MATHEMATICS REVISION GUIDE

MATHEMATICS 1 PART I

SECTION A:

1. Use logarithm tables to evaluate

(4 mks)

Solve for x by completing the square

(3mks)

- $2x^2 5x + 1 = 0$
- Shs. 6000 is deposited at compound interest rate of 13%. The same amount is deposited at 15% simple interest. Find which amount is more and by how much after 2 years in the bank (3mks)
- 4. The cost of 3 plates and 4 cups is Shs. 380. 4 plates and 5 cups cost Shs. 110 more than this. Find the cost of each item. (3mks) For free KCSE Notes, Exams, and Past Papers Visit https://Tea
- A glass of juice of 200 ml content is such that the ratio of undiluted juice to water is 1: 7 Find how many diluted glasses can be made from a container with 3 litres undiluted juice (3mks)
- 6. Find the value of θ within $\theta < \theta < 360^{\circ}$ if $\cos(2\theta + 120) = \sqrt{3}$

(3mks)

- 7. A quantity P varies inversely as Q^2 Given that P = 4 When Q = 2., write the equation joining P and Q hence find P when Q = 4(3mks)
- A rectangle measures 3.6 cm by 2.8 cm. Find the percentage error in calculating its (3mks)
- Evaluate:

(3mks)

½ of 5/6

- 10. A metal rod, cylindrical in shape has a radius of 4 cm and length of 14 cm. It is melted down and recast into small cubes of 2 cm length. Find how many such cubes are obtained (3mks)
- 11. A regular octagon has sides of 8 cm. Calculate its area to 3 s.f.

(4mks)

Find the values of x and y if

13. An equation of a circle is given by $x^2 + y^2 - 6x + 8y - 11 = 0$ Find its centre and radius

(3mks)

In the figure given AB is parallel to DE. Find the value of x and y

15. A line pass through A (4,3) and B(8,13). Find

(6 mks)

- (i) Gradient of the line
- (ii) The magnitude of AB
- (iii) The equation of the perpendicular bisector of AB.
- 16. A train is moving towards a town with a velocity of 10 m/s. It gains speed and the velocity becomes 34 m/s after 10 minutes . Find its acceleration (2mks)

SECTION B:

- 17. Construct without using a protractor the triangle ABC so that BC=10cm, angle ABC = 60° and BCA = 45°
 - a. On the diagram, measure length of AC
 - b. Draw the circumference of triangle ABC
 - c. Construct the locus of a set of points which are equidistant from A and B.
 - d. Hence mark a point P such that APB = 45⁰ and AP = PB
 - e. Mark a point Q such that angle AQB = 45° and AB = AQ
- 18. (a) A quadrilateral ABCD has vertices A(0,2) , B(4,0) , C(6,4) and D(2,3). This is given a transformation by the matrix -2 0 to obtain its image A^I B ^I C D^I under a second transformation

0 - 2

which has a rotation centre (0,0) through -90^{0} , the image $A^{\parallel} B^{\parallel} C^{\parallel} D^{\parallel}$ of $A^{\parallel} B^{\parallel} C^{\parallel}$ obtained. Plot the three figures on a cartesian plane (6mks)

(b) Find the matrix of transformation that maps the triangle ABC where A (2,2) B (3,4) C (5,2) onto A B C where A (6,10) B (10,19) C (12,13).

19.

In the triangle OAB, OA = 3a, OB = 4b and OC = 5/3 OA. M divides OB in the ratio 5:3

- a. Express AB and MC in terms of a and b
- b. By writing MN in two ways, find the ratio in which N divides
 - i. AB
 - ii. MC

. In the figure below, SP = 13.2 cm, PQ = 12 cm, angle PSR = 80° and angle PQR = 90°. S and Q are the centres (8mks)

Calculate:

The area of the intersection of the two circles. The area of the quadrilateral SPQR The area of the shaded region.

21. In an experiment the two quantities x and y were observed and results tabled as below

Χ	0	4	8	12	16	20
Υ	1.0	0.64	0.5	0.42	0.34	0.28

a. By plotting 1/y against x, confirm that y is related to x by an equation of the form

$$P + x$$

where p and q are constants.

(3mks)

(b) Use your graph to determine p and q

(3mks)

(c) Estimate the value of

(ii) x when
$$y = 0.46$$

(2mks)

- 22. A racing cyclist completes the uphill section of a mountain course of 75 km at an average speed of v km/hr. He then returns downhill along the same route at an average speed of (v + 20) km/hr. Given that the difference between the times is one hour, form and solve an equation in v. Hence
 - a. Find the times taken to complete the uphill and downhill sections of the course.
 - b. Calculate the cyclists average speed over the 150km.
- 23. In the diagram below, X is the point of intersection of the chords AC and BD of a circle. AX = 8 cm, XC = 4cm and XD = 6 cm
 - a. Find the length of XB as a fraction
 - b. Show that XAD is similar to XBC
 - c. Given that the area of AXD = 6cm^2 , find the area of BXC
 - d. Find the value of the ratio

Area of	AXB
Area of	DXC

A town B is 55 km on a bearing of 050°. A third town C lies 75km due south of B. Given that D lies on a bearing of 255° from C and 170° from A, make an accurate scale drawing to show the positions of the four towns.

(scale 1cm rep 10 km)

From this find,

- (a) The distance of AD and DC in km
- (b) The distance and bearing of B from D
- (c) The bearing of C from A

(2mks)

(2mks)

(1mk)

MATHEMATICS I PART 1

MARKING SCHEME (100MKS)

1. No. Log =
$$3.6502$$
0.3681 2.5660
0.3682 $\frac{1.6427}{0.2087}$ + $-4 = \frac{1.6502}{2} = 2.8251$
361.8 2.5585 +-v ans (4) 6.6850 x 10⁻²
3.6502 = 0.06685

2.
$$2x^{2} - 5x + 1 = 0$$

 $x^{2} - 5x + \frac{1}{2} = 0$
 2
 $x^{2} - 5x = \frac{1}{2}$
 2
 $x - 5x + \frac{1}{5}^{2} = \frac{1}{2} + \frac{1}{5}^{2} = \frac{17}{16}$ (m)
 $= x - \frac{5}{4} = \frac{17}{16} = \frac{17}{16}$ (3)
 $= x - \frac{5}{4} = \frac{17}{16} = \frac{1.0625}{1.031}$
 $x_{1} = -1.031 = 1.25 = 0.2192$

 $X_2 = 1.031 + 1.25 = 1.281$

3.
$$A_1 = P(1 + R/100)^2 = 6000 \times 113/100 \times 113/100 = Sh. 7661.40$$

$$A_2 = P + PRT/100 = \frac{6000 + 15 \times 2}{100} = 6000 + 1800$$

= Shs. 7800

Amount by simple interest is more by Shs. (7800 – 7661. 40) Shs. 138.60

4. Let a plate be p and a cup c. $3p + 4c = 380 \times 5 \quad 15p + 20c = 1900$

$$4p + 5c = 490 \times 4$$
 $\frac{16p + 20c = 1960}{-p - 60}$ (m)

$$3(60) + 4 c = 380$$

 $4c = 380 - 180 = 2000$ (3)
 $c = Shs. 50$
Plate = Shs. 60, Cup = Shs. 50 (A both)

- 5. Ratio of juice to water = 1 : 7
 In 1 glass = 1/8 x 200 = Sh 25
 3 litres = 300 ml (undiluted concentrate) (3)
 No. of glasses = v 3000 = 120 glasses
- 6. $Cos(2\theta + 120) = 3/2 = 0.866$ Cos 30, 330, 390, 690, 750 $2\theta + 120$ = 330 $= 105^{0}$ $2 \theta = 210$ (3) $2 \theta = 390 - 120 = 270^{\circ}$ $\theta_2 135^0$ $2\theta = 690 - 120 = 570^{\circ}$ $\theta_3 \, 285^0$ (for 4 ans) $\theta_4 = 315^{\circ}$ (for >2) $=630^{\circ}$. $2\theta = 750 - 120$
- 7. $P = \frac{k}{Q^2} = \frac{4}{Q^2} = \frac{4}{9} = \frac{16}{9} = \frac{1}{9} = \frac{16}{9} = \frac{1}{9} =$
- 8. The perimeter = (3.6 + 2.8) x 2 = 12.8 cm Max perimeter = (3.65 + 2.85) x 2 = 23 cm % error = $\frac{13 - 12.8}{12.8}$ x 100 m = $\frac{0.2}{12.8}$ x 100 (3) = 1.5620% (A)
- 9. $= (7/6 \times 3/4) -11/12$ 1 1/6 x ³4 - 11/12 = <u>7/8 - 11/12</u> 21-22 5/12 ½ of 5/6 ½ of 5/6 5/12 = <u>-1</u> x <u>12</u> <u>-1</u> 5 5/12 24 (3)10
- 10. Volume of rod = $\Pi r^2 h$ = 22/7 x 4 x 14 = 704cm³ (m) Volume of each cube = 2x2x2 = 8 cm³ A

No. of cubes = $704 / 8 = 88 \text{ cm}^3$ A

< AOB =
$$\frac{360}{8}$$
 = 45°
Tan 67.5 = $\frac{h}{4}$
h = 4 x 2.414 A
= 9.650cm

= 9.650cm Area of 1 triangle = ½ x 8 x 9.656 x 8 cm = 38.628 x 8 vm Octagon area = 38.628 x 8 m = 309.0 cm² (A)

12. 3 2 -1 2 = 2 1 -1 y

> 3 - x = 2 (1) x = 1 (2) 2 - 1 = y y = 1 (A)

13. $x^{2} + y^{2} - 6x + 8y - 11 = 0$ $x^{2} - 6x + (-3)^{2} + y^{2} + 8y + (4)^{2} = 11 + (-3)^{2} + (4)^{2}$ (completing the square) $(x - 3)^{2} + (y + 4)^{2} = 11 + 9 + 16 = 36$ $(x - 3)^{2} + (y + 4)^{2} = 6^{2}$ Centre is (3, -4)
Radius = 6 units As (3)

14.

15. (i) gdt =
$$\frac{\text{change in y}}{\text{change in x}} = \frac{13-3}{4} = \frac{10}{4} = \frac{5}{4}$$

(ii) Mag AB = 8 -4 4 = 13 -3 10
Length =
$$\sqrt{4^2 + 10^2}$$
 = $\sqrt{116}$ = 10.77 units

(iii) Mid point =
$$\frac{4+8}{4+8}$$
, $\frac{3+3}{2}$
= (6, 8) (mid point) 2 (5 mks)
gdt of perpendicular to AB = -ve rec. of 5/2
-2/5

Eqn is
$$y = -2/5 x + c$$

 $8 = -2/5 x 6 + c = 40 = -12 + 5c$
 $= c = 52/5$

$$y = -2/5 x + 52/5$$
 (A)

16. Acceleration = Change in velocity

Time
$$= (34 - 10) \text{ m/s}$$

$$= 24 \text{ m/s}$$

$$60 \times 10$$

$$= 0.04 \text{ m/s}_{2}$$
(2)

Teacher.co.ke

$$OC = 5/3 (31) = 5A$$

(a) =
$$AO + OB$$

= $-3a = 4b$

$$MC = MO + OC$$

= -5/8 (4b) + 5
= 5A - 5/2 b

(b) MN = 5 Mc =
$$3(5a - 5/2 b)$$

= $5 s a - 5/2 s b$

MN = BN + BN
=
$$3/8 (4 b) + (1 - t) (-BA)$$

= $3/8 (4 b) + (1 - t)(3a - 4 b)$
= $3/2 b + 3 ta - 4b + 4tb$
= $(3-3t) a (4t - 5/2)b$

MN = MN
=
$$5 \text{ s a} - 5/2 \text{ sb} = (3-3t)a + (4t - 5/2)b$$

= $5 \text{ a} = 3 - 3t = 5s + 3t = 3$
= $-5/2 \text{ s} = 4t - 5/2 \text{ v} = \frac{5s + 8t = 5}{-5t = -2} = \frac{5s + 8t = 5}{-5t = -2}$

$$5 s$$
 = 3 - 3(2/5)
= 3 - 6/5 = 9/5
= 3 - 6/5 = 9/5
 $s = 9/25$

(i) AN: NB = 2:3

(ii) MN: 9 : 16

20.

360

 $\theta \times \pi r^2$

a. Area of sector SPR =
$$80/360 \times 13.2 \times 13.2 \times 3.142$$

= 121.6

Area of triangle SPR $\frac{1}{2}$ x 13.2 x 13.2 x sin 80 = 85.8 cm²

(m of area of) A (at least one)

(m of area) A(at least one)

Area of segment = 121.6 - 85.8

 $= 35.8 \text{ cm}^2$

Area of sector QPR = 90/360 x 3.142 x 12 x12

Area of PQR =
$$\frac{1}{2}$$
 x 12 x 12 = 72^2

Area of segment = 113.1 - 72

 $= 41.1 cm^2$

Area of intersection = $(35.8 + 41.1) = 76.9 \text{ cm}^2$

$$= 85.8 + 72 = 157.8 \text{cm}^2$$

Area of shaded region = Area of Quadrilateral - Area of sector SPR

= 157.8 - 121.6

 $= 36.2 \text{ cm}^2$

21.
$$y = q$$
 $p + x = q$ $y = q$

$$\frac{1}{y} = \frac{x + p}{q}$$

Gradient =
$$1/q$$
 at $(0, 0.95)$ $(8,2.0)$ $(8,2.0)$ gradient = $\frac{2.0 - 0.95}{8}$ = $\frac{1.05}{8}$

$$q$$
 $q = 1$
 $0.1312 = 7.619$

$$q = 7.62$$
.

y(1/y) Intercept
$$\underline{p} = 0.95$$
 $\underline{p} = 0.95$ q 7.62
$$\underline{p = 7.62 \times 095} = 7.27$$
 at $x = 14$, $y = 2.7$ at $y = 0.46$, $1/y = 2.174$ $x = 9.6$.

22. a) Distance = 75km uphill speed = vkm/h uphill Time = 75/v hrs

Downhill speed = (+20) km/h
Downhill Time =
$$\frac{75}{15}$$
 hrs.

 $\frac{75}{15} - \frac{75}{15} = 1$
 $\frac{75}{15} = 1$
 $\frac{$

Х	0	4	8	12	16	20
Υ	1.0	0.64	0.5	0.4 2	0.3 4	0.2 8
1/y	1.0	1.56	2.0	2.3 8	2.9 4	3.5 7

В

С

24.

MATHEMATICS I PART II

SECTION (52 MARKS)

1. Without using tables, simplify 1.43 x 0.091 x 5.04 2.86 x 2.8 x 11.7

(3mks)

2. Make x the subject of the formula if y = a/x + bx (3mks)

3. Give the combined solution for the range of x values satisfying the inequality 2x + 1 < 10 - x < 6x - 1 (3mks)

A man is employed at a KShs. 4000 salary and a 10% annual increment. Find the total amount of money received in the first five years (4mks)

A town A is 56 km from B on a bearing 062⁰. A third town C is 64 km from B on the bearing of 140°. Find (i) The distance of A to C (2mks)

(ii) The bearing of A from C

(3mks)

Expand $(x + y)^6$ hence evaluate (1.02) to 3d.p.

(3mks)

7. Rationalise the denominator in (2mks)

Ö3 1 - v3

8. The table below shows daily sales of sodas in a canteen for 10 days.

Day	1	2	3	4	5	6	7	8	9	10
No. of	52	41	43	48	40	38	36	40	44	45

Calculate the 4 day moving averages for the data (3mks)

9. Find the image of the line y = 3x = 4 under the transformation whose matrix is.

3mks

- 10. Three points are such that A (4, 8), B(8,7), C (16, 5). Show that the three points are collinear (3mks)
- Write down the inverse of the matrix 2-3 hence solve for x and y if 11.

$$2x - 3y = 7$$

 $4x + 3y + 5$

(3mks)

12. Use the table reciprocals to evaluate to 3 s.f.

3mks

1/7 + 3/12 + 7/0.103

13.

Given that O is the centre of the circle and OA is parallel to CB, and that angle

107⁰, find ABC =

(i) Angles AOC,

(ii) OCB

(iii) OAB

(3mks)

14. Two points A and B are 1000m apart on level ground, a fixed distance from the foot of a hill. If the angles of elevation of the hill top from A and B are 60° and 30° respectively, find the height of the hill

(4 mks)

15. Two matatus on a dual carriageway are moving towards a bus stop and are on level 5 km from the stop. One is travelling 20 km/hr faster than the other, and arrives 30 seconds earlier. Calculate their speeds.

(5mks) If $\log x = a$ and $\log y = b$, express in terms of a and b

(2mks)

SECTION B:

The table below gives the performance of students in a test in percentage score

1	The table below gives the performance of students in a test in percentage score.											
ľ	Marks	0-9	10-19	20-29	30-39	40-49	50-59	60-69	70-79			
	No. of											
	Students	2	4	7	19	26	15	12	5			

Using an assumed mean of 44.5, calculate

- a. The mean
- The standard deviation
- c. Find the median mark
- 18. Draw the graph of $y = 2x^2 x 4$ for the range of x 3 = x = 3. From your graph State the minimum co-ordinates
 - b. Solve the equations i. $2x^2 x 4 = 0$ ii. $2x^2 3x 4 = 0$

i.
$$2x^2 - x - 4 = 0$$

ii.
$$2x^2 - 3x - 4 = 0$$

- 19.
- Oraw the graph of $y = 2x^2 x 4$ for the range of x 3 = x = 3. From your graph the minimum co-ordinates

 Solve the equations

 i. $2x^2 x 4 = 0$ ii. $2x^2 3x 4 = 0$ iii. $2x^2 3x 4 = 0$ Two concentric circles are such that the larger one has a radius of 6cm and the smaller one radius of 4 cm. Find the probability that an item dropped lands on the shaded region 4mks

 Two unbiased dice are thrown. Find the probability of obtaining (4mks)

 A product of 6 ii. A sum of 8 a. Find the probability that an item dropped lands on the shaded region
 - h

- i. A product of 6
- ii. A sum of 8
- iii. The same number showing

(4mks)

20.

Two pulley wheels centers A and B are joined by a rubber band C D E F G H C round them. Given that larger wheel has radius of 12 cm and AB = 20 cm, CD and GF are tangents common to both wheels and that CBA = 60°), Find

- i. BD (Length)
- ii. CD
- iii. Arc length CHG and DEF, hence find the length of the rubber.

- V A B C D is a right pyramid with a square base A B C D of side 5 cm. Each of its four triangular faces is inclined at 75° to the base. Calculate
- The perpendicular height of the pyramid
- The length of the slant edge VA
- The angle between edge VA and base A B C D
- The area of the face VAB
- 22. Plot the graphs of y = sin x° and y = cos 2x° on the same axes for −180 ≤ x ≤180°. Use your graphs to solve the equation 2 sin x = cos 2x
 - 23. The depth of the water in a rectangular swimming pool increases uniformly from 1M at the shallow end to 3.5m at the deep end. The pool is 25m long and 12m wide. Calculate the volume of the pool

in cubic meters.

The pool is emptied by a cylindrical pipe of internal radius 9cm. The water flows through the pipe at speed of 3 metres per second. Calculate the number of litres emptied from the pool in two minutes to the nearest 10 litres. (Take II = 3.142)

- 24. A rectangle A B C D is such that A and C lie on the line y = 3x. The images of B and D under a reflection in the line y = x are B^1 (-1, -3) and D^1 (1,3) respectively.
 - a. Draw on a cartesian plane, the line y = x and mark points B^1 and D^1
 - b. Mark the points B and D before reflection
 - c. Draw the line y = 3x hence mark the points A and C to complete and draw the rectangle ABCD. State its co-ordinates, and these of A^1 and C^1 .
 - d. Find the image of D under a rotation, through 90°, Center the origin.

MATHEMATICS I PART II MARKING SCHEME.

1.
$$\frac{1.43 \times 0.091 \times 5.04}{2.86 \times 2.8 \times 11.7}$$
 X $\frac{100000}{10^5}$ $\frac{91}{2} \times \frac{504}{2 \times 28 \times 117 \times 10^3}$ (3)

$$= 0.007$$
 (A)

2.
$$y = a/x + bx$$
 $yx = a + bx^2$
Either $bx^2 - yx + a = 0$

$$x = y \pm v y^2 - 4ab$$

$$2b \tag{3}$$

$$A = \frac{4000 (0.6105)}{0.1}$$
= Sh. 2442 = Sh. 24,420 (A) (4)

5. (i)
$$b^2 = a^2 + b^2 - 2ab \cos B$$

= $64^2 + 56^2 - 2(64) (56) \cos 78$
= $4096 + 3136 - 7168 (0.2079)$
= $7232 - km 1490.3$

$$b^2 = 5741.7 = 5.77 \text{ km}$$
 (5)

(ii)
$$\frac{b}{\sin B}$$
 Sin A $\frac{a}{\sin A}$ = $\frac{64}{\sin A}$ sin A $\frac{64 \times 0.9781}{5.77}$ Sin A = $\frac{64 \times 0.9781}{5.77}$ Sin A = $\frac{6.08262}{6.30}$ A = $\frac{6.30}{5.70}$ (or B = $\frac{46.30}{5.70}$)

Bearing = $\frac{90}{6.30}$ (A)

6.
$$(x + y)^6 = 1 (x)^6 (y)^0 + 6 (x)^5 (y)^1 + 15(x)^4 (y)^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$$

 $(1.02)^6 = (1 + 0.02)^6 x = 1$
 $y = 0.02$

$$(1.02)^6 = 1+6 (0.02) + 15 (0.02)^2 + 15(0.02) + 20(0.02)^3 + 15 (0.02)^4$$

= 1 + 0.12 + 0.006 + 0.00016
= 1.12616
= 1.126 (to 3 d.p) (3)

9. Moving averages of order 4
$$M_1 = \underbrace{52 + 41 + 43 + 48}_{4} \qquad \underbrace{184}_{4} = 146$$

$$\underbrace{M_2}_{4} = \underbrace{184 - 52 + 40}_{4} = \underbrace{172}_{4} = 43 \qquad \qquad for 7$$

$$\underbrace{M_3}_{4} = \underbrace{172 - 40 + 38}_{4} = \underbrace{170}_{4} = 42.5$$

$$\underbrace{M_4}_{4} = \underbrace{170 - 38 + 36}_{4} = \underbrace{168}_{4} = 42$$

$$\underbrace{M_5}_{4} = 168 - 36 + 40 = 173 = 43$$
 (3)

$$M_6 = \frac{4}{172 - 40 + 44} = \frac{176}{4} = 44$$

$$M_7 = \frac{176 - 44 + 45}{4} = \frac{177}{4} = 44.25$$

y = 3x + 4A(0,4) B (1,7) Object points

$$Y = Mx + C$$

 $M = 13 - 8 = 5 = 1$
 $9-4 = 5$

$$y = x+c$$
 $y = x + 4$
8 = 4 + c c = 4

 $AB = \frac{1}{2}$ BC and AB and BC share point B. A,B,C are collinear.

