

Paper 2 2 ½ Hours

June 2022

KASSU JET EXAMINATIONS

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- Write your name and Admission number in the spaces provided at the top of this page.
- This paper consists of two sections: Section I and Section II.
- Answer ALL questions in section 1 and ONLY FIVE questions from section II
- All answers and workings must be written on the question paper in the spaces provided below each question.
- Show all the steps in your calculation, giving your answer at each stage in the spaces below each question.
- Non Programmable silent electronic calculators and KNEC mathematical tables may be used, except where stated otherwise.

FOR EXAMINERS USE ONLY

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	21	22	23	24	TOTAL	A. TALL T. T.
				1				

GRAND TOTAL

6	
l .	
*)	
l	
1	

SECTION I. Answer all the questions (50 marks)

1. A student spends $\frac{3}{8}$ of his time playing basketball, $\frac{1}{4}$ of the remaining in playing table tennis and $\frac{3}{4}$ of the remaining time playing volleyball. The rest is spent on reading novels. What fraction of the time is spent on reading novels. (3 mks)

$$\frac{3}{8} = \frac{3}{5} = \frac{45}{32}$$

$$\frac{3}{4} = \frac{45}{32}$$

$$= \frac{17}{32} = \frac{17}{32}$$

$$= \frac{17}{32} = \frac{113}{128}$$

$$= \frac{15}{32} = \frac{15}{128}$$

$$= \frac{15}{128} = \frac{15}{128}$$

$$= \frac{15}{128} = \frac{15}{128}$$

(3 marks)

2. Simplify;
$$\frac{\sqrt{5}-1}{\sqrt{5}+1}$$
.

$$\frac{\sqrt{5}-1}{\sqrt{5}+1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}$$
 Denominator $\frac{5-1}{5-1} = 4$
Numerator $\frac{6-2\sqrt{5}}{4}$

Denominator

$$5-1$$
= 4

 $6-2\sqrt{5} = \frac{3}{2} - \frac{1}{2}\sqrt{5}$
or

 $91.5-0.5\sqrt{5}$

(3marks)

Solve the equation
$$2\log 3 + \log(x-2) = 2\log x$$

 $\log\left(3^2(x-2)\right) = \log x$ M
 $9(x-2) = x$
 $x - 9x + 18 = 0$
 $(x-6)(x-3) = 0$
 $x = 6$ A N
 $x = 3$

- The base and perpendicular height of a triangle measured to the nearest millimetre are 15.0 cm and 9.5 cm respectively. Find
 - (a) The absolute error in calculating the area of the triangle (1 mark)

Min Prod	Actual	Max product	
14.95	15=0	15.05	A·E = 143.7275 - 141.27
9.45	9.5	9.55	2
141.2775	142.5.	143.7275	- 1. 225 A1
		, ,	_ (0 223

(b) The percentage error in the area, giving the answer to 1 decimal place. (2mks

$$\frac{1.225}{142.5} \times 100^{11} = 0.9\% \text{ A}$$

$$= 0.859$$

5. Find the value of θ , given that; $\frac{1}{2}\sin\theta = 0.35$ for $0^0 \le \theta \le 360^0$

$$Sin \theta = 0.70 \text{ M}$$

$$\theta = Sin' 0.70$$

$$\theta = 44.43^{\circ} \text{ A}$$

$$(3mks)$$

$$180 - 44.43$$

$$= 135.57$$

6. Make Q the subject of formula $P = \sqrt{\frac{Q^2}{Q^2 - 1}}$

$$P^{2} = \left(\frac{g^{2}}{g^{2}-1}\right)^{M_{1}}$$
 $P^{2}g^{2}-P^{2}=g^{2}$
 $P^{2}g^{2}-G^{2}=P^{2}M_{1}$

for
$$0^{\circ} \le \theta \le 360^{\circ}$$

$$(3 \text{ mks})$$

$$180 - 44.43$$

$$= 135.57$$

3marks

$$Q^{2}(p^{2}-1) = p^{2}$$

$$Q^{2} = \frac{p^{2}}{p^{2}-1}$$

$$Q = \pm \frac{p^{2}}{p^{2}-1}$$
A1

7. The coordinates of the end points of a diameter of a circle are A(2,4) and B(-2,6). Find the equation of the circle in the form $ax^2 + by^2 + cx + dy + e = 0$

