Teacher.co.ke

233/3 CHEMISTRY PAPER 3 TIME: 2 HOURS 15 MINUTES

2021 TRIAL 3 OCT/NOVEMBER INTERNAL EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E) 233/3 CHEMISTRYPRACTICAL PAPER 3 2 HRS 15 MINUTES OCT/NOVEMBER 2021

Name	Adm No
Stream	Date
Sign	

INSTRUCTIONS TO CANDIDATES

[a] Answer ALL questions in the spaces provided in each question.

[b] Mathematical tables and electronic calculators may be used for calculations.

[c]all working must be clearly shown where necessary.

FOR EXAMINERS ONLY

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	15	
2	13	
3	12	

Total	40	

ע		
4		
5		
5		
9		
Ď		

- 1. You are provided with
 - 2.0M NaoH solution labelled B
 - Sulphuric(VI) acid solution labelled A `

You are to:

- [a] Prepare a dilute solution of NaoH solution.
- [b] Determine the concentration of in moles per litre.

PROCEDURE 1

- i. Using a pipette 25.0cm³ of solution B and place it into 250cm³ volumetric flask.
- ii. Add about 200cm³ of distilled water and share well.
- iii. Add more water to make up to 250cm³mark. Label this solution C
- [a] Calculate the concentration of the dilute solution C in moles per litres.

mksj	

PROCEDURE 2

- i. Fill the burette with solution A and record the readings in the table below.
- ii. Pipette 25cm³ of dilute solution C and place it into 250ml conical flask.
- iii. Add 2-3 drops of phenolphthalein indicator.
- iv. Titrate with solution A.
- v. Record your results in the table below.
- vi. Repeat the titration two or more times and complete the table.

	I	II	III
Final burette reading (cm³)			
Initial burette reading(cm³)			

7	ê
1	69
4	er.
K	忘

	Volume of solution A(cm³)			
--	---------------------------	--	--	--

[4mks]

		[4111KS]	
[1mk]	[a]	Determine average volume of the acid (solution A) used.	
	[b]	Determine moles of dilute solution C in the volume used. [2]	2mks]
	[c]	Write an equation for the reaction taking place.	[1mk]
	 [d]	Determine the number of moles of A used. [2	mks]
			••••
	[e]	Determine the concentration of A in moles per litre. [21]	mks]

2. You are provided with the following

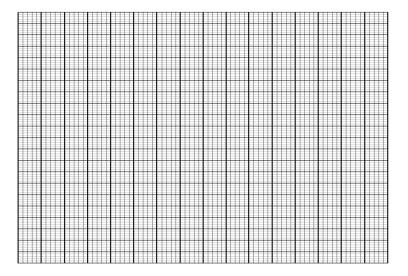
- 2M sodium hydroxide solution, solution B
- 2M hydrochloric acid, solution D

You are required to determine the molar enthalpy of neutralization of the acid using sodium hydroxide.

PROCEDURE

- [i] Measure out 20cm³ of acid into a clean plastic beaker.
- [ii] Record the temperature of this solution in the table below
- [iii] Measure 5cm³ of sodium hydroxide and add it to the hydrochloric acid.
- [iv] Stir with the thermometer and record the maximum temperature reached.
- [v] Repeat the above procedure adding 5cm³ portions of sodium hydroxide until the total volume of the solution is 50cm³.

Volume of acid(cm3)	20	20	20	20	20	20	20
Volume of NaoH added cm ³	0	5	10	15	20	25	30
Temperature()of solution							


[3mks]

You are required to:

[a]. Plot a graph of temperature rise against sodium hydroxide added. [3mks]

[b]Fro	om your graph determine:	
[i]	maximum temperature change.	[1mk]
		•••••
[ii]	the volume of NaOH that is required for complete neutralization	[1mk]
		•••••
		•••••

9
ö
F.
흝
g
9

[iii]	Calculate the molar enthalpy of neutralization for this reaction. (C=4.2J/g/) assume density of solution is 1gcm ⁻³) [2mks]
[iii]	The theoretical molar heat of neutralization is -57.2kj/mol-1.Compare your value in [ii] above with the theoretical value. Give the reasons for any differences noted between these two values. [2mks]

- 3. You are provided with solid N carry out the tests below and record your observations and inferences.
 - [a] Place a spatula of N in a test tube and add 5cm³ of water and shake well divide the solution in to three portions.

OBSERVATION	(1mk)	INFERENCE	(1mk)

	9
П	Ö
	5
	阜
	ဗ္ဗ
	(0)

[b]	Add sodium hydroxide to	the first portion	drop wise	while observing till in ex	xcess
-----	-------------------------	-------------------	-----------	----------------------------	-------

OBSERVATION	(1mk)	INFERENCE	(2mks)

[c] Add ammonia solution to the second portion drop wise until in excess.

OBSERVATION	(1mk)	INFERENCE	(1mk)

[d] Add four drops of potassium iodide solution to the third portion.

OBSERVATION	(1mk)	INFERENCE	(1mk)

[e] Add three drops of acid barium nitrate to the fourth followed by 5 drops of nitric acid.

OBSERVATION	(2mks)	INFERENCE	(1mk)