11. 2 -3

4 3 det. =
$$6 + 12 = 18$$

Inv. = $\frac{1}{2}$ 3 3

-4 2

 $\frac{1}{18}$ 3 3 2 -3 x $\frac{1}{2}$ 3 3 7

18

-4 2 4 2 y -4 2 5

x 36

y $\frac{1}{18}$ -18 (3)

x = 2, y = -1 (A)

12.
$$1/7 + 3/12.4 + 7/0.103$$
$$1/7 + 3/1.24 \times 10^{-1} + 7/1.03 \times 10^{-1}$$
$$0.1429 + 3(0.8064) + 7 \times 10 (0.9709)$$
$$10$$
$$= 0.1429 + 0.2419 + 67.96$$
$$= 70.52$$
 (A)

13. (i) ADC =
$$2x73$$

= 146°

14.
$$Tan 30^{0} = y/x$$
 $y = x tan 30$
 $Tan 60^{0} = \frac{1000}{x} + y$; $y = x tan 60 - 1000$
 x
 $x tan 30^{0} = x tan 60 - 1000$
 $0.5773 x = 1.732x - 1000$
 $1.732x - 0.577 = 1000$
 $1.155x = 1000$
 $x = \frac{1000}{1.155} = 866.0 m$ (A) (4)

15. 5 km Slower speed =
$$x \frac{km}{hr}$$

Time = $5/x$

Faster =
$$(x+20)$$
 k/h
Time = $5/x=20$

$$T_{1} - T_{2} = 5/x - 5/x + 20 = 30/3600$$

$$\frac{5(x+20)}{5(x+20)} - 5x \frac{1}{120}$$

$$120 (5/x + 100 - 5x) = x^{2} + 20x$$

$$x^{2} + 20x - 12000$$

$$x = -20 \frac{400 + 48000}{2}$$

$$x = -20 \pm 220$$

$$Spd = 100 \text{ km/h}$$

$$(5)$$

And
$$x = 120 \text{ km/h}$$
 (A)

Log x = a log y = b
Log
$$\frac{x^3}{y}$$
 = Log x^3 - log y $\frac{x^3}{y}$
= 3 Log x - $\frac{x^3}{y}$ Log y
= 8a - $\frac{x^3}{y}$ ab

17.

			_				
Marks	Mid	d = x-44.5	F	E = d/10	Ft	T^2	Ft ² v
	point (x)						
0-9	4.5	-40	2	-4	-8	16	32
10-19	14.5	-30	4	-3	-12	9	36
20-29	24.5	-20	7	-2	-14	4	28
30-39	34.5	-10	19	-1	-19	1	19
40-49	44.5	-0	26	0	0	0	0
50-59	54.5	-10	15	1	15	1	15
60-69	64.5	20	12	2	24	4	48
70-79	74.5	30	5	3	15	9	45
			=90		=1		=223

- (a) Mean = $(1 / 90 \times 10) + 44.5 = 44.5 + 0.111$ = 44.610
- $= 10 \quad 233/90 \quad -(1/90)^2$ (b) Standard deviation 2.478 - 0.0001 (8) 10 10 2.478 10 x 1.574 = 15. 74 (A)
- Median 45.5^{th} value = 39.5 + (13.5 x 10/26) (c) 39.5 + 5.19244.69
- (a) The probability = Shaded area

Large circle area

Shaded area =
$$\Pi R^2 - \Pi r^2$$

= 22/7 ($4^2 - 3^2$) v = 22/7 x 7 = 22
Large area = 22/7 x4x4 = 352/7 (A)
Probability = $\frac{22}{352/7}$ = 22 x $\frac{7}{352}$ = $\frac{7}{352}$

(b)

(-)	1	2	3	4	5	6			
1	1,1	1,2	1,3	1,4	1,5	1,6			
2	2,1	2,2	2,3	2,4	2,5	2,6			
3	3,1	3,2	3,3	3,4	3,5	3,6			
4	4,1	4,2	4,3	4,4	4,5	4,6			
5	5,1	5,2	5,3	5,4	5,5	5,6			
6	6,1	6,2	6,3	6,4	6,5	6,6			
(M)									

P(Product of 6) = P((1,6) or (2,3) or (3,2) or (6,1))(i)

(4)

P (same number) = P (1,1) or (2,2) or (3,3) or (4,4) or (5,5) or (6,6)
$$6/36 = 1/6$$
 (A)

(i)
$$Cos 60 = x/20 \quad x = 20 \times 0.5 = 10 \text{ cm}$$

BD = 12 - 10 = 2 cm

(ii) CD = y Sin 60 =
$$y/20$$
 y = $20x 0.8666$ CD = 17.32 cm

(iii) CHG = 120 reflex =
$$240^{\circ}$$
 CHG = $240/360 \times 2 \times \pi \times r$ = 50.27 DBF = $120^{\circ}/360 \times 2 \times \Pi \times r$ = $1/3 \times 2 \times 3.142 \times 2$ = 4.189 (A) Length C D E f G H C = $50.27 + 2(17.32) + 4.189$ = 89.189 (A)

21. (a) From the diagram,
$$XO = 5/2 = 2.5$$

 $Tan 75^0 = VO/2.5 v m$
 $VO = 2.5 \times 3.732$

Perpendicular height =
$$VO = 9.33 \text{ cm}$$
 (A)

b. Diagonal of base =
$$5^2 + 5^2 = 50$$

Length of diag. 50 = 7.071 = 5.536
 $VA^2 = AO^2 + VO^2$ (m)
 $3.536^2 + 9.3^2$
 $12.50 + 87.05$
= 99.55 = 9.98 cm² (A) (8)

(c) = VAO Tan =
$$\frac{9.33}{3.536}$$
 = 2.639
VAO = 69.24° (A)

```
Cos VBA = = 2.5 / 9.98 = 0.2505

VBA = 75.49^{0}

Area VBA = \frac{1}{2} x 5 x 4.99 x sin 75.45 m (or other perimeter)

= 5 \times 4.99 \times 0.9681

= 24.15 \text{ cm}^{2} (A)
```

```
Volume = cross - section Area x L
X-sec Area = (1 \times 25) + (\frac{1}{2} \times 25 \times 2.5)
                = 25 + 31.25 = 56. M
             Volume = 56.25 \times 12
                          = 675 \, \text{m}^3
   Volume passed / sec = cross section area x speed
                      = \Pi r^2 x I
                                        = 3.14 \times 9/100 \times 9/100 \times 3
                                                                                                (8)
                      = 0.07635 \text{ m}^3/\text{sec} \text{ v (M)}
   Volume emptied in 2 minutes
                      = 0.07635 \times 60 \times 2
                      = 9.162 \text{ m}^2
                                                    (A)
             1 \, \text{m}^3 = 1000 \, \text{l}
                            = 9.162 litres
                      = 9160 litres
                                                  (A)
```

24.

MATHEMATICS II PART I

SECTION A (52 MARKS)

1. Use tables to evaluate

 $\sqrt[3]{0.0912^2 + \sqrt{3.152}}$ 0.1279 x 25.71

(5mks)

2. Simplify $\frac{(a-b)^2}{(a-b)^2}$

(2mks)

3. The gradient function of a curve that passes through point: (-1, -1) is 2x + 3.

Find the equation of the curve.

(3mks)

4. Find the value of k for which the matrix k 3 has no inverse. (2mks) 3 k

5. Without using tables, evaluate

log 128 – log 18

 $\log 16 - \log 6$

(3mks)

- 6. Find the equation of the locus of points equidistant from point L(6,0) and N(-8,4). (3mks)
- 7. The value of a machine is shs. 415,000. The machine depreciates at a rate of 15% p.a. Find how many years it will take for the value of the machine to be half of the original value. (4mks)

8. Use reciprocal tables to evaluate to 3 d.p. ____ - ___ 1 ____ 0.321 ____ n2.2 (4mks)

- 9. Using the trapezium rule, estimate the area bounded by the curve $y = x^2$, the x axis and the co-ordinates x = 2 and x = 5 using six strips. (4mks)
- 10. Solve the equation for $0^0 \le \theta \le 360^0$ and $\cos^2\theta + \frac{1}{2}\cos\theta = 0$

(3mks)

Point P divides line MK in the ratio 4:5. Find the co-ordinates of point P if K is point (-6,10) and M is point (3,-8)

(3mks)

- 12. How many multiples of 3 are there between 28 and 300 inclusive. (3mks)
- The line y = mx 1, where m is a constant , passes through point (3,1). Find the angle the line makes with the x axis. (3mks)
- 14. In the figure below, AF is a tangent to the circle at point A. Given that FK = 3cm, AX = 3cm, KX = 1.5cm and AF = 5cm, find CX and XN. (3mks)

15. Make X the subject of the formula $V = {}^3\sqrt{\frac{k+x}{sk-x}}$

(3mks)

16. Write down the inequalities that describe the unshaded region below. (4mks)

у

X

SECTION B (48 MARKS)

- 17. Draw the graph of $y = -x^2 + 3x + 2$ for $-4 \le x \le 4$. Use your graph to solve the equations (i.) $3x + 2 x^2 = 0$ (8mks)
- 18. The marks obtained by Form 4 students in Examination were as follows:

<u>Marks</u>		0-9		0- 9	20 29		30- 39	40- 49	50-59
No. students	of	2	8	3	6		7	8	10
Marks			59	70	-79	8	0-89	90- 99	•

					130
No.	of	9	6	3	
Students					

Using 74.5 as the Assumed mean, calculate:

- (i) The mean mark
- (ii) The standard deviation

(8mks)

In the figure below, \underline{a} and \underline{b} are the position vectors of points A and B respectively. K is a point on \underline{AB} such that the AK:KB = 1:1. The point R divides line OB in the ratio 3:2 and point S divides OK in the ratio 3:1.

В

K

- (a) Express in terms of <u>a</u> and <u>b</u>
 - (i) <u>OK</u>
- (iii) RS
- (iii) OS (iv) RA
- (b) Hence show that R,S and A are collinear.

(8mks)

20. The figure below is the roof of a building. ABCD is a rectangle and the ridge XY is centrally placed.

Calculate:

- (i) The angle between planes BXC and ABCD.
- (ii) The angle between planes ABXY and ABCD.

(8mks)

21. On the same axis, draw the graph of y = 2cosx and y = $\sin \frac{1}{2}x$ for $0^0 \le x \le 180^0$, taking intervals of 15^0 (6mks)

From the graph, find:

(a) The value of x for which $2\cos x = \sin \frac{1}{2}x$

(1mk)

(b) The range of values of x for which $-1.5 \le 2\cos x \le 1.5$

(1mk)

- 22. Two towns T and S are 300km apart. Two buses A and B started from T at the same time travelling towards S. Bus B travelled at an average speed of 10km/hr greater than that of A and reached S 1 ¼ hrs earlier.
 - (a) Find the average speed of A.

(6mks) (2mks)

- (b) How far was A from T when B reached S.
- 23. P and Q are two ports 200km apart. The bearing of Q from P is 040°. A ship leaves port Q on a bearing of 150° at a speed of 40km/hr to arrive at port R 7 ½ hrs later. Calculate:
 - (a) The distance between ports Q and R.

(2mks) (3mks)

(b) The distance between ports P and R.

(311

(c) The bearing of port R from port P.

(3mks)

24. A farmer has 15 hectares of land on which he can grow maize and beans only. In a year he grows maize on more land than beans. It costs him shs. 4400 to grow maize per hectare and shs 10,800 to grow beans per hectare. He is prepared to spend at most shs 90,000 per year to grow the crops. He makes a profit of shs 2400 from one hectare of maize and shs 3200 from one hectare of beans. If x hectares are planted with maize and y hectares are planted with beans.

24

(a) Write down all the inequalities describing this information.

(13mks)

(b) Graph the inequalities and find the maximum profit he makes from the crops in a year.

(5mks)

MATHEMATICS II PART II

Use logarithm tables to Evaluate

$$\sqrt{36.5 \times 0.02573}$$

1.938

(3mks)

- 2. The cost of 5 shirts and 3 blouses is sh 1750. Martha bought 3 shirts and one blouse for shillings 850. Find the cost of each shirt and each blouse. (3mks)
- 3. If K = $(\underline{y-c})^{1/2}$

4p

b) Evaluate y, when K = 5, p = 2 and c = 2

a) Make y the subject of the formula.

(2mks)

(2mks)

4. Factorise the equation:

x + 1/x = 10/3

(3mks)

- 5. DA is the tangent to the circle centre O and Radius 10cm. If OD = 16cm, Calculate the area of the shaded Region. (3mks) For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.
- 6. Construct the locus of points P such that the points X and Y are fixed points 6cm apart and /XPY = (2mks)
- 7. In the figure below, ABCD is cyclic guadrilateral and BD is diagonal. EADF is a straight line, CDF = 68° , BDC = 45° and BAE = 98° .

Calculate the size of:

(2mks)

a) ∠ABD

b) ∠CBD

- 8. Otieno bought a shirt and paid sh 320 after getting a discount of 10%. The shopkeeper made a profit of 20% on the sale. Find the percentage profit the shopkeeper would have made if no discount was allowed? (2mks)
- 9. Calculate the distance:
 - i) In nautical miles (nm)
 - ii) In kilometres (km)

Between the two places along the circle of Latitude:

- a) $A(30^{0}N, 20^{0}E)$ and $B(30^{0}N, 80^{0}E)$ (Take Radius of Earth = 6371Km). (2mks) b) $X(50^{\circ}S, 60^{\circ}W)$ and $Y(50^{\circ}S, 20^{\circ}E)$ (Take Radius of Earth = 6371Km). (2mks)

10. A rectangular tank of base 2.4m by 2.8m and height 3m contains 3,600 litres of water initially. Water flows into the tank at the rate of 0.5m/s. Calculate the time in hours and minutes required to fill the tank.

(4mks)

- 11. Expand (1 + a)⁵ up to the term of a power 4. Use your expansion to Estimate (0.8)⁵ correct to 4 decimal places. (4mks)
- 12. A pipe is made of metal 2cm thick. The external Radius of the pipe is 21cm. What volume of metal is there in a 34m length of pipe (π = 3.14). (4mks)
- 13. If two dice are thrown, find the probability of getting: a sum of an odd number and a sum of scoring more than 7 but less than 10. (4mks)
- 14. Find the following indefinite integral $\int 8x^5 3x$ dx

(4mks)

15. The figure below represents a circle of radius 14cm with a sector subtending an angle of 60⁰ at the centre.

Find the area of the shaded segment.

(3mks)

16. Use the data below to find the standard deviation of the marks.

Marks (x)	Frequency (f)				
5	3				
6	8				
7	9				
8	6				
9	4				

(4mks)

SECTION II (48MKS)

17. The figure below shows a cube of side 5cm.

Calculate:

a) Length FC	(1mk)
b) Length HB	(1mk)

c) Angle between GB and the plane ABCD. (1mk) (1mk)

d) Angle between AG and the Base.

e) Angle between planes AFC and ABCD.

f) If X is mid-point of the face ABCD, Find angle AGX.

(2mks) 18. Draw on the same axes the graphs of $y = \sin x^0$ and $y = 2\sin (x^0 + 10^0)$ in the domain $0^0 \le x^0 \le 180^0$

i) Use the graph to find amplitudes of the functions.

 $y = 2Sin(x^0 + 10^0).$ ii) What transformation maps the graph of $y = \sin x^0$ onto the graph of :

19. The table below shows the masses to the nearest gram of 150 eggs produced at a farm in Busiro country.

Mass(g	44	4	46	47	48	49	50	51	52	53	54	55
)	1	5		- 1			<u> </u>	-				1.0
Freq.	1	2	2	1	6	11	9	/	10	10	16	16
						11	L.,		10	12	16	
Mass(g	56	57	5	5	60	61	62	63	64	65	70	
)			8	9								
Freq.			9	7		3	4	3	3	1	1	
	10	11			5							

Make a frequency Table with class-interval of 5g. Using 52g as a working mean, calculate the mean mass. $\overline{\underline{\mathsf{K}}}$ Iso calculate the median mass using ogive curve.

- 20. A shopkeeper stores two brands of drinks called soft and bitter drinks, both produced in cans of same size. He wishes to order from supplies and find that he has room for 1000 cans. He knows that bitter drinks has higher demand and so proposes to order at least twice as many cans of bitter as soft. He wishes however to have at least 90cans of soft and not more than 720 cans of bitter. Taking x to be the number of cans of soft and y to be the number of cans of bitter which he orders. Write down the four inequalities involving x and y which satisfy these conditions. Construct and indicate clearly by shading the unwanted regions.
- 21. Two aeroplanes, A and B leave airport x at the same time. A flies on a bearing 060° at 750km/h and B flies on bearing of 210° at 900km/h:
 - a) Using a suitable scale draw a diagram to show the positions of Aeroplanes after 2hrs.
 - b) Use your graph to determine:
 - i) The actual distance between the two aeroplanes.
 - ii) The bearing of B from A.
 - iii) The bearing of A from B.
- 22. The Probabilities that it will either rain or not in 30days from now are 0.5 and 0.6 respectively. Find the probability that in 30 days time.
 - a) it will either rain and not.
 - b) Neither will not take place.
 - c) One Event will take place.
- 23. Calculate the Area of each of the two segments of y = x(x+1)(x-2) cut off by the x axis. (8mks)
- 24. Find the co-ordinates of the turning point on the curve of $y = x^3 3x^2$ and distinguish between them.

MATHEMATICS II PART I

MARK 1. 0.0

MARKING SCHEME:

$$0.0912^{2} = (9.12 \times 10^{-2})^{2} = 0.008317$$

$$\sqrt{3.152} = 1.776$$

$$0.1279 \times 25.91$$

$$= \sqrt[3]{1.784317}$$

$$0.1279 \times 25.91$$

$$0.12$$

2.
$$\frac{(a-b)(a-b)}{(a-b)(a+b)} = \frac{a-b}{a+b}$$

3.
$$\underline{dy} = 2x + 3$$

 dx
 $y = x^2 + 3x + c$
 $-1 = 1 - 3 + c$
 $c = 1$; E.g $y = x^2 + 3x + 1$

4.
$$K^2 - 9 = 0$$

 $K = \pm 3$

5.
$$\log \left(\frac{1}{28} \right) = \log \left(\frac{64}{18} \right)$$

$$\log \left(\frac{1}{18} \right) = \log \left(\frac{8}{3} \right)$$

$$= 2 \log (8/3)$$

$$= 2 \log (8/3)$$

6. Midpoint
$$\left(\frac{-8+6}{2}, \frac{4+0}{2}\right) \Rightarrow (-1, 2)$$

Gradient of LN = 4/-14 = -2/7

Gradient of \perp bisector = 7/2

 $y-2 = 7/2$
 $x+1$
 $y = 7/2X + 11/2$

7.
$$207,500 = 415,000(1 - 15)^n$$

 100
 $0.5 = (85)^n$
 100
 $0.5 = 0.85^n$
 $\log 0.5 = n \log 0.85$
 $\log 0.85$
 $n = -1.6990 = -0.3010 = 4.264yrs$

-1.9294

-0.0706

9.	_									
Χ	2	2.5	3	3.5	4	4.5	5			
у	4	6.25	9	12.2	16	20.2	25			
				5		5				
	L 1/									

h = ½

Area= $\frac{1}{2}$ x $\frac{1}{2}$ [29+2(6.25+9+12.25+16+20.25+25)] = $\frac{1}{4}$ [29 + 127.5] = $\frac{1}{4}$ x 156.5 = 39.125 sq. units.

10.
$$\cos \theta (\cos \theta + \frac{1}{2}) = 0$$

 $\cos \theta = 0$ $\cos \theta = -0.5$
 $\theta = 90^{\circ}, 270^{\circ}$ $\theta = 120^{\circ}, 240^{\circ}$
 $\therefore \theta = 90^{\circ}, 120^{\circ}, 240^{\circ}, 270^{\circ}$

11. MP =
$$\frac{4}{9}$$
 MK $\frac{4}{9}$ -9

MP = $\frac{4}{9}$ (-4)
9 -18 8

 \therefore P is (-1,0)

12.
$$a = 30$$
 $d = 3$ $l = 300$
 $300 = 30 + 3 (n - 1)$
 $300 = 30 + 3n - 3$
 $300 - 27 = 3n$
 $273 = 3n$
 $91 = n$

13.
$$y = mx - 1$$

 $1 = 3m - 1$
 $m = 2/3 = 0.6667$
 $\tan \theta = 0.6667$; $\theta = 33.69^{\circ}$

14. FK x FC = FA²
FC = 25/3 = 8
$$^{1/3}$$
 cm
CX = $8^{1/3}$ - 9/2 = 23/6 = $3^{5/6}$ cm
CX x XK = XA x XN
 $3^{3/6}$ x 3/2 = 3 x XN
 \therefore XN = $1^{11/1}$ 12 cm

15.
$$V^{3} = \underline{k + x} \\ k - x \\ V^{3}k - V^{3}x = k + x$$

$$V^{3}k - k = x + V^{3}x$$

$$V^{3}k - k = x(1 + v^{3})$$

$$\frac{V^{3}k - k}{1 + V^{3}} = x$$
(i.) $x = 2 \Rightarrow x \le 2$
(ii) $y = -2 \Rightarrow y > 0$
(iii) $y = -2 \Rightarrow 0$

(ii)
$$y = -2 \Rightarrow y > -2$$

(iii)pts. (0.5,0)
(0,-1.5)
 $m = -1.5 - 0 = 3$
 $0 - 0.5$
Eq. $Y = 3x - 1.5$ $y < 3x - 1.5$

SECTION B

17.

