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1.0 INTRODUCTION

You are expected to read this study guide carefully at the start of this semester. It
contains important information about this course. If you need more clarifications, please
consult one of the academic staff on the course. This course material will provide you
with in-depth knowledge you will need in order to complete the course.

Code for this course is MTH 210 and the Course title is Introduction to Complex
Analysis, a three (3) credit unit course for students studying towards acquiring a
Bachelor of Science in Mathematics, Computer Science and other related disciplines.

The course is divided into modules and study units. It will first take a brief introduction
to Complex Analysis. This course will then go ahead to introduce mathematical
operations with complex numbers as well as De Moivre’s Theorem and its application as
well as obtaining the Limits and continuities of complex functions

The course guide therefore gives you an overview of what the course MTH 210 is all
about, the textbooks and other materials to be referenced, what you expect to know in
each unit, and how to work through the course material.

You are welcome to the course, introduction to Complex Analysis where you will
perform different mathematical operations with complex numbers



2.0 AIM AND OBJECTIVES

Aim
This course aims to introduce you to the basic concepts and features of complex
numbers. The study will also introduce you to analytic functions.

Objectives

It is important to note that each unit has specific objectives. You should study them
carefully before proceeding to subsequent units. Therefore, it may be useful to refer to
these objectives in the course of your study of the unit to assess your progress. You
should always look at the unit objectives after completing a unit. In this way, you can be
sure that you have done what is required of you by the end of the unit. It is hoped that by
the time you complete this course, you will be able to:

Define complex numbers

Perform mathematical operations with complex numbers

Express complex numbers in polar form

carry out multiplication and division of complex numbers

recall the De Moivre’s theorem and apply it appropriately

find roots and work with fractional powers of complex numbers in polar form
Define and Identify real and imaginary parts of a complex function

Define and discuss the Limit of a complex function

Define the Continuity of a complex function

Define and discuss the differentiability of a complex function using the concept
of limit

State the rules of differentiation of complex numbers
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3.0 MAIN CONTENT
3.1 A Guide through the Course

3.1.1 Structure of the Course

This Course is divided into three Modules. The first Module has three Units and deals
with complex analysis. The second has three Units that deals with limits and continuity
of complex functions. The third has two units that deals with analytic functions. The
Modules are thus:

3.1.2 Modules and Units

Module 1:

Unit 1: Complex Numbers

Unit 2: Polar Operations with Complex Numbers
Unit 3: De Moivre’s Theorem and Application



Module 2:

Unit 1: Limits of functions of complex variables
Unit 2: Continuity of functions of complex variables
Unit 3: Differentiation of complex functions
Module 3:

Unit 1: Analytic functions I

Unit 2: Analytic functions II

3.1.3 Summary of the Contents

Module 1 introduces you to complex variables and some of its application. Module 2
presents how you obtain limits and continuity of complex variables. Module 3
introduces you to analytic functions. It is recommended that you draw up a schedule
on how to accomplish the goals of the course.

3.2 How to Get the Most from this Course
3.2.1 What you will be learning in this Course

The overall aim of this Course is to equip you with the introductory studies of the
basics of complex analysis

3.2.2 Working through the Course

For you to complete this Course successfully, you are required to study all the units, the
recommended text books, and other relevant materials. Each unit contains some self-
assessment exercises and tutor marked assignments, and at some point in this course,
you are required to submit the tutor marked assignments. There is also a final
examination at the end of this course. Stated below are the components of this course
and what you have to do.

3221 Course Material

The major components of the course are:
1. Course Guide

2. Modules

3. Study Units

4. Text Books

5. Assignment File

6. Presentation Schedule



In order to complete the learning successfully, you should:

» Apply yourself to undergoing this course.

» Not regard any aspect of this course as simplistic, difficult or complicated.

* Discard any previous biases about other related course(s) when you read this course.

* Regard the present course as an opportunity to engage in lifelong learning as well as
enhance your skills.

NOTE: The Course will take you about some weeks to complete.

3.2.2.2 Assignment File

The assignment file will be given to you in due course. In this file, you will find all the
details of the work you must submit to your tutor for marking. The marks you obtain for
these assignments will count towards the final mark for the course. Altogether, there are
15 tutor marked assignments for this course.

3.223 Presentation Schedule

The presentation schedule included in this course guide provides you with important
dates for completion of each tutor marked assignment. You should therefore endeavour
to meet the deadlines.

3.2.2.4 Assessment

There are two aspects to the assessment of this course. First, there are tutor marked
assignments; and second, e-examination. Therefore, you are expected to take note of the
facts, information and problem solving gathered during the course. The tutor marked
assignments must be submitted to your tutor for formal assessment, in accordance to the
deadline given. The work submitted will count for 30% of your total course mark. At the
end of the course, you will need to sit for a final e-examination which will account for
70% of your total score.

