1.(a) (i) Cracking $\sqrt{1}$

(ii) When the gas is burnt in air $\sqrt{1}$ it burns with a pale blue flame. $\sqrt{1}$

OR

Does not decolourize $\sqrt{1}$ purple acidified <u>potassium manganate (VII).</u> $\sqrt{1}$

- (iii) I. A. Ethane $\sqrt{1}$
 - II. B 1- Chloroethane $\sqrt{1}$

(iv)

Н	Н
С	С

- H H $n\sqrt{1}$
- (v) (i) Combustion $\sqrt{1}$
 - (ii) Dehydration $\sqrt{1}$
- (vi) Conc. $H_2SO_{4\sqrt{1}}$ Temperature of 170°C. $\sqrt{1}$
- (b) (i) Pent-2-ene $\sqrt{1}$
 - (ii) Prop-1-yne. $\sqrt{1}$
- 1. a) (i) Mass of Mg is 20.36-19.52=0.84g $\sqrt{\frac{1}{2}}$ Mass of MgO is 20.92-19.52=1.40g Mass of oxygen is 20.92-20.36=0.56g $\sqrt{\frac{1}{2}}$ % mass of Mg in MgO is =60% $\sqrt{\frac{1}{2}}$ % mass of O₂ in MgO is

 $=40\%\sqrt{1/2}$

(ii)

Elements	Mg	0
%comp	60	40
R. A. M	24	16
Moles	60	40÷16
	=2.5	=25
Mole ratio	$1\sqrt{1}$	$1\sqrt{1}$

 $Na_2SO_{4(aq)} + 2H_2O_{(l)} \sqrt{1}$ (i) $2NaOH_{(aq)} + H_2SO_{4(aq)}$ b) (ii) I. Moles of H₂SO₄ in 20cm³ is =0.005 moles $\sqrt{1}$ Mole ratio of base to acid is 2:1 Moles of NaOH is thus =0.01 moles of NaOH $\sqrt{1}$ II. Moles of NaOH in 1L is thus $\sqrt{1}$ =0.2 moles $\sqrt{1}$ III. Mass of NaOH in 1L is =8g Mass of NaCl in the mixture is 8.8-8= $0.8g\sqrt{1}$ % mass of NaCl is $= 9.09\% \sqrt{1}$ 2. a) (i) Bonds Broken are 4C-H= 4 x 413 = 1652 $1C = C = 1 \times 610 = 610$ $1Br - Br = 1 \times 193 = 193$ Total energy absorbed = 2455 kJmol⁻¹ $\sqrt{1}$ Bonds formed are $4C-H=4 \times 413 = 1652$ $2C = Br = 2 \times 280 = 560$ $1C - C = 1 \times 346 = 346$ Total energy given out = 2558 kJmol⁻¹ $\sqrt{1}$ $\Delta H = 2455 - 2558 = -103 \text{ kJmol}^{-1} \sqrt{1}$

(ii) Addition reaction $\sqrt{1}$

C₄ H_{10(g)}

 $\Delta H_{\rm 3}$

 $\Delta H_2 \sqrt{1}$

4CO_{2 (g)} + 5H₂O (g)

 ΔH_1

$$\Delta H^{\theta}_{f} (C_{4}H_{10}) = \Delta H_{3} - \Delta H_{2}$$

=4 (-393) + 5(-286) - (-2877) $\sqrt{1}$
= -3002 + 2877
= -125 kJmol⁻¹ $\sqrt{1}$

(ii) $\Delta H + \Delta Hhyd$ = 690 + -322 + - 364 = 690- 686 = + 4 kJ / mol

3. a) √1

- i. Burrete $\sqrt{1}$
- ii. Pippete√1
- iii. Measuring cylinder

b)

- i. Due to incomplete combustion, it produces white hot carbon particles that emittes a lot of light $\sqrt{1}$
- ii. It produces soot that makes apparatus dirty $\sqrt{1}$ It does not produce much heat $\sqrt{1}$

c)