1	~	1	2	2	1	Λ	1	2	2	1
		-4								
	Υ	-26	-16	-8	-2	2	4	4	2	-2

(i) Roots are x = -0.5 x = 3.0

(ii)
$$y = -x^2 + 3x + 2$$

 $0 = -x^2 - x + 2$
 $y = 4x$ (-2, -8) (1, 4)
Roots are $x = -2$, $x = 1$

18. <u>class</u>	X	f	d⊨x-74.5	fd	d^2	fd ²	
d –	9	4.5 2	- 70	- 140	4900	9800	
10 - 19	9 14.5	8	60	- 480	3600	28,800	
20 - 29	9 24.5	6	50	- 300	2500	15,000	
30 - 39	9 34.5	7	40	- 280	1600	11,200	
40 - 49	9 44.5	8	30	- 240 900 7,200			
50 - 59	9 54.5	10	- 20	- 200	400	4,000	
60 - 69	9 64.5	9	10	- 90	100	900	
70 - 79	9 74.5	6	0	0		0	0
80 - 89	9 84.5	3	10	30	100	300)
90 - 99	9 94.5	i <u>1</u>	20		400	400	
		$\Sigma f =$	∑fd =			Σfd^2	= 77,600
		60		-1680)		

60

(i) Mean =
$$74.5 + -1680$$

60

(ii) Standard deviation = $\sqrt{77600}$ – $(-1680)^2$ 60

$$= \sqrt{1283.3 - 784}$$

= $\sqrt{499.3} = 22.35$

$$(iv)$$
 RA = RO + OA = -3/5 b + a

b. RA =
$$a - 3/5 b$$
 RS = $3/8 a + 9/40 b$ = $3/8(a - 3/5 b)$

∴ RS = 3/8 RA
 The vectors are parallel and they have a common point R
 ∴ point R, S and A are collinear

KB = 3m NK = 1.5m XB = 5m
(i)
$$XK = \sqrt{5^2 - 3^2} = \sqrt{16} = 4m$$

let $\angle XKN = \theta$
 $\cos \theta = \underline{1.5} = 0.375$
 $\theta = 67.97(8)^0$

(ii) In
$$\triangle$$
XNK
XN = $\sqrt{4^2 - 1.5^2} = \sqrt{13.75} = 3.708$
In \triangle SMR; MR = KB = 3m
SM = XN = 3.708m
Let \angle SRM = α
 $\tan \alpha = \frac{3.708}{3} = 1.236$
 $\alpha = 51.02(3)^0$

6	T	5
2		•
(2	j
7	_	1

	H.													
	9	0	15	30	45 0	60	75	90°	105°	120	135 ⁰	150°	165	180
)	Υ	2.0	1.9	1.7	1.4	1.0	0.5	0.0	-0.52	-1	-1.41	-1.73	-	-
	=2cosX	0	3	3	1	0	2	0					1.9	2.0
													3	0
	Y = sin	0.0	0.1	0.2	0.3	0.5	0.6	0.7	0.79	0.8	0.92	0.97		1.0
	½ X	0	3	6	8	0	1	1		7			0.9	0
													9	
	$(2) V - 72^0 + 1^0$													

(a) $X = 73^{\circ} \pm 1^{\circ}$

(b) Between 40.5° and 139.5°

Let the speed of A be X km/hr Speed of B = (X + 10) km/hr

Time taken by A = 300 hrs

Time taken by B = 300 hrs

$$\frac{300}{x} - \frac{300}{x+10} = \frac{5}{4}$$

$$300(x + 10) - 300x = 5$$

$$x(x + 10)$$
 4

$$300x + 300 - 300x = 5$$

$$x^2 + 10x$$

$$x^2 + 10x - 2400 = 0$$
.

$$x = 44.25$$

$$X = -54.25 \text{ N/A}$$

(b) Distance covered by A in 1 $\frac{1}{4}$ hrs = 44.25 x 5/4 = 55.3 km Distance of A from T is 300 - 55.3 = 244.7 km

(b)

32

```
PR<sup>2</sup> = 200<sup>2</sup> + 300<sup>2</sup> - 2x 200 x 300 cos 70<sup>0</sup>

= 130,000 - 41040 = 88,960

PR = 298.3 km

(c) \frac{298.3}{\sin 70^0} = \frac{300}{\sin \alpha}

\sin \alpha = \frac{300 \sin 70^0}{298.3}

= 0.9344

\alpha = 69.1^0

Bearing of R from P is

40 + 69.1 = 109.1^0
```

24. (i.)
$$X > y$$

(ii) $4,400X + 10,800Y \le 90,000$
Simplifies to $11X + 27y \le 225$
(iii) $X + y \le 15$
 $X > 0$; $y > 0$
Boundaries
 $x = y$ pts $(6,6)$ $(12,12)$
 $11x + 27y = 225$ pts $(13,3)$ $(1,8)$
 $X + y = 15$ pts $(0,15)$ $(8,7)$
Objective function
 $2400 \times 3200y$
(pt $(2,1)$
 $2400X + 3200y = 8000$
Search line $\rightarrow 3X + 4y = 10$
Point that give maximum profit is $(12,3)$
 \therefore maximum profit

 $= 2400 \times 12 + 3200 \times 3 = 38,400 \text{ shs.}$

MATHEMATICS II PART II MARKING SCHEME

1.	No		log.
	36.5 0.025	•	1.5623
	0.0257	73	- <u>2.4104 +</u>
			-1.9727
	1.938		<u>0.2874 – </u>
			<u> </u>

$$\frac{-3}{3} + \frac{2.6853}{3}$$

$$-1 + 0.8951$$

$$1.273(4) \leftarrow 0.1049$$

$$= 1.273(4)$$

Let shirt be sh x, let blouse be sh. y. 5x + 3y = 1750 (i.) 3x + y = 850 (ii) mult (ii) by 3 9x + 3y = 2550 (iii) Subtract (iii) – (i.) -4x = -800Subt for x y. = 250 Shirt = sh 200 ; Blouse = sh 250

3. (a)
$$K^2 = \underline{y - c}$$
 $4p$
 $y - c = 4pK^2$
 $y = 4pK^2 + c$
(b) $y = 4 \times 2 \times 25 + 2$; $y = 202$

4.
$$x^2 + 1 - \underline{10x} = 0$$

 $3x^2 - 10x + 3 = 0$
 $3x(x - 3) - 1(x - 3) = 0$
 $(3x - 1)(x - 3) = 0$
 $x = 1/3$ or $x = 3$

5. Area
$$\triangle$$
 OAD pyth theorem AD =12.49cm $\frac{1}{2}$ x 12.49 x 10 = 62.45cm² $\cos \theta = 10/16 = 0.625$ $\theta = 51.3^{\circ}$ 62.5 Sector $\frac{57.3^{\circ}}{360}$ x 3.14 x 100 $\frac{40.2}{360}$ = 22.3

6.
$$\angle XPY = 60^{\circ}$$

 $\therefore \angle XC_{1}Y = 120^{\circ}$
B1 $\therefore \angle C_{1}XY = \angle C_{1}YX$
 $= \frac{180^{\circ} - 120^{\circ}}{2} = 30^{\circ}$

Construct 30⁰ angles

get centres

mojar arcs drawn

sides with C₁X and C₂X

B1

2

 $Opp = 180^{0}$

 $82 + 98 = 180^{0}$

 $180 - (98 + 45)^{0}$

at XY to C_1 and C_2

or and Oz

on both

as centres.

$$-(68 + 45) = 67^{0}$$

$$-(67 + 82)$$

$$= 31^{0}$$

(a)
$$180^{0} - (67 + 82)^{0} = 31^{0}$$

 $\angle ABD = 31^{0}$
(b) $(180 - 82)^{0} = 98^{0}$
 $180^{0} - (98^{0} - 45^{0}) =$
 $\angle CBD = 37^{0}$

9. (a) Dist along circle of lat.

Long diff x 60 x cos
$$\theta$$
 nm
100 x 60 x Cos 50^{0}
100 x 60 x 0.866
5196nm = $\underline{100}$ x 2π R Cos 50^{0}
360

= 5780Km

 $DAB = 180^{0} -$


```
10. Vol = 2.8 x 2.4 x 3 = 20.16m<sup>3</sup>

1m<sup>3</sup> = 1000 L

20.16m<sup>3</sup> = 20160 L

20160

3600

16560 L to fill

0.5 L - 1 sec

16560 L - ?

165600

5 x 3600

33120 hr
```

 \cong 9.41 hrs ; \cong 564.6 min.

11.
$$1^5 + 5.1^4 a + 10.1^3.a^2 + 10.1^2 a^3 + 5.1.a^4$$

 $a = -0.2$
 $1 + 5(-0.2) + 10(-0.2)^2 + 10(-0.2)^3 + 5(-0.2)^4$
 $1 - 1.0 + 0.4 - 0.08 + 0.008 = 0.3277 \text{ (4d.p)}$

3600

12. Area of metal : Material – Cross section. $\pi(R^2 - r^2)$ 3.14 (21 –19) Vol 6.28cm² x 3400cm = 215.52m³

13. Possibility space:

P(odd) =
$$3/6 = \frac{1}{2}$$

P(Sum > 7 but < 10) = 9/36
 \therefore P(odd) and P(sum > 7 but < 10)
= $\frac{1}{2}$ x 9/36 = 9/72 = 1/8

14.
$$\int (8x^5/x^3 - 3x/x^3) d_4$$

 $\int (8x^2 - 3x^{-2}) d_4$
 $16x^3/3 + 6x^{-3}/-3 + C$
 $16x^3/3 - 2/x^3 + C$

15. Area of ∆AOB

$$\frac{1}{2}$$
 x 14 x 14 x 0.866 = 84.866cm²
Area of sector = $\frac{60}{360}$ x 3.14 x 14 x 14 = 10.257

Shaded Area

$$84.666 - 10.257 = 74.409 \text{cm}^2$$

	•	
1	6	

	V 17 1 6			
	Marks	F	Fx	fx ²
	5	3	15	75
	6	8	48	288
	7	9	63	441
L	8	6	48	384 324
Γ	9	4	36	324

$$\sum x = \sum f = 30 \sum f x = 210 \quad 1512$$

$$S.d = \sqrt{\sum f x^2} - (\sum f x)^2 \sum f \quad \sum f$$

$$= \sqrt{1512} - (210)^2 \quad 30$$

$$= \sqrt{50.4 - 49}$$

$$= \sqrt{1.4} = 1,183$$

SECTION II

17. (a) FC =
$$\sqrt{5^2 + 7.07^2}$$
 = $\sqrt{50}$ = 7.071
(b) HB = $\sqrt{5^2 + 7.07^2}$ = $\sqrt{75}$ = 8.660

(b) HB =
$$\sqrt{5^2 + 7.07^2}$$
 = $\sqrt{75}$ = 8.660

(c)
$$\theta = \text{Tan}^{-1} 5/5 = \text{Tan}^{-1} = 45^{\circ}$$

(b)
$$AB = \sqrt{3} + 7.07 = \sqrt{75} = 8.660$$

(c) $\theta = Tan^{-1} 5/5 = Tan^{-1} = 45^{\circ}$
(d) $\beta = Tan^{-1} 5/7.071 = Tan^{-1} 0.7071 = 35.3^{\circ}$
(e) $y = Tan^{-1} 5/3.535 = Tan^{-1} = 54.7^{\circ}$
(f) $\angle AGX = 19.4^{\circ}$

(e)
$$y = Tan^{-1} 5/3.535 = Tan^{-1} = 54.7^{\circ}$$

(f)
$$\angle AGX = 19.4^{\circ}$$

 $18 \text{ v} = \sin x$

г	10. y 0.	-0	0	0	0	0	0	
	χ ^υ	l nº	∣ 30°	60°	90⁰	120°	150 ⁰	180
	^	•	••	••	- 0			n O
								0
-								
	sin x [∪]	l 0	0.50	0.6	1.0	0.866	0.50	0
	OIIIX	•	0.00	0.0	1.0	0.000	0.00	0
		1		6	l N		l N	
L				U	U		U	

 $y = 2 \sin(x^0 + 10^0)$

, –	O (A							
X	0	00	30°	60 ⁰	90°	120 ⁰	150°	70 ⁰
2	Sin(x	0.347	1.28	1.879	1.28	0.347	-	-
+10°)		2	6	4	6	2	0.3472	1.8794

Amplitudes for $y = \sin x^0$ is 1

$$y = Sin(x+10^0)$$
 is 2.

19.			
c.f	Х	F	
61	53	12	
16		54	
93	55	16	
103	56	10	
11		57	
123	58	9	
130	59	7	
135	60	5	
138	61	3	
142	62	4	
145	63	3	
148	64	3	
149	65	1	
150	70	1	

Mean =
$$x + 52 + \underline{-4}$$
150
52 - 0.02
= $\underline{51.08}$
Median = 51.4g.

class interval 59

Class	mid	Freg.	c.f
interval	point		
44-48	46	12	12
49-53	51	49	61
54-58	56	64	125
59-63	69	22	147
64-68	66	3	130
69-73	71	1	150

 $P(R)' \times P(R)$

 $0.5 \times 0.6 = 0.3$

```
\begin{array}{c}
20. X + Y \leq 1000 \\
X \leq 2Y \\
Y < 720 \\
X > 90
\end{array}
```

(ii) Bearing 224⁰ (iii) Bearing 049⁰

22. (a)
$$P(R) \times P(R)^1$$

= 0.5 x 0.6
= 0.3

(b)
$$P(R)' \times P(R)$$

= 0.2

23.
$$y = x(x + 1)(x - 2)$$

 $= x^3 - x^2 - 2x$
 $A_1 = \int (x^3 - x^2 - 2x) d_4$
 $-1[\frac{1}{4}x^4 - \frac{1}{3}x^2]_{-1}$
 $= 0 - (\frac{1}{4} + \frac{1}{3} - 1) = \frac{5}{12}$
 $A_2 = \frac{2}{3}(x^3 - x^2 - 2x) d_4$
 $= \frac{0}{3}\frac{1}{4}x^4 - \frac{1}{3}x^3 - \frac{x^2}{3}$
 $= (\frac{1}{4}.16 - \frac{1}{3}.8 - 8)$
 $= 4^{-0} - \frac{8}{3} - 4 = -\frac{8}{3}$
 $A_1 = \frac{5}{12} = A_2 = \frac{2^2}{3}$

24.
$$y = x^3 - 3x^2$$

 $\underline{dy} = 3x^2 - 6x$
At stationary
Points $\underline{dy} = 0$
 dx
i.e $3x^2 - 6x = 0$
 $3x(x - 2) = 0$
 $x = 0$ or 2

isabokemicah@gmail.com

Distinguish
$$\frac{dy}{dx} = 3x^2 - 6x$$

$$\frac{dx}{dx}$$

$$\frac{d^2y}{dx^2} = 6x - 6$$

$$\frac{dx^2}{dx^2}$$

$$x = 0 \quad \frac{dy^2}{dx^2} = 6x - 6 = -6$$

$$\frac{dx^2}{dx^2}$$

$$-6 < 0 - \text{maximum}.$$

(ii)
$$x = 2$$

$$\underline{d^2y} = 6$$

 dx^2

6 > 0 hence

Minimum Pt.

$$x = 2$$
, $y = 8 - 12 = -4$

(2, -4)minimum point.

MATHEMATICS II PART I

SECTION 1 (52 Marks)

1. Without using tables evaluate:

∴ (0,0) Max Pt.

$$\frac{\sqrt{7.5625} \text{ x}^3 \sqrt{3.375}}{15}$$

(5 mks)

Make k the subject of the formula.

$$y = \underline{1} \quad \sqrt{k + y}$$

(3 mks)

3. If A = (x, 2) and хB

and if AB = (8), find the possible values of x.

(3 mks)

Simplify completely.

$$\frac{rx^4}{2xr} - \frac{r}{2r}$$

(3 mks)

5. Solve the equation.

$$Log_3(8-x) - log_3(1+x) = 1$$

(3 mks)

- 6. Under an enlargement scale factor -1, A(4,3) maps onto A¹ (4,-5). Find the co-ordinates of the centre of enlargement. (3 mks)
- 7. Find the equation of the line perpendicular to the line 4x-y = -5 and passing through the point (-3,-2). (2 mks)
- 8. Find the standard deviation of the data below:

(4 mks)

9. What is the sum of all multiples of 7 between 200 and 300?

(4 mks)

10. Solve the equation.

$$\frac{1}{2} \tan x = \sin x \text{ for } -180^{0} \le x \le 360^{0}.$$

(3 mks).

11. Expand $(1-2x)^4$. Hence evaluate $(0.82)^4$ correct to 5d.p.

- (4 mks)
- 12. The line y = mx 3 passes through point (5,2). Find the angle that the line makes with the x-axis.
 - (2 mrks)
- 13. A two digit number is such that 3 times the units digit exceed the tens digit by 14. If the digits are reversed, the

isabokemicah@gmail.com value of the number increases by 36. Find the number (4 mks)

14. In the figure below, 0 is the centre of the circle, OA = 7 cm and minor arc AB is 11 cm long. Taking $\Pi = \frac{22}{7}$, find the area shaded (3 mks) the area shaded. (3 mks)

- 15. A box contains 36 balls, all identical except for colour. 15 of the balls are black, 15 are brown and the restare white. Three balls are drawn from the box at random, one at a time, without replacement. Find the probability that the balls picked are white, black and brown in that order. (2 mks)
- 16. Find the inequalities that describe the unshaded region R below.

(4 mks)

- Draw the graph of $y = x^2 + x 6$ for $-4 \le x \le 4$. 17. Use your graph to solve the equations.
 - (i) $x^2 + x 6 = 0$
- (ii) $x^2 + 2x 8 = 0$

(8 mks)

18. The diagram below represents a bucket that has been placed upside down. The radius of the top surface is 15cm and that of the bottom is 40cm. The vertical height of the bucket is 50cm.

Determine:-

- (a) The volume of the bucket.
- (b) The curved surface area of the bucket. (leave your answers in terms of π)
- 19. Draw, on the same axes, the graphs of y = $\cos \theta$ and y = $5 \sin \theta$ for $180^{\circ} \le \theta \le 180^{\circ}$
 - (a) From your graph, determine the amplitude of each wave.
 - (b) For what value(s) of θ is $\cos\theta$ 5 $\sin\theta$ = 0

(8 mks)

- 20. A point P lies on a coast which runs from West to East. A ship sails from P on a bearing of 0320. When it reaches Q, 7km from P, a distress signal is observed coming from another ship at R. Given that R is N.E of P and on a bearing of 066° from Q, calculate:
 - (i) ∠PRQ.
 - (ii) The distance QR, between the two ships.
 - (iii) The shortest distance from R to the shore.

(8 mks)

- 21. A bag contains x red balls and y yellow balls. Four times the number of red balls is equal to nine times the number of yellow balls and twice the total number of balls exceeds the number of yellow balls by 44.
 - (a) How many balls of each colour are three in the bag?
 - (b) If two balls are drawn out of the bag at random one at a time with replacement what is the probability that the two balls are red? (8 mks)
- 22. A Kenyan businessman goes on a trip to West Germany through Italy and back to Kenya. In Kenya he is allowed to take Ksh. 67,000 for sales promotion abroad. He converts the Kenya currency into US dollars. While in Italy, he converts $^2/_5$ of his dollars into Italian lire, which he spends in Italy. While in West Germany he converts ⁵/₈ of the remaining dollars into Deutsche marks which he uses up before coming to Kenya. Using the conversion rates 1 US dollar = 1.8 Deutsche marks = 16.75 For free

Ksh = 1340 Italian lire. Answer the following questions:

- (a) How many US dollars did he take out of Kenya?
- (b) How many Italian lire did he spend in Italy?
- (c) How much money, in Deutsche marks did he spend in West Germany?
- (d) How much money in Ksh. did he have on his return to Kenya?

(8 mks)

23. PQRS is a parallelogram in which PQ = r and PS = h. Point A is the midpoint of QR and B is a point on PS such that PS: PB = 4:3. PA and QB intersect at M.

Given that PM = kPA and BM = tBQ where k and t are scalars, express PM in two different ways and hence find the values of k and t.

Express PM in terms of r and h only.

(8 mks)

Exams, and Past Papers Visit https://Teacher.co.ke/

24. Two variables T and X are connected by the equation T = ab^x where a and b are constants. The values of T and X are given in the table below:

Т	6.56	17.7	47.8	129	349	941	2540	6860
Χ	2	3	4	5	6	7	8	9

Draw a suitable straight line graph and use it to estimate the values of a and b. (8 mks)

MATHEMATICS III PART II

Section I: (52 Marks)

1. Use mathematical tables to evaluate:

$$\frac{}{\sqrt{0.786 \times (21.72)^3}} 8.67$$
 (3 mks)

2. Simplify completely.

$$\frac{4}{x^2 - 4}$$
 - $\frac{1}{x - 2}$

- 3. An Indian on landing at Wilson Airport changes Re 6000 into Kenya shillings when the exchange rate is Re = \(\xi \) sh. 1.25. He spent Ksh. 5000 when in Kenya and converted the remaining amount to Rupees at the same rate as before. Find out how much the Indian is left with in Rupees. (3mks) For free KC
- The last of three consecutive odd numbers is (2x+3). If their sum is 105, find the value of x. (4 mks)
- 5. b is defined by:

If B (2

1, Find B.

(3 mks)

6. Find the value of M.

(3 mks)

(3 mks)

7. (a) Expand $(1+2x)^6$ upto the term containing x^3 .

(2 mks)

- (b) By putting x = 0.01, find the approximate value of $(1.02)^6$ correct to 4 S.F.
 - (2 mks)

8. Show that x is the inverse of : Y (3 mks) 3

- (a) All pass: (1 mk) (b) At least one fails: (2 mks)
- 10. In the figure, PR is tangent to the circle centre 0. If \angle BQR=30 $^{\circ}$, \angle QBC=27 $^{\circ}$, and \angle OBA=37 $^{\circ}$, find \angle BAC and \angle ACB.

Α

- 11. A frustrum of height 10cm is cut off from a cone of height 30cm. If the volume of the cone before cutting is seed to 270cm³, find the volume of the frustrum.

 12. Evaluate 0

 (3 mks)

 13. If one litre of water has a mass of 1000g, calculate the mass of water that can be held in a rectangular tank measuring 2m by 3m by 1.5m. (give your answer in tonnes).

 (2 mks)

 14. Write down the three inequalities which define the shaded region.

 (3 mks)

15. The depth of sea in metres was recorded on monthly basis as follows:

Month	March	April	May	June	July
Depth (m)	5.1	4.9	4.7	4.5	4.0

Calculate the three monthly moving averages.

(3 mks)

16. A number of women decided to raise sh. 6300 towards a rural project for bee keeping. Each woman had to

contribute the same amount. Before the contribution, seven of them withdrew from the project. This meant the remaining had to pay more. If n stands for original number of women, show that the increase in contribution per woman was: 44100 (3 mks)

n(n-7

SECTION II: (48 Marks)

- 17. Find the distance between points $A(50^{\circ} \text{ S}, 25^{\circ} \text{ E})$ and $B(50^{\circ} \text{ S}, 140^{\circ} \text{ E})$ in:
 - (i) Km
- ii) nm

(8 mks)

(take radius of earth to be 6400km, $\Pi = 3.14$)

18. The distance S in metres, covered by a moving particle after time t in seconds, is given by:

$$S = 2t^3 + 4t^3 - 8t + 3.$$

Find:

- (a) The velocity at:
- (i) t = 2
- (ii) t = 3
- (b) The instant at which the particle is at rest.

(8 mks)

19. A car starts from rest and its velocity is measured every second for six seconds. (see table below).

Time (t)	0	1	2	3	4	5	6
Velocity v(ms ⁻¹)	0	12	24	35	41	45	47

Use trapezium rule to calculate the distance travelled between t = 1 and t = 6.

(8 mks)

20. Using a pair of compass and ruler only, construct triangle ABC such that AB=9cm, BC=14cm and \angle BAC = $\frac{120}{5}$ 0° . Draw a circle such that AB, BC and AC are tangents. What is the radius of this circle?

(8 mks)

21. The marks scored by 100 students in mathematics test is given in the table below:

Mortes 10.10 20.20 20.20 40.40	=0 =0		
Marks 10-19 20-29 30-39 40-49	50-59	60-69	70-79
No. of 8 15 15 20 students	15	14	13

(a) Estimate the median mark.

(2 mks)

- (b) Using 44.5 as the assumed mean, calculate:-
 - (i) The mean mark:

(2 mks)

(ii) The variance:

(2 mks)

(iii) The standard deviation:

(2 mks)

22. (a) On the same axes, draw the graphs of: $y = \sin x$; $y = \cos x$

y =
$$\cos^x + \sin X \text{ for } 0^0 \angle X \angle 360^0$$
.

- (b) Use your graph to deduce
 - (i) The amplitude
 - (ii) The period of the wave $y = \cos x + \sin x$.
- (c) Use your graph to solve:

Novels

Cos x = - sin x for $0^{\circ} \angle X \angle 360^{\circ}$.

23. Given a circle of radius 3 units as shown in the diagram below with its centre at O(-1, 6). If BE and DE are tangents to the circle where E (8,2). Given further that \angle DAB = 80 $^{\circ}$.

Ε

Α

С

D

(a) Write down the equation of the circle in the form $ax^2 + bx + cy^2 + dy + e = 0$ where a, b, c, are constants. (2 mks)

d, e

(b) Calculate the length DE.

(2 mks)

(c) Calculate the value of angle BED.

(2 mks)

(d) Calculate the value of angle DCB.

(2 mks)

24. A building contractor has to move 150 tonnes of cement to a site 30km away. He has at his disposal 5 lorries. Two of the lorries have a carrying capacity of 12 tonnes each while each of the remaining can carry 7 tonnes. The cost of operating a 7 tonne lorry is sh. 15 per km and that of operating a 12 tonne lorry is sh. 25 per km. The number of trips by the bigger lorries should be more than twice that made by smaller lorries.

