Name:	Adm No Index No
School:	Class
Date:	Signature:

233/1

CHEMISTRY THEORY

PAPER 1

TIME: 2 HOURS

KASSU JET EXAMINATIONS JUNE 2022

Instructions to Candidates

- (a) Write your Name, Adm Number and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above
- (c) Answer ALL the questions in the spaces provided in the question paper
- (d) KNEC Mathematical tables and/or electronic calculators may be used for calculations
- (e) All working **MUST** be clearly shown where necessary
- (f) This paper consists of 12 printed pages
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing
- (h) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1 – 29	80	

This paper consists of **12 printed pages**. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1.	Give one danger of abusing bhang	(1mark)
 2.	Give one reason why a conical flask is preferred during a titration experiment	(1mark)
3.	The atomic number of iron is 26 and its mass number is 56. How many of each following particles is in Iron (III) ion?	h of the
4.	i. Protons	(½ mark) (1 mark) (1mark)
	Combustion tube Iron Powder Gas X Heat Water Heat	
a) 	Between point B and point M which one should be heated first? Explain.	(1mark)
 b)	Write a chemical equation that occurs in the combustion tube	(1mark)
 c)	State and explain the observation made when gas X is passed over heated copp	

of Potassium manganate aluminium foil, a white solid (1 mark) (1mark)
of Potassium manganate aluminium foil, a white solid (1 mark) (1mark)
of Potassium manganate aluminium foil, a white solid (1 mark) (1mark)
of Potassium manganate aluminium foil, a white solid (1 mark) (1mark)
of Potassium manganate aluminium foil, a white solid (1 mark) (1mark)
of Potassium manganate aluminium foil, a white solid (1 mark) (1mark)
of Potassium manganate aluminium foil, a white solid (1 mark)(1mark)
aluminium foil, a white solid (1 mark)(1mark)
aluminium foil, a white solid (1 mark)(1mark)
(1mark)
(1mark)
(1mark)
hybblad thuayah a salytian a
bubbled through a solution o (1mark)
v graphite is suitable for the (1 mark)
and answer the questions

	i.	Identify one characteristic of particle X	(1mark)
	ii.	Write the nuclear equation for process I	(1mark)
10.		re provided with 200 cm ³ of 0.5M lead (II) nitrate solution and 200 cm ³ in chloride solution. Briefly describe how a dry sample of sodium nitrate ed	
• • • •			
• • • •			
11.	In an e cm ³ of 1.4291	experiment, 120 cm ³ of oxygen diffused through a porous pot in 20 seconds. If the densi g/cm ³ , calculate the density gas Y.	onds and 200 ty of oxygen is (2 marks)
• • • • •			
	measur into cy	on mass of gas was placed in cylinder A as shown below and its volume red at constant temperature as V_A and P_A respectively. The same mass valinder B and the piston pushed down as shown. The volume and the prepiston was also measured as V_B and P_B respectively.	was then placed

a.	State the mathematical expression that gives the correct relationship between and volume of the gas in both cylinders A and B at constant temperature.	(1mark)
b.	Give one application of gas laws.	(1mark)
oz de	Then a certain hydrocarbon is burnt completely in excess oxygen, 3.08 g of cardia and 0.72 g of water were formed. If the molecular mass of the hydrocard etermine the molecular formula of the hydrocarbon. (C=12, H=1)	earbon (IV) bon is 184, (3 marks)
	25.0cm ³ of 0.1M H ₂ SO ₄ solution neutralised a solution containing 1.06g of odium carbonate in 250cm ³ of solution, calculate The molarity of sodium carbonate (Na=23, O=16, C=12)	anhydrous (1 ½ marks)

b.	Volume of sodium carbonate solution used	(1 ½ marks)
	he solubility of salt W is $80g/100g$ of water at a temperature of 90^{0} C. A solute of the salt was cooled to 50^{0} C.	tion containing
	Define solubility	(1mark)
 b)	Calculate the total mass of crystals present if the solubility of salt W at 50 of water	(1 mark)
c)	Calculate the molarity of the solution at 50° C (R.F.M of W=174.5)	(1 mark)
 6. G	iven the equation for the reaction below	
	$NH_3(g) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$	
a. 	State the Bronsted-Lowry definition of a base	(1 mark)
b.	Identify the base in the backward reaction	(1 mark)
	Iagnesium and aluminium are both metals. In terms of structure and bonding selting point of their respective chlorides compare?	
		,
••		

18. The setup below shows laboratory preparation of nitrogen gas.

	a.	WIIIE II	ie equation for the reaction in which introgen gas is produced	(1 mark)
	b.	-	roperty makes nitrogen gas to be collected as shown above	(1 mark)
	c.	Nitroge	n gas is used in storage of semen under artificial insemination. Ex	. , ,
19.			re below represents two cleansing agents Q and P. RCOO-Na ⁺	
		P-	ROSO ₃ -Na ⁺	
		Give on vantage	ne advantage and one disadvantage of using agent Q	(2marks)
	Dis	advanta	ge	
	••••			

20. The flow chart below shows some of the chemical properties of organic compounds starting with ethanol. Use it to answer the questions that follow.

	a) Step II	
	b) Step IV	•••••
ii.	Write the equation for the reaction in step I	(1 mark)
iii.	Give the structural formula and IUPAC name of compound B Structural formula	(1 mark)
	IUPAC name	(½ mark)
iv.	State the major industrial application of the reaction in step III	
21. The g	general formula for a homologous series of a group organic compoun Give the name of the structural formula of the fourth member of the	ds is $C_nH_{2n+1}OH$.
i.	Name	(1 mark)

i.