- i. Nitrogen $\sqrt{1}$ and 0 oxygen $\sqrt{1}$
- ii. It can be separated by physical means $\sqrt{1}$ Components of air are not chemically combined $\sqrt{1}$
- iii. Pass air through lime water $(Ca(OH)_2 \sqrt{1} + 1) \sqrt{1}$ the lime water forms white precipitate indicating presence of carbon(IV)oxide $\sqrt{1}$
- 4. (a) Alkali metals $\sqrt{1}$
 - (b) Electron arrangement $2.8.5 \sqrt{1}$ position: group V period $3\sqrt{1}$

(c) The atom of R is larger $\sqrt{\frac{1}{2}}$ // has a larger atomic radius than the ion $\sqrt{\frac{1}{2}}$ This is because the ion of R is formed when the atom loses the electrons in the outermost energy level $\sqrt{\frac{1}{2}}$ therefore, the ion has one less energy level than the atom. $\sqrt{\frac{1}{2}}$

- (d) (i) $P_2W \sqrt{1/2}$
 - (ii) TY₄ $\sqrt{1/2}$
- (e) S has a higher $\sqrt{\frac{1}{2}}$ melting point than Q $\sqrt{\frac{1}{2}}$

This is because e S has more valence electrons in its metallic structure hence a stronger metallic bond $\sqrt{\frac{1}{2}}$ than $Q\sqrt{\frac{1}{2}}$

(f) M √1

It has a completely filled outermost energy level $\sqrt{\frac{1}{2}}$ and therefore, does not need to react with other elements to gain stability $\sqrt{\frac{1}{2}}$

(g) S has a higher electrical conductivity than $Q^{\sqrt{1}}$.

S does not corrode easily like Q. $\sqrt{1}$

(h)

- 5. (a) A Ammonia $\sqrt{1}$ B – Calcium oxide $\sqrt{1}$
 - (b) $CaO_{(s)} + H_2O_{(l)}$

 $Ca(OH)_{2(aq)}\sqrt{1}$

- (c) Reaction is exothermic $\sqrt{1}$
- (d) Filtration $\sqrt{1}$

- (e) Ammonia $\sqrt{1}$
 - Carbon (IV) oxide $\sqrt{1}$
 - (i) $C_{(s)} + 2H_2SO_{4(l)}$

$$CO_{2(g)} + 2H_2O_{(l)} + 2SO_{2(g)}\sqrt{1}$$

- (ii) Oxidising property $\sqrt{1}$ (g) - Manufacture of glass $\sqrt{1/2}$
 - Softening of hard water $\sqrt{1/2}$
 - Making of soaps and detergents
 - For making sodium hydrogen carbonate used in baking soda and fire extinguishers
 - (Any 2 correct answers each 1/2 mk)

6. (a) (i)

(f)

. ,	-	
Substance	Carbon (IV) oxide	Carbon (II) oxide
К	Dilute hydrochloric acid $\sqrt{1/2}$	Concentrated sulphuric (VI) acid $\sqrt{1/2}$
L	Marble chips or calcium carbonate √½	Sodium methanoate or ethanedioc acid (oxalic acid) $\sqrt{\frac{1}{2}}$

Complete diagram = 1 mark, Labelling = 1 mark

(iii) Carbon (IV) oxide reacts with lime water / calcium hydroxide solution $\sqrt{\frac{1}{2}}$ to yield white precipitate while carbon (II) oxide does not. $\sqrt{\frac{1}{2}}$

Carbon (II) oxide burns $\sqrt{1/2}$ with blue flame while carbon (IV) oxide does not burn. $\sqrt{1/2}$

- (b) (i) $CO_{2(g)} + C_{(s)} \rightarrow 2CO_{(g)}\sqrt{1}$
 - (ii) Reducing agent in extraction of some metals from their oxides. $\sqrt{1}$
- (c) The bulb lights in set up I or conducts electricity while set up II does not. $\sqrt{\sqrt{1}}$ In graphite, three out of four valence electrons of carbon atom are bonded leaving one delocalised $\sqrt{1}$ electron thus conducts electricity while in diamond, all the four valence electrons are bonded and is without delocalised electrons. $\sqrt{1}$