

Name:	Index No:.	
School:	Adm no:	Class:
Candidate's Signature:	Date:	•••••

233/3 CHEMISTRY PRACTICAL Paper 3 KASSU JUNE 2022 TIME: 2 ¼ HOURS

KASSU JET – JUNE 2022

Kenya Certificate of Secondary Education (K.C.S.E) 233/3 Chemistry Practical Paper 3 2 ¹/₄ Hours

INSTRUCTIONS TO CANDIDATES:

- Answer all the questions in the spaces provided in the question paper.
- You are **NOT** allowed to start working within the first 15 minutes of the 2 ¹/₄ hours allowed for this paper. This time is to enable you read the question paper and make sure you have all the chemicals and apparatus that you may need.
- All working **MUST** be clearly shown.
- Mathematical tables and silent scientific calculators may be used.
- Candidates should check to ascertain that all papers are printed as indicated and that no questions are Missing

Question	Maximum score	Candidate's score	Examiner's initials
1	14		
2	10		
3	10		
4	06		
Total score	40		

For Examiner's Use Only:

- 1. You are provided with:
 - Solution A₁, potassium iodate solution
 - Solution A₂, acidified sodium hydrogen sulphite solution
 - Solution A₃ starch indicator
 - Distilled water in a wash bottle.
 - Stop watch / stop clock

You are required to find out the effect of concentration of potassium iodate A_1 on the rate of reaction with acidified sodium hydrogen sulphite A_2 .

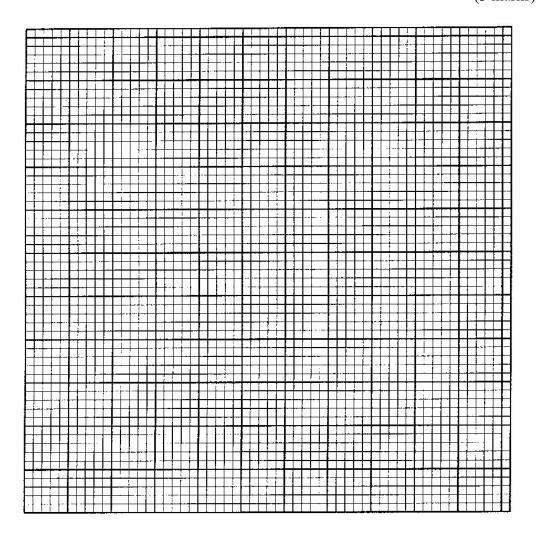
Note: the end point of reaction of potassium iodate with acidified sodium hydrogen sulphite is indicated in the formation of a blue coloured complex using starch indicator.

Procedure 1:

- (a) Using a 10 cm³ measuring cylinder to pour 5 cm³ of aqueous sodium hydrogen sulphite into the conical flask.
- (b) Use another 10 cm³ of measuring cylinder to pour 5 cm³ of starch solution into the same conical flask.
- (c) Using a burette pour 15 cm^3 of distilled water into the same beaker.
- (d) Using a burette pour 20 cm³ of aqueous potassium iodate into the beaker and immediately start the stop watch.
- (e) Swirl the mixture in the conical / flask and continue to swirl until a sudden blue colour change is seen.
- (f) Stop the stop-watch and record time taken seconds for the sudden blue colour change to appear.
- (g) Rinse the beaker with water.

Experiment 2:

- (h) Repeat procedure 1 using 17 cm³ of distilled water and 18 cm³ of aqueous potassium iodate.
- (i) Repeat procedure 1 using 21 cm³ of distilled water and 14cm³ of aqueous potassium iodate.
- (j) Repeat experiment 1 using 23 cm³ of distilled water and 12 cm³ of aqueous potassium iodate.
- (k) Repeat experiment 1 using 25 cm³ of distilled water and 10 cm³ of aqueous potassium iodate.



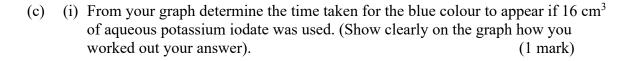

(a) Complete the table below.