(8 mks)

MDK WWYDDING

- (a) Represent all the information above as inequalities.
- (b) How should the contractor deploy his fleet in order to minimise the cost of moving the cement? (8 mks)

MATHEMATICS III PART I MARKING SCHEME

I SOLLITION

	SOLUTION	MRK	AWARDING
1.	√7.5625 = 2.75	1	Method for $\sqrt{7.5625}$
	$^{3}\sqrt{3.375} = ^{3}\sqrt{3375} \times ^{3}\sqrt{10^{-3}}$	1	Square root
	$= {}^{3}\sqrt{3}^{3} \times 5^{3} \times 10^{-1} = 3 \times 5 \times 10^{-1} = 1.5$	1	Method for $\sqrt[3]{}$
	$= \frac{2.75 \times 1.5}{1.5 \times 10} = \frac{2.75}{10} = 0.275$	1	Answer
		5	
2.	$T^{2}y = \sqrt{\frac{k+y}{k}}$ K $T^{4}y^{2}k = k+y$ $T^{4}y^{2}k - k = y$ $K(T^{4}y^{2} - 1) = y$	1	Removal of square root
	$K(T^{4}y^{2}-1) = y$	1	Rearrangement of terms
	$K = y$ $T^4y^2 - 1$	1	Answer
		3	
3.	(x 2) $()$ $x = (8)$ -2	1	Matrix equation
	$x^2 - 4 = 8$	1	Quadratic

46

AFRICA	isabokemica	h@gmail.co	om
Teacher and see support of Resources for An	$x = \pm \sqrt{12} = \pm 2\sqrt{3} = \pm 3.464$	1	equation Answers in any form
		3	
4	$\frac{r(x^2-1)}{2r(x-1)}$		
	$\frac{r(x^2-1)(x^2+1)}{2r(x-1)}$	1	Complete factorisation of numerator
	$\frac{r(x-1)(x+1)(x^2+1)}{2r(x-1)}$	1	Factorisation of denominator
	$= \frac{(x+1)(x^2+1)}{2}$	1	Answer
		3	
5	$1 = \log_3 3$ 8 - x = 3 1 + x	1	Logarithic expression.
	-4x = -5	1	Equation
	x = <u>5</u> 4	1	Answer
_			
6.	Lat the control by (a.b.)	3	
0.	Let the centre be (a,b)		
		1	Equation
	4-a = -4+9	1	Linear equations
		1	Centre
		3	
	Y = $4x + 5$ Gradient = 4 Gradient of \bot line - $\frac{1}{4}$ $\frac{y+2}{x+3} = \frac{-1}{4}$ 4y + x = -11	1 1	Gradient of ⊥ line. Equation.
		2	

Z AFRICA								isa	aboker	nicah@	gmail.co	om
ther.	3 X	= <u>28</u>	<u>8</u> =	3.5							1	N
2	Х	3	5	2	1	2	4	6	5			d
0	d	-0.5	1.5	-1.5	-2.5	-1.5	0.5	25	1.5			ď
H	d ²	0.2 5	2.25	2.25	6.25	2.25	0.25	6.25	2.25	$\Sigma d^2 = 2$		A
										i	-	

NΛ	ean	
IVI	ean	

d values d² values

Answer

_		<u> </u>	
	standard deviation = $\sqrt{22} = \sqrt{2.75} = 1.658$		
		4	
	a = 203 d = 7 L = 294	1	For both a and b
•	294 = 203 + 7(n-1)	1	Equation
	n = 14 S 14 = <u>14</u> (203 + 294) 2	1	For n
	= 7 x 497 = 3479	1	Sum
		4	
10.	$\frac{\sin x}{\cos x} = 2\sin x$		
	$\frac{\sin x}{\sin x} = 2\cos x$	1	Simplification
	$2\cos x = 1$ $\cos x = 0.5$	1	Equation
	$x = 60^{\circ}, 300^{\circ}, -60^{\circ}$	1	All 3 values
	2 2 4	3	
11.	$(1 + -2x)^4 = 1 - 8x + 24x^2 - 32x^3 + 16x^4$	1	Expansion
	$ (0.82)^4 = (1 + -2 \times 0.09)^4 $ $ \times = 0.09 $ $ (0.82)^4 = 1 - 0.72 + 0.1944 - 0.023328 + 0.00119376 $	1 1	Value of x All terms
	= 0.35226576 ≅ 0.35227 (5 dp)	1	Rounded
12.	2 = 5m - 3	4	
12.	$m = 1$ $\tan \theta = 1$ $\theta = 45^{\circ}$	1 1	Value of m. Angle
		2	

AFRICA D	isabokemicah(@gmail.co	m
Teacher & Sere EDUCATION RESOURCES FOR	Let the number be xy $3y = x + 14$ $10y + x = 10x + y + 36 = 9y - 9x \implies 36$ $3y - x = 14$ $9y - 9x = 36$ $y = 5$ $x = 1$ the number is 15.	1 1 1	1 st equation 2 nd equation method of solving Answer
		4	
14.	S Let $\angle AOB = \theta$ $\frac{\theta}{360} \times 2 \times \frac{22}{7} \times 7 = 11$		
	$\theta = 90^{\circ}$	1	Value of θ
	Area shaded = 90 x 22 x 7 x 7 - 1 x 7 x 7 360 7	1	Substitution
	$= \frac{77 - 49}{2}$ $= \frac{28}{2} = 14 \text{cm}^{2}$	1	Answer
		3	
15.	$P(WBb) = \frac{6}{5} \times \frac{15}{36} \times \frac{15}{36}$	1	Method
	= <u>15</u> 476	1	Answer
		2	4 1 6
16.	Equation inequality	1 1 1 1	1 mark for each inequality. Method for obtaining L ³
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		

For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/

8

20.	(i) $\angle RPQ = 13^{0}$ $\angle PQR = 32^{0}+90^{0}+24^{0} = 146^{0}$ $\angle PRQ = 180^{0} - (146^{0} + 13^{0})$ $= 21^{0}$	1	Fair sketch
	(ii) $\frac{P}{\sin 13^0} = \frac{7}{\sin 21^0}$ $P = \frac{7 \sin 13^0}{\sin 21^0}$ $= 4.394 \text{km}$	1	∠PRQ

AFRICA	kemic	ah@gmail.co	m
Teacher a	P T (iii) Let PR = q		
a G	$g = \frac{7}{5}$ sin 146° sin 21°		Equation
He	q = <u>7 sin 146⁰</u> sin 21 ⁰ q = 10.92 km		Method
	$\sin 45^{\circ} = RT$		Equation
	10.92	1	
	RT = 10.92 sin 45 ⁰		
	= 7.72 km (2 dp)	1	Distance PR
			Equation
		1	RT
		1	
		1	
		8	
21.	(a) $4x = 9y$ $2(x+y) = y+44 \Rightarrow 2x + y = 44$	1	Equation
	4x - 9y = 0	1	Equation
	<u>4x + 2y = 88</u> 11y = 88	2	Method of solving Value y
	y = 8	1	Value x Method
		1 1	Answer
		8	
22.	(a) 67,000 Ksh = <u>67,000</u> US dollars 16.75	1	Method
	= 4,000 dollars	1	Answer
	(b) <u>2</u> x 4,000 = 1600 US dollars	1	Method

1600 US dollars = 1600 x 1340

5

Answer

. \ 4						
Z ARRICO	isabokemicah@gmail.com					
CES FO		=				
ESOUR ESOUR	2,144,000 Italian lire		_	For 1500		

A FRI	isabokemicah(@gmail.co	m
ON RESOURCES FO	= 2,144,000 Italian lire	1	For 1500
Teacher.	(c) Remainder = 2400 US dollars 5 x 2400 = 1500 US dollars 8 1500 US dollars = 1500 x 1.8	1	Answer
H	= 2700 Deutche marks		
	(d) Remainder = 900 US Dollars 900 US Dollars = 900 x 16.75 Ksh. = 15,075	1	Method Ksh.
	Ksh.		
23.	PM = kPA	8	
	= k(r + <u>1</u> h)		
	2 = kr + <u>1</u> kh	1	PM
	2 PM = PB + BM 3h + t BQ 4	1	РМ
	$= \frac{3h + t(-3h + r)}{4}$	1	PM simplified
	= <u>3</u> h - <u>3</u> t h + tr	1	
	4 4 = <u>3</u> - <u>3</u> t h + tr 4 4	1	
	$t = k$ $\underline{3} - \underline{3}t = \underline{1}k$	1	Both equations
	$ \begin{array}{rcl} 4 & 4 & 2 \\ \underline{3} - \underline{3}t &= \underline{1}t \\ 4 & 4 & 2 \\ \underline{5}t &= \underline{3} \\ 4 & 4 \end{array} $	1	method
	t = 3 + 4 4 5		Value of k
	= <u>3</u> 5 ∴ k = <u>3</u>		Value k PM
	5 ∴ PM = <u>3</u> r + <u>3</u> h 5 10		
		8	
	Y		
	LogT	1	Plotting Labeling of axis
	Novels,Updated KASNEB,ICT,College,High School,Primary Not	es &Revis	sion Kits. 071449

isabokemicah@gmail.com					
	Log T = log a + x log b Log T \Rightarrow 0.82, 1.25, 1.68, 2.11, 2.54, 2.97, 3.40, 3.84	1 2	Linear All correct logs		
	y - intercept = log a = 0 a = 1 gradient = <u>3.84 - 0.82</u> = <u>3.02</u> 9 - 2 7 = 0.4315	1	Value of a Method gradient Value of b	of	
	log b = 0.4315 = 0.4315 b = antilog 0.4315 b = 2.7	1 8			

MATHEMATICS III PART II MARKING SCHEME

NO.	SOLUTION		ı	MARKS AWARDING	For free KCSE Notes, Exams, and Past Papers Visit https://T
1.	No				s Vis
	log			✓ reading to 4 s.f	aper
	0.60				ast P
	8.69 0.9390				be Pe
	0.786		M1		s, ar
	1.8954		IVII		xam
	21.72				es, п
	1.3369		M1	Rearranging	Not
	1.3309		1411	Nearranging	CSE
	1.2323				free K
					For
	1.7067 - 2		A1		
		<u>2</u> +			
	1.7067				
		2			
	2				
	-1 + 0.8533 0.7134 x 10 ⁻¹ = 0.07134				
	$0.7134 \times 10^{-1} = 0.07134$		2		
2.			3		
۷.	4	1			
	(x-2)(x+2) - $(x-2)$	<u>1</u>			
			M1		
	$\frac{-x+2}{(x-2(x+2))}$		1411		
	(x-2(x+2))				
	(^ _(^ -)				
	<u>- (x-2)</u>		M1		
	(x-2(x+2))				

A AFRICA	isabo	kemicah@gma	il.com
TION RESOURCES	- <u>1</u> x+2	A1	
E EDUCA		3	
Pacino Result	Re6000 = Ksh. 75000 Spent 5000 Rem 2500 Rem 2500	M1	
	1.25 Re 2000	M1	
	NC 2000	A1	
		3	
4.	2x-1 , 2z+1 , 2x+3 6x+3 = 105 6x = 102 x = 17	M1 M1 A1 A1	Allow M1 for us of different variable.
5.		4	
J.	4*1 = 5 $2*3 = 5$ 6	M1	
	$A*5 = \underline{5}$ 6 4 $A+\underline{5} = \underline{5} \times \underline{5}A$ 6 4 6 $A+\underline{5} = \underline{25}A$	M1	
	6 24 A = 20	A1 3	
6.		B1	
	180 - M + 20 + 95 = 180 295 - M = 180 - M = -115	B1	
	M = 115	A1	
		3	
7.	$1 + 2x + 60x^{2} + 160x^{3} + 1 + 0.2 + 0.006 + 0.00016 = 1.20616$	M1 M1 M1	Only upto term in x ³ . Correct substitution
	= 1.206	A1 4	Only 4 s.f.
8.		M1	Matrix multiplication gives :
	$\begin{bmatrix} -5 \end{bmatrix} 2 \\ 5 \\ 3 \\ 3 \\ -3 \\ \end{bmatrix}$	M1	
	Novels,Updated KASNEB,ICT,College,High School,Pri	mary Notes &I	Revision Kits. 0714497530

SR AFRICA	isabokemic	ah@gmai	l.com
SOURCESFI	-10 +10 -5 + 6	A1	
DCATION RE	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		
Eacher 2		3	
9	(a) <u>2</u> x <u>3</u> x <u>4</u> = <u>2</u>		
	3 4 5 5	M1	
	$ \begin{vmatrix} (b) \\ + & \frac{2}{1} & x & \frac{3}{4} & x & \frac{1}{4} & + \\ \frac{1}{3} & x & \frac{3}{4} & x & \frac{4}{5} & \\ 5 & 3 & 4 & 5 \end{vmatrix} $	M1	
	5 3 4 5		
	$\frac{1}{10} + \frac{4}{15} + \frac{1}{5}$	A1	
	= <u>17</u> 10		
		3	
10.	\angle QCB = 30° 180 - (27 + 30) = 123° \therefore BAC = 57°.	M1	
	OBA = 37 ⁰ OAB = 37 ⁰	M1	Isosceles triangle.
	$AOB = 106^{\circ}$ $\therefore ACB = 53^{\circ}$	A1	Angle at centre is twice angle at circumference.
11.	$V = 1 \times 3.14 \times r^2 \times 10 = 270$	3	
	1.SF 20 = 2		
	V.S.F = $\frac{20}{30}$ $\frac{2}{3}$ = $\frac{8}{3}$ 27	M1	
	Vol. of cone = $\frac{8}{8}$ x 270 27 = 80cm^3	M1	
	\therefore Vol. Of frusturm = (270 - 80) = 190cm ³	A1	
		2	
12.	$\left(\begin{array}{cc} \underline{3x}^3 \\ \overline{3} \end{array}\right) \begin{array}{cc} \underline{x}^{-1} & 2 \\ -1 & 1 \end{array}$		
	│ 3		
	$\begin{pmatrix} x^{3} + \underline{1} & 2 \\ x & 1 \end{pmatrix}$		
		M1	

C PRICE	isahoken	nicah@gmail.c	om
SOURCES FOR V	8 + <u>1</u> - (1 - 1) 2	ncan@gman.e	On
EDUCATION RE	81 - 2 = 61	A1 2	
Teacher a	$(2 \times 3 \times 1.5)$ volume 9 m^3 $1L = 1000 \text{ cm}^3$ $1000 \text{ L} = 1 \text{ m}^3$ $9000 \text{ L} = 9 \text{ m}^3$ 1000 L = 1 tonne	M1	
	9000 L = 9 tonnes.	A1	
		2	
14.	$y \ge 1$ (i) $y \le x - 1$ (ii) $y \le 5 - x$ (iii)	B1 B1	
		3	
15.	$M_1 = \underline{5.1} + \underline{4.9} + \underline{4.7} = 4.9$	M1 M1	
	$M_2 = 4.9 + 4.7 + 4.5 = 4.7$	M1	
	$M_3 = \underline{4.7 + 4.5 + 4.0} = \underbrace{4.4}_{3}$		
		3	
16.	Original contribution per woman = <u>6300</u>		
	N Contribution when 7 withdraw = <u>6300</u>	M1	
	(n-7) Increase - Diff. 6300 - 6300	M1	
	nn	1	
	<u>6300n - 6300(n-7)</u> n(n-7)	3	
	6300n - 6300 + 44100 n(n-7)		
	<u>44100</u>		
050	n(n-7)		
SEC	TION II (48 Marks)		

17.	(i) 11,5°	В	M1		
	Centre of circles of latitude 50° S.	R Cos 50 ^o	M1		
	AB = $115 \times 2\pi R \cos 50^{\circ}$			No.	log
	<u>115</u> x 40192 x	0.6428		60	
	360		M1	1.7782	
	= 8252.98 km			1+5	
			A1	2.0607 ←	

isabokemic	ah@gma	gmail.com				
(ii) Arc AB 60 x 115 Cos 50 nm 60 x 115 x 0.6428 nm 4435 nm	M1 M1 M1 A1	0.6428 <u>1.8080</u> 4435nm 3.6469				
	8					
(a) $V = \underline{ds} = 6t^2 + 8t - 8$ dt (i) $t = 2$ V = 6x4 + 8x2 - 8 $= 32 \text{ ms}^{-1}$ (ii) $t = 3$ V = 6x9 + 8x3 - 8 $= 70 \text{ms}^{-1}$						
(b) Particle is at rest when $V = 0$ $6t^2 + 8t - 8 = 0$ $2(3t - 2) (t+2) = 0$ $t = 2$ 3 particle is at rest at $t = 2$ seconds		Do not accept t = -2. Must be stated.				
	8					
Area under velocity - time. graph gives distance. $A = \{ h \frac{1}{2} (y_1 + y_6) + y_2 + y_3 + y_4 + y_5) \}$ $= 1 \{ \frac{1}{2} (12+47) + 24 + 35 + 41 + 45) \}$ $= 29.5 + 14.5$ $= 174.5 \text{m}$	B1 B1 M1 M1 B1 B1	Trapezium rule only accepted. Formula. Substitution into formular.				
	8					
Drawing actual Scale 1cm = 2cm	M1 M1 M1 M1 M1 M1 M1	Bisect ∠A Bisect ∠ B Intersection at centre of inscribed circle. Draw circle. Measure radius. Arcs must be clearly shown.				
	(ii) Arc AB 60 x 115 Cos 50 nm $60 x 115 x 0.6428 \text{ nm}$ 4435 nm (a) $V = \underline{ds} = 6t^2 + 8t - 8$ dt (i) $t = 2$ $V = 6x4 + 8x2 - 8$ $= 32 \text{ ms}^{-1}$ (ii) $t = 3$ $V = 6x9 + 8x3 - 8$ $= 70 \text{ ms}^{-1}$ (b) Particle is at rest when $V = 0$ $6t^2 + 8t - 8 = 0$ $2(3t - 2)(t + 2) = 0$ $t = 2$ 3 particle is at rest at $t = 2$ seconds Area under velocity - time. graph gives distance. $A = \{h \frac{1}{2}(y_1 + y_6) + y_2 + y_3 + y_4 + y_5)\}$ $= 1 \{\frac{1}{2}(12 + 47) + 24 + 35 + 41 + 45)\}$ $= 29.5 + 14.5$ $= 174.5 \text{ m}$ Drawing actual	60 x 115 x 0.6428 nm 4435 nm M1				

Teacher, ac	Radius 1cm = 2cm	eah@gmail.com
21.	mean = $44.5 + 130$ $= 44.5 + 1.3$ $= 45.8$ (b) Variance $\Sigma (x - A) 2 = \frac{2800}{\Sigma f}$ 100 $= 28$ S.D. = $\sqrt{28} = 5.292$	M1 A1 M1 A1 M1 A1 M1 A1
		8
22.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

S AFRICA	isabokemic	ah@gmai	l.com
RESFO			
Teacher, a			
	(i) amplitude = 1.366 (ii) Period = 300 ⁰		
23.	(a) $(x+1)^2 + (y-6)^2 = 3^2$ $x^2 + 2x + 1 + y^2 - 12y + 36 = 9$ $x^2 + 2x + y^2 - 12y + 28 = 0$	M1 A1	Formular $(x-a)^2 + (y-b)^2 = r^2$
	(b) cos 10 = <u>OD</u> DE = <u>3</u> DE 0.9848	M1 A1	
	DE = 3.046	M1 A1	
	(c) Twice $\angle OED$ $10^{0} \times 2 = 20^{0}$	M1 A1	Cyclic quad.
	(d) DAB = 80° \therefore DCB = 100°		
24.	Let number of trips by 12 tonne lorry be x. Let number of trips by 7 tonne lorry be y.	8	
	(a) $x > 0$; $y > 0$ $24x + 21y \le 150$	B1	
	$12 \times 25 \times X + 15 \times 7 \times y \le 1200$ $300x + 105y \le 1200$ $x > 2y$	B1 B1	
	(b) Ref. Graph paper. Minimising: 3 - 12 tonne lorry and 2 - 7 tonne lorries should be deployed.		

MATHEMATICS IV PART I

1. Evaluate using logarithms 12.3

$$3\sqrt{7.673} - 15.612$$

C

(4mks)

Solve $\underline{x} - \underline{3x - 7} = \underline{x - 2}$ (3mks)

3. In the given figure CD is parallel to BAC, calculate the values of x and y.

D

Α

4. The surface area and volume of a sphere are given by the formulars $S = 4\pi r^2$ and $V = \frac{4}{3}\pi r^3$. Express V in terms of S only. (3mks)

5

5. A line perpendicular to y = 3-4x passes through (5,2) and intercepts y axis at (0,k) Find the value of K. (3mks)

6. An alloy is made up of metals P,Q,R, mixed in the ratio 4:1: 5: A blacksmith wants to make 800 of the

alloy. He can only get metal P from a metallic ore which contains 20% of it. How many Kgs of the ore

does he need.

(3mks)

- 7. The co-ordinate of point A is (2,8) vector AB = 5 and vector BC = 4 Find the co-ordinate of point C.

 3 mks)
- 8. Two buildings are on a flat horizontal ground. The angle of elevation from the top of the shorter building to the top of the taller is 20° and the angle of depression from the top of the top of the shorter building to the bottom of the taller is 30°. If the taller building is 80m, how far apart are they

(4mks)

9. The given figure is a quadrant of a piece of paper from a circle of radius 50cm. It is folded along AB

and AC to form a cone . Calculate the height of the cone formed.

(4mks)

61

(4mks)

50cm

50cm

Express 3.023 as a fraction

(2mks)

- 11. Point A (1,9), Point B(3,5) and C (7,-3). Prove vectorically that A,B and C are collinear. (4mks)
- 12. A salesman gets a commission of 4% on sales of upto shs 200,000 and an additional 2% on sales above this. If in January he got shs 12,200 as commission, what were his total sales (4mks)
- 13. Water flows through a cylindrical pipe of diameter 3.5cm at the rate of 2m/s. How long to the nearest minute does it take to fill a spherical tank of radius 1.4m to the nearest minute? (4mks)
- 14. Rationalize the denominator in $\sqrt{3}$

Leaving your answer in the form $\sqrt{a} + \sqrt{b}$

С

Where a ,b, and c are integers (3mks)

- 15. For positive values of x, write the integral solutions of $3 \le x^2 \le 35$
- 16. 8 girls working 5 hours a day take 12 days to drain a pool. How long will 6 girls working 8 hours a day take to drain the pool? (Rate of work is equal) (2mks)

SECTION II (48 mks)

17. In the given circle centre O , A,E,F, is target to the circle at E. Angle FED = 30° <DEC = 20° and <BCO =

Calculate (i) < CBE

(3mks)

(ii) <BEA

(2mks)

(iii) <EAB

(3mks)

- 18. The sum of the 2^{nd} and third terms of a G.P is $\frac{9}{4}$ If the first term is 3,
 - (a) Write down the first 4 terms of the sequence.

(5mks)

(b) Find the sum of the first 5 terms using positive values of the common ratio (r)

(3mks)

19. E and F are quantities related by a law of the form E = KFⁿ Where k and n are constants. In an experiment, the following values of E and F were obtained.

Е	2	4	6	8
F	1	1	4	1
	6	2	3	0
		7	1	2

TA HE				
SFO	1			4
OURCE		8	9	

Use graphical method to determine the value of k and n (Graph paper provided)

(8mks)

- In the domain $-2 \le x \le 4$ draw the graph of $y = 3x^2 + 1 2x$. Use your graph to solve the equation. $6x^2 4x + 4 = 0$ (graph paper provided) (8mks)
- 21. A solid sphere of radius 18cm is to be made from a melted copper wire of radius 0.4mm. Calculate the length of wire in metres required to make the sphere. (5mks)
 - (b) If the density of the wire is 5g/cm³. Calculate the mass of the sphere in kg. (3mks)
- 22. A right cone with slant height of 15cm and base radius 9cm has a smaller cone of height 6cm chopped off to form a frustum. Find the volume of the frustum formed (8mks)

9cm

- 23. PQRS are vertices of a rectangle centre. Given that P(5,0) and Q and R lie on the line x+5=2y, determine
- (a) The co-ordinates of Q,R,S,

(6mks)

- (b) Find the equation of the diagonal SQ (2mks)
- 24. A tap A takes 3 hours to fill a tank. Tap B takes 5 hours to fill the same tank. A drain tap C takes 4 hours of takes 4 hours to fill the same tank. The three taps were turned on when the tank was empty for 1½ hours. Tap A is then closed. Find how long it takes to drain the tank.

(8mks)

MATHEMATICS IV PART II

SECTION I (52MKS)

1. Without using mathematical tables, evaluate (3mks)

√ 0.0784 x 0.27

(leave your answer in standard form)

0.1875

2. A father is three times as old as his son. In ten years time, the son will be half as old as the father. How

old are they now?

(3mks)

A,B,C,D, is a parallelogram diagram. ADE is an equilateral triangle. AB and CD are 3cm apart. AB = 5cm. Calculate the perimeter of the trapezium ABCE (3mks)

C

В

4. Given that a = -2, b = 3 and c = -1, Find the value of

 $3a^2c$

- The exchange rate in January 2000 was US \$ 1 = Ksh 75.60. and UK £1 = Ksh 115.80. 5. A tourist came to Kenya with US \$ 5000 and out of it spent ksh.189,000. He changed the balance in UK £. How many For free KCSE Notes, Exams, and Past Papers pounds did he receive? (4mks)
- 6. ABC is a cross section of a metal bar of uniform cross section 3m long. AB = 8cm and AC = 5cm. Angle BAC = 60° . Calculate the total surface area of the bar in M^{2} . (4mks)

The bearing of a school chapel C, from administration block A, is 250° and 200m apart. 7. School flag F is 150m away from C and on a bearing of 020°. Calculate the distance and bearing of A from F.

