233/1 CHEMISTRY PAPER 1

TIME: 2 HOURS

2021 TRIAL 3 OCT/NOVEMBER INTERNAL EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E.)

Name...... Adm No......

> 233/1 CHEMISTRY PAPER 1 TIME: 2 HOURS

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES:

- (i) Write your name and index number in the spaces provided above.
- (ii) **Sign** and write the **date** of examination in the spaces provided **above**.
- (iii) Answer ALL the questions in the spaces provided.
- (iv) Mathematical tables and silent electronic calculators may be used.
- (v) All working **must be** clearly shown where necessary.
- (vi) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing

Page 1 of 15

For Examiner's Use Only

Tot Entermier & est emy						
Questions	Maximum Score	Candidate's Score				
1 –30	80					

1. The samples of equal volumes of water were put in 100cm³ conical flasks and heated for 5 minutes on a Bunsen flame. It was observed that sample 1 registered a low temperature than sample II

(a) Name flame I (1mk)

- (b) State one disadvantage of using flame I for heating (1mk)
- 2. Study the diagram below and answer the questions that follow.

Page 2 of 15

The diagram shows the method used to separate component of mixture P

(a) Name X (1mk)

3.

P

Page 3 of 15

Solid	Cold Water	Hot Water	
The table below	shows the solubility of three	solids P, Q, and R.	••••••
(d) Which phys (1mk)	ical property is used to separa	ate mixture P	
¹ / ₂ mk)	l happen if the inlet and outle	t of water were interchanged	(
(b) What is the	name given to the method use	ed in separation of mixture P	(½mk)

KAPSABET BOYS HICH SCHOOL

soluble

soluble

R Insoluble soluble How would you obtain pure samples of R,P and Q (2mks) 4. State why a water molecule H ₂ O can combine with H ⁺ ion to form H ₃ O ⁺ ion	
4. State why a water molecule H_2O can combine with H^+ ion to form H_3O^+ ion	
4. State why a water molecule H_2O can combine with H^+ ion to form H_3O^+ ion	
4. State why a water molecule H_2O can combine with H^+ ion to form H_3O^+ ion	
4. State why a water molecule H_2O can combine with H^+ ion to form H_3O^+ ion	
4. State why a water molecule H_2O can combine with H^+ ion to form H_3O^+ ion	
4. State why a water molecule H_2O can combine with H^+ ion to form H_3O^+ ion	
(1mk)	
	• • • • • • • • • •
5. The P ^H values of some solutions are given below	
PH 14.0 1.0 8.0 6.5 7.0	
Solution M L N P Z	
(a) Identify the solution with the lowest concentration of hydrogen ion. Give reason f	for your
answer (1 mls)	
(1mk)	
(b) Which solution would be used as an anti-acid for treating stomach upset. Give f	for vour
answer	ior your
(1mk)	
	•••••
	•••••
6. The data below gives the electronic configuration of some selected atoms and ions	
Atom/ion A^{2+} B C^{2-} D^{2+} E F^{-} G^{+} H	
Electronic configuration 2 2.4 2.8 2.8.8 2.8 2.8.8 0 2.	

Page 4 of 15

(a)	Select an atom that is a noble gas (1mk)
(b)	What is the atomic number of C and A (1mk)
(c)	Select an element that belong to group 2 and period four (1mk)
(d)	Write the formula of the compound formed when D and F react (1mk)
	Helium is used instead of hydrogen in balloons for metrological research. Explair Imk)
Z 1	Einc metal and hydrochloric acid reacts according to the following equation $Z_{n(s)} + 2HCl_{(aq)}$ $Z_{nCl_{2(aq)}} + H_{2(g)}$. $Z_{nCl_{2(aq)}} + H_{2(g)}$. $Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}}$ of $Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}}$ of $Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}}$ $Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}}$ $Z_{nCl_{2(aq)}} + Z_{nCl_{2(aq)}} + Z_{nC$
(l (1mk	o) Calculate the total volume of hydrogen gas that was liberated at s.t.p
(1	Give the IUPAC names of the following compounds Imk) .CH3CH2CH2CH CH3
Page	CH ₃

(ii) (1mk)	CH ₃ CH=CHCl	· • •
0.2M hy	potassium chloride and potassium carbonate mixture completely reacted with 25cm ³ ydrochloric acid te an equation of the reaction which takes place	of
(ii) Dete	ermine the number of moles of the acid used	•
(1mk)		
		•
······	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	^\
(111) Ca (2mks)	elculate the mass of potassium chloride in the mixture (K=39.0; C=12.0; O=16.	U)
•••••		•
		•
		•
		•
11. Study tł	he flow chart below and answer the questions that follow	
(;)	Identify metal M.	۱.
(i)	Identify metal M:(1ml	S)
(ii) (1mk)	Colourless gas:	
(iii) Page 6 of 15		SS

		(1mk)				
,	Define nk)	······································	the	term	dynamic	equilibrium
b)) A rea	ction at equil	ibrium can be re	epresented as		
		2CrO^{2} - $_{4[aq]}$	+2H ⁺ [aq]	$Cr_2O7_{[}^2$	${aq]} + H_2O_{\{l\}}$	
		Yellow		orange		
	State an	nd explain the	e observation ma	ade when NaOH is	added to the equilibrium	mixture (2mks)
13. Fe	w drops	of hydrochlo	ric acid were ad	ded into a test tube	containing lead {II} Nitr	rate solution
		ate one observ				(1mk)
	b) Wr			eaction that occurre	d in the test tube	(1mk)
the 1, (_	and of carbo	n, hydrogen a	nd oxygen contai	ns 57.15% carbon, 4.76%, find its molecular form	% hydrogen and