3.2.25 Tutor Marked Assignments (TMAS)

There are four tutor marked assignments (TMAs) called TMA 1, TMA 2, TMA 3 and
TMA 4 as a (CBT) Computer Based Test in this course. They will be available on your
potter as at when due and so you should be conversant with your potter. They must be
submitted to your tutor for formal assessment, in accordance to the deadline given. Each
TMA carried 10 marks and the best three TMA scores out of the four submitted will be
selected and count for you meaning that all TMAs submitted will count for 30% of your
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total course mark. When you have completed each assignment, send them to your tutor
as soon as possible and make certain that it gets to your tutor on or before the stipulated
deadline. If for any reason you cannot complete your assignment on time, contact your
tutor before the assignment is due to discuss the possibility of extension. Extension will
not be granted after the deadline, unless on extraordinary cases.

3.2.2.6 Final Examination and Grading

The final examination for MTH210 will last for a period of 3 hours and have a value of
70% of the total course grade. The examination will consist of questions which reflect
the self-assessment exercise and tutor marked assignments that you have previously
encountered. Furthermore, all areas of the course will be examined. It would be better to
use the time between finishing the last unit and sitting for the examination, to revise the
entire course. You might find it useful to review your TMAs and comment on them
before the examination. The final examination covers information from all parts of the
course.

3.2.2.7 Course marking Scheme

The following table includes the course marking scheme

Table 3.1:  Course Marking Scheme

Assessment Marks

Tutor Marked Assignments | 4 Assignments with 10 questions each, 30% for the

(TMAs) best 3 TMAs Total = 10% X 3 =30%
Final Examination 70% of overall course marks

Total 100% of Course Marks

3.2.2.8 Course Overview

This table indicates the units, the number of weeks required to complete them and the

assignments.
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Table 3.2:

Course Organizer

Unit Title of the work Weeks Assessment
Activity :
(End of Unit)
Course Guide
Module 1 Complex Variables
Unit 1 Complex Numbers Weeks | Assessment 1
l|&2
Unit 2 Polar  Operations with  Complex | Weeks | Assessment 2
Numbers 3&4
Unit 3 De Moivre’s Theorem and Application | Week 5 | Assessment 3
Module 2
Unit 1 Limits of functions of complex variables | Week 6 | Assessment 4
Unit 2 Continuity of functions of complex | Week 7 | Assessment 5
variables
Unit 3 Diftferentiation of complex functions Week 8 | Assessment 6
Module 3
Unit 1 Analytic Functions I Weeks | Assessment 7
9& 10
Unit 2 Analytic functions II Week Assessment 8
11
3.2.29 Self-Assessment Exercise

Make a list of what you should and should not do to

Material.

11
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4.0 CONCLUSION

This course guide has given you useful guidelines on how to study and use this course
material in order to gain the information and learn the skills that would aid you
in studying, using ODL self-instructional materials.

What you have learnt here will help you make the necessary preparations
for working through the rest of the course.

5.0 SUMMARY

This Study guide has served as a window to you on what to find in the course material
and how best to make use of the information in the course material. You learnt the
aims and objectives of the course material, the content of the modules and course units
that make up the course material as well as how best to work through the course
material.

I wish you an enjoyable learning experience, best of luck.

6.0 REFERENCES AND FURTHER READING

These texts and especially the internet resource links will be of enormous benefit to you
in learning this course:

e K A Stroud; Engineering Mathematics Palgrave New York(2011)

e Complex Variables (2nd Edition), M.R. Spiegel, S. Lipschutz, J.J. Schiller, D.
Spellman, Schaum's Outline Series, Mc Graw Hill (USA), ISBN 978-0-07-
161569-3

e Brown, James Ward; Churchill, Ruel V. (1996), Complex variables and
applications (6th ed.), New York: McGraw-Hill, p. 2, ISBN 0-07-912147-0, "In
electrical engineering, the letter ; is used instead of i."

e Kasana, H.S. (2005), Complex Variables: Theory And Applications (2nd ed.), PHI
Learning Pvt. Ltd, p. 14, ISBN 81-203-2641-5, Extract of chapter 1, page 14

e Kalman, Dan (2008b), "The Most Marvelous Theorem in Mathematics", Journal
of Online Mathematics and its Applications

e Hamilton, J. D. (1994).Time Series Analysis. Princeton University Press, Prince-
ton.

e Ravi P,Kanishka P.,SandraPinelas (2010), An Introduction to complex
Analysis Springer New York Dordrecht Heidelberg London

e SydsEter, K. and P. Hammond (2002).Essential Mathematics for Economics
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1.0 Introduction