(5mks)

- 8. A box has $\hat{9}$ black balls and some white balls identical except in colour. The probability of picking a white ball is $\frac{2}{3}$
 - (i) Find the number of red balls (2mks)
 - (ii) If 2 balls are chosen at random without replacement, find the probability that they are of different colour. (2mks)
- 9. Under an enlargement of linear scale factor 7, the area of a circle becomes 441. π Determine the radius of the original circle. (3mks)
- 10. A circle has radius 14cm to the nearest cm. Determine the limits of its area.

(3mks)

(4mks)

- 11. Expand $(1 + 2x)^5$ up to the term with x^3 . Hence evaluate 2.04⁵ to the nearest 3 s.f.

The nth term of a G.P is given by 5 x 2 ⁿ⁻²

- (i) Write down the first 3 terms of the G.P (1mk)
 - (ii) Calculate the sum of the first 5 terms (2mks)
- 3 bells ring at intervals of 12min, 18min and 30min respectively. If they rang together at 11.55am, when will they ring together again. (3mks)
- On a map scale 1:20,000 a rectangular piece of land measures 5cm by 8cm. Calculate its actual area in hectares.

(3mks)

- 15. It costs Maina shs. 13 to buy 3 pencils and 2 rubbers; while Mutiso spent shs.9 to buy one pencil and 2 rubbers. Calculate the cost of a pencil and one rubber (3mks)
- 16. Three angles of a pentagon are 110°, 100° and 130°. The other two are 2x and 3x respectively. Find their values. (2mks)

SECTION II (48MKS)

- 17. Members of a youth club decided to contribute shs 180,000 to start a company. Two members withdrew the membership and each of the remaining member had to pay shs. 24,000 more to meet the same expense. How many members remained? For free KCSE Notes, Exams, and Past Papers Visit https://Te
- 18. A box contains 5 blue and 8 white balls all similar. 3 balls are picked at once. What is the probability that
 - (a) The three are white (2mks)
 - (b) At least two are blue (3mks)
 - (c) Two are white and one is blue (3mks)
- 19. A rectangular tennis court is 10.5m long and 6m wide. Square tiles of 30cm are fitted on the floor.
 - (a) Calculate the number of tiles needed.

(2mks)

- (b) Tiles needed for 15 such rooms are packed in cartons containing 20 tiles. How many cartons are there in total? (2mks)
- (c) Each carton costs shs. 800. He spends shs. 100 to transport each 5 cartons. How much would one sell each carton to make 20% profit?

(4mks)

20. The following was Kenya's income tax table in 1988.

Income	e in K£ P.a	Rate (Ksh) £
1	- 2100	2
2101	- 4200	3
4201	- 6303	5
6301	- 8400	7

- (a) Maina earns £ 1800 P.a. How much tax does he pay? (2mks)
 - (b) Okoth is housed by his employer and therefore 15% is added to salary to make taxable income. He pays nominal rent of Sh.100 p.m His total tax relief is Shs.450. If he earns K£3600 P.a, how much tax does he pay? (6mks)
- In the given figure, OA = a, OB =b, OP: PA =3:2, OQ:QB = 3:2

Q

В

R

(a) Write in terms of a and b vector PQ

(2mks)

- (b) Given that AR = hAB where h is a scalar, write OR in terms h, a. and b
- (c) PR = K PQ Where K is a scalar, write OR in terms of k, a and b

(2mks) (1mk)

Α

(d) Calculate the value of k and h (3mks)

0

22. A transformation P = $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

and maps A(1,3) B(4,1) and C(3,3) onto A¹B¹C¹. Find the

co-ordinates of A¹B¹C¹ and plot ABC and A¹B¹C¹ on the given grid.

Transformation Q maps A¹B¹C¹ onto A¹¹ (-6,2) B¹¹ (-2,3) and C¹¹ (-6,6). Find the matrix Q and plot A¹¹B¹¹C¹¹ on the same grid. Describe Q fully.

(8mks)

23. By use of a ruler and pair of compasses only, construct triangle ABC in which AB = 6cm, BC = 3.5cm and AC = 4.5cm. Escribe circle centre 0 on BC to touch AB and

AC produced at P and Q respectively. Calculate the area of the circle.

www. Sy Sylthes, Exams, and Past Papers Visit https://Teacher.co.ke/

24. The following were marks scored by 40 students in an examination

, ronowing	, were man	NO SCOICG I	Jy TO Stat	aciito iii u	II CAUITIIII	ation			
330	334	354	348	337	349	343	335	344	355
392	341	358	375	353	369	353	355	352	362
340	384	316	386	361	323	362	350	390	334
338	355	326	379	349	328	347	321	354	367

(i) Make a frequency table with intervals of 10 with the lowest class starting at 31

(ii) State the modal and median class

(2mks)

(iii) Calculate the mean mark using an assumed mean of 355.5

(2mks

(4mks)

MATHEMATICS IV PART 1 MARKING SCHEME

1.			B1	Subtraction
	√- <u>7.939</u>			
	12.3			
	=	No log		
	7.939	0.8998	В	Logs
	12.3	1.0899		
		T.8099 $^{1}/_{3} = 3 + 2.8099$	M1	Divide by 3
		T.9363		-
		3	A1	Ans
			4	
	= -0	.8635		

AFRICA	isabokemica	h@gma	nil.com
2. %	5x - 3(3x - 7) = 3(x - 2)	M1	Multiplication
RESOUR	5x - 9x + 21 = 3x - 6	M1	Removal ()
ATION B	-7x = -27 x = $3^6/_7$	A1	Ans
EE ED OC		3	7 1110
3.	3x + 5y + x = 180	M1	Eqn
, O	9x = 180 x = 20	A1 <i>B1</i>	X B
	y = 60	3	
	·		
4.	. r =	B1	Value r
	$\frac{3v}{3}$ $\frac{1}{3}$		Value
	4Π		
	. r =		
	S		
	ATT	M1	Equation
	4Π	IVII	Equation
	$_{1/2}$: 3V $^{1}/_{3}$ $\left(\right) = \underline{S}$		
		A 1	Everagion
	4 Π	A1 3	Expression
	4Π		
	<u>3V</u> = <u>S</u>		
	3/2		
	4Π 4Π		
	V = <u>4Π</u>		
	<u>S</u> ³ / ₂		
	3 4∏		
_			
5.	Grad line = $\frac{1}{4}$ y - 2 = $\frac{1}{4}$	M 1	Equation
	$\frac{y-2}{x-5} = \frac{1}{4}$	A1	Equation
	$y = \frac{1}{4}x + \frac{3}{4}$	A 1	K
6	$k = \frac{3}{4}$	3	
6.	P in Alloy = ${}^{4}/_{10}$ x 800 = 320g	B1	P in alloy
	= <u>100</u> x 320		
	20	M1	Expression
	= 3.2 kg	A 1	Ans
			7.1.10
7.	B(a,b), $C(x,y)$	B1	B conduct
	.a − 2 = 5		

X ARRICA	isabokemica		
ON RESOURCES FO	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Formular
FREE EDUCATIO	y - 6	A1 3	С
8.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 M1	Expression for h both Equation Expression for h
9.	$= 53.59$ $2\pi r = 90 \times 2\pi \times 50$ 360 $r = 12.5$ $h = \sqrt{2500 - 156.25}$ $= \sqrt{2343.75}$ $= 48.41 \text{ cm}$	4 M1 P A1 M1	Ans Equation .r expression for h ans
10.	$ \begin{array}{rcl} 100 \text{ n} & = & 302.323 \\ $	M1 A1 4	Equation Ans
11.	AB $= 3-1$ $= 5-9$ $= 2$ BC $= 4$ AB $= \frac{1}{2}$ BC	B1	AB& BC
	∴ AB // BC But B is common ∴ A,B,C are collinear.	B1	Both

AFRICA	isabokemicah@gmail.com				
UNICES FOR		B1 3	Both		
12.	4% of 200,000 = 8000/= balance = 4200/= 6% of x = 4200/=	B1	Both		
leac	$ \begin{array}{rcl} x & & = 4200 \times 100 \\ & & 6 \\ & = 70,000 \\ sales & = sh. 270,000 \end{array} $	M1 A1 B1 4	Expression Extra sales Ans		
13.					
10.	Time = $\frac{2^2}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} \times \frac{2}{7} \times \frac{200}{7} \times$	M1 M1	Vol tank Vol tank		
	140x140x 140x 3600	M1	Div x 3600		
	= <u>8960</u> 3600 = 2 hrs 29min	A1 4	Tank		
14.	$\frac{\sqrt{3}}{\sqrt{7} + \sqrt{2}}$ $\left(\begin{array}{c} = \\ \frac{1}{\sqrt{3}} \end{array} \right)$	M1	Multi		
	$ \begin{array}{c c} \hline \sqrt{7}\sqrt{2} \\ \sqrt{7} + \sqrt{2} \end{array} $	M1	Expression		
	$= \frac{\sqrt{3}\sqrt{7} + \sqrt{2}}{5}$ $= \frac{\sqrt{21} + \sqrt{6}}{2}$	A1 3	Ans		
15.	$3 \le x^2 \qquad \qquad x^2 \le 35$	B1	Lower limit		
	$\pm 1.732 \le x$	B1 B1 B1 <u>4</u>	Upper limit Range Integral values		
16.	No of days = ${}^8/_6$ x ${}^5/_8$ x 12 = 10 days	M1 A1 2	Expression days		
17.	(i) ∠CED = ∠ECD = 30 ∠ CDE = 180 − 60 = 120	B1 B1 B1			
	\angle CBE = 180-120 =60 (ii) \angle AEC = 90+30	B1 B1			
	= 120 \angle EAB = 180-(120+45)	B1 B1	∠A EB = 45 ⁰		
	= 15 ⁰ (iii) ∠BEO = 90-45 = 45	B1	∠BEO		

APRICA D	isabokemica	h@gma	il.com
18.3		B1 B1	
PACTICATION TO THE EDUCATION TO THE PROPERTY OF THE PROPERTY O	$4r^{2} + 3r - 3 = 0$ $4r^{2} + 6r - 2r - 3 = 0$ $(2r - 1)(2r + 3) = 0$	B1 M1	
0	$r = \frac{1}{2} \text{ or } r = -1^{1}/2$	A1	
	Ss = $\frac{3(1-(1/2)^5)}{1-1/2}$	M1	
	$= \frac{3 (1^{-12}/_{32})}{\frac{1}{2}}$ $= 6 (\frac{31}{32})$ $= 6 \frac{31}{32}$	M1	
	- 0 /32	A1 8	
19.	LOG E. 0.3010 0.6021 0.7782 0.9031 0.005 0.	B1 B1	Log E Log F
	3.0103 Log E =n log F + Log K	S1	Scale
		P1	Plotting
		L1	Line
		M1 A1	Gradient
		<i>B1</i> 8	К
	.n = gradient = 2 $2.4 - 1.4$ = 12 = 3 Log k. = 0.3 $0.7 - 0.3$		
	4 .k = 1.995		
	E = 2F ³		
20	.x -2 -1 0 1 2 3 4 -2 -1 0 1 2 3	B2	All values
	4	B1	At least 5
	.y = 3x 2 - 2x + 1 -	B1	Line
			

AFRICA	isabokemica	h@gma	il.com
TO E	0 = 3x 2 - 3x - 2	S1	Scale
OURGE	y = x + 3	P1	Plotting
		C1	Smooth curve
E EDUCATIO		L1	Line drawn
a E		<i>B1</i>	Value of r
7			
		8	
21.	.h = ³ / ₄ π x 18 x 18x 18	M1	N of wire
	$\pi \times 0.04 \times 0.04$	M1	÷ to length in cm
	= <u>24 x 18x 18x 18</u>	M1	÷ for length
	0.04 x 0.04 x 100	M1	conversing to metres
	= 48,600m	A1	length
	4. 22		
	density = $\frac{4}{3}$ x $\frac{22}{7}$ x $\frac{18 \times 18 \times 18 \times 15}{15}$ kg	M1 M1	expression for density
	1000	A1	conversion to kg
	1000	8	ans
	= 122.2kg		
22.	Λ	M1	Method
	$/$ H = $\sqrt{15^2 - 9^2}$		cuiou
	/ \ = √144		
	= 12	A1	
	X/6 =	M1	Method
	9/12	A1	Radius
	X =	M1	Small vd
	4.5	M1	Large vol
	Volume = $\frac{1}{3}$ x $\frac{22}{7}$ x (81 x 12 -20.25x6)	M1	Subtraction of vol.
	= ²² / ₂₁ (972 - 121 -5)	A1	Ans
	3	<u>8</u>	
	= 891 cm ³		
23.	R(-a , b) , Q (c,d), S(x , y) ,P (5,0)		
	PR is diagonal		
	(a) Mid point PR (0,0)		
	$\frac{a+5}{2} = 0$		
	2		
	.a = -5 <u>b-0</u> = 0		
	<u>b-0</u> = 0	D 2	
		B1	Ans .
	b = 0		
	R (-5,0)		
	Grad PQ = -2	1.11	Evaroncian both
	Grad RS = -2 . <u>d - 0</u> = -2	M1	Expression both
	. <u>a − 0</u> = −2 c −5		correct
	$.\frac{d-0}{d} = \frac{1_2}{2}$		
	. <u>u </u>		

SAFRICA	isabokemicah@gmail.com				
Teacher, ac	c+5 $.d+2c = 10$ $2d-c = 5x2 - 4d-2c = 10$ $5d = 20$ $d = 4$ $c = 3$ $Q(3,4)$ $x+3, y+4 = (0,0)$ 2	M1 A1 A1 A1 A1 A1	Equation Ans Expression Equation		
	3y = 8x - 12	8			

MATHEMATICS IV PART II MARKING SCHEME

1	704 V 07				
1.	784 X 27 =	-			
	187500				
	$\sqrt{784 \times 9} =$	=	<u>4 x 7x 3</u>	M1	
	62500		250		Factors for
			=	M1	Fraction or
	42				equivalent
	125			A1	C.A.O
	120		=	,	
	0.336				
	0.550				
				3	
	Father Ov				Francisco
2.	Father $3x$, $r son = x$			M1	Expression
	2(x + 10) = 3x + 10				
	2x + 20 = 3x + 10				
	x = 10			A1	
	father = 30			B1	
				3	
3.					
	3 = sin 60			M1	Side of a triangle
	AE				
	AE = 3				
	Sin 60				
	= 3.464			A1	
	perimeter = 5x2 + 3.464 x 3			' ' '	
	= 10+10.393				
	= 10+10.393			B1	Perimeter
	- 20.39			DI	reminete
				2	
	$a^3 + 0a^2 + 0a^3 + 0a^4 + 0a^3 + 0a^4 + 0a^2 + 0a^3 + 0a^4 + 0a^3 + 0a^4 + 0$			3	O. da atituati a a
4.	$\underline{a^3 - b - 2c^2} = (-2)^3 - 3 - 2(-1)^2$			M1	Substitution

AFRICA	isabokemicah@g	gmail.co	om
RCES FOR	$2b^2 - 3a^2c$ $2(3)^2 - 3(-2)^2(-1)$		
N RESOU	= <u>-8 -3-2</u> 18 + 12	M1	Signs
SUCATIO	= <u>-13</u>		
	30	A1 3	C.A.0
5.	Ksh 189,000 = \$189,000	M1	Conversion
H	75.6	A1	
	= \$ 2500		
	balance = \$ 2500 = Kshs.	M1 A1	Conversion
	189,000	AI	
		A1	
	Kshs. 189,000 =	4	
	189,000		
	115.8		
	Uk £1632		
6.	Area of 2 triangles = 2 (½ x 8x 5 sin 60) = 40 sin 60	M1	Areas of Δ
	= 40x 0.8660		
	= 34.64 cm ² Area of rectangle = 300 x 8 + 300 x 5 +300 x BC		
	BC = $\sqrt{64 + 25} - 2x$	M1	B.C. expression
	$40\cos 60 = \sqrt{89 - 80 \times 0.5}$		
	$= \sqrt{89 - 40}$		
	= \sqrt{49}	M1	Area
	= 7 Total S.A. = 300 (8+5+7) + 34.64		Alca
	cm ²	A1	
	= 6000 + 34.64 $= 6034.64 cm2$		
		4	
7.	$AF^{2} = 3^{2}+4^{2}+2+12x \cos 50$ $= 25 - 24 \times 0.6428$	M1	
	= 25-15.43		
	= 9.57 AF = 3.094 x 50		
	AF = 154.7m	A1	
	Sin Q = $\frac{200 \sin 50^{\circ}}{154.7}$	M1	
	= 0.9904		
	Q = 82.04 ⁰ Bearing = 117.96 ⁰	A1 B1	Bearing
	Dearing - 117.50		Dearing
8.	(i) No. of white = w	5 M1	
δ.	(i) No. of white = w \underline{w} = 2	M1	
	w+9 3		
	3w = 2w + 18 w = 18		
	•		

isabokemicah	@gmail.co	nm
(ii) p(different colour) = p(WB N BW)	A1	
= 2 x	M1	
$9 + 9 \times 18$		
25 27 25	A1	
$=\frac{12}{25}$		
- 725	4	
$=\frac{12}{25}$ 9. A.sf $=\frac{1}{2}$		
49		
smaller area = 1 x 441 π		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	
$\pi r^{2} = 9\pi$ $r^{2} = 9$ $r^{2} = 9$ $r = 3$	M1	
$r^2 = 9$		
r = 3		
	A1	
	3	
10. Largest area = $22 \times (14.5)^2$	M1	
7		
$= 660.8 \text{ cm}^2$		
smallest area = ${}^{22}/_{7} \times (13.5)^{2}$	M1	
= 572.8	A1	
572.8 ≤ A ≤ 660.81	3	
11. $(1+2x)^5 = 1+5(2x)+10(2x)^2+10(2x)^3$	M1	
$= 1 + 10x + 40x^{2} + 80x^{3}$ $2.045^{5} = 1+2(0.52)^{5}$	A1	
$2.045^5 = 1+2(0.52)^5$		
= 1+10 (0.52)+	M1	
$40(0.52)^{2}+80(0.52)^{3}$ = 1+5.2 + 10.82 + 11.25	A1	
= 28.27		
	4	
12. Tn = $5x 2^{n-2}$		
(i) T_1 , T_2 , $T_3 = 2.5$, 5 , 10	B1	All terms
(ii) $S_5 = 2.5(2^5-1)$ 2-1	M1	
= 2.5 (31)		
= 77.5	A1	
	3	
13. $12 = 2^2 \times 3$ $18 = 2 \times 3^2$	M1	
$18 = 2 \times 3^{-}$ $30 = 2 \times 3 \times 5$		
Lcm = 22 x 32x 5 = 180 min		
= 3hrs	A1	
time they ring together =11.55 +3 = 2.55 p.m	B1	
14 Non 2022	3	A : 2
14. Map area = 40cm^2 Actual area = $200 \text{x} 200 \text{x} 40 \text{m}^2$	M1 M1	Area in m ² Area in ha
= 200x200x40ha	IVII	AICA III IIA
100x100		
= 320ha	A1	CAO
	3	
15. 3p + 2r = 13	M1	

A HRICA	isabokemicah@g	mail.co	m
CES FOR	p + 2r = 9 -		
RESOUR	2p = 4	۸1	
ATION S	p = sh 2 r = 3.50	A1 B1	
EDUC	1 - 0.00	3	
16.	110 + 100+130+2x +3x = 540	M1	
0	5x = 200		
H	$x = 40^{\circ}$	A	
	$2x$, $3x = 80$ and 120^{0} res	A1 2	
17.	Contribution / person = $180,000$	B1	'C'
	X	B1	
	New contribution = $180,000$	N 4 1	ogn
	x - 2 180,000 - 180,000 = 24,000	M1 M1	eqn mult
	x −2 x	1411	marc
	180,000x - 180,000x + 360,000 = 24,000(x-2)x		
	$24,000x^2 - 48,000x - 360,000$	A1	eqn
	$v^2 = 0$	M1	factor
	$x^{2} - 2x - 15 = 0$ $x^{2} - 5x + 3x - 15 = 0$		
	x(x-5)+3(x-5)=0	A1	both ans
	(x + 3)(x - 5) = 0		
	χ =-	B1	remaining
	3 or = 5		members
	or = 5 remaining members = 5-2		
	= 3		
		8	
18.	(a) P (3 white) = $\frac{8}{12}$ x $\frac{7}{12}$ x $\frac{6}{12}$ = $\frac{28}{12}$	M1	
	13 12 11 143	A1	
	(b) P(at least 2 blue)=p(WBBorBBWorBWB)orBBB		
	= <u>8</u> x <u>5</u> x <u>4</u>	M1	
	+ <u>5</u> x <u>4</u> x <u>8</u>		
	13 12 11 13 12 11	M1	
	$+5 \times 8 \times 4 + 8$		
	x 7x 6		
	13 12 11	A1	
	13 12 11		
	= <u>204</u> 429		
	= 68	M1	
	143	M1	
	(c) p(2 white and one blue)= p(WWB or WBW or		
	BWW) - 8 × 7 × 5 + 8 × 5 × 7		
	= 8 x 7 x 5 + 8 x 5 x 7 + $5 x 8 x 7$	A1	
	13 12 11 13 12		
	11 13 12 11		
	$= 3 \times 8 \times 7 \times 5$		
	13 x 12 x 11		

Z AFRICA	isabokemicah@g	mail.co	m
ON RESOURCES FOR	= <u>70</u> 143		
DUCATIO	2	8	
Teach	(a) recourt area = $10.5 \times 6 \text{ m}^2$ title area = $0.3 \times 0.3 \text{ m}^2$ No of tiles = 10.5×6 0.3×0.3 = 700	M1 A1	
	(b) No of cartons = <u>700 x 15</u>	M1	
	= 52.5	A1	
	(c) Cost of 525 cartons = 525 x 100 + 800 x 525 + transport 5	B1	
	10,500+420,000		
	=	M1	
	430,500 = 120 x 4.30,500 = 100	M1	
	= sh	A1	
	516,600 s.p of a carton = <u>516,600</u>		
	525 = sh. 984		
00	()) () () () () () () () () (8	
20.	(a) Maina`s tax dues = 1800 x <u>10</u>	M1	
	100 =	A1	
	180	M1	
	(b) Taxable income = 3600 x <u>115</u> - n rent	A1	
	100 = 36 x	M1 M1	1 st slab 2 nd slab
	115 – <u>100 x 12</u>	A1	Z Slab
	20	D4	
	= 4140 - 60 =	B1	
	4080 Tax dues = 10 x 2100 + 15 x 1980		
	100 100 = 210 +		
	297		
	=		

A ARRICA	isabokemicah@g	mail.co	m
URCES FO	507 Tax relief <u>= 270-</u>		
	Tax paid = 237	8	
21.	(a) PQ = $-^3/_5$ a +		
Ø.	$ ^{3}/_{1}b $ = $ ^{31}/_{2}$ -	B1	
19	³ / ₅ a (b) OR = h a + h b	M1 A1	
	= a-	M1	
	ha + hb = (1-h)	A1	
	$a + h b$ (c) OR = ${}^{3}/_{5} a + k$	M1	
	(c) OR = $^{3}/_{5}$ a + k ($^{3}/_{2}$ b - $^{3}/_{5}$ a) = ($^{3}/_{5}$ -	1411	
	³ /₅k)a +3k b	A1	
	(d) $1 - h = \frac{3}{5} - \frac{3}{5}k$ (i)	B1	
	(ii) 3k = h		
	Sub (i) $1 - 3k = \frac{3}{5} - \frac{3}{5}k$		
	5- 15k = 3-3k 12k = 2		
	$k = \frac{1}{6}$ $h = \frac{1}{2}$		
		8	
22.	P(ABC) = 0 -1 1 4 3 = -3 -1	M1	A ¹ B ¹ C ¹
	1 0 3 1 3	A1	
	1 4 3	N 4 1	
	$A^{1} (-3,1)B^{1} (-1,4)C^{1} (-3,3)$ $Q(A^{1}B^{1}C^{1}) = a b -3 -1 -3 = -6 -2$	M1	
	c d 1 4 3	M1	
	2 8 6		
	=> -3a + b = -6		
	$-a + 4b = -2 \times 3$ $-c + 4d = 8 \times 3$		LQ
	-3a + 12b = -6 $-3c + 12d =$	A1	
	11b = 0		A ¹ B ¹ C ¹ drawn
	b = 0	B1	A D C Glawii
	d = 2 a = 2		
	<u>d = 2</u>		A" B" C"
	c = 0	B1	Ploted
	Q = 2 0		

