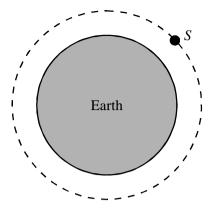

| NAME:                                                                                                                        |       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| SCHOOL:                                                                                                                      |       |  |  |  |
|                                                                                                                              |       |  |  |  |
| DATE:                                                                                                                        | ••••  |  |  |  |
| CIRCULAR MOTION                                                                                                              |       |  |  |  |
| INSTRUCTIONS TO CANDIDATES                                                                                                   |       |  |  |  |
| Answer ALL questions in this paper in the spaces provided.                                                                   |       |  |  |  |
| 1. A stone on a string is whirled in a vertical circle of radius 80 cm at a constant angular speed of 16 radians per second. |       |  |  |  |
| Calculate the speed of the stone along its circular path.                                                                    |       |  |  |  |
|                                                                                                                              |       |  |  |  |
|                                                                                                                              |       |  |  |  |
|                                                                                                                              |       |  |  |  |
|                                                                                                                              |       |  |  |  |
|                                                                                                                              |       |  |  |  |
|                                                                                                                              | ••••• |  |  |  |
|                                                                                                                              |       |  |  |  |
| Speed =                                                                                                                      | (2)   |  |  |  |

| Calculate its centripetal acceleration when the string is horizontal.                                              |               |
|--------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                    |               |
| <br>Acceleration =                                                                                                 | (2)           |
| Calculate the resultant acceleration of the stone at the same point.                                               |               |
|                                                                                                                    |               |
| <br>Resultant acceleration =  Explain why the string is most likely to break when the stone is nearest the ground. | (3)           |
|                                                                                                                    |               |
|                                                                                                                    |               |
|                                                                                                                    |               |
| (Total 9 m                                                                                                         | (2)<br>narks) |

| 2.    | State the period of the Earth about the Sun.                                                      |               |
|-------|---------------------------------------------------------------------------------------------------|---------------|
|       |                                                                                                   |               |
|       |                                                                                                   |               |
|       | Use this value to calculate the angular speed of the earth about the Sun in rad s <sup>-1</sup> . |               |
|       |                                                                                                   |               |
|       | Annular anad                                                                                      |               |
|       | Angular speed =                                                                                   | (2)           |
|       |                                                                                                   |               |
|       | What provides this centripetal force?                                                             | (2)           |
|       | what provides this centripetal force:                                                             |               |
|       |                                                                                                   |               |
| ••••• | (Total 5 n                                                                                        | (1)<br>narks) |


3. The diagram (not to scale) shows a satellite of mass  $m_s$  in circular orbit at speed  $n_s$  around the Earth, mass  $M_E$ . The satellite is at a height h above the Earth's surface and the radius of the Earth is  $R_E$ .



| Using the symbols above write down an expression for the centripetal force needed to maintain the satellite in this orbit.            |     |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                       | (2) |
| Write down an expression for the gravitational field strength in the region of the satellite.                                         |     |
|                                                                                                                                       |     |
| State an appropriate unit for this quantity.                                                                                          |     |
| Use your two expressions to show that the greater the height of the satellite above the Earth, the smaller will be its orbital speed. | (3) |
|                                                                                                                                       |     |

| Explain why, if a towards the Eart     | satellite slows do<br>h's surface. | wn in its orbit, it | nevertheless gradu  | (3)<br>ally spirals in                  |
|----------------------------------------|------------------------------------|---------------------|---------------------|-----------------------------------------|
|                                        |                                    |                     |                     |                                         |
| 4. A child of mass 2 neight of 0.80 m. | 11 kg sits on a swin               |                     | and swings through  | (2)<br>(Total 10 marks)<br>n a vertical |
| 2/<br>                                 | 3 m                                | 3 m                 |                     |                                         |
| Calculate the spe<br>lowest position.  | eed of the child at                | a moment when       | the child is moving | through the                             |
|                                        |                                    |                     |                     |                                         |

| Explain why, as the amplitude of the motion increases, children may lose touch with the seat of the swing.  (Total 7 mark  A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.         |    | alculate the force exerted on the child by the seat of the swing at a moment whe child is moving through the lowest position. | en               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------|------------------|
| Force =  Explain why, as the amplitude of the motion increases, children may lose touch with the seat of the swing.  (Total 7 mark A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second. |    |                                                                                                                               |                  |
| Force =  Explain why, as the amplitude of the motion increases, children may lose touch with the seat of the swing.  (Total 7 mark A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second. |    |                                                                                                                               |                  |
| Explain why, as the amplitude of the motion increases, children may lose touch with the seat of the swing.  (Total 7 mark  A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.         |    |                                                                                                                               |                  |
| Explain why, as the amplitude of the motion increases, children may lose touch with the seat of the swing.  (Total 7 mark  A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.         |    |                                                                                                                               |                  |
| Explain why, as the amplitude of the motion increases, children may lose touch with the seat of the swing.  (Total 7 mark  A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.         |    | Force =                                                                                                                       | (3)              |
| A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.                                                                                                                                    |    |                                                                                                                               |                  |
| A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.                                                                                                                                    |    |                                                                                                                               |                  |
| (Total 7 mark A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.                                                                                                                      |    |                                                                                                                               |                  |
| (Total 7 mark A satellite S orbits the Earth once every 87 minutes.  Show that its angular speed is approximately 1 × 10-3 radians per second.                                                                                                                      |    |                                                                                                                               |                  |
| Show that its angular speed is approximately 1 × 10-3 radians per second.                                                                                                                                                                                           |    | (Tot                                                                                                                          | 2)<br>al 7 marks |
|                                                                                                                                                                                                                                                                     | A  | satellite S orbits the Earth once every 87 minutes.                                                                           |                  |
|                                                                                                                                                                                                                                                                     | Sh | now that its angular speed is approximately $1 \times 10^{-3}$ radians per second.                                            |                  |
|                                                                                                                                                                                                                                                                     |    |                                                                                                                               |                  |
|                                                                                                                                                                                                                                                                     |    |                                                                                                                               |                  |
| (                                                                                                                                                                                                                                                                   |    |                                                                                                                               |                  |
| (                                                                                                                                                                                                                                                                   |    |                                                                                                                               |                  |
| (                                                                                                                                                                                                                                                                   |    |                                                                                                                               |                  |
| (                                                                                                                                                                                                                                                                   |    |                                                                                                                               |                  |
| (                                                                                                                                                                                                                                                                   |    |                                                                                                                               |                  |
| · ·                                                                                                                                                                                                                                                                 |    |                                                                                                                               | (2               |
| In the space on the right draw a free-body force diagram for the satellite in the                                                                                                                                                                                   |    |                                                                                                                               | ` '              |



(1)

With reference to your free-body force diagram, explain why the satellite is accelerating.

|                                                                                     | (1)                        |
|-------------------------------------------------------------------------------------|----------------------------|
| The radius of the satellite's orbit is 6500 km. Calculate the magnitude of its acce | leration.                  |
|                                                                                     |                            |
|                                                                                     |                            |
|                                                                                     |                            |
|                                                                                     |                            |
| Acceleration =                                                                      | <br>(2)<br>(Total 6 marks) |