Perhaps because of their name, it is sometimes thought that complex numbers are in

some ways more mysterious than real numbers, that a number such as i = v/—1 is not as
“real” as a number like 2 or —351.127 or even . However, all of these numbers are
equally meaningful; they are all useful mathematical abstractions. Although complex
numbers are a relatively recent invention of mathematics, dating back just over 200
years in their current form, it is also the case that negative numbers, which were once
called fictitious numbers to indicate that they were less “real” than positive numbers,
have only been accepted for about the same period of time, and we have only started to
understand the nature of real numbers during the past 150 years or so. In fact, if you
think about their underlying meaning, 7 is a far more “complex” number than i.
Although complex numbers originate with attempts to solve certain algebraic equations,
such as

x>+1=0,
we shall give a geometric definition which identifies complex numbers with points in the
plane. This definition not only gives complex numbers a concrete geometrical meaning,
but also provides us with a powerful algebraic tool for working with points in the plane.
The equation x2 + 1 = 0 has no real solutions, because for any real number x, the
number x? is nonnegative, and so x? + 1 can never be zero. In spite of this it turns out
to be very useful to assume that there is a number i for which one has (1) i? = —1.
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In the early 1800°s geometric representation of complex numbers was developed which
finally made complex numbers acceptable to all Mathematicians. Since then complex
numbers have scoped into all branches of Mathematics, in fact it has even been
necessary for developing several areas in modern Physics and Engineering.
This unit aims at familiarising the students with complex numbers and the different ways
of representing them. The basic algebraic operations on complex numbers shall be
extensively discussed.
Complex analysis is a branch of mathematics that involves functions of complex
numbers. It provides an extremely powerful tool with an unexpectedly large number of
applications in number theory, applied mathematics, physics, hydrodynamics,
thermodynamics, and electrical engineering. Rapid growth in the theory of complex
analysis and in its applications has resulted in continued interest in its study by students
in many disciplines. This has given complex analysis a distinct place in mathematics
curricula all over the world, and it is now being taught at various levels in almost every
institution.
Finally, we like to reiterate that whatever Mathematics course you study, you will need
the knowledge of the subject matter covered in this unit, hence go through carefully and
ensure that you have achieved the following objectives.
Throughout this course, the following well-known notations will be used:

N={1,2, - - -} thesetofall natural numbers,

Z={- - -, -2,-1,0,1,2, - - -} thesetofall integers;

Q ={m/m: m, n € Z, n #0}, the set of all rational numbers;

R = the set of all real numbers.

C = the set of complex numbers

Notethat Nc Z € Q € R c C.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

] define complex numbers

"] perform mathematical operations with complex numbers
"] find modulus and argument of complex numbers

] solve exercises on complex numbers.

3.0 MAINCONTENT

3.1 Complex Numbers

) ) ) ) . 5
Consider the linear equation 3x + 5 = 0, which has a solution x = — 3> one can always

find a real solution any for linear equation ax+ b =0 where a.b € R . Now, what
happens if we try to look for the real solutions of any quadratic equation over R?
Consider one such equation, namely x? + 1 = 0 that is x> = —1. This equation has no
solution in R since the square of any real number cannot be negative.

From about 250 A.D. onwards, mathematicians have been coming across quadratic
equation, arising from real life situations which did not have any real solutions. It was in
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the 16™ century that the Italian mathematicians, Cardano and Bombelli started a serious
discussion on extending the number system to include square roots of negative numbers.
In the next two hundred years, more and more instances were discovered in which the
use of square roots of negative numbers helped in finding the solutions of real problems

Definition: Any complex number is then an expression of the form x + iy, where x
and y are old- fashioned real numbers. The number x, is called the real part of x + iy,
and y is called its imaginary part.

In other words, a complex is a number of the form x + yi , where x and y are real
numbers and i2 = —1. We write x = Re(x + yi) and y = Im(x + yi)

Caution: i) i is not a real number ii) Im(x + yi)is the real number y and not iy

For example, 3 + i2 = 3 + 2i, the real part of 3 + 2i is 3 and the imaginary part of 3
+ 2i is 2. There are some shortcut notations. For example, the complex number 3 +

(—=2)i is written as 3 — 2i. Also, every real number is a complex number; for example,
7=7+i(0).

The set of all real numbers is denoted by R, and the set of all the complex numbers is
denoted by C. Traditionally the letters z and w are used to stand for complex numbers.
We denote the set of all complex numbers by C so, C = {x + iy/x,y € R}.

Definition: Consider a complex number z = x + iy
If y = 0, we say z is purely real and If x = 0, we say z is purely imaginary.