ZARICA DIA	isa	ıbokemicah@gmail.co	m
Cher. 3	0 2	B1	Destruction
Tea			
		8	
23.	R = 2.2CM ± 0.1	B1	
	Area = $\frac{22}{2}$ x 2.2 x 2-2 7 = 15.21cm ²	B1	
	= 15.21cm ²	B1	
		M1	
		1 1	
	Name la Unidate di MACNETO ICTO Callaga Visal Calcad		ion Vita 071

C RICA	iach alramiach (Ac	mail som	
C SFORA	isabokemicah@g	8	
FREE EDUCATION RESOURCE	Ef =40 efd = -80 (ii) model class = 351- 360 modern class = 341 - 350 (iii) mean = 355.5 <u>-80</u>	B1 B1 M1	
O			
H	40 = 355.5 - 2 = 353.5	A1	
	000.0	B1	
		B1 B1	
		B1	
		A1	
1		8	

MATHEMATICS V PART I

SECTION 1 (52 MARKS)

- 1. Use logarithms to evaluate $\left(\begin{array}{c} 13.6 \cos 40 \\ \end{array}\right)^{0.25}$ 2. Solve for x in the equation $(x + 3)^2 - 5(x + 3) = 0$ (2mks)
- 3. In the triangle ABC, AB = C cm. AC = bcm. \angle BAD = 30° and \angle ACD = 25°. Express BC in terms of b and c. (3mks)

- Find the equation of the normal to the curve $y = 5 + 3x x^3$ when x = 2 in the form
- Ouantity P is partly constant and partly varies inversely as the square of q. q = 10 and $p = 5 \frac{1}{2}$ when q = 20. Write down the law relating p and g hence find p when gs is 5. (4mks)
- 6. Solve the simultaneous equation below in the domain $0 \le x \le 360 \text{ and } 0 \le y \le 360$ $2 \sin x + \cos y = 3$ $3 \sin x - 2 \cos y = 1$ (4mks)
- 7. Express as single factor (3mks)
- 8. By use of binomial theorem, expand $(2 \frac{1}{2} \times 1)^5$ up to the third term, hence evaluate $(1.96)^5$ correct to 4 sf. (4mks)

 9. Points A(1,4) and B (3,0) form the diameter of a circle. Determine the equation of the circle and write it in the
- form $ay^2 + bx^2 + cy + dy = p$ where a, b, c, d and p are constants. (4mks)

1

- 10. The third term of a GP is 2 and the sixth term is 16. Find the sum of the first 5 terms of the GP. (4mks)
- 12. Vectors, a = 2 and 2
- 13. By expressing a in terms of b and c show that the three vectors are linearly dependent. A cylindrical tank of base radius 2.1 m and height is a quarter full. Water starts flowing into this tank at 8.30 a.m. at the rate of 0.5 litres per second. When will the tank fill up? (3mks)
- 14. A piece of wood of volume 90cm³ weighs 54g. Calculate the mass in kilograms of 1.2 m³ of the wood. (2mks)
- 15. The value of a plot is now Sh 200,000. It has been appreciating at 10% p.a. Find its value 4 years ago. (3mks)
- 16. 12 men working 8 hours a day take 10 days to pack 25 cartons. For how many hours should 8 men be working in a day to pack 20 cartons in 18 days? (2mks)

SECTION II (48MARKS)

17. The tax slab given below was applicable in Kenya in 1990. rate in sh

Income in p.a.	
1 - 1980	
1981 – 3960	3
3961 - 5940	5
5941 - 7920	7

11. Make T the subject of the formulae

Maina earns Sh. 8100 per month and a house allowance of Sh. 2400. He is entitled to a tax relief of Sh.

R

(3mks)

2

80

isabokemicah@gmail.com

800 p.m. He pays service charge of Sh 150 and contributes Sh 730 to welfare. Calculate Mwangis net

800 p.m. He pays service charge of Sh 150 and contributes Sh 730 to welfare. Calcula salary per month.

(8mks)

OAB is a triangle with OA = a, OB = b. R is a point of AB. 2AR = RB. P is on OB such that 3OP = 2PB. OR and AP intersect at Y, OY = m OR and AY = nAP. Where m and n are scal terms of a and b.

(i) OR

(ii) AP

(1mk) 30P = 2PB. OR and AP intersect at Y, OY = m OR and AY = nAP. Where m and n are scalars.

Express in

(b) Find the ratio in which Y divides AP

(6mks)

19. The table below gives related values of x and y for the equation $y = ax^n$ where a and n are constants

X	0.5	1	2	3		10
Υ	2	8	32		200	800

By plotting a suitable straight line graph on the graph provided, determine the values of a and n.

- 20. Chalk box x has 2 red and 3 blue chalk pieces. Box Y has same number of red and blue pieces. A teacher picks 2 pieces from each box. What is the probability that
- (a) They are of the same colour.

(4mks) (2mks)

(b) At least one is blue At most 2 are red (c)

(2mks)

- 21. Point P(50°N, 10°W) are on the earth's surface. A plane flies from P due east on a parallel of latitude for 6 hours at 300 knots to port Q.
- (a) Determine the position of Q to the nearest degree.

(3mks)

- (b) If the time at Q when the plane lands is 11.20am what time is it in P.
- (2mks)
- (c) The plane leaves Q at the same speed and flies due north for 9 hours along a longitude to airport R. Determine the position of R. (3mks)
- 22. Using a ruler a pair of compasses only, construct:
- Triangle ABC in which AB = 6cm, AC = 4cm and \angle ABC = 37.5°. (a)

- (3mks)
- Construct a circle which passes through C and has line AB as tangent to the circle at A. (3mks) (b)
- (c) One side of AB opposite to C, construct the locus of point P such that $\angle APB = 90^{\circ}$.
- A particle moves in a straight line and its distance is given by $S = 10t^2 t^3 + 8t$ where S is 23. distance in metres at time t in seconds.

Calculate:

(i) Maximum velocity of the motion.

(4mks)

(ii) The acceleration when t = 3 sec.

(2mks)

(iii) The time when acceleration is zero.

- (2mks)
- B(3,1), C(3,2) and D(1,2). Under transformation 24. A rectangle ABCD has vertices A(1,1) ABCD is mapped onto A¹B¹C¹D¹ matrix M = 2 2 3

 $A^{1}B^{1}C^{1}D^{1}$ is mapped onto $A^{11}B^{11}C^{11}D^{11}$. Draw on the given grid under transformation M = 0 - 2

- ABCD, $A^{1}B^{1}C^{1}D^{1}$ and $A^{11}B^{11}C^{11}D^{11}$ (a) (4mks)
- If area of ABCD is 8 square units, find area of A¹¹B¹¹C¹¹D¹¹. (b) (3mks)
- What single transformation matrix maps A¹¹B¹¹C¹¹D¹¹ onto A¹B¹C¹D¹ (1mk)

MATHEMATICS V

PART II

SECTION 1 (52 Marks)

- 1. Evaluate without using mathematical tables $(2.744 \times 15^{5}/8)^{1}/3$ (3mks)
- 2. If $4 \le x \le 10$ and $6 \le y \le 7.5$, calculate the difference between highest and least (i) xy (2mks) (ii) y/x
- 3. A 0.21 m pendulum bob swings in such a way that it is 4cm higher at the top of the swing than at the bottom. Find the length of the arc it forms. (4mks)
- 4. Matrix $\begin{pmatrix} 1 \\ x+3 \end{pmatrix}$ 2x has on inverse, determine x (3mks)
- 5. The school globe has radius of 28cm. An insect crawls along a latitude towards the east from A(50°, 155°E) to a point B 8cm away. Determine the position of B to the nearest degree.

 (4mks)
- 6. The diagonals of triangle ABCD intersect at M. AM = BM and CM = DM. Prove that triangles ABM and CDM are Similar. (3mks)

- 7. Given that $\tan x = \sqrt[5]{_{12}}$, find the value of $\frac{1 \sin x}{}$ Sin $x + 2\cos x$, for $0 \le x \le 9$ (3mks)
- 8. Estimate by MID ORDINATE rule the area bounded by the curve y = x² + 2, the x axis and the lines x = 0 and x = 5 taking intervals of 1 unit in the x. (3mks)
- 9. MTX is tangent to the circle at T. AT is parallel to BC. \angle MTC = 55° and \angle XTA = 62°. Calculate \angle BAC. (3mks)

10. Clothing index for the years 1994 to 1998 is given below.

Year	1994	1995	1996	1997	1998
Index	125	150	175	185	200

Calculate clothing index using 1995 as base year.

(4mks)

11. A² digit number is such that the tens digit exceeds the unit by two . If the digits are reversed, the number formed

s smaller than the original by 18. Find the original number.

(4mks)

12. Without using logarithm tables, evaluate

 $\log_5(2x-1) - 2 + \log_5 4 = \log_5 20$ (3mks)

- 13. Mumia's sugar costs Sh 52 per kg while imported sugar costs Sh. 40 per kg. In what ratio should I mix the sugar, so that a kilogram sold at Sh. 49.50 gives a profit of 10%. (4mks)
- 14. The interior angles of a regular polygon are each 172°. Find the number of sides y lie polygon. (2mks)
- 15. Evaluate 2x

$$2x = \underline{2} + \underline{6.241}$$

9.222

(2mks)

16. A water current of 20 knots is flowing towards 060°. A ship captain from port A intends to go to port at a final speed of 40 knots. If to achieve his own aim, he has to steer his ship at a course of 350°. Find the bearing of A from B. (3mks)

SECTION II (48 MARKS)

- 17. 3 taps, A, B and C can each fill a tank in 50 hrs, 25 hours and 20 hours respectively. The three taps are turned on at 7.30 a.m when the tank is empty for 6 hrs then C is turned off. Tap A is turned off after four hours and 10 minutes, later. When will tap B fill the tank?
- In the domain $-5 \le x \le 4$, draw the graph of $y = x^2 + x 8$. On the same axis, draw the graph of y + 2x = -2. Write down the values of x where the two graphs intersect. Write down an equation in x whose roots are the 18. In the domain $-5 \le x \le 4$, draw the graph of $y = x^2 + x - 8$. On the same axis, draw the graph of y + 2x = -2. points of intersection of the above graphs. Use your graph to solve. $2x^2 + 3x - 6 = 0$. (8mks) For free KCSE Notes, Exams, and Past Papers Visit https://T
- 19. The average weight of school girls was tabulated as below:

Weight in Kg	30 – 34	35 – 39	40 – 44	45 – 49	50 - 54	55-59	60-64
No. of Girls	4	10	8	11	8	6	3

(a) State the modal class.

(1mk)

- (b) Using an assumed mean of 47,
 - (i) Estimate the mean weight

(3mks)

(ii) Calculate the standard deviation.

(4mks)

20. The table below shows values of y = a Cos (x - 15) and y = b sin (x + 30)

Χ	0	15	30	45	60	75	90	105	120	135	150
a Cos(x-5)	0.97				0.71	0.5				-0.5	-0.71
b sin(x+3)	1.00				2.00				1.00		0.00

(a) Determine the values of a and b

(2mks)

(b) Complete the table

(2mks)

- (c) On the same axes draw the graphs of y = across(x 15) and y = b sin(x + 30) (3mks)

(d) Use your graph to solve $\frac{1}{2}$ cos $(x - 15) = \sin(x + 30)$

(1mk)

The diagram below is a clothing workshop. \angle ECJ = 30 $^{\circ}$ AD, BC, HE, GF are vertical walls. ABHG is horizontal floor. AB = 50m, BH = 20m, AD=3m

- (a) Calculate DE (3mks)
- (b) The angle line BF makes with plane ABHG (2mks)
- (c) If one person requires minimum 6m³ of air, how many people can fit in the workshop (3mks)
- 22. To transport 100 people and 3500 kg to a wedding a company has type A vehicles which take 10 people and 200kg each and type B which take 6 people and 300kg each. They must not use more than 16 vehicles all together.
- (a) Write down 3 inequalities in A and B which are the number of vehicles used and plot them in a graph. (3mks)
- (b) What is the smallest number of vehicles he could use. (2mks)
- (c) Hire charge for type A is Sh.1000 while hire for type B is Sh.1200 per vehicle. Find the cheapest hire charge for the whole function (3mks)

A circle centre A has radius 8cm and circle centre B has radius 3cm. The two centres are 12cm apart. A thin tight string is tied all round the circles to form interior common tangent. The tangents CD and EF intersect at X.

- (a) Calculate AX (2mks)
- (b) Calculate the length of the string which goes all round the circles and forms the tangent.

 (6mks)
- 24. Airport A is 600km away form airport B and on a bearing of 330°. Wind is blowing at a speed of 40km/h from 200°. A pilot navigates his plane at an air speed of 200km/h from B to A.
- (a) Calculate the actual speed of the plane. (3mks)
- (b) What course does the pilot take to reach B? (3mks)
- (c) How long does the whole journey take? (2mks)

MATHEMATICS V PART I MARKING SCHEME

_			
17	SOLUTION	MKS	AWARDING
Tead	No Log 13.6 1.1335 + Cos 40 1.8842 1.0177 - 63.4 1.8021	B1 M1	Log +
	1. 2156 (4 + 3.2156) ¹ / ₄ 1.8039	M1	divide by 4
	Antilog 0.6366	A1	C.A.0
	(0) (0 5) 0	4	
2.	(x + 3) (x + 3 - 5) = 0 (x + 3)b (x - 2) = 0 x = -3 or x = 2	M1 A1	Factors Both answers
3	BD = C Sin 30 = 0.05 CD = b Cos 25	B1	BD in ratio from
	= 0.9063b BC = 0.9063b + 0.5 C	B1 B1	CD in ratio form Addition
		3	
4	$\frac{Dy}{dx} = 3 - 3x^2$	B1	Grad equ
	x = 2, grad = <u>1</u> 9	B1	Grad of normal
	Point (2,3) $\frac{y-3}{x-2} = \frac{1}{9}$	M1	Eqn
	9y - 27 = x - 2 9y - x = 25	A1	Eqn
		4	
5	700 = 100 + n <u>2200 = 400 + n</u> 1500 = 300m	M1	Equan
	m = 5 n = 200 P = 5 + <u>200</u>	A1	Both ans
	q2 When q = 5 P = 13	B1 B2 4	Eqn (law) Ans (P)
6	$4 \sin x + 2 \cos y = 6$ $\frac{3 \sin x - 2 \cos y = 1}{7 \sin x} = 7$ $\sin x = 1$	M1 M1	Elim Sub
	X = 90 Cos y = 1 $Y = 0^{\circ}$	A1 B1	
7	$\frac{2(x+1) - 1(x+2) + x + 2}{(x+2)(x+1)}$	M1	Use of ccm

9	isabokemicah@gmail.	com	
O		M1	Substitution
_	$= \frac{2x + 2 - x - 2 + x = 2}{(x + 2)(x + 1)}$		
0	$= \frac{2x+2}{(x+2)} (x+1)$		
Ċ	(x+2) $(x+1)$		
U	= 2	A1	Ans
Feache	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	
Ů	$= 32 - 40x + 20x^{2}$	A1	
	$= 32 - 4 (0.08) + 20 (0.08)^2$	' ' '	
	= 32 - 0.32 + 0.128 `	M1	
	= 3	A1	
		4	
9.	Circle centre C = $(3+1)$, $0+4$	B1	Centre
		B1	Radius
	C(2,2) R = $\sqrt{(2-0)^2 + (2-3)^2}$	В	Raulus
	(2 0) 1 (2 3) =√5	M1	
	$(y-2)^2 + (x-2)^2 = \sqrt{5}$ $y^2 + x^2 - 4y - 4x = 8 + \sqrt{5}$	A1	
		4	
10	$ar^2 = 2$, $ar^5 = 16$	M1	
	$a = 2 \therefore \frac{2 r^5}{r^2} = 16$		
	·		
	$2r^3 = 16$ $r^3 = 8$		
	r = 2, a = ½	A1	Both
	1 - 2, u - 72	/ ` '	Dotti
	$S_5 = \frac{\gamma_2 (1 - (\gamma_2)^5)}{1 - (\gamma_2)^5}$	M1	Sub
	$\frac{1}{2}$		
	$=1-\frac{1}{31}/_{32}$	A 1	040
	$=\frac{31}{32}$	A1 4	CAO
11	$NR - 3MT^2 = 2RT^2$	M1	X mult
' '	$T^2(2R + 3M) = NR$	'''	XIIIdit
	T2 = NR	M1	7 ²
	2R + 3m		
	$T = \sqrt{NR}$	A1	ans
	2R + 3m		
10		3	
12	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} = m \begin{bmatrix} 2 \\ 0 \end{bmatrix} = m \begin{bmatrix} 6 \\ 0 \end{bmatrix}$	M1	
	$\begin{bmatrix} 2 \\ 2 = 2m + 6n \end{bmatrix}$		
	2 = 0 + 4n		
	n = ½		
	$m = -\frac{1}{2}$	A1	
	∴a = - ½ b + ½ c	D1	
	∴a b c are linearly dep	B1	
13	Volume = <u>22</u> x 2.1 x 2.1 x 2 x ³ / ₄ m ³	3 M1	
13	7	IVII	
	Time = <u>11 x 0.3 x 2.1 x 3 x 1,000,000</u>		
	500 x 3600	M1	
	= 11.55		

	isabokemicah@gmail.	com	
TO !	= 11.33 hrs		
	time to fill = 8.03 pm		
	time to fill – 0.00 pm	A1	
\mathbf{U}			
		3	
14	Mass = <u>54</u> x <u>1.2 x 1,000,000</u>	M1	
Œ.	90 1000		
	= 720kg	A1	
U		2	
15	V ₃ = P	M1	
10	$P(0.9)^3 = 200,000$	'*' '	
		N 4 1	
	P = 200,000	M1	
	${0.9^3}$		
	= <u>200,000</u>		
	0.729		
	= Sh 274,348	A3	
		3	
16	No of hours = <u>8 x 12 x10 x 20</u>	M1	
'	8 x 18 x 25	141 1	
	= <u>19200</u>		
	3600		
	= 5hrs, 20 min	A1	
		2	
17	Taxable income = 8100 + 2400	B1	Tax inc
	= sh. 10,500		
	= £6300		
		M1	
			2
	<u>x 7</u>	M1	2
	12		
	= <u>22320</u>	A1	
	12		
	= Sh 1860	B1	net tax
	net tax = 1860 - 800 p.m.		
	= Sh 1060	B1	total dedu.
	Total deduction = 1060 + 150 + 730		total dodd.
	= 1940	M1	
		1	
	Net salary = 10,500 - 1940	A1	
	= Sh 8560 p.m.	<u> </u>	
	2 1 1 1	8	
18	OR = $\frac{2}{3}$ a + $\frac{1}{3}$ b or ($\frac{1}{3}$ (2a + b)	B1	
	$AP = \frac{2}{5}b - a$	B1	
	OY = m OR = A + n $(^{2}/_{5}b - a)$		
	$\frac{2}{5}$ m b + ma = $(1 - n)a + \frac{2}{5}$ n b	B1	EXP, OY
	$\frac{1}{2}$ /sm = $\frac{2}{5}$ n	M1	Eqn
	m = n	M1	M = n
			1
	∴m = 1 - m	A1	Sub
	2m = 1	A1	CAO
	$m = \frac{1}{2} = n$		
	½ AP = Ay		
	AY:AP = 1:1	B1	Ratio
		8	
	·		
19	Log x 1.699 0 0.3010 0.4771 1		
19	Log y 0.301 0.9031 1.5052 2.301 2.9031		
-	Log y 0.501 0.5001 1.5002 2.5001		1

isabokemicah@gmail.com

Isabokeinican@gma	an.com	
Log y = n log x + log a	B1	Log x
Log a = 0.9031	B1	Log y
A = 8		
Grad = <u>1.75 - 0.5</u>		
0.4 + 0.2		
= <u>1.25</u>	B1	A
0.6		
= 2.08	B1	N
n = 2	B1	Missing x and y
\therefore y = 8x ²	S1	Scale
$y = 8x^2$ $x = 3$ $y = 8 \times 3^2$ = 72	P1	Points
y = 200 x = 5	L1	Line

isabokemicah@gmail.com	
leacher	
IEach	
Teach and the second se	
8	
20 P (same colour) = P (XRRrr orXBB or YXX or YBB) M1	Any 2

U	isabokemicah@gmail.	rom	
Ø	$-\frac{1}{6}(\frac{2}{5}\times\frac{1}{6}+\frac{3}{5}\times\frac{2}{6})$ × 2	M1	Any 2
er.	$= \frac{2}{20} + \frac{6}{20}$	M1	Fraction
Ľ	$= \frac{8}{20}$	A1	
30	$= \frac{20}{5}$	AI	
	(b) P(at least 1B) = 1 - P(non blue)		
I	$= 1 - P (XRR \text{ or } YRR)$ $= 1 - \frac{1}{2} {2 \choose 5} x^{\frac{1}{4}} x 2$ $= 1 - \frac{1}{10}$	M1	
	$=1-\frac{1}{10}$	A1	
	$= \frac{9}{10}$ (c) P(at most 2 Red) = 1 - P (BB)	M1	
	$= 1 - \frac{1}{2} (\frac{3}{5} \times \frac{2}{4})^{2}$ $= 1 - \frac{6}{20}$		
	$= 1 - {}^{9}/_{20}$ $= {}^{14}/_{20} \text{ or } {}^{7}/_{10}$	A1	
		8	
21	(a) PQ = 1800 nm θ = 1800	M1	
	$60\overline{\times 0.6428}$		
	= 46.67 = 47°	A1	
	Q (50°N, 37°E)		
	(b) Time diff = 47 v 4	M1	
	(b) Time diff = <u>47 x 4</u>		
	= 3.08	A1	
	Time at P = 9.12am (c) QR = 2700 nm	M1	
	$x^{\circ} = \underline{2700}$		
	60 = 45°	A1	
	R (85°N, 133°W)	B1	
		8	
			_
22		B1 B1	Bisector of 150 Bisector 75
		B1 B1	AB AC ⊥at A
		B1	Bisector AC
		B1 B1	Circle ∠ AB
		B1	∠ AB Locus P with A
			B excluded
		8	

2	isabokemicah@gmail.c	om	
24	$ \begin{pmatrix} 2 & 2 & 1 & 3 & 3 & 1 \\ 1 & 3 & 1 & 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 1 & 0 & 6 \\ 4 & 6 & 9 & 7 \end{pmatrix} $	B1	Product
Teach	$ \begin{bmatrix} D^{11} \\ -1 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ 4 & 8 & 10 \\ 4 & 6 & 9 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 4 & 6 & 9 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $ $ \begin{bmatrix} A^{11} B^{11} C^{11} \\ -1 & -10 \\ 0 - 2 \end{bmatrix} $	B1	Product
	(b) det = Asf = $12 + 4 = 8$ Area A ¹¹ B ¹¹ C ¹¹ D ¹¹ = 8×8 = $64 U^2$ (c) Single matrix = Inv N = $\frac{1}{2}$ -2 - 0	B1 M1 A1	Det
	0 -1 = -1 0 0 -½	B1	Inverse
		6	
23	Ds = $20t - 3t^2 + 8 = 0$ Dt $3t^2 - 20t - 8 = 0$ $T = 20$ $\sqrt{400 + 4 \times 3 \times 8}$ 6 t = 7.045 sec max vel = $148.9 - 140.9 - 8$	M1 A1 M1 A1	
	$ \frac{d^2 s}{dt^2} = 6t - 20 $ when t = 3	M1 A1 M1 A1	
		8	