(4marks)
Centre
$$\left(\frac{2+-4}{2}, \frac{4+6}{2}\right)$$

$$|R_{adius}|^{2} = \sqrt{(5-4)^{2}}$$

$$|R_{adius}|^{2} + (5-4)^{2}$$

$$=\sqrt{5} \cdot B_{1}$$

$$=\sqrt{5} \cdot B_{1}$$

$$-0)^{2} + (y-5)^{2} = (\sqrt{5})^{2}$$

$$+ (y^{2} - 10y + 25) = 5$$

8. Kimani wants to buy a TV on hire purchase. It has a cash price of Ksh.30,000. He makes a down payment of Ksh. 9,000 and 12 monthly instalments of ksh. 2,200 each. Calculate the rate of compound interest charged per month. (Give your answer to 1 dp). (3 mks)

$$P = 30,000 - 9,000$$

$$= 21,000$$

$$A = 12 \times 2,200$$

$$= 26,400 \qquad \text{MI}$$

$$26,400 = 21,000 (1+\frac{7}{100})$$

$$| 1.257 = (1+700)^{12}$$

$$| \sqrt{3}/1.257 = 1.0193$$

$$| 1.0193 = 1+700$$

$$| r = 1.93$$

$$| r = 1.9$$

$$| 1.9$$

9. Expand $(3 + 3x)^6$ in ascending powers of x. Hence use the expansion up to the 3^{rd} term, to find the value of (3.03)6 correct to 2 decimal places.

$$3+3x=3.03$$

X = 0.01 Mi 729+4356x+10935x2->729+4356(0:01)+10935(0:01)2.

$$=773.6535$$
 $\sim 773.65(2dP)$ 4

- 10. The following are ages of students in a class 7,9,8,9,11,12,10 9,8,6,7,10,11,12,6,9,7, and 11.
 - a). Complete the frequency distribution table below

(1mark)

Ages \mathcal{X}	6	7	8	9	10	11	12	T= 16
No of students	2	3	2	4	2	3	2	B1 - 9
(X-I)	-3	-2	-1	0	J	2	3	
(X-5)2	9	4	1	0	1	4	9	

b). Calculate the standard deviation of their ages in five years' time. (2mks)

$$V = \frac{2d^{2}}{N}$$

$$= \frac{28}{18} \text{ MI}$$

$$= 1.5$$

$$S.d = 1.247. \text{ A}_{1}$$

$$= 1.5$$

11. Find the possible values of x given that
$$\begin{pmatrix} x+8 \\ 6 \end{pmatrix}$$
 is a singular matrix.
 $\begin{pmatrix} 2 \\ +8 \end{pmatrix} \times \begin{pmatrix} 48 \\ -6 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (3 mks)

$$X + 8x$$
 $X^{2} + 12x - 4x - 48 = 0$
 $X^{2} + 12x - 4x - 48 = 0$
 $X(x+12) - 4(x+12) = 0$
 $X(x+12) (X-4) = 0$
 $X = -12$
 $X = 4$
 $X = 4$

12. Evaluate using the logarithm table;
$$(4 \text{ mks})$$
 (4 mks) $(4$

13. The figure below is that of a circumcircle of the triangle ABC. The radius of the circle is 5cm. Given that $\angle ABC = 70^{\circ}$ and $\angle ACB = 40^{\circ}$. Calculate the area of $\triangle ABC$. (3 mks)