We usually write the purely real number x + 0 as x and the purely imaginary number
0 + iy as iy only

Invention of Complex Numbers

In mathematics, we do a lot of solving of polynomial equations, which amounts to
finding a root of a polynomial. For example, the solutions to the equations x* = 1 are
the same as the solutions of x2 —1 = 0, that is, they are the roots of the polynomial
x? —1.Theserootsarex = land x = —1.
However, some polynomial equations have no real number solutions: for example, the
equation
x2+1=0

has no real number solutions, because x? + 1 > 1 if x is a real number.
The complex numbers were invented to provide solutions to polynomial equations. For
example if we substitute 1 for x in the equation above, we get a solution

i+1=-1+1=0.
In the early days, the boldness of simply defining a new number 1 as a solution was
considered suspicious (hence the term “imaginary part”), just as the existence of V5 was
a matter of religious controversy for the ancient Greeks. Today, the complex number
system is so deeply rooted in physical theory (e.g. quantum mechanics) that one could
argue the complex number system is a more “real” description of the world than the real
number system. (The famous physicist Roger Penrose wrote an essay to this effect,
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“Nature is complex™.) At any rate, students of today are expected to transcend in a blink
the worries of past geniuses.

It is pretty easy (from the quadratic formula) to see that with complex numbers, we can
find roots for any quadratic polynomial. For example, the two roots of

z> + 3z + 10 are

_ —3+4/32-4(10) -3+v-31 -3 31

Z— = = — l_

2 2 2 2

However, since C is built from R basically by adding in just that one extra element i,
and then just taking combinations a + bi, it is a rather amazing fact that ANY non-
constant polynomial with real coefficients (or even with complex coefficients) has a root
which is a complex number. This fact (which we won’t prove) is called the Fundamental
Theorem of Algebra, stated next.

Theorem: (Fundamental Theorem of Algebra).
Every non-constant polynomial with coefficients in C (or R) has a root in C.
There is an important corollary to the Fundamental Theorem of Algebra.

Theorem: (Factorization Theorem)

Suppose p(z) is a polynomial of degree n at least 1, with complex coefficients, say
p(z) = cpz™ + cp_1z2™t + -+ ¢z + ¢y with ¢, # 0. Then p can be factored as a
product of linear terms

p(z) = cp(z = 2,)(2 — 73) ... (Z2 — 2p)
where the numbers z,, z, ..., z, are the roots of p(z). (Possibly some roots appear more
than once.)

Explanation:

Suppose p(z) = ¢ 2" + 12"t + -+ ¢,z + ¢ is a polynomial, of degree n at least
1, with complex coefficients (which, again, as a special case could be just real numbers).
Polynomial long division works just as well with complex coefficients as with real
coefficients. So, given a particular complex number z,, we could use the polynomial
long division to find
z
p@) _ () +

zZ — ZO Z — ZO
for some polynomial q(z) and some complex number w. By multiplying both sides by
(z — z,), this equation becomes
p(z) = q(2)(z—2z) + w.
By substituting z, for z in this last line, we obtain w = p(z,). For example,

zt—1 15
=z +22°4+4z+8+——
zZ—2 z—2

and this produces

z*—1=(23+222+4z+8)(z—2) + 15
In the example above, where p(2) = 15, the number 2 is not a root of p(z) and we
got the proper remainder 15 in the last line. If instead of z — 2 we use a z — z, where
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Z, 1s a root of p(z), then we will have zero remainder, and z — z,will be a factor of
p(2). The point: if p(w) = 0, then (z — w) is a factor of p(2).
For example, using p(z) = z* — 1, we see that the complex number i is a root. Doing

the polynomial long division, we could find
4_
%=Z3+izz—z+i andz*—1=(Z3+iz?—z+i)(z—-1)
Applying the same procedure to the polynomial z3 + iz?> — z + i and one of
its roots, we could factor out another linear term, and then another, to end up with
zZP—1=0Z-DC+ DEz-iDz+1iD),
the factorization which corresponds to the four roots 1,—1,i,—i of the polynomial
z* — 1. This approach works on any polynomial to produce a factorization into linear

terms, as stated in the Factorization Theorem.

Examples:
i) 23+ 222+ z=2(z+1)? roots are 0, -1, -1
1) z2+2z+5=(@z-[-1+2i])(z-[-1-2i]) roots are-—1 + 2i

Geometrical Representation

As already known, the real number can be geometrically represented on the number line.
In fact, there is a one-one corresponding between real numbers and points on the number
line. You have also seen that a complex number is determined by two real numbers,
namely its real and imaginary parts. This observation led the mathematicians Wessel and
Gauss to think of representing complex numbers as points in a plane. This geometric
representation was given in the early 1800’s, it is called an Argand diagram, after the
Swiss Mathematician J. R.Argand, who propagated this idea.

A

y

b zZ=a+ bi
0 X a’

Fig.1.1 Geometric representation of a complex number using Argand diagram

Given real numbers a and b, we picture the complex number a + ib as a point in the
plane, with (x,y) coordinate as point (a, b) (see Figure 1.1). The complex plane is just
the usual, two dimensional plane, with the interpretation that a point (a, b) in the plane
corresponds to the complex number a + ib.