92

MATHEMATICS V PART II MARKING SCHEME

6		<u>-</u>	
No	Solution	Mks	Awarding
17	$\frac{2744}{125}$ x $\frac{125}{1}$		
l.	1000 8		
	13 1.		
	$\frac{2744}{1000}$ $^{1}/_{3}$ x $\frac{5}{2}^{3}$ $^{1}/_{3}$	M1	Factor
	1000 2°		
	(c ₃ →8 1,		
	$\left(\frac{2^3 \times 7^8}{103}\right)^{-1}/_3 \times \frac{5}{2}$		
	103 2	M1	Cube root
	$\frac{2 \times 7}{2 \times 5} = 3.5$	A1	Cube 100t
	$\begin{bmatrix} \frac{2}{10} & \frac{1}{10} & \frac{1}{10$	Α ι	
	10 2	3	
2	(i) Highest – 10 x 7.5 = 75	M1	Highest
~	Lowest - 6 x 4 = 24 -	A1	riigiicst
	51	/ ()	
	(ii) Highest = <u>7.5</u> = 1.875	M1	Fraction
	4	_	
	Lowest = $6 = 0.600$	A1	
	10 1.275		
		4	
3	$\cos \theta = \frac{17}{1} = 0.8095$	M1	
	21 /		
	θ = Cos 0.8095	A1	θ
	= 36.03°		
	Arc length = $72.06 \times 2 \times 22 \times 21$	M1	
	360 7	۸.1	
	= 26.422cm	A1	
	2 0 (.0) 0	4	_
4	$x^2 - 2x(x+3) = 0$ $x^2 - 2x^2 - 6x = 0$	M1	Equ
	$x^2 - 2x^2 - 6x = 0$ $-x^2 - 6x = 0$	N/1	Factor
	-x - 6x = 0 either x = 0	M1	i actoi
	or $x = 6$	A1	Both A
	OI X - O	3	DOULA
		3	
5	$8 = x \times 2 \times 22 \times 28 \cos 60^{\circ}$	M1	
-	360 7	_	
	$8 = \underline{x} x \underline{44} x 28 x 0.5$		
	360 7		
	$x = 8 \times 360 \times 7$	M1	x exp
	44 x 28 x 0.5		
	= 32.73°	A1	
	= 33°	B1	

T *	isabokemicah@gmail.com	1	
FREE EDUCATION RESOURCES FO	\angle DMC = \angle AMB vert. Opp = θ \angle MAB = \angle MDC = $\underline{180 - \theta}$ BASE Ls of an isosc. 2 \angle MBA = \angle MAC $\underline{180 - \theta}$ base angles of isos 2 's AMC and CDM are equiangle ∴ Similar proved	B1 B1 B1	
		2	
7	Tan x = $\frac{5}{12}$	3	
	$h = \sqrt{b^2 + 12^2}$ $= \sqrt{25 + 144}$ $= \sqrt{169}$ $= 13$ $\frac{1 - \sin x}{\sin x + 2 \cos x} = \frac{1 - 5}{\frac{5}{13} + 2 \cdot x^{\frac{12}{13}}}$ $\frac{\frac{1^2}{13}}{\frac{29}{13}} = \frac{12}{13} \cdot \frac{x \cdot 13}{29} = \frac{12}{29}$	M1 M1 A1	Hypo Sub
	715 10 27 27	3	
8	$Y = x^{2} + 2$ $\begin{array}{ c c c c c c c }\hline x & 0.5 & 1.5 & 2.5 & 3.5 & 4.5\\\hline y & 2.25 & 4.25 & 8.25 & 14.2 & 22.2\\\hline Area = h & (y_{1}, = y_{2} +y_{n})\\ & = 1(2.225 + 4.25 + 8.25 + 14.25 + 22.25)\\ & = 51.25 \text{ sq units}\\\hline \end{array}$	B1 M1 A1 3	Ordinals
9		3	

ARICA	isabokemicah@gmail.com	n	
PACTION RESOURCES FOR	∠CBA = 117° ∠ ACD = 55 ∠ BAC = 180 − (117 + 55) = 8°	B1 B1 B1	
10	Year 1994 1995 1996 1997 1998 Index 83.3 100 116.6 123. 133. 3 3 3 3	B1 B1 B1 B1	1994 1996 1997 1998
11.	Xy = 35 $y = {}^{35}/_{x}$ 9x - 9y = -18 Sub $x^{2} + 2x - 35 = 0$	4 B1 M1	
	$x^{2} + 7x - 5x - 35 = 0$ $x (x + 7) - 5(x + 7) = 0$ $(x - 5) (x + 7) = 0$ $x = -7$ $x = +5$	A1	
	y = 7 Smaller No. = 57 = 75	B1	
12	$Log_{5} (2x - 1) = log_{5} 5^{2}$ 20 $4(2x - 1) = 5^{2}$ 20 $2x - 1 = 25$	M1 M1	
	5 2x - 1 = 125 2x = 126 x = 63	A1 3	
13	$C.P = \frac{100 \times 49.50}{110}$ $= 45/-\frac{52x + 40y}{x + y} = 45$	B1 M1	
	x + y 45x + 45y = 52x + 40 -7x = -54 $x/y = \frac{5}{7}$ x : y = 5 : 7	M1 A1	
14	$\frac{2n-4}{n}$ it angle = 172	M1	
	$\frac{(2n-4) \times 90 = 172n}{n} = 45$ Novels,Updated KASNEB,ICT,College,High School,Primary Notes &Revis:	A1	0714497530

C SI	isabokemicah@gmail.com		
CS SS S	90 (2n - 4) x 90 = 172	M1	
SOURC	n		
O S	180 n - 360 = 172n		
DUCAT	180n – 172n = 360		
C BEE	8n = 360 n = 45		
ω	11 - 43	2	
SPEE EDUCATIO	2 x = 2. 1 + 3. 1		
	6.341 9.22		
	2x = 2 x 0. 1578 + 3 x 0.1085	B1	Tables
	= 0.3154 + 0.3254		
	= 0.6408		
	x = 0.3204	A1	
16	Bearing 140°	2	
10	Sin θ = 20 Sin 110	M1	
	40		
	= 0.4698		
	= 228.02	A1	
	Bearing of A from B = 198.42	B1	
		3	
17	Points that each tap fills in one hour		
	A = 1 D =1 C 1	M1	
	$A = 1 B = 1 C - 1 \\ 50 25 20$	IVII	
	In one hour all taps can fill = $\underline{1} + \underline{1} + \underline{1} = \underline{11}$ 50 25		
	20 100	B1	
	In 6hrs all can fill = $11 \times 6 = 33$ parts		
	100 50		
	taps A and B can fill = $=$ $\frac{1}{1}$ + $\frac{1}{1}$ = $\frac{3}{2}$ part in 1 hr		
	50 25 50		
	In 4 <u>1</u> hrs, A and B = <u>25</u> x <u>3</u> + <u>1</u>	B1	
	6 6 50 4		
	Parts remaining for B to fill = $1 - \underline{33} + \underline{1} = 1 - \underline{91} = \underline{9}$	B1	
	parts		
	50 4 100		
	100		
	Time taken = $\frac{9}{100}$ x $\frac{25}{100}$ hrs = 2 1/4 hrs		
	7.30 am	M1	
	6. hrs	_	
	13.30	A1	
	<u>4.10</u>		
	5.40pm		
	<u>2.15</u> <u>7.55 pm</u>		
	<u> </u>		
		8	
+		-	
18			

) ä	Х	-5	-4	-3		1 0	1	2	3	4	-0.5	
T	$y = x^2 + x - 8$		+4	-2		-8 isab@				12	-8.25	
מם "	$x^{2} + x - 8 =$ $y = x^{2} + 3x -$ Points of in $y = x^{2} + x -$ $x^{2} + 2x + 2$	-2 - 2> - 6 tersect 8 = 2x ²	ion (- ² + 3x	4 4, 1.4) - 6		0 -2	-4	-6	B1 B1	- 1	Eqn Point of	inter
	$y = x^{2} + x - 2y = 2x^{2} + 2$ $0 = 2x^{2} + 3x$ $0 = 2x^{2} - 3x$	- 8 x 2 2x - 16 <u>c - 6</u>							B1		Line eq	า
	2y = -x - 1 y = - 2.6 Ny = 1.2	0							B1		Both	
									4			
19												
li	Class	Х			T		D = x -	- 47	+d		Fd ²	
	30 -34	32			4		-15		-60		900	
	35 – 39	37			10		10		-100		1000	
	40 – 44	42			8		-5		-40		200	
	45 –49	47			11		- <u>5</u> 0		0		0	
	50 - 54	52			8		5		40		200	
	55 – 59	57			6		10		60		600	
	60 – 64	62			3 50		15		45 -55		675	
	(ii) Standard 50	d devia	=√	70.29	.9		50 √71.5		M		3575	
			= 8	.3839					8			
20	Χ	0	`15	30	45	60	75	90	105	120	135	150
	(x - 15)		1.0	.97	.87	0.71	0.5	0.26		-0.26		-0.71
	(x +30)		.71	1.7	1.93	2.00	1.9	1.7	1.4	1.00	.52	0.00
	(ovels Undate	1 WAGN				L 1 P			1210 171		074.4	107526

AFRICA	isabokemicah@gmail.com		
ON RESOURCES FOR	(a) a = 1 b = 2	B1 B1 B1	All All A & b
EDUCATI	$\frac{1}{2}\cos(x-15) = \sin(x+30)$ has no solution in the domain	B1	
		8	
21	(a) O Cos 30 = <u>20</u>		
	X = 20 0.866		
	= 23.09	B1	
	DE = $\sqrt{50^2 + 23.09^2}$ = $\sqrt{2500 + 533.36}$ = $\sqrt{3033.36}$	M1	
	= 55.076m (b) GB = $\sqrt{20^2 + 50^2}$	A1	
	$= 53.85$ Tan $\theta = 14.55$ $= 53.85$	M1	
	$\theta = 0.27019$	A1	
		8	
	(c) Volume of air = 50 x 20 x 3 + ½ x 20 x 11.55 x 50 = 3000 + 5775 = 8775	M1	
	No. of people = 8775	M1	
	= 1462.5 1462	A1	
22	(a) A + B 16	8	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	In equation 3
	(b) 14 vehicles	B1	Vehicles
	(c) A - 6 vehicles B - 8	B1	
	Cost = 6 x 1000 + 8 x 1200 = 6000 + 9600	M1	
	= 15,600/=	A1	
		8	
23			
	ı	I	I

N AFRI	isabokemicah@gmail.com	
TEACHER, &		
	$\frac{x}{12-x} = \frac{8}{3}$ = 8.727 FBX = $\frac{3}{3} = 0.9166 = 23.57$ 3.273	
	3FBX = 47.13	M1
	Reflex ∠ FBD = 312.87	A1
	Reflex arc FD = $\frac{312.87}{360}$ x $\frac{22}{360}$ x 6	
	= 16.39 cm Reflex Arc CE = $312.87 \times 22 \times 16$ 360 7 = 43.7 cm	M1
	FE (tangent) = √144 – 121	A1
	$= \sqrt{23}$ = 4.796cm 2 FE = 9.592	M1
	Total length = $9.592 + 4.796 + 43.7 + 16.39$ = 74.48 cm^2	A1
		M1 A1 8

(a) $\frac{200}{\sin 50} = \frac{40}{\sin 60}$ M1 Sin $\theta = \frac{40 \sin 50}{200}$ $= \frac{0.7660}{5}$ $= 0.1532$ $\theta = 8.81^{\circ}$ $\angle ACB = 180 - (50 + 8.81)^{\circ}$ $= 121.19^{\circ}$ $\frac{x}{\sin 121.19} = \frac{200}{\sin 50}$ M1 $x = \frac{200 \times \sin 121.19}{\sin 50}$ $= \frac{200 \times 0.855645}{0.7660}$ $= \frac{203 \times 0.855645}{0.7660}$ $= 223.36Km/h$ (b) Course = $330^{\circ} - 8.81^{\circ}$ $= 321.19^{\circ}$ (c) Time = $\frac{600}{321.19^{\circ}}$ M1 A1	A A	isabokemican@gmaii.com	
Sin 50 Sin θ Sin $\theta = \frac{40 \text{Sin } 50}{200}$ $= \frac{0.7660}{5}$ $= 0.1532$ $\theta = 8.81^{\circ}$ $\angle ACB = 180 - (50 + 8.81)^{\circ}$ $= 121.19^{\circ}$ $\frac{x}{\sin 121.19}$ Sin 50 $= \frac{200 \times \sin 121.19}{\sin 50}$ $= \frac{200 \times 0.855645}{0.7660}$ $= 223.36 \text{Km/h}$ (b) Course = $330^{\circ} - 8.81^{\circ}$ $= 321.19^{\circ}$ (c) Time = $\frac{600}{321.19^{\circ}}$ $= 2.686 \text{ hrs}$	FREE EDUCATION RESOURCES FOR A	Isabokeinican@gman.com	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Sin 50 Sin θ Sin $\theta = \frac{40 \sin 50}{200}$ = $\frac{0.7660}{5}$ = 0.1532 $\theta = 8.81^{\circ}$	
Sin 50 $= \frac{200 \times 0.855645}{0.7660}$ $= 223.36 \text{Km/h}$ (b) Course = $330^{\circ} - 8.81^{\circ}$ $= 321.19^{\circ}$ (c) Time = $\frac{600}{321.19^{\circ}}$ M1 $= 2.686 \text{ hrs}$		= 121.19°	M1
= 223.36Km/h (b) Course = 330° - 8.81°		Sin 50 = <u>200 x 0.855645</u>	
$= 321.19^{\circ}$ (c) Time = $\frac{600}{321.19^{\circ}}$ $= 2.686 \text{ hrs}$ M1 A1		= 223.36Km/h	
321.19° = 2.686 hrs		= 321.19°	
		(c) Time = 600 321.19°	
		= 2.686 hrs	8

MATHEMATICS VI PART I

SECTION I (52 MARKS)

1. Evaluate without mathematical tables leaving your answer in standard form

 $0.0171^2 \times 3$

855 X 0.531 (2 Mks)

Six men take 14 days working 8 hours a day to pack 2240 parcels. How many more men working 5 hours a day will be required to pack 2500 parcels in 2 days (3 Mks)

3.

OABC, OA = 4i - 3j. OC = 2i + 7j

M In quadrilateral

AB = 30C, cm: mB = 2:3.

Α

4. By matrix method, solve the equations

5x + 5y = 1

4v + 3x = 5

(3 Mks)

5.

 $\angle ABC = 126^{\circ}$.

vector Om (3 Mks)

Wks)

Nks)

Nks)

Nks (2SE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/ In the given circle centre O,

Calculate ∠OAC

С

6. Solve the equation

$$2(3x-1)^2 \cdot 9(3x-1) + 7 = 0$$

(4 Mks)

- 7. Maina, Kamau and Omondi share Shs. 180 such that for every one shilling Maina gets, Kamau gets 50 Cts and for every two shillings Kamau gets, Omondi gets three shillings. By how much does Maina's share exceed Omondi's (3 Mks)
- 8. Expand $(2 + \frac{1}{2}x)^6$ to the third term. Use your expression to evaluate 2.46 correct to 3 s.f.

(3 Mks)

101

9. The probability of failing an examination is 0.35 at any attempt. Find the probability that (i) You will fail in two attempts (1 Mk)

In three attempts, you will at least fail once

В

(3 Mks)

- 10. Line y = mx + c makes an angle of 135^0 with the x axis and cuts the y axis at y = 5. Calculate the
 - equation of the line

(2 Mks) (3 Mks)

11. During a rainfall of 25mm, how many litres collect on 2 hectares?

- 12. Solve the equation <u>a</u> <u>3a 7</u> = <u>a 2</u>

(3 Mks)

- 13. The sum of the first 13 terms of an arithmetic progression is 13 and the sum of the first 5 terms is -25. Find the sum of the first 21 terms
- 14. The curved surface of a core is made from the shaded sector on the circle. Calculate the height of (4 Mks) the cone.

20cm

125°

20 cm

(3 Mks)

16. The bearing of Q from P is North and they are 4 km apart. R is on a bearing of 030 from P and on a bearing of 055 from Q. Calculate the distance between P and R. (3 Mks)

SECTION II (48 MARKS)

17. In the given circle centre 0, \angle QTP = 46 $^{\circ}$, \angle RQT = 74 $^{\circ}$ and \angle URT = 39 $^{\circ}$

Q

Calculate

(a) ∠RST

(1 Mk)

(b) ∠SUT

(3 Mks)

(c) Obtuse angle ROT

(2 Mks)

(d) ∠PST

- (2 Mks)
- 18. The exchange rate on March 17th 2000, was as follows: -
 - 1 US\$ = Kshs.74.75
 - 1 French Franc (Fr) = Kshs.11.04

A Kenyan tourist had Kshs.350,000 and decided to proceed to America

- (a) How much in dollars did he receive from his Kshs.350,000 in 4 s.f?
- (2 Mks)
- (b) The tourist spend ¼ of the amount in America and proceeded to France where he spend Fr
- 16,200. Calculate his balance in French Francs to 4 s.f. (3 Mks)
- (c) When he flies back to Kenya, the exchange rate for 1 Fr = Kshs.12.80. How much more in Kshs. does he receive for his balance than he would have got the day he left? (3 Mks)
- 19. On the provided grid, draw the graph of $y = 5 + 2x 3x^2$ in the domain $-2 \le x \le 3$ (4 Mks)
 - (a) Draw a line through points (0,2) and (1,0) and extend it to intersect with curve $y = 5 + 2x 3 \times 2$ read the values of x where the curve intersects with the line (2 Mks)
 - (b) Find the equation whose solution is the values of x in (a) above (2 Mks)
- 20. (a) Using a ruler and compass only, construct triangle PQR in which PQ = 3.5 cm, QR = 7 cm and angle PQR = 30° (2 Mks)

- (c) Calculate the difference between area of the circle formed and triangle PQR
- (4 Mks)
- 21. The given Region below (unshaded R) is defined by a set of inequalities. Determine the inequalities (8 Mks)

22. The table below shows the mass of 60 women working in hotels

Mass (Kg)	60 - 64	65 – 69	70 – 74	75 - 79	80 – 84	85 - 89
No. of women	8	14	18	15	3	2

(a) State (i) The modal class (1 Mk)

(ii) The median class (b) Estimate the mean mark

(5) (AMA (S) and Past Papers Visit https://Teacher.co.ke/ (1 Mk)

Draw a histogram for the data

For free KCSE Notes, Exams, an

- 23. XY, YZ and XZ are tangents to the circle centre O at points A, B, C respectively. XY = 10 cm,
 - YZ = 8 cm and XZ = 12 cm.

(2 MKS)

С

Υ

(a) Calculate, length XA

(2 Mks)

В

(b) The shaded area

- (6 Mks)
- 24. Maina bought a car at Kshs.650,000. The value depreciated annually at 15%
 - (a) After how long to the nearest 1 decimal place will the value of the car be Kshs.130,000
- (4 Mks)
- (b) Calculate the rate of depreciation to the nearest one decimal place which would make the value of the car be half of its original value in 5 years (4 Mks)

MATHEMATICS VI PART II

SECTION 1 (52 MARKS)

Simplify
$$\left(\begin{array}{c} 32a^{10} \\ b^{15} \end{array}\right)$$

(2 Mks)

Use logarithm tables to evaluate

$$\sqrt{0.375\cos 75}$$

tan 85.6

(4 Mks)

- 3. The marked price of a shirt is Shs.600. If the shopkeeper gives a discount of 20% off the marked price, he makes a loss of 4%. What was the cost of the shirt? (3 Mks)
- 4. The surface area (A) of a closed cylinder is given by $A = 2\pi r^2 + 2\pi rh$ where r is radius and h is height of the cylinder. Make r the subject. (4 mks)
- 5. In the circle centre O, chords AB and CD intersect at X. XD = 5 cm XC = 1/4 r where r is radius. AX:XO = 1:2 Calculate radius of the circle.

(3 mks)

5cm D

0

В

6. Simplify
$$\frac{2}{5-2\sqrt{3}}$$
 - $\frac{1}{5+2\sqrt{3}}$

(3 mks)

- 7. P is partly constant and partly varies as q2. When q = 2, P = 6 and when q = 3, P = 16. Find q when P = 64 (4 mks)
- 8. The figure on the side is a tent of uniform cross-section ABC. AC = 8m, BC = 8m, BD = 10m and (ACB = 120°). If a scout needs 2.5 m³ of air, how many scouts can fit E

D

in the tent.

10m

- 9. The length of a rectangle is given as 8 cm and its width given as 5 cm. Calculate its maximum % error in its perimeter (3 mks)
- 10. ABCD is a rectangle with AB = 6 cm, BC = 4 cm AE = DH = 4 cm BF = CG = 12 cm. Draw a labelled net of the figure and show the dimensions of the net
- 11. Expand $(1 + 2x)^6$ to the 3rd term hence evaluate $(1.04)^6$

(4 mks)

- 12. The eye of a scout is 1.5m above a horizontal ground. He observes the top of a flag post at an angle of elevation of 20°. After walking 10m towards the bottom of the flag post, the top is observed at angle of elevation of 40°. Calculate the height of the flag post (4 mks)
- 13. A bottle of juice contains 405ml while a similar one contains 960ml. If the base area of the larger Container is 120 cm². Calculate base area of the smaller container. (3 mks)
- 14. It takes a 900m long train 2 minutes to completely overtake an 1100m long train travelling at 30km per hour. Calculate the speed of the overtaking train (3 mks)
- 15. Okoth traveled 22 km in 2³/₄ hours. Part of the journey was at 16 km/h and the rest at 5 km/h.

 Determine the distance at the faster speed (3 mks)
- 16. P and Q are points on AB such that AP:PB = 2:7 and AQ:QB = 5:4 If AB = 12 cm, find PQ

(2 Mks)

For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/

SECTION B (48 MARKS)

17. The income tax in 1995 was collected as follows:

Income in Kshs. p.a	<u>rate of ta</u>	x %
1 - 39,600		10
39,601 - 79,200	15	
79,201 - 118,800	25	
118,801 - 158,400	35	
158,401 - 198,000	45	

Mutua earns a salary of Kshs.8,000. He is housed by the employer and therefore 15% is added to his salary to arrive at its taxable income. He gets a tax relief of Shs.400 and pay Shs.130 service charge. Calculate his net (8 Mks) income

18. The probability Kioko solves correctly the first sum in a quiz is $\frac{2}{5}$ Solving the second correct is $^3/_5$ if the first is correct and it is $^4/_5$ if the first was wrong. The chance of the third correct is 2 /₅ if the second was correct and it is 1 /₅ if the second was wrong. Find the probability that

(a) All the three are correct

(2 Mks)

(b) Two out of three are correct

(3 Mks)

(c) At least two are correct

- 19. A businessman bought pens at Shs.440. The following day he bought 3 pens at Shs.54. This
- 20. In \triangle OAB, OA = a, OB = b

- A businessman bought pens at Shs.440. The following day he bought 3 pens at Shs.54. This purchase reduced his average cost per pen by Sh.1.50. Calculate the number of pens bought earlier and the difference in cost of the total purchase at the two prices

 In Δ OAB, OA = a, OB = b

 OPAQ is a parallelogram.