BC = AC
$$\frac{1}{2}$$
 Q
$$\frac{\alpha}{\sin 70^{\circ}} = 2x5$$

$$\alpha = 10x\sin 70 M_{1}$$

$$A = \frac{1}{2}x(10\sin 70)^{2}x\sin 40^{\circ} M_{1}$$

$$A = 28.38 cm^{2} A_{1}$$

14. The table below shows the number of insects and corresponding number of days in breeding.

Number of insects	200	300	400	500	600	700	800	900
days	4.4	6.4	7.4	8.0	8.5	9.0	9.5	10

a). On the grid provided, draw the graph of number of insects against the number of days. (1mark)

b). Determine the rate of breeding between 5th and 7th day.

$$\frac{350-220 \, \text{M}_{1}}{7-5} = 65 \, \text{t}_{1}^{\text{Al}}$$

15. Calculate the area of the minor segment of a circle of radius $5\sqrt{2}$ cm, cut off by a chord of length 10cm

ength 10cm
$$Sin\theta = \frac{5}{5\sqrt{2}}$$

$$Sin\theta = \frac{1}{\sqrt{2}}$$

$$Sin\theta = \frac{1}{\sqrt{2}}$$

$$= 39.275$$

$$= 25$$

$$= 25$$

$$39.275 - 25$$

$$= 14.275 A_1$$

16. A quantity P varies partly as the cube of Q and partly varies inversely as the square of Q, when Q = 2, P = 108 and when Q = 3, P = 259. Find the value of P when Q = 6.

$$P = 6^{3}K + \frac{n}{9^{2}}$$

$$108 = 9K + \frac{n}{4}$$

$$259 = 27K + \frac{n}{9}$$

$$N = 144$$

$$N =$$

SECTION II: Answer any 5 questions from this section. (50 marks)

17. Income rates for income earned were charged as shown in the table alongside:

A civil servant earns a monthly salary of Ksh. 27,000. He was also given a house allowance of h12,000, transport allowance Ksh. 1,800 and medical allowance Ksh. 2,000. He is entitled to a family relief of Kshs. 1040 per month.

Income in Ksh.	Rate in Ksh. Per Shs.
1 - 8400	2
8401 - 18,000	3
18,001 - 30,000	4
30,000 - 36,000	5
36,000 - 48,000	6
48,001 and above	7

Determine:

a) (i) His taxable income per month in Ksh.
$$(2 \text{ mks})$$

$$27,000 + 12,000 + 1800 + 2,000$$

$$= 42800 + 1$$

(ii) His net tax. (6 mks)

$$\frac{8400 \times 2}{20} \times 2 = 840$$
 [Of all Minus Adulting war model

 $\frac{8400 \times 2}{20} \times 2 = 840$ [Of all Minus Adulting war model

 $\frac{8400 \times 2}{20} \times 2 = 840$ [Of all Minus Adulting war model

 $\frac{9600 \times 3}{20} \times 3 = 1440$ [Substitute of a substitute of a substitute

b) In addition, the following deductions were made

NHIF

shs. 430

Loan repayment

Kshs. 6500

Bank shares

Kshs. 1000.

Calculate his net pay per month. (2 mks)

18. a). In the figure below, OY: YA = 1:3, AX: XB = 1:2, OA = a and $OB = b \cdot n$ is the point of intersection of BY and OX.

$$AB = -9. + b.$$

$$0 = 2 + 3(-9+2)$$

b) Given that BN' = mBY and ON = nOX, express ON in two ways in terms of

$$a, b, m$$
 and n (3marks)

$$BN = M(49-b)$$

$$= 1 M9 - Mb$$

(4 marks)

c) Find the values of m and n

$$\frac{1}{4}M=\frac{2}{3}n.$$

$$M = \frac{8}{3} n - 0$$

$$M_1 = \frac{1}{3}n$$
 $3-3m=n$

$$3-3(8n)=n$$

$$n = \frac{1}{3}. Ai$$

$$M = 8/(\frac{1}{3})$$

$$M = \frac{8}{9} A_1$$

19. (a) In a geometrical progression the sum of the second and third term is 12 and the sum

of the third and fourth terms is -36. Find the first term and the common ratio.