18



Notice that the horizontal axis of the complex plane (the “real axis”) corresponds to the
set of real numbers. The vertical axis is called the “imaginary axis”. The plane in which
one plot these complex numbers is called the Complex plane, or Argand plane.

Example
Plot the complex numbers 2 + 3i,—3 + 2i,—3 — 2i, 2—5i, 6i on an Argand
diagram.

Solution

The figure below shows the Argand diagram. Note that purely real numbers lie on the
real axis. Purely imaginary numbers lie on the imaginary axis. Note that complex
conjugate pairs such as —3 + 2j lie symmetrically on opposite sides of the real axis

34

° -1

imaginary axis

Fig.1.2

3.2 Operations with Complex Numbers
In this section, we shall consider some mathematical operations on complex numbers.
The definitions of addition and multiplication of real numbers are extended to the
complex numbers in the only reasonable way.
Addition: Two complex numbers are added simply by adding together their real parts
and imaginary parts: we define (a + ib) + (c +id)=(a+c)+ i(b+d)

For example, 3 +2i)+(4—6i)=3+4)+i(2-6)=(7—4i).
Remark: the addition of two complex numbers (x;,y;) and (x,,y,) are equal and their
imaginary parts are equal

19



z,+ 2z,

Figure 1.3: Addition of complex numbers.

As in real number system, 0 = 0 + 07 is a complex number such that z + 0 = z. There
1s obviously a unique complex number 0 that possesses this property.

Subtraction: The difference between two complex numbers are obtained simply by
finding the difference between their real parts and as well as the difference between their
imaginary parts: we define (a + ib)- (c+id)=(a-c)+i(b-d).

For example, 3 +2i)-(4+6i0)=3-4)+i(2-6)=(-1—41).

Zy — Zy A

Figure 1.4: Geometry behind the “distance" between two complex numbers.

Multiplication: zw = (a + bi) (¢ + di)
=a(c +di) + bi(c + di)
=ac+ adi + bci + bdi?
= (ac — bd) + (ad + bc)i
where we have used the property i? = —1 to replace i?.
Q2+3D)@+50)=24+50)+3i(@4+51i)
=8+ 10i + 12i + 15i2
=8+ 10i +12i — 15
=—7+22i
For complex numbers z;, z,, z3 we have the following easily verifiable properties:
(I). Commutativity of addition: z; + z, = z, + z;
(IT). Commutativity of multiplication: z,z, = z,z;
(TIT). Associativity of addition: z; + (z, + z3) = (z; + 2z,) + 23
(IV). Associativity of multiplication: z,(z,z3) = (212,)23
(V). Distributive law: (z; + z,)z3 = 2,23 + 2,23
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As an illustration, we shall show only (I).
Letz, = ay + byi,z, = a, + byi
Thenz, + z, = (a; + a,) + (b; + by)i = (a, + a;) + (b, + by)i
= (a, + byi) + (a; + byi)
= (2, +z)
Self Assessment Exercise
Verify properties II) —V)

Clearly, C with addition and multiplication forms a field.

We also note that, for any integer £,
4k _
=1

i4k+1 =1

i4k+2 =1

F4k+3 _

i —i

Division: To divide two complex numbers one always uses the following trick.
a+bi__ a+bi a-bi

c+di c+di ~ c—di

_ (a+bi)(c—di)
 (c+di)(c—di)
Now
(c+di)(c—di) =c?— (di)? =c?—d?i?=c*-d?

a+bi _ (ac—bd)+(bc—ad)i
c+di c2+d?

So

= f:l:; + (f:(:;) i, wherec?+ d* +0
Obviously you do not want to memorize this formula: instead you remember the trick,
i.e. to divide ¢ + di into a + bi you multiply numerator and denominator with
¢ — di.for any complex number z = a + bi, the number Z =a — bi is called its
complex conjugate.
Geometrically, conjugating z means reflecting the vector corresponding to z with respect

to the real axis.

Ay
*a+ib

=
v
=

*a—ib

Figl.5
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Notation:
z=a+ bi,then Z=a+bt or Z=a—bi
A frequently used property of the complex conjugate is the following formula
w.w =(c + di) (c — di)

(6+2i)+(1+3i)

Example Find the quotient ,
—1+i-2

(6+20)+(1+3) 5-i (5-9) (=3-1)

—1+i—-2  =3+4i (-3+0) (-3-10)
_ —-15-1-5i+3i
B 9+1
8 1,
5 5"

The following notation is used for the real and imaginary parts of a complex number z.
If z = a + bi then a = the Real part of z = Re (z), b = the Imaginary Part of

z = Im (2).

Note that both Rez and Imz are real numbers. A common mistake is to say that Imz =
bi. the “i” should not be there.

With the definitions above of addition and multiplication, C enjoys all the good

arithmetic properties of R (addition and multiplication are commutative and associative;

the distributive property holds etc.).

