233/1 CHEMISTRY PAPER 1

MARKING SCHEME

1.	a)	Luminous flame	1mk
	b)	Produces less heat	
		or Blackens the conical flask/ sooty	1mk
2.	a)	Fractionating column	½ mk
	b)	Fractional distillation	¹ / ₂ mk
	c)	Condensation would not occur	1 mk
	d)	Differences in boiling points	1mk
3.	- - -	Dissolve the mixture in hot water Filter the solution to remove insoluble solid Q as a residue Cool the filtrate. R crystallizes and is removed by filtration Evaporate the latter filtrate to obtain P	¹ /2 mk ¹ /2 mk ¹ /2 mk ¹ /2 mk
4.	-	$\rm H_2O$ has lone pairs of electrons which can be shared with $\rm H^+$ ion	1mk
5.	a)	Solution P ¹ / ₂ Weak acid	½ mk
	b)	Solution N ¹ / ₂ Weak base	½ mk
6.	a)	Ε	1 mk
	b)	C=8 A=4	¹ ⁄2 mk ¹ ⁄2 mk
7.	-	Helium is inert (unreactive) 1/2 while hydrogen is reactive	½ mk
8.	-	Moles of zinc= $\frac{1.96}{63.5}$ =0.03	½ mk
	-	Moles of HCL $\frac{100 \times 0.2}{1000} = 0.02$	¹ / ₂ mk
	-	Moles of zinc reacted $\frac{0.02}{2}$ =0.01	½ mk
		Zinc is in excess Mole ratio of HCL: H_2 2:1	½ mk
	-	Moles of H ₂ (g) produced = 0.02 = 0.01 moles	½ mk

Page 1 of 5

	-	Volume of H _{2 g} at S.T.P= $0.01x22.4$ = 0.224 dm^3 or 224 cm^3	½ mk			
9.	I 2,	methyl pentane	1 mk			
	II 1-	chloro propene	1 mk			
	a)	To prevent oxidation of magnesium ribbon To generate steam	1 mk 1 mk			
	b)	$\begin{array}{cc} Mg_s + H_2O_{(l)} & MgO_{(s)} + H_{2(g)} \\ \text{Should be balanced with state symbols} \end{array}$	1 mk			
10.	i)	$\begin{array}{c} K_2 \operatorname{CO}_{3(s)} + 2HCl_{(aq)} & 2KCl_{(aq)} + CO_{2(g)} + H_2O_{(l)} \\ \text{Should be balanced with state symbols} \end{array}$	1 mk			
	ii)	Moles of acid $\frac{25 \times 0.2}{1000}$ =0.005 moles	½ mk			
		Moles of K2 CO3 = $\frac{0.005}{2}$				
		2 =0.0025 moles	¹ ⁄2 mk			
	iii)	RFM of $K_2CO_3 = 138$	½ mk			
		Mass of K_2CO_3 in the mixture $138x0.0025=0.345_g$ Mass of KCL in the mixture 0.9-0.345	¹ ⁄2 mk			
		$= 0.555_{\rm g}$	½ mk			
11.	i)	Zinc	1 mk			
	ii)	Hydrogen	1mk			
	iii)	$Zn^{2+} + 2OH^{-}_{(aq)}$ $Zn(OH)_{2(s)}$	1mk			
12.		a) Dynamic equilibrium is attained when the rate of the forward reaction is equal to that of the reverse reaction 1mk				
b) The intensity of the vellow colour in the equilibrium mixture increased						

b) The intensity of the yellow colour in the equilibrium mixture increased 1mk.
 Additional of NaOH reduces the concentration of H+ ions hence equilibrium shifts to the left 1mk

Sunrise one

233/1

[b]
$$Pb^{2+}_{[aq]} + 2Cl^{-}[aq]$$
 $PbCl_{2}[s]$

1mk

14.

Element	С	Н	0	
% Composition	57.15	4.76	38.09 √1⁄2	
R.A.M	12	1	16	
<u>%</u> R.A.M	4.7625	4.76	2.380625√ 1⁄2	
Moles ratio	$\frac{4.7625}{2.380625} = 2.004 = 2$	$\frac{4.76}{2.380625}$ =2.00	$\frac{2.380625}{2.380625} = 1 \sqrt{\frac{1}{2}}$	

Empirical formula= $C_2H_2O\sqrt{1/2}$

$$n = \frac{126}{42} = 3 \sqrt{\frac{1}{2}}$$

Molecular formula = (C₂H₂O)₃ = C₆H₆O₃ $\sqrt{\frac{1}{2}}$

15. (i) Copper(II) sulphate; $\sqrt{1}$ at 40°C ONLY 28gm is soluble leaving the rest undissolved. $\sqrt{1}$ At 40°C, all lead nitrate dissolves.

