

KASSU JET – JUNE 2022

233/3

CHEMISTRY PRACTICAL

CONFIDENTIAL INSTRUCTIONS

Instructions to Schools:

The information contained in this paper is to enable the head of the school and the teacher in charge of Chemistry to make adequate preparation for the Chemistry Practical Examination.

NO ONE ELSE should have access to this paper or acquire knowledge of its content. Great care MUST be taken to ensure that the information herein does NOT reach the candidates either directly or indirectly. The teacher in charge of Chemistry should NOT perform any of the experiments in the SAME room as the candidates nor make the results of the experiment available to the candidates of give any information related to the experiments to the candidates. Doing so will constitute an examination irregularity.

Requirements for candidates in addition to fittings, and apparatus found in the chemistry laboratory, each candidate will require:

- 1. $100 \text{ cm}^3 \text{ of solution } A_1 \text{KIO}_3$, potassium iodate solution
- 2. 100 cm³ of solution A₂ Acidified NaHSO₃, Acidified sodium hydrogen sulphite
- 3. 150 cm³ of solution **B** acidified potassium manganite (VII) KmnO₄
- 4. 150 cm³ of solution C, 5g/l of dibasic acid, H₂A.2H₂O
- 5. About 1g of solid **R** in a stopper container maleic acid (pure)
- 6. About 1g of solid **D** (sodium hydrogen carbonate)
- 7. One 50 cm³ burette
- 8. About 30 cm³ of A₃, starch indicator solution.
- 9. About 10 cm³ solution **Q** (Al Cl_{3 (aq)}) in a stoppered boiling tube
- 10. One 25 cm³ pipette
- 11. Two 10 cm³ measuring cylinder
- 12. One 100 cm³ beaker
- 13. Two 250 cm³ conical flasks
- 14. Seven, clear dry test-tubes placed in a rack

- 15. One stop watch / stop clock
- 16. One boiling tube
- 17. One spatula metallic

ACCESS TO:

- 1. 2M sodium hydroxide solution supplied with a dropper.
- 2. 2M Ammonia solution supplied with a dropper
- 3. 2M dilute hydrochloric acid supplied with a dropper.
- **4.** 2M Barium nitrate solution supplied with a dropper.
- **5.** 2M Lead (II) nitrate solution supplied with a dropper.
- **6.** 300 cm² of distilled water.
- 7. Source of heat (Bunsen burner).
- **8.** Acidified potassium manganite (VII) KmnO₄ supplied with a dropper.
- **9.** Acidified potassium dichromate(VI) K2Cr₂O₇.

PREPARATIONS

- 1. Solution A_1 is prepared by dissolving 2g of solid A_1 (potassium iodate [KIO_{3(s)}]) in distilled water and making it up to one litre.
- 2. Solution A₂ is prepared by dissolving 0.40 g of solid A₂ acidified sodium hydrogen sulphite (NaHSO₃) in about 200 cm³ of distilled water, and adding 20 cm³ of 1M sulphuric acid, shaking well, and making up to one litre with distilled water.
- 3. Solution A₃ starch indicator is prepared placing 1.0g of solid A₃ starch indicator in 100 cm³ beaker and adding 2 cm³ of distilled water to make a paste and pouring the paste into 100 cm³ of boiling distilled water and boiling the mixture for about one minute and allowing it to cool solution A₃ is to be prepared in the morning of the examination.
- 4. Solution **B** Acidified potassium manganate(VII) prepared by dissolving 9g of solid potassium manganate(VII) in about 600 cm³ of 2M sulphuric(VI) acid and adding distilled water to make a litre of the solution.
- 5. Solid **R** is pure maleic acid.
- 6. Solution C 5g/l of oxalic acid is prepared by dissolving 5 g of oxalic acid in 250 cm³ of water and making it to one litre of solution.