Definition: Two complex numbers z; = x; +iy;, z, = x, + iy, are equal if x; = x,
and y; =y,

Thus, the elements of C are equal if their real parts are equal and their imaginary parts
are equal.

Geometric Properties
From very basic geometric properties of triangles, we get the inequalities
—|z| < Rez < |z|and —|z| < Im z < |z]
The square of the absolute value has the property:
lx +iy|? = x* + y* = (x + iy)(x — iy)
Lemma 1: for any z,2;,z, € C
a) zy+ 2z, =2, £ 7,
b) |z| = 0,and|z| = 0 ifand only if z=10
c) z=—z, ifandonly if z€R
)z % =55

ay_7@

e) (g_z)_ﬁ’ Z, #0
Z=2Z

g) |z] = |z|
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i) Rez =§(z+z‘)

j) Imz =Zii(z—z‘)

k) e = e
A neat formula for the inverse of a non-zero complex number can be generated from part
(f) above

-1-1_ 2
z |z]2
As an illustration, we shall show the relation d. Let z; = a; + byi , 2z, = a, + b,i,

then

Zl " ZZ == (al + bll)(az + bzl)

= (aya, — bib, ) +1(ab, + bya,)
= (aya, — bib, ) +i(a;b, + bia, ) by ¢)

= (a; — byi )(az — byi)

A famous geometric inequality (which holds for vectors in R™) is the triangle inequality

|z1 + z;| < |z1| + |z,]
By drawing a picture in the complex plane, you should be able to come up with a
geometric proof of this inequality. To prove it algebraically, we make extensive use of
Lemma 1:
121 + 2,17 = (21 + 2,) (7 + 22) by h)

=z +2)(7 +23) by d)

=212y + 212y + 221 + 2,7,

= |z11* + 212, + 2125 + | 2,|?
21| + 2Re (2,2;) + |2,|? by 1)

Finally by 1)
|z, + 2,1% < |z11* + 2|2, 25|+ 2,12
= |z:1* + 2|z1|| 22| + |2,/
= |Z1|2 + 2|z ||z, | + |Zz|2
= (lz,] + |Zz|)2
which is equivalent to our claim.
For future reference we list several variants of the triangle inequality:

Lemma 2 For z,, z, ..... € C, we have the following identities:

(a) The triangle inequality: |+z; + z,| < |z;| + |z,|

(b) The reverse triangle inequality: |+z; + z,| = |z, — |z,].

(c) The triangle inequality for sums: |ZTI}=1 Zy | < 2;::1 |z k |

The first inequality is just a rewrite of the original triangle inequality, using the fact that
|+z| = |z| and the last follows by induction.
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SELF-ASSESSMENT EXERCISE

1) Find the conjugate of the following expressions:
(1) 3-31 (i) 4i (iii) -3+4i (iv) 2-3i
2) Complete the following table

Z Rez Imz
i

—-2-+3

5
0 0i

1+DB+10D)

2—1
(1+1)3

31 2i

15

3) Evaluate the following if w=3 —4iandz=-2+z = -2 + 7i.
@w+z (b)yw-z ()3w—-2z () w (e) zw (f)i

@l ()=

z+w

3.3 Modulus and Argument of Complex Numbers
For any given complex number z = a + bi one defines the absolute value or modulus to

be r=|z| =+va?+ b?, so |7| is the distance from the origin to the point z in the
complex plane (see figure 1).

b— zZ=a+ bi

Figurel.6 A complex number a + ib

If you picture z = a + ib in the complex plane as in Figure 1, then from the
Pythagorean Theorem you can see that |z| is the distance from z to the origin. (Put
another ways, |z| is the length of the line segment between 0 and z.)
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Similarly, if z; and z, are two complex numbers, then (just as with real numbers) the
distance from z; to z, is |z, — z4|. To see this, write z; and z, in the forms z; = a + ib
and z, = (a + ¢) + i(b + d) (see Figure 2). Then 2z, — z; = ¢ + id, and
|z, — z;| = +Jc; + d, the distance from z, to z,.

The angle 6 is called the argument of the complex number z. Notation: arg z = 6

The argument is defined in an ambiguous way: it is only defined up to a multiple of
2m0. E.g. the argument of —1 could be m, or—m, 2 m, or 3 m, or, etc. In general one says
arg(—1 ) =m + 2k m, where k may be any integer.