$$ar + ar^{2} = 12 M_{1}$$
 $ar^{2} + ar^{3} = 36$
 $ar (1+r) = 12$
 $ar^{2} (1+r) = -36$
 $ar^{2} = -36 M_{12}$

of the third and fourth terms is -30. Find the first term and the common ratio.

$$\begin{array}{l}
\alpha r + \alpha r^2 = 12 \text{ M}_1 \\
\alpha r^2 + \alpha r^3 = 36
\end{array}$$

$$\begin{array}{l}
Y = -3. \text{ A}_1 \\
Y = -3. \text{ A}_1
\end{aligned}$$

$$\begin{array}{l}
\alpha r (1+r) = 12 \\
\alpha r^2 (1+r) = -36 \\
\alpha r^2 = -36
\end{array}$$

$$\begin{array}{l}
\alpha r^2 = -36 \\
12
\end{array}$$

$$\begin{array}{l}
\alpha = 2 \text{ A}_1
\end{aligned}$$

(b) In an arithmetic progression the 12th term is 25 and the 7th term is three times the second term; find;

i) The first term and the common difference

i) The first term and the common difference (4marks)

$$A + 11d = 25$$
 $A + 11d = 25$
 $A + 11d = 25$
 $A = 3d$
 $A = 3d$

(4marks)

$$3d + 22d = 50$$

 $25d = 50$
 $d = 2 A_1$
 $0 = \frac{3}{2}(2)$
 $0 = 3 A_1$

ii) The sum of the first 10 terms of the arithmetic progression. (2marks)

$$S_{n} = \frac{n}{2}(2a+h-1)d)$$

$$= \frac{10}{2}(2x3+(10-1))^{2}$$

$$= 120 A_{1}$$

20. The table below shows the frequency distribution of marks scored by students in

ct	2	6	14	18	20
Marks	1-10	11-20	21-30	31-40	41-50
Frequency	2	4	8	4	2

a test.

a). On the grid provided, draw a cumulative frequency curve for the data. (4 mks)

b). Use your graph to determine;

(i). The pass mark if only 6 students passed the exam. (2 mks)

(ii). The upper quartile mark

$$\frac{3}{4}$$
 x 50
= 31.5 Marks
= 15th value

c). Find the percentage change if the upper quartile in b(ii) above was found by calculation. (3 mks)

$$=30.5+\left(\frac{15-14}{4}\right)10$$

$$= 30.5 + 2.5$$

$$= 33 \text{ M}$$

$$= 33-31.5 = 4.76\%$$

- 21. A gold urn contains 3 red balls and 4 white balls and a silver urn contains 5 red balls and 2 white balls. A die is rolled and if a 6 shows, balls will be selected at random from the gold urn. Otherwise balls are selected from the silver urn.
 - a. Find the probability of selecting a red ball.

(3marks)

$$\frac{1}{6} \stackrel{?}{}_{7} \stackrel{?}{}_{6} \stackrel{?}{}_{7} \stackrel{M}{}_{1} = \frac{2}{3} \stackrel{A}{}_{1}$$

- b. If two balls are selected at random without replacement,
 - i. Draw a tree diagram to represent this information.

(2marks)

ii. Find the probability that two balls are white.

(2marks)

$$P(SWW)$$
 or $P(GWW)$
= $(5/6 \times \frac{2}{7} \times \frac{1}{6}) + (1/6 \times \frac{4}{7} \times \frac{3}{6}) = 11$
= $\frac{11}{126}$

iii. Find the probability that there is at most one white ball from the silver urn.