Page 7 of 15

END

•••				
•••				
•••				
•••				
• • • •				
•••				
•••				
15. Stu	ady the information in the	ne table below and answer th	e questions that follow.	
				¬
	Salt	Solubility g/	100g of water	
		At 40°C	At 60°C	
	CuSO ₄	28	38	
	Pb(NO ₃) ₂	79	98	
to	mixture containing 35g 40°C. Which salt crystallized		$_3)_2$ in 100g of water at 60°C wa	as cooled
marks				
ii) Calculate the mass of the salt that crystallized out. mark)				
				•••••
16. a)	Distinguish between st	rong and concentrated acid		(1mk)

Page **8** of **15**

	•••••		•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••							
b			nonia in methy				er while	a
(2mk		on of ammor	nia in water tur	ns red litmus p	aper blue. Ex	plain		
`							• • • • • • • • • • • • • • • • • • • •	
	•••••		•••••				• • • • • • • • • • • • • • • • • • • •	
							•••••	
	•••••						•••••	
	•••••							
17. N	ame the	e process wh	ich takes place	when				
	i.	Iodine (1mk)	changes	directly	from	solid	to	gas
	ii.	Fe ²⁺ ((1mk)	aq)	changes		to		Fe ³⁺ (aq)
	iii.	 White suga (1mk)	r changes to b	lack when mix	ked with cor	ncentrated su	lphuric ((VI) acid
		 t stage of the ım chloride i	solvay process	, a mixture of s	odium hydro	ogen carbona	te and	
a)	State (1mk)	the	e me	ethod	of	separation	n	used
b)		an	equation	showing	how	lime	is	slaked
Page	9 of 15							

c)	 Name (1mk)	the	by-	product	recycled	in	the al	bove	process
19. Tł	 ne diagram b	elow is a	section of	a model of	the structure	of element K	•••••		•••••
a)	State (1mk)	the	type	of	bonding	g that	exist	in	K
b)	 In which (2mks)	group	of the	periodic	table does	element K	belong.	Give a	reasor
20 00					e questions th				
		8-11-12			Sodium mo				
a)	State two mks)	observa	tions mad	de in the	above experi	ment when	sodium re	act with	water (2
b)	Write (1mk)	a che	emical	equation	for th	e reactio	on that	takes	place
								••••••	•••••
,) Explain mks)	why p	ermanen	t hardne	ess in wate	er cannot	be remov	ved by	boiling
`	10 of 15								

	2
1	Ö
	5
	른
	ä
	9

	•••••	
(b) (1mk)		Name two methods that can be used to remove permanent hardness from water
22.	Write	an equation to show the effect of heat on the nitrate of: -
(2mks))	
	i)	Potassium
	(ii)	Silver
23. Sta	dy the	Mixture of Copper II Oxide and Carbon diagram below and the it to answer the questions that follow. Gas P Heat

Page 11 of 15

	6
1	Ö
7	5
1	Ę
	ည္ထ
	Ö

	(a) State the observation made in the combustion tube.	(1mk)
	(b) Write an equation for the reaction that took place in the combustion tube.	(1mk)
	(c) Name gas P	(1mk)
24.	Sulphur exists in two crystalline forms.	
	a) Name one crystalline form of Sulphur.	(1mk)
•••		
	b) State two uses of Sulphur.	(2mks)

25. Bond energies for some bonds are tabulated below: -

BOND	BOND ENERGY KJ/mol
H - H	436
C = C	610
C- H	410
C - C	345

Page 12 of 15

	¥
	Ö
	9
	9
	چ
	8
П	ق

Use the bond energies to estimate the enthalpy for the reaction.	(3mks)
$C_2H_{4(g)} + H_{2(g)} \longrightarrow C_2H_{6(g)}$	
26. Study the set up below and answer the questions that flows	
Switch Carbon electrodes Moltem lead (ii) bromide	
††† Heat	

State all the observations that would be made when the circuit is completed

(31	nk	KS)																																																	
		• • •	• • •				• • •		••			• •	• •	• • •	 		 ••	••	••				 . 	• •			 				••		 		 					 • •	• •				••	. 	•••		• • •		. .
				•••	•••	• • •	• • •		••		••	••	• •	•••	 		 ••	••	••	• •	••	••	 . • •	• •		••	 	••	• •	• •	••	• •	 ••	• •	 • •	•••		•••		 ••	••		• •	•••		••	••	• • •	•••	•	
		• • •			• • •	• • •	•••	• • •		• •		• • •			 • •	• • •	 				• •		 • •		••		 •						 • •	• •	 		••		• •	 		••			••			••	•••	••	

Page 13 of 15

	solid samples of salts can be obtained from a mixture of lead (II) chloride, de and ammonium chloride.
28. The diagram	below represents a set-up used to prepare oxygen gas.
	Mater Water Solid Q me substance Q.
(b) Cor	nplete the set-up to show how oxygen gas is collected.
(1mk) (c) Wri (1mk)	te the equation for the reaction that occur.

Page **14** of **15**

(VII) and hy (a) Write ar	nts that can be used to prepare chlorine gas are potassium manganate ydrochloric acid. In equation for the reaction.
(1mk)	
•••••	
 b)Give the	e formula of another reagent that can be used instead of potassium manganate (VII).
	(1mk)
••••	
` '	n equation illustrate how chlorine bleach coloured substances.
(2mks)	
•••••	
•••••	