From trigonometry one sees that for any complex number z = a + bi one has

a = |z|cos @ and b = |z|sin 6,
so that
|z| = |z|cos 8 + i|z|sinO® = |z|(cos O + isin0)
and
_sing _b
tane_cos@ a

Example: Find argument and absolute value of
D oz=2+i i) z=200
Solution:
i) |z| =22+ 12 = /5. zlies in the first quadrant so its argument @ is an angle
between 0 and g From tan tan 8 = ;

we then conclude that arg (2 + i)=0 = tan‘l(%) = 26.5605
ii) g = (1+i)(?+i) _ 2+i+2'i—1 _ 1+3.i
3—1 3—1 3—1
this implies that

_ (@+3i))(3+i) __ 3+i+9i-3 _ 10i

T (3-0)(3+i) 10 10
Hence |z| =1andargz = %

Example: If x + iy =1+ s(:itt)

variables. Show that the locus of the point (x, y) as t varies is a circle.

where r and s are real constant and x, y, ¢ are real

Solution:
x+iy=r+ s(lljiltt)
_ s(1+it) (1+it)
=rt (1—it) (1+it)
—t2 i
—r+ s(1 tz) 251t2
1+t 1+t
Equating the real parts and the imaginary parts in each side of the equation, we have:
s(1-t?) 2st
x=r+ , =—
1+t2 1+t?
Thus,

(x —1)2 +y? =52
Hence, the locus of the point (x, ) is a circle centre (a, 0) and radius b.

25



Another way to describe multiplication of complex numbers is to consider two complex
numbers, x; + iy, with absolute value r; and argument 6,, and x, + iy, with absolute
value 1, and argument 6,. This means, we can write

x; +iy; = (rycos6y) + i(rysinf;) and x, + iy, = (r,cos8,) + i(rysinf,)
To compute the product, we make use of some classic trigonometric identities:

x; +iy; = [(rycos 0,) + i(rysin6,)][(r,cos 6,) + i(r,sin6,)]

= (r, r,cos 8, cos 8, — 1, 1,sin 6, sin 6,) + i(r; r,cos 6, sin 6, + r; r,sin B, cos 6,)
= ry1,[(cos B,cos6, — sin 6,sinb,) + i(cos O;sinb, + sin H,cos6,)]
=nny[cos(6; + 6,) + isin(6, + 6,)]

So the absolute value of the product is r;7, and (one of) its argument is 6; + 6,.
Geometrically, we are multiplying the lengths of the two vectors representing our two

complex numbers, and adding their angles measured with respect to the positive  x-
axis.

Figure 1.7 Multiplication of complex numbers.

In view of the above calculation, it should come as no surprise that we will have to deal
with quantities of the form cos8 + i sin8 (where 8 is some real number) quite a bit.
We introduce a shortcut notation and define e = cos6 + i sin6

At this point, this exponential notation is indeed purely a notation, that it has an intimate
connection to the complex exponential function. For now, we motivate this ‘maybe’

strange-seeming definition by collecting some of its properties. The reader is encouraged
to prove them.

Lemma 2: for any 0, 6,60, € R,
a) eif1pif2 = oi(01+62)

1 s
b) = e
o) eil®+2m — oif
d) |e| =1

d o . i
e) Ee“’ = je'

With this notation, the sentence “The complex number x + iy has absolute value r and
argument 6" now becomes the identity x + iy = ie®®
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The left-hand side is often called the rectangular form, the right-hand side the polar form
of this complex number.

We now have five different ways of thinking about a complex number: the formal
definition, in rectangular form, in polar form, and geometrically using Cartesian
coordinates or polar coordinates. Each of these five ways is useful in different situations,
and translating between them is an essential ingredient in complex analysis. The five
ways and their corresponding notation are listed in Figure 1.4.

Rectangular Exponential
Algebraic X+ iy rei®
Formal Cartesian Polar
(x,y)
Geometric z

Figure 1.8: Five ways of thinking about a complex number z € C.

4.0 Conclusion
The knowledge acquired in this unit shall be useful in every aspect of our Mathematics
Courses to be studied in this university. You are therefore advised to master the
materials very well.

5.0 Summary

In the unit, you have studied the following points

1) The definition of a complex number i.e. a complex number is a number of the
form x + iy where x,y € R and i = +v—1 . Equivalently, it is a pair (x,y) €
RXR

2) xis the real and y is the imaginary parts of x + iy

3) xq +iy; =x, + iy, iff x; =x,andy; =y,

4) The conjugate of z =x +iyiszZ = x — iy

5) The geometric representation of complex number is the Argand diagram
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6.0 Tutor Marked Assignment

1. Evaluate the following if w = 3 — 4iandz = =2 + 7i.
(a)yw + z byw-z
(c) 3w—2z (dyw
z
(e) zw (f)z;
(g) |2 (h) —
(i) Re(z —w) (G) ImQ3z +w)
2. Find the real and imaginary parts of each of the following.
1 3
(a) P (b)) %
— 4l .\ 3
©) 5 () (1+10)

3. For each of the following, write the given z in rectangular coordinates and plot it in
the complex plane.

(@) |zl = 3, Arg(z) = = (b)lzl = 5, Arg(z) ==
(©) lzl = 05, Arg(z) = == (d) |zl = 2, Arg(z) = =
4. For each of the following, find |z| and Arg(z) and plot z in the complex plane.
(@)z = —i (b)z = =5
©z=1+1i d)yz=-1-1i
(e)z = 2 + 2/3i (Hz =3 —i
5. Suppose w and z are complex numbers with |w| = 3,Arg(w) = % 1zl = 2, and
(z) = — % . Find both polar and rectangular coordinates for each of the following.