Table I

Experiment	1	2	3	4	5
Volume of Sodium hydrogen sulphite (Na HSO ₃) used	5	5	5	5	5
Volume of distilled water used (cm ³)	15	17	21	23	25
Volume of potassium iodate (KIO ₃ (aq) used in cm ³	20	18	14	12	10
Time taken to change colour (secs)					
				(4 1	marks)

(b) On the grid below plot a graph of time taken (secs) for the colour change (vertical axis) against volume of aqueous potassium iodate used (cm³).
 (3 marks)

- (ii) Calculate the volume of distilled water required if 16 cm³ of aqueous potassium iodate was used. (1 mark)
- (d) On the graph sketch the graph that could be expected if the above experiment s were done at a higher temperature. Explain. (1 mark)
- (e) Calculate the concentration of potassium iodate solution in moles per litre in the final reaction mixture in the experiment 1. (2 marks)
- (f) How does the concentration of potassium iodate solution A₁, affect its rate of reaction with acidified sodium hydrogen sulphite A₂? Explain your answer. (2 marks)

2. You are provided with:

- Solution B, which is 0.05M acidified potassium manganate (VII) solution (KMnO₄).
- Solution C, containing 5.0g/l of a dibasic acid, H₂ A.2H₂O

You are required to:

• Determine the concentration of dibasic acid H₂X, solution C and then the formula mass of X.

Procedure II

- 1. Fill the burette with solution B.
- 2. Using a clean pipette, place 25 cm³ of solution C into a clean conical flask. Heat this solution to about 70^oC.
- 3. Titrate using solution B until a permanent pink colour just appears. Shake thoroughly during titration.
- 4. Record the reading in table I below.
- 5. Repeat the titration one more time to complete the table below.

(a) Complete the table I below.

<u>Table I</u>

	Ι	II	
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution b used cm			
	1	1	(3 marks)

(b) Determine the average volume of solution B used. (1 mark)

(c) Calculate:

(i) The number of moles of manganate (VII) ions in the average volume of solution B used above. (1 mark)

- (ii) Given that 2 moles of manganate (VII) ions react with 5 moles of dibasic acid $H_2 X.2H_2O$. Calculate the number of moles of the dibasic acid $H_2 X.2H_2O$ in the 25 cm⁵ of solution C. (2 marks)
- (iii) The concentration of solution C in moles per litre. (1 mark)
- (iv) Calculate the formula mass of X in the dibasic acid $H_2 A.2H_2O$ (H = 1, O = 16) (2 marks)

3. You are provided with solution Q. Carry out the tests below. Write your observations and inferences in the spaces provided.

Place about 2 cm³ of the solution in five separate test-tubes.

(a) To the first portion, add aqueous sodium hydroxide drop wise until in excess.

Observations	Inferences
(1 mark	(1 mark)

(b) To the second portion, add aqueous ammonia dropwise until in excess.

Observations	Inferences	
	(1 mark)	(1 mark

(c) To the third portion, add 3 drops of dilute hydrochloric acid.

Observations	Inferences
(1)	mark) (1 mark

(d) To the fourth portion, add 3 drops of barium nitrate solution.

Observations	Inferences
(1 mark)	(1 mark)

- Observations
 Inferences

 (1 mark)
 (1 mark)
- (e) To the last portion, add 3 drops of lead (II) nitrate solution then warm the mixture.

- 4. You are provided with solid **R**. Carry out the tests below. Write your observations and inferences in the spaces provided.
 - i). Place one third of solid R on a metallic spatula. Burn it in non-luminous flame of the Bunsen burner.

Observations	Inference	
(½ mar	k) (¹ / ₂ mark))

ii). Place the remaining solid in a test-tube. Add about 6 cm³ of distilled water and shake the mixture well. Retain the solution for the next procedure.

Observations	Inferences
(½ ma	rk) (¹ / ₂ mark)

(I) In another 2 cm³, add 2 drops of acidified potassium manganate (VII).

Observations	Inferences
(1 mark)	(1 mark)

Observations	Inferences
(½ mark)	(½ mark)

(II) To about 1cm³, add 3 drops of acidified potassium dichromate (VI) and warm.

(III) To about 2 cm³ of the solution, add 1g of solid D; sodium hydrogen carbonate.

Observations	Inferences
(½ mark) (¹ / ₂ mark)