(1 mark)

	Structural formula		(1 mark
II.	Write the equation for the reac	tion between the molecule in (I) a	bove and Propano
	acid		(1 mark)
•••••			
	toble below lists data relevant to	o the formation of MgCl ₂ solution.	
2. 1. 1110	Enthalpy change	Value (kJ/mol)	
	$\Delta H_{\text{solution}}(\text{MgCl}_{2(s)})$	-160	
	$\Delta H_{\text{lattice}}(MgCl_{2(s)})$	-2526	
	$\Delta H_{ m hydration}(Mg^{2+}_{ m (g)})$	-1890	
enthal	ren that enthalpy of hydration of	Ca ²⁺ (g) is -1562 kJ/mol , suggest (g) as shown in the table above is h	a reason why the
enthal	ren that enthalpy of hydration of py change of hydration of Ca ²⁺ (Ca ²⁺ (g) is -1562 kJ/mol , suggest (g) as shown in the table above is h	a reason why the nigher than the (1 mark)
enthal	ren that enthalpy of hydration of py change of hydration of Mg ²⁺ py change of hydration of Ca ²⁺ (f Ca ²⁺ (g) is -1562 kJ/mol , suggest (g) as shown in the table above is h	a reason why the nigher than the (1 mark)
enthal	ren that enthalpy of hydration of py change of hydration of Mg ²⁺ py change of hydration of Ca ²⁺ (f Ca ²⁺ _(g) is -1562 kJ/mol , suggest (g) as shown in the table above is h	a reason why the nigher than the (1 mark)
enthal	ren that enthalpy of hydration of py change of hydration of Mg ²⁺ py change of hydration of Ca ²⁺ (is a mixture of hydrocarbons. O	Ca ²⁺ (g) is -1562 kJ/mol , suggest (g) as shown in the table above is head (g)	a reason why the nigher than the (1 mark) s octane, C_8H_{18} . (1 mark)

	b. Mo	Define the term <i>cracking</i> .	(1 mark)
	••••		
	ii.	Write the equation for the cracking of dodecane, $C_{12}H_{26}$ to form eth other hydrocarbon	(1 mark)
	••••		
	iii.	Give the name of the hydrocarbons homologous series to which eth	ene belongs (1 mark)
24.	nitrate	der is suspected to be containing sulphite ions. Given, 2M nitric acid, d solution, Acidified potassium manganate (VII) reagents and other necestory apparatus, describe how one can confirm the presence of the ions.	ssary
			• • • • • • • • • • • • • • • • • • • •
25.	and wa	bic acid reacts with ethanol to form a product that has a pleasant smell cater. When the reaction is at an equilibrium, a few drops of concentrated dded, followed by warming.	alled an ester
	a.	What is the effect of adding concentrated sulphuric acid on;i. The position of the equilibrium of the mixture?	(1 mark)
		i. The position of the equinorium of the mixture:	(1 mark)
		ii. The yield of the ester	(1 mark)
	b.	The forward reaction in the equilibrium is referred to as esterification. name of the reverse reaction?	What is the (1 mark)

c.	Explain the effect of rise in temperature on the yield of products of molar enthalpy change of -92kJ/mol .	of a reaction with a (2 marks)
		• • • • • • • • • • • • • • • • • • • •

26. A wet wooden splint was dipped in manganese (IV) oxide powder and then soaked in hydrogen peroxide solution as shown below.

i.	State and explain the observation that was made	(2 marks)
ii.	Write the equation for the reaction that occurred	(1 mark)

27. The setup below shows the process of electrolysis of molten lead (II) fluoride. Use it to answer the questions that follow.

	a.	Identify the electrodes labelled A and B A B		
	b. c.	Indicate the direction of flow of electrons on the diagram State and explain the observation made on electrode B	(1 mark) (2 marks)	
	d.	Give any one application of electrolysis	(1 mark)	
28. The graphs J, K and L below shows the general trend in the properties of period 3 elements (Na to Cl). Use them to answer the questions that follow.				
		Na Cl Na Cl Na	CI	
	Sel a.	lect a graph that represents the variation in; Ionic radius.	(½ mark)	
	b.	Atomic radius. Explain.	(1½ marks)	
29. Aluminium objects do not need protection from corrosion while Iron objects must be protected from corrosion. Explain. (2 marks)				