(3marks) P(o) or P(i)

$$P(SRR) \text{ or } P(SWR) \text{ or } P(SRW)$$

$$= \frac{5}{6} \times \frac{5}{7} \times \frac{4}{6} + \frac{5}{6} \times \frac{2}{7} \times \frac{5}{6} + \frac{5}{6} \times \frac{5}{7} \times \frac{2}{6}$$

$$= \frac{25}{63} + \frac{25}{126} + \frac{25}{126} M1$$

$$=\frac{50}{63}$$
 A₁

22. a) Using a ruler and a compass only construct triangle ABC where AB = 7cm, Angle $CBA = 82.5^{\circ}$ and BC = 5cm (4mks)

b) i) Locate a point T inside the triangle which is equidistant from points A and B and also equidistant from lines AB and AC (3mks)

ii) Measure
$$TB$$
 (1mk) (3 \circ 7 \pm 0 \circ 1) \circ m .

c) By shading the unwanted region show the area inside the triangle where P lies if it is nearer to point B than to point A and also nearer to the line AB than line AC. (2mks)

23. (a) Complete the table for y = Sin x + 2 Cos x.

(2marks)

x^0	0	30	60	90	120	150	180	210	240	270	300
Sin x	0.00	0.50	0.87	1.00	0.87	0.50	0.00	-0.50	-0.87	-1,00	-0.87
2 cos x	2.00	1:73	i·00	0.00	-1,00	-1.73	-2.00	-1.73	-1.00	0:00	1.00
у	2.00	2.23	[.87	1.00	-0·B	-1.23	-2.00	-2.23	-1.87	-1:00	0.13

(b) Draw the graph of y = Sin x + 2 cos x.

(3marks)

c). Solve $\sin x + 2\cos x = 0$ using the graph. $114 \pm 2 \quad \beta \quad 294 \pm 2$

d). Find the range of values of x for which y < -0.5 $|32^{\circ} - 280^{\circ}|$

(2marks)

(3marks).

24. A triangle ABC with vertices at A (1,-1), B (3,-1) and C (1, 3) is mapped onto triangle

 $A^{1}B^{1}C^{1}$ by a transformation whose matrix is $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Triangle $A^{1}B^{1}C^{1}$ is then mapped

onto $A^{11}B^{11}C^{11}$ with vertices at A^{11} (2, 2), B^{11} (6, 2) and C^{11} (2,-6) by a second

transformation.

(i) Find the coordinates of
$$A^{I}B^{I}C^{I}MI$$

$$\begin{pmatrix}
1 & 3 & 1 \\
-1 & -1 & 3
\end{pmatrix} = \begin{pmatrix}
-1 & -3 & -1 \\
-1 & -1 & 3
\end{pmatrix}$$
(3 marks)

(ii) Find the matrix which maps
$$A^1B^1C^1$$
 onto $A^{11}B^{11}C^{11}$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -1 & -3 & -1 \\ -1 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 6 & 2 \\ 2 & 2 & -6 \end{pmatrix} \qquad \begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_5 \\ A_6 \\ A_6 \\ A_7 \\ A_8 \\ A_8 \\ A_9 \\ A_$$

(iii) Determine the ratio of the area of triangle A¹B¹C¹ to triangle A¹¹B¹¹C¹¹. (1 mark)

$$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$

determinant = 4 R1

(iv) Find the transformation matrix which maps A11B11C11 onto ABC

$$N = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$N = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \xrightarrow{N \cdot M}$$

$$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & +1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \xrightarrow{N \cdot M}$$

$$\text{Inverse g} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} = \frac{-1}{4} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} \xrightarrow{N \cdot M}$$

$$d \cdot d = -4$$

$$= \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \xrightarrow{N \cdot M} \xrightarrow{N \cdot M}$$

$$d \cdot d = -\frac{1}{4} \begin{pmatrix} -2 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \xrightarrow{N \cdot M} \xrightarrow{N \cdot M}$$

$$d \cdot d = -\frac{1}{4} \begin{pmatrix} -2 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \xrightarrow{N \cdot M} \xrightarrow{N \cdot M}$$