(ii) $35-28\sqrt{\frac{1}{2}}=7g\sqrt{\frac{1}{2}}$

- 16. a) Strong acid ionizes completely in solution while concentrated acid contain high number of acid molecules per given volume. 1mk
 - b) Ammonia in water dissociate to produce hydroxide ion $\sqrt{1}$ while in methybenze it remain in molecular form. $\sqrt{1}$
- 17. i) Sublimation $\sqrt{1}$
 - ii) Oxidation $\sqrt{1}$
 - iii) Dehydration $\sqrt{1}$
- 18. a) Filteration $\sqrt{1}$
 - b) $Ca(OH)_{(s)} + H_2O_{(l)}$ $Ca(OH)_{2(aq)} \sqrt{1}$
 - c) Carbon(IV) oxide// Ammonia $\sqrt{1}$
- 19. a) Metallic bond $\sqrt{1}$
 - b) Group I $\sqrt{1}$; Has one delocalized electron from each atom $\sqrt{1}$
- 20. a) Melts into a silvery ball $\sqrt{1/4}$ arts on the surface of water $\sqrt{1/5}$ loats on the surface of water/hissing sound (any two)

Sunrise one

b)
$$2Na_{(s)} + H_2O_{(l)}$$
 $2NaOH(aq) + H_{2(g)}\sqrt{1}$

- 21. a) Permanent hardness is caused by the presence of $MgSO_4/CaSO_4/CaCl_2\sqrt{1}$ which do not decompose on heating $\sqrt{1}$
 - b) Addition of Sodium Carbonate $\sqrt{\frac{1}{2}}$ ammonium hydroxide $\sqrt{\frac{1}{2}}$ Ion exchange (any two)

22. 1

(I) $2KNO_{3(s)} \longrightarrow 2KNO_{2(s)} + O_{2(g)} \sqrt{1}$

(ii) $2AgNO_{3(s)} \longrightarrow 2Ag_{(s)} + 2NO_{2(g)} + O_{2(g)} \sqrt{1}$

23. a) A brown solid is formed $\sqrt{1}$

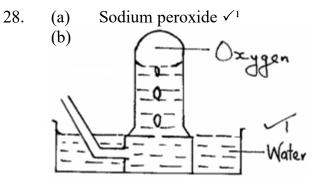
b)
$$CuO_{(s)} + C_{(s)} \longrightarrow Cu_{(s)} + CO_{(g)} \checkmark 1$$

c) Carbon (II) Oxide. $\checkmark 1$

- 24. a) Rhombic or monoclinic √1 Sulphur.
 - b) For hardening rubber $\checkmark 1$
 - Manufacture of sulphuric acid $\checkmark 1$ Any two correct
 - As a fungicide
 - In making calcium hydrogen sulphite used in bleaching.

25.

14.


Bond breaking
 Bond formation

$$4 C-H - 4x410 = 1640$$
 $6 C - H$
 $6x410$
 $C = C - 1 x610 = 610$
 $= 2460$
 $H - H - 1x436 = \frac{436}{+2686}$
 $C - C - \frac{345}{-2805}$
 $\Delta H = +2686 - 2805$
 $= -119 \text{ kJ/Mol}$

26. -The bulb lights $\sqrt{1}$

- Grey solid deposits at the cathode $\sqrt{1}$
- Brown gas bubbles produced at the anode $\sqrt{1}$
- 27. -Heat to sublime NH₄Cl. $\checkmark \frac{1}{2}$
 - Add water $\sqrt{\frac{1}{2}}$ to dissolve NaCl. $\sqrt{\frac{1}{2}}$
 - Filter $\sqrt{1/2}$ the residue is PbCl₂ $\sqrt{1/2}$
 - Evaporate $\sqrt{\frac{1}{2}}$ the filtrate (NaCl solution) to obtain NaCl solid

- c) $2Na_2O_{2(S)} + 2H_2O_{(l)} \rightarrow 4NaOH_{(aq)} + O_{2(g)}$
- (a) $2KMnO_{4(S)} + 16HCl_{(aq)} \rightarrow 2KCl_{(aq)} + 2MnCl_{2(aq)} + 8H_2O_{(l)} + 5Cl_{2(g)} \checkmark^{1}$
 - (b) $MnO_2 \sqrt{1}$
 - (c) $Cl_{2(g)} + dye + H_2O_{(l)} \rightarrow 2HCl_{(aq)} + (dye O) \checkmark 2$

29.

Teacher.co

Sunrise one

Teacher.co.ke