
1. Graphical Methods

- 1. The equation of a circle is given as
 - $2x^2 + 2y^2 8x + 5y + 10 = 0$. Find the radius of the circle and the coordinates of its centre. (3 mks)
- 2. The equation of a circle is given by $x^2 + 4x + y^2 5 = 0$. Find the centre of the circle and its radius.
- 3. The equation of a circle is $x^2 + y^2 + 6x 10y 2 = 0$. Determine the co-ordinates of the centre of the circle and state its radius
- 4. In the diagram below ABE is a tangent to a circle at B and DCE is a straight line. If ABD = 60° , BOC = 80° and O is the centre of the circle, find with reasons \angle BEC

5. Obtain the centre and the radius of the circle represented by the equation:

$$x^2 + y^2 - 10y + 16 = 0$$

6. Complete the table below, for the function $y = x^3 + 6x^2 + 8x$

$\frac{1}{2}$								
X	-5	-4	-3	-2	-1	0	1	
\mathbf{x}^3	-125		-27	-8		0	1	
$6x^2$		96	54		6	0	6	
8x	-40		-24			0	8	
у			3	0		0	15	

- (a) Draw a graph of the function $y = x^3 + 6x^2 + 8x$ for $-5 \le x \le 1$ and use the graph to estimate the roots of the equation $x^3 + 6x^2 + 8x = 0$
- (b) Find which values of **x** satisfy the inequality $x^3 + 6x^2 + 8x 1 > 0$
- 7. Sketch the curve of the function $y = x^3 3x + 2$ showing clearly minimum and maximum points and the y intercept.
- 8. Show that $4y^2 + 4x^2 = 12x 12y + 7$ is the equation of a circle, hence find the co-ordinates of the centre and the radius
- 9. Two variables R and P are connected by a function $R = KP^n$ where K and n are constants. The table below shows data involving the two variables

P	3	3.5	4	4.5	5
R	36	49	64	81	100

- (a) Express $\mathbf{R} = \mathbf{KP}^{\mathbf{n}}$ in a linear form
- (b) Draw a line graph to represent the information above
- (c) Find the values of constants **K** and **n**
- (d) Write down the law connecting **R** and **P**
- (e) Find the value of **P** when $\mathbf{R} = \mathbf{900}$
- 10. A circle of radius 3cm has the centre at (-2, 3). Find the equation of the circle in the form of $x^2 + y^2 + Px + qy + c = 0$
- In an experiment, the values of two quantities V and T were observed and the results recorded as 11. shown below.

V	0	2	4	6	8	10
T	0.49	0.30	0.24	0.20	0.16	0.137

It is known that **T** and **V** are related by a law of the form T = a

where **a** and **b** are constants.

- a) Draw the graph of I against V
- b) Use your graph to find;
 - i) The values of **a** and **b**.
 - ii) V when T = 0.38
 - iii) **T** when V = 4.5
- Find the equation of the tangent to the curve $y = 2x^3 + x^2 + 3x 1$ at the point (1, -5) 12. expressing you answer in the form y = mx + c
- $243 = (81)^{-1} \text{ x } (\frac{1}{27})^{x}$ determine the value of x 13. Given that :-
- Show that $3x^2 + 3y^2 + 6x 12y 12 = 0$ is an equation of a circle hence state the radius and 14. centre of the circle
- (a) Fill in the table below for the function $\mathbf{v} = -6 + x + 4x^2 + x^3$ for $-4 \le x \le 2$ 15.

х	-4	-3	-2	-1	0	1	2
-6	-6	-6	-6	-6	-6	-6	-6
х	-4	-3	-2	-1	0	1	2
$4x^2$			16			4	
x^3							
y							

- (b) Using the grid provided draw the graph for $y = -6 + x + 4x^2 + x^3$ for $-4 \le x \le 2$
- (i) Use the graph to solve the equations:-
 - (i) $x^3 + 4x^2 + x 4 = 0$
 - (ii) $-6 + x + 4x^2 + x^3 = 0$ (iii) $-2 + 4x^2 + x^3 = 0$
- The table below shows the results obtained from an experiment to determine the relationship 16. between the length of a given side of a plane figure and its perimeter

Length of side t (cm)	1	2	3	4	5
Perimeter P(cm)	6.28	12.57	18.86	21.14	31.43

- (a) On the grid provided, draw a graph of perimeter **P**, against t
- (b) Using your graph determine;
 - (i) the perimeter of a similar figure of side 2.5cm
 - (ii) the length of a similar figure whose perimeter is 9.43cm
 - (iii) the law connecting perimeter p and the length t
- (c) If the law is of the form P = 2kt + c where k and c are constants, find the value of k
- 17. In an experiment with tungsten filament lamp, the reading below of voltage (V) current (I), power (P) and resistance (R)were obtained. It was established that **P** was related to **R** by a law $P = a R^n 0.6$. Where **a** and **n** are constants.

V	1.30	2.00	2.80	4.40	5.70
I	1.50	1.80	2.10	2.50	2.90
P	0.73	2.05	3.28	7.44	10.62
R	0.89	1.13	1.33	1.78	1.99

Plot a suitable line graph and hence use it to determine the value of **a** and **n**

- 18. Find the gradient of a line joining the centre of a circle whose equation is $x^2 + y^2 6x = 3 4y$ and a point P(6,7) outside the circle..
- 19. a) Complete the table below for the function $y = -x^3 + 2x^2 4x + 2$.

X	-3	-2	-1	0	1	2	3	4
-x ³	27	8		0		-8		
$2x^2$	18	8	2	0				
-4x		8		0				-16
2	2	2	2	2	2	2	2	2
у		26		2		-6		-46

- b) On the grid provided below draw the graph of $-x^3 + 2x^2 4x + 2$ for $-3 \le x \le 4$.
- c) Use the graph to solve the equation $-x^3 + 2x^2 4x + 2 = 0$.
- d) By drawing a suitable line on the graph solve the equation. $-\mathbf{x}^3 + 2\mathbf{x}^2 5\mathbf{x} + 3 = 0$.
- 20. Determine the turning point of the curve $y = 4x^3 12x + 1$. State whether the turning point is a maximum or a minimum point.
- 21. (a) Complete the table below for the equation of the curve given by $y = 2x^3 3x^2 + 1$

	(4,)	TIP TO CO		010 0010		1 1110 04				,	J = J = J
X	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
$2x^3$	-16		-2		0		2		16		
$-3x^2$	-12			0.75	0	-0.75					-27
1	1				1						
y	-27	-12.5			1						13.5

- (b) Use the table to draw the graph of the function $y = 2x^3 3x^2 + 1$
- c) Use your graph to find the values of x for :-
- (i) y > 0
- (ii) The roots of the equation $2x^3 3x^2 + 1 = 0$
- (iii) $2x^3 3x^2 = 9$
- 22. Find the radius and the centre of a circle whose equation is:

$$2x^2 + 2y^2 - 6x + 10y + 9 = 0$$