 ON:NB = 5:-2, AP:PB = 1:3

 Determine in terms of a and b vectors

 (a) OP

 (b) PQ

 (c) QN

 (d) PN

 (2 Mks)

 (d) PN

 (2 Mks)

 (3 Mks)

 (4 ms)
- 21. A cylindrical tank connected to a cylindrical pipe of diameter 3.5cm has water flowing at 150
 - (a) Calculate the volume in M³ added in 2 days

(4 ms)

- (b) If the tank has a height of 8 m and it takes 15 days to fill the tank, calculate the base radius of the tank
- 21. A joint harambee was held for two schools that share a sponsor. School A needed Shs.15 million while School B needed 24 million to complete their projects. The sponsor raised Shs.16.9 million while other guest raised Shs.13.5 million.
 - (a) If it was decided that the sponsor's money be shared according to the needs of the school with the rest equally, how much does each school get (5 mks)
 - (b) If the sponsor's money was shared according to the schools needs while the rest was in the ratio of students, how much does each school get if school A has 780 students and school B 220 (3 mks)
- 23. Voltage V and resistance E of an electric current are said to be related by a law of the form

V = KEⁿ where k and n are constants. The table below shows values of V and E

V	0.35	0.49	0.72	0.98	1.11
E	0.45	0.61	0.89	1.17	1.35

By drawing a suitable linear graph, determine values of k and n hence V when E = 0.75(8 mks)

- 24. The vertices of triangle P,Q,R are P(-3,1), Q (-1,-2), R (-2,-4)
 - (a) Draw triangle PQR and its image $P^{I}Q^{I}R^{I}$ of PQR under translation Γ =
- on the provided grid

For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/

M1

M1

(b) Under transformation matrix m = $\begin{pmatrix} 4 & 3 \end{pmatrix}$, $P^IQ^IR^I$ is mapped on to $P^{II}Q^{II}R^{II}$. Find the co-ordinates of $P^{II}Q^{II}R^{II}$ and plot it $\begin{pmatrix} 1 & 2 \end{pmatrix}$ on the given grid (c) If area of $\Delta P^IQ^IR^I$ is 3.5 cm², find area of the images $P^{II}Q^{II}R^{II}$

(4 Mks)

(2 Mks)

(2 Mks)

MATHEMATICS VI PART 1 **MARKING SCHEME**

1.
$$\frac{171 \times 171 \times 3 \times 10^{-5}}{855 \times 531}$$
$$= 2 \times 10^{-6}$$

2

Α1

2. No. of men =
$$6 \times 14 \times 8 \times 2500$$

2 X 5 X 2240

Extra men =
$$75 - 6 = 69$$

M1

M1

M1

3.

B1

B1

5. Reflex
$$\angle AOC = 126 \times 2 = 252^{\circ}$$

Obtuse
$$\angle AOC = 360 - 252 = 108^{\circ}$$

$$= \frac{1}{2} (180 - 108)^{0}$$

= 36^{0}

6.
$$18x^2 - 39x + 18 = 0$$

$$6x^2 - 13x + 6 = 0$$

 $6x^2 - 9x - 4x + 6 = 0$

$$3x(2x-3)(3x-2) = 0$$

 $x = {}^{2}/_{3}$ or

$$x = \frac{2}{3}$$
 or $x = 1.\%$

<u>4</u>

B1√ equation

7.
$$M : K : O = 4:2:3$$

Maina's = 4/9 X 180

= 80/-Omondi's = 60/-

Difference = Shs.20/-

 $(2 + 1/2x)^6 = 2^6 + 6(2^5)(1/2x + 15(2^4)(1/2x)^2$

 $= 64 + 96x + 60x^2$ $= (2 + \frac{1}{2} (0.8))^6$ = 64 + 96(0.8) + 60(0.64)

= 179.2 ≅179 to 3 s.f

9. $P(FF) = \frac{7}{20} X^{7}/20$ = $\frac{49}{100}$

P (at least one fail) = 1 - P (F¹F¹F¹) = $1(-\frac{13}{2})^3$ = 1 - <u>2197</u> 8000

= 5803

8000

10

10. grad = term 135

= mx + c

v = -x + 5

11. Volume = 2 x 10,000 x 10,000 x 25

1000

= 500,000 Lts

12. 10a - 6(3a - 7) = 5(a - 2)

10a - 18a + 42 = 5a - 10

-13a = -52

a = 4

13.2a + 12d = 2

2a + 4d = -10

8d = 12

 $= 1^{1}/_{2}$ d

= -8

 $S_{21} = {}^{21}/_2 (-16 + 20 \times 3/2)$

= 147

14. $2 \pi r = 120 \times \pi \times 40$

360

r = 6.667 cm

 $h = \sqrt{400 - 44.44}$

= 18.86 cm

15. = (w(x-z) - y(x-z))(w+z)

B1√ Omondi's

and Maina's

B1 difference

3

M1

Α1

M1

<u>A1</u> _4

В1

M1

M1

_4

В1

В1 2

 $M1\sqrt{x}$ section area

M1√ conv. to litres

<u>A1</u>

Α1 _3

M1

M1

Α1 _3

M1

A1

B1 M1

<u>A1</u> 5

M1

A1

M1

Α1 4

M1√ factor

M1√ grouping

<u>A1</u> <u>3</u>

55⁰ 16. 125

 25^{0}

R

PR = 4 sin 125 Sin 25 B1√ sketch M1

Α1

3

B1

17. (a) $< RST = 180^{\circ} - 74^{\circ}$ (b) < RTQ = 90° - 74° $= 16^{0}$

 $< PTR = 46^0 + 16^0 = 62^0$ $< SUT = 62^{0} - 39^{0} = 23^{0}$

B1 B1

B1

(c) Reflex \angle RQT = 180 - 2 x 16 $= 180 - 32 = 148^{0}$

B1

Obtuse ROT = $360 - 148 = 212^{0}$

В1

(d) $< PTS = 46 + 180 - 129 = 97^{\circ}$

B1

 $< PST = 180 - (97 + 39) = 44^{0}$

В1 8

(a) Kshs.350,000 = \$ <u>350,000</u>

M1

= \$ 4682

74.75

(b) Balance

 $= \frac{3}{4} \times 4682$

Α1

= \$ 3511.5

В1

\$3511.5 = Fr 3511.5 x 74.75 11.04

M1

= Fr 23780

Α1

Expenditure = Fr 16 200

Balance = Fr 7580

(c) Value on arrival = Kshs.7580 X 12.80 = Kshs.97,024

B1 both√

For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/

Value on departure

= Kshs.7580 X 11.04

= Kshs.83 683.2

Difference

= Kshs.97,024 - 83683.2

M1

= Kshs.13,340.80

<u>A1</u>

19.

X	-2	-1	0	1	2	3
Υ	-11	0	5	4	-3	-16

B1√values

8

S1√ scale P1√ plotting C1 √ curve

$$x = -0.53 \pm 0.1$$

mx = 1.87 ± 0.1

$$y = 5 + 2x - 3x^2 = 2 - 2x$$

 $\therefore 3x^2 - 4x - 3 = 0$

M1 $\sqrt{\text{for equation}}$ $MA1 \sqrt{\text{equation}}$ _8

=-0.53_+ 0.1 BI

20.

B1
$$\sqrt{2} \perp$$
 bisectors B1 $\sqrt{\text{circle}}$

Radius =
$$4.2 \pm 0.1$$

Area of circle = 22 /₇ x 4.22
= 55.44 ± 3 cm2
Area of \triangle PQR = 1 /₂ x 3.5 x 7.5 sin 30
= 6.5625 cm²
Difference = $55.44 - 6.5625$
= 48.88 cm²

$$B1\sqrt{\text{radius}}$$

 $M1\sqrt{\Delta}$ and circle M1√sub <u>A1</u>

Line (i) y/2 + x/5 = 1

5y + 2x = 10

5y + 2x = 10

Line (ii) y/4 + x/3 = 1

3y = 4x + 12

3y < 4x + 12 or 3y - 4x < 12

Line (iii) $grad = \frac{1}{3}y$ inter = 4

3y + x = 12 or 3y = -x + 12

3y + x < 12

Line (iv) y - 3 = -3x - 3 2

2y + 3x = 15

 $2y + 3x \le 15$

8

B1√equation

B1√ inequality

 $B1\sqrt{}$ equation

B1√ inequality

 $B1\sqrt{\text{equation}}$

B1√ inequality

 $B1\sqrt{\text{equation}}$

<u>B1</u>√ equation

8

22.

CLASS	F	X	Fx	Cf
60 - 64	8	62	496	8
65 – 69	14	67	938	28
70 – 79	18	72	1296	40
75 – 79	15	77	1155	55
80 - 84	3	82	246	58
85 – 89	2	87	174	60
	$\Sigma f = 60$		Σfx 3809	

 $B1\sqrt{x}$ column $B1\sqrt{f}$ column

- (a) (i) Modal class = 70 74
 - (ii) Median class = 70 74
- (b) Mean = $\frac{3809}{60}$ = 63.48

B1√ model class

B1√ median

M1

Α1

S1√ scale

B1 √ blocks

59.5 - 64.5

64.5 - 69.5 e.t.c.

_8

(c)

Histogram

For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/

$$a = 7 \text{ cm}$$

$$s X = \frac{100 + 144 - 64}{240}$$

$$= 0.75$$

$$X = 41.41^{0}$$

$$^{1}/_{2} X = 20.70^{0}$$

r = OA = 7tan 20.7
= 2.645 cm
Shaded area =
$$^{1}/_{2}$$
 X 10 X 12 sin 41.41 - $^{22}/_{7}$ X 2.645²
= 39.69 - 21.99
= 17.7 cm²

M1
$$\sqrt{1}$$
 any angle of the Δ

$$A1\sqrt{1/2}$$
 of the angle

M1
$$\sqrt{\Delta}$$
 & circle

$$\frac{\underline{A1}}{\underline{8}}$$

24. (a)
$$650,000 (0.85)^{n}$$
 = $130,000$
1.15n = 0.2
n = $\frac{\log 0.2}{\log 0.85}$
= $\frac{1.3010}{1.9294}$
= $\frac{-0.6990}{-0.0706}$
= 9.9 years
(b) $650,000 (1 - \frac{r}{100})^{5} = 325,000$
 $(1 - \frac{r}{100})^{5} = 0.5$
 $1 - \frac{r}{100} = 0.5 \frac{1}{5}$
= 0.8706

8

PART II MARKING SCHEME

SECTION I (52 MARKS)

$$= \left(\frac{b^{15}}{32a^{10}}\right)^{2/5} \left(\frac{x}{9b^{4}}\right)^{4a^{6}} 4a^{6}$$

$$= \left(\frac{2a^{5}}{27}\right)$$

M1√ reciprocal

В1

Α1

3

<u>A1</u> <u>2</u>

3. S. Price =
$$\frac{80}{100}$$
 X 600

13

Cost Price = x 96x = 480 100 Shs.500 Χ

4.
$$r^2 + hr = {}^{A}/_{2\pi}$$
 M1
 $r^2 + hr + ({}^{h}/_2)^2 = {}^{A}/_{2A} + {}^{h}/_4$ M1
 $(r + {}^{h}/_2)^2 = \sqrt{2A + h^2}$

$$+ \frac{h^{2}}{2} = \sqrt{\frac{2A + h^{2}}{4\pi}}$$
 $r = \frac{-h}{2} \pm \sqrt{\frac{2A + h^{2}}{4\pi}}$
 $r = \frac{A1}{4\pi}$

5.
$$(1^{2}/3r) (^{1}/3 r) = (^{1}/4 r) (5)$$
 M1
 $4r^{2} - qr = 0$ M1
 $r = 0$ or $r = 2.25$

6. =
$$\frac{2(5+2\sqrt{3})-1(5-2\sqrt{3})}{(5-2\sqrt{3})(5+2\sqrt{3})}$$
 M1

$$= \frac{10 + 4\sqrt{3} - 5 + 2\sqrt{3}}{13}$$

$$= 5 + 6\sqrt{3}$$

$$= \frac{A1}{3}$$

7.
$$P = Kq^2 + c$$

 $6 = 4k + c$
 $16 = 9k + c$
 $5k = 10$

M1 $\sqrt{subtraction}$

 $q = \sqrt{33}$

$$k = 2$$

 $c = -2$
 $P = 64$ $2q^2 = 66$ A1 \sqrt{k} and c

Volume =
$${}^{1}/{}_{2}$$
 X 8 X 8 sin 120 X 10
No. of scouts = $\underline{32 \sin 60 \times 10}$
2.5
= 110.8
= 110

$$\frac{A1}{\underline{4}}$$
 M1 $\sqrt{\text{area of x-section}}$ M1 $\sqrt{\text{volume}}$ M1

_3

9. Max. error =
$$2(8.5 + 5.5) - 2(7.5 + 4.5)$$

= 2
% error =
$$^{2}/_{26}$$
 X 100
= 7.692%

G Η

B1 √ labelling

В1

11. $(1 + 2x)^6 = 1 + 6(2x) + 15(2x)^2$ = 1 + 12x + 60x² $(1.04)^6 = (1 + 2(0.02))^6$ = 1 + 12 (0.02) + 60(0.02)² = 1.264

M1 Α1 M1 <u>A1</u> _4

Ε

10cm

12.

BT = 10 cm $CT = 10 \sin 40$ M1 = 6.428 mΑ1 h = 6.428 + 1.5С = 7.928 <u>B1</u> <u>__4</u>

4cm

F

12cm

F

13. A.S.F = 405 smaller area = 29 X 120 164 $= 67.5 \text{ cm}^2$

В1 10 M1 <u>A1</u>

В1

14. Relative speed = (x - 30)km/h 2 km

2 hrs

_3

x = 90 km/h

16 Km/h 5 Km/hr x Km (22 - x) Km x + 22 - x= 11 16 4 5x + 352 - 16x = 22011x = 132x = 12 km

M1

<u>A1</u>

M1√x-multiplication

M1

16. AP =
$${}^{2}/_{9}$$
 x 12 = ${}^{2}/_{3}$ cm
 $AQ = {}^{5}/_{9}$ x 12 = ${}^{6}/_{3}$ cm
 \therefore PQ = ${}^{6}/_{3}$ - ${}^{2}/_{3}$ = 4 cm

17. Taxable income = $^{115}/_{100}$ x 8000 M1

= Shs.9200 p. m = Shs.110,400 p.a Tax dues = $\frac{10}{100}$ x 39600 + $\frac{15}{100}$ x 39600 + $\frac{25}{100}$ x 31200

= 3960 + 5940 + 7800= Shs.17,700 p.a = 1475 p.m net tax = 1475 - 400 = Shs.1075

Total deductions = 1075 + 130 = Shs.1205

net income = 8000 - 1205 = Shs.6795 B1 √ both AP & AQ

<u>B1</u> √ C.A.O

A1

M1 √ first 2 slabs M1 √ last slab

Α1

B1 √ net tax

M1 <u>A1</u> 8

18.

(a) P (all correct) = $^{2}/_{3} x^{3}/_{5} x^{2}/_{5}$

(c) P (at least 2 correct)

(b) P (2 correct) = ${}^{2}/_{5} \times {}^{3}/_{5} \times {}^{2}/_{5} \times {}^{2}/_{5} \times {}^{4}/_{5} \times {}^{2}/_{5}$

M1 Α1

M1 M1

Α1

 $= {}^{18}/_{125} + {}^{4}/_{125} + {}^{24}/_{125}$ $= {}^{46}/_{125}$

125

= P(2 correct or 3 correct) = ${}^{46}/_{125} + {}^{12}/_{125}$

= 46 + 12125 = <u>58</u> M1

M1

8

19. Old price/pen = 440

Χ

A1

SOURCES FOR AF	New price/pen = $\frac{49}{x}$	<u>4</u> + 3			B1√both exp	ressions
IEACHER.	$\frac{440 - 494}{x} = 1.50$ $x + 3$ $440(x + 3) - 494x = 3$ $x^{2} + 39x - 880 = 0$ $x^{2} + 55x - 16x - 880$ $(x - 16)(x + 55) = 0$ $x = -55$				M1√x-multip A1√solvable	
	or x = 16				A1 √ both va	lues
	∴ x = 16 difference in purcha		.50 Shs.28.50		M1	<u>A1</u>
20 (2)	$OP = a + \frac{1}{4} (b - a)$				<u>8</u> M1	
	$= {}^{3}/_{4} a + {}^{1}/_{4}$	b			A1	
(b)	PQ = PO + OQ = $-\frac{3}{4}$ a - $\frac{1}{4}$	h + ¹ / ₄ (a - l	n)		M1	
	= - ¹ / ₂ a - ¹ / ₂	b . /4 (a .	<i>3</i>)		A1	
(c)	$QN = QO + ON = \frac{1}{4}$	$(b - a) + \frac{5}{3}$	h			M1
<i>(</i> 1)		(b - a) + ⁵ / ₃ ₁₂ b - ¹ / ₄ a	~		A1	
(d)	PN = PB + BN = $\frac{3}{4}$ (= $\frac{17}{12}$	(b - a) + ² / ₃ k 2 b - ³ / ₄ a)		<u>A1</u>	M1
					8	
	Volume in 2 days = 2	22 x <u>3.5</u> x <u>3.</u> 7	5 x <u>150 x 20 x</u> 2	3600 2	M1 √ area of 1,000,000	x-section
cm ³		7 3.95 m³			M1 √ area of 1,000,000	x-section volume in m ³ M1
cm ³	= 103	7 3.95 m ³ <u>x 15</u> x 7	2		M1 √ area of 1,000,000	volume in m ³
cm ³	= 103 $\frac{22}{7}$ X r ² x 8 = $\frac{103.95}{7}$ r ² = $\frac{103.95}{7}$ = 31.01	7 3.95 m ³ <u>x 15</u> x 7	2		M1 √ area of 1,000,000 M1 √	volume in m ³
cm ³	= 103 22 X r ² x 8 = <u>103.95</u> 7 r ² = <u>103.95 x</u>	7 3.95 m ³ <u>x 15</u> x 7	2		M1 √ area of 1,000,000 M1 √ M1	volume in m ³ M1
cm ³ (b)	= 103 $\frac{22}{7}$ X r ² x 8 = $\frac{103.95}{7}$ r ² = $\frac{103.95}{7}$ = 31.01 r = 5.568 m	7 3.95 m ³ x 15 x 7 x 15 x 7 A:B = 5:8	2 2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 <u>A1</u> <u>8</u>	volume in m ³ M1
cm ³ (b)	= 103 $\frac{22}{7}$ X r ² x 8 = $\frac{103.95}{7}$ $r^2 = \frac{103.95}{7}$ = 31.01 r = 5.568 m Ration of needs for A	7 3.95 m ³ x 15 x 7 x 15 x 7 4:B = 5:8 .9 + ¹ / ₂ x 13	2 2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 <u>A1</u> <u>8</u> M1	volume in m ³ M1
cm ³ (b)	= 103 $\frac{22}{7}$ X r ² x 8 = $\frac{103.95}{7}$ $r^2 = \frac{103.95}{7}$ = 31.01 r = 5.568 m Ration of needs for A's share = $\frac{5}{13}$ x 16 = 13.25 Milli B's share = $(13.5 + 7)$	7 3.95 m ³ x 15 x 7 x 15 x 7 4:B = 5:8 .9 + ¹ / ₂ x 13 on	2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 <u>A1</u> <u>8</u>	volume in m ³ M1
cm ³ (b)	= 103 $\frac{22}{7}$ X r ² x 8 = $\frac{103.95}{7}$ $r^2 = \frac{103.95}{7}$ = 31.01 r = 5.568 m Ration of needs for A's share = $\frac{5}{13}$ x 16 = 13.25 Milli	7 3.95 m ³ x 15 x 7 3.15 x 7 4:B = 5:8 9 + $^{1}/_{2}$ x 13 on 16.9) - 13.25	2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 <u>A1</u> <u>8</u> M1	volume in m ³ M1 M1
cm ³ (b)	= 103 $\frac{22}{7} \times r^2 \times 8 = \frac{103.95}{7}$ $r^2 = \frac{103.95}{7}$ = 31.01 r = 5.568 m Ration of needs for A's share = $\frac{5}{13} \times 16$ = 13.25 Milli B's share = $(13.5 + 7)$ = 13.25 A's share $\frac{5}{13} \times 16.9$ 6.5	7 3.95 m ³ x 15 x 7 3.15 x 7 4:B = 5:8 9 + $^{1}/_{2}$ x 13 on 16.9) - 13.25	2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 A1 8 M1 A1	volume in m ³ M1
cm ³ (b)	= 103 $\frac{22}{7}$ X r ² x 8 = $\frac{103.95}{7}$ $r^2 = \frac{103.95}{7}$ = 31.01 r = 5.568 m Ration of needs for A A's share = $\frac{5}{13}$ x 16 = 13.25 Milli B's share = $(13.5 + \frac{7}{13})$ = 13.25 A's share $\frac{5}{13}$ x 16.9	7 3.95 m ³ $\times 15 \times 7$ $\times 15 \times 7$ 4:B = 5:8 $\cdot 9 + \frac{1}{2} \times 13$ on 16.9) - 13.25 $\cdot + \frac{39}{50} \times 13$ 5 + 10.53	2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 <u>A1</u> <u>8</u> M1	volume in m ³ M1
cm ³ (b)	= 103 $\frac{22}{7} \times r^2 \times 8 = \frac{103.95}{7}$ $r^2 = \frac{103.95}{7}$ = 31.01 r = 5.568 m Ration of needs for A A's share = $\frac{5}{13} \times 16$ = 13.25 Milli B's share = $(13.5 + 7)$ = 13.25 A's share $\frac{5}{13} \times 16.9$ 6.5 = 17.03 m	7 3.95 m^3 $1.8 + 39 + 10.53$ 3.95 m^3	2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 A1 A1 A1 A1	volume in m ³ M1 M1 M1
cm ³ (b) 22. (a) (b) A	= 103 22 X r ² x 8 = 103.95 7 r ² = 103.95 x = 31.01 r = 5.568 m Ration of needs for A's share = ${}^{5}/_{13}$ x 16 = 13.25 Milli B's share = (13.5 + 7) = 13.25 A's share ${}^{5}/_{13}$ x 16.9 6.5 = 17.03 m B's share = 30.4 - 17 = 13.37 Milli Log V = n Log E =	7 3.95 m ³ x 15 x 7 4:B = 5:8 9 + $^{1}/_{2}$ x 13 on 16.9) - 13.25 1 + $^{39/}_{50}$ x 13 5 + 10.53 7.03 on	2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 A1 A1 A1 A1 A1 A1 A1 B	volume in m ³ M1 M1 M1
cm ³ (b) 22. (a)	= 103 $\frac{22}{7} \times r^2 \times 8 = \frac{103.95}{7}$ $r^2 = \frac{103.95}{2} \times r^2 =$	7 3.95 m ³ x 15 x 7 4:B = 5:8 9 + $^{1}/_{2}$ x 13 on 16.9) - 13.25 1 + $^{39/}_{50}$ x 13 5 + 10.53 7.03 on	2 2 x 2 2x 8		M1 √ area of 1,000,000 M1 √ M1 A1 A1 A1 A1	volume in m ³ M1 M1 M1

B1 $\sqrt{\log V}$ all points B1 $\sqrt{\log E}$ all points

Α1

Log V = n log E + log K
Log K = 0.08
$K = 1.2 \pm 0.01$
$N = {0.06 \choose 0.06}$
= <u>1 ± 0.1</u>
∴ v = 1.2E
when E = 0.75, V = 0.9 ± 0.1
1 1

Log V = n log E + log K

$$Log K = 0.08$$

 $K = 1.2 \pm 0.01$
 $N = {}^{0.06}/_{0.06}$
 $= \frac{1 \pm 0.1}{1.2E}$
when E = 0.75, V = 0.9 \pm 0.1
24. (a) T $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ PQR \rightarrow P'Q'R'
 $P'(0,5)$, Q'(2,2) R'(1,0)
 $P'Q'R'$ P'' Q'' R''
(b) $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ 0 $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 2 $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ 15 14 4
 $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$

 P^{\parallel} (15,10), Q^{\parallel} (14,6), R^{\parallel} (4,1) (c) Area s.f = det M

= 5
area of
$$P^{\parallel} Q^{\parallel} R^{\parallel}$$
 = 5 (area $P^{l}Q^{l}R^{l}$)
= 5 X 3.5
= 16.5 cm²

S1 √ scale P1√ plotting L1 √ line

B1 √ K B1 √n

<u>B1</u>√ v 8

M1 √

B1√