0.2×56

$$= 11.2g$$

4. Number of moles of
$$Q = \frac{960 \text{cm}^3 \times 1 \text{mole}}{24000 \text{cm}^3}$$

= 0.04moles

Equation:

$$Na_2SO_{3(s)} + 2HCL_{(aq)}$$
 $2NaCl_{(aq)} + SO_{2(g)} + H_2O_{(l)}$
Mole ratio Na_2SO_3 : SO_2 is 1:1
::No. of moles of $Na_2SO_3 = 0.04$ moles
Mass of $Na_2SO_3 = 126$ g mol⁻¹ $x \cdot 0.04$
= 5.04 g

5. From the equation

- (3x24) litres of chlorine react with iron to produce [(56 x 2) + (35.5 X3)] g of Fecl₃. 325 g of Fecl₃ is produced by 72 litres of cl_2

Then 0.5g of feel3 is produced by:

$$\frac{0.5 \times 72}{325} = 0.11078 \text{ litres}$$
$$= 110.78 \text{ cm}^3$$

6.
$$RMM (CH_3OOH) = 60$$

 $Mass \ of \ 15cm^3 \ and = 1.05 \ x \ 15 = 15.75g$
 $1/2$
 $Moles \ in \ 500cm^3 \ solution = 15.75 = 0.2625 \ \sqrt{1}$
 $Molarity = 1000 \ x \ 0.2625$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$

7. If
$$24000cm^3 = 1mole$$

 $150cm^3 = ?$

Since the ratio of Na_2CO_3 ; O_2 produced is 1:1 the mass of $Na_2CO_3 = 0.00625 \times 106 = 0.6625g$

Na_2Co3		H_2O
Mass 0.6625g		1.0125g
RFM 106		18
$Mole \ 0.6625 =$	<u>0.00625</u>	<u>1.0125</u> =
	106	$\overline{0.5625}$
Ratio	<u>0.00625</u>	18
	0.00625	<u>0.05625</u>
= 1		$\overline{0.0.00625}$
$Na_2CO_3.9H_2O$		= 9

8.
$$MgCl_2$$
 $Mg^{2+}_{(s)} 2Cl^{-}$

$$R.F.M of MgCl_2 = 24 + 71$$

= 95

$$Moles of Mass = 1.7$$

 $R.F.M$ 95

= 0.01789 moles I mole of $MgCl_2 = 2$ moles of Cl-ions

0.01789moles of $MgCl_2 = 0.01789 \times 2$

= 0.03478moles of Cl-ions

$$1mole = 6.0 \times 10^{23}ions$$

$$0.03578$$
 moles = $\underline{0.03578 \times 6.0 \times 10^{23}}$

$$1$$
 0^{22} ions of

$$= 2.1468 \times 10^{22} ions of Cl^{-}$$

12. Mass of
$$O_2 = (4.0 - 2.4) = 1.6g$$

Moles of $O_2 = \frac{1.6}{16} = 0.1$

If 1 mol
$$O_2$$
 24000cm³
0.1 Mol $Mg = 0.5$ mol $O_2 = 1200$ cm³

2mg : O2
2(24) 24000
$$^{2.4}/_{2(24)} = x/_{240000}$$

 $X = 2.4 \times 24000 = 1200 \text{cm}3$

Empirical formula:
$$FeSO_4 + H_2O$$

ii)
$$6.95g = \frac{6.95}{278} = 0.025$$

 $\therefore 0.05 \text{ moles in } 250 \text{cm}^3 = 0.025 \text{ x}^{1000}/_{250} = 0.1$