@w? Oz (©wz D> (@5 PHw'
6. Find all the roots of the polynomial P(z) = z® — 1 and plot them in the complex
plane.
7. Let v =a, + byi,w = a, + hyi, and z = a3 + bzi be complex numbers.

Verify each of the following. (a)v + w = w + v (b)yvw = wv
viw + z) = vw + vz w+w)+z=v+ (w+ 2)
(e) v(wz) = (vw)z HHw + 2)* = w? + 2wz + z°

8. Suppose z is a complex number with |z| = r and arg (z) = 6

(a) Let w be a complex number with |w| =+/r and arg(w) = g. Show that
w? = z

(b) Let v be a complex number with |w| =+/r and arg(v) = §+ m. Show that
v = z

(c) From (a) and (b) we see that every nonzero complex number has two distinct
square roots. Find the square roots, in rectangular form, of 1 ++/3i and —9.
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UNIT 2 POLAR OPERATIONS WITH COMPLEX NUMBERS
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6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION
In this unit, we shall examine complex numbers in polar forms. The polar form of
complex numbers gives interesting results which will be examined in this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

] express complex numbers in polar form

] carry out multiplication and division of complex numbers

] recall the De Moivre’s theorem and apply it appropriately

] find roots and work with fractional powers of complex numbers in polar form
] solve correctly the exercises that follow after the unit.

3.0 Main Content

31 Polar notation

When we write a complex number z in the form z = x + yi, we refer to x and y as the
rectangular or Cartesian coordinates of z. We now consider another method of
representing complex numbers. Let us begin with a complex number 2z =x+ yi
written in rectangular form. Assume for the moment that x and y are not both zeroes. If
we let 6 be the angle between the real axis and the line segment from (0, 0) to (x,y),
measured in the counter clockwise direction, then z is completely determined by the two
numbers |z| and 8 . We call 8 the argument of z and denote it by arg (z).
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A
y

7 =x+ iy

T
rsinf

8 —»
rcost x
Figure 1  Polar coordinates for a complex number

Geometrically, if we are given |z| and 8, we can locate z in the complex plane by taking
the line segment of length |z| lying on the positive real axis, with a fixed endpoint at the
origin, and rotating it counter clockwise through an angle 8; the final resting point of the
rotating endpoint is the location of z. Algebraically, if z = x + yi is a complex number
withr=|z|and @ = argz, then

X =r1rcosf (1)
and

y = rsin. (2)
Together, r and 0 are called the polar coordinates of z. (see figure 1)
Example If|z| =2 and arg (z) = % ,

Then
z=2cos= +2sin=i
6 6
= V3 + i
Example If z=1-1
then

|z| = \/Eandarg(z)=—§.
Note that in the last example we could have taken arg (z) = m , or, in fact,
- 4
arg (z) = — St 2nm

for any integer n. In particular, there are an infinite number of possible values for arg (z)
and we will let arg (z) stand for any one of these values. At the same time, it is often
important to choose arg (z) in a consistent fashion; to this end, we call the value of arg
(z) which lies in the interval (—m,m) the principal value of arg (z) and denote it by

arg(z). For our example, arg (z) = —argz = — %.

In general, if we are given a complex number in rectangular coordinates, say z = x +
yi, then, as we can see from Figure 1., the polar coordinates r = |z| and 6 = arg(z) are
determined by
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r=.,/x%+y? 3)

tan g = % “4)
where the latter holds only if x # 0. If x = 0 and y # 0, then z is purely imaginary
and hence lies on the imaginary axis of the complex plane. In that case, 8 = g ify>0

and

and 6 = —g if y <0. If both x = 0 and y = 0, then z is completely specified by the

condition r = 0 and 6 may take on any value.
Note that, since the range of the arc tangent function is (— %, g) the condition

tan @ = %
only implies that
= -1(Y
6 = tan (x)
if x > 0, that is, if 6 is between — g and g .

Example Suppose z=—1 - ir/3. Then

|z| =v14+3=2=2
and if
0 =arg(2),

tanf = __if =3.
Since z lies in the third quadrant, we have
27T

arg(z) = argz = -
3.2 Multiplication and Division of Complex Numbers in polar form
Suppose z; and z, are two non zero complex numbers with ||z;| = 1y, |z,| = 13,
arg(z;) =0, andarg(z,) =0,
Then
Z; =1, cos 0+ 1y sinb, i
=1, (cos @, +sin 6, i)
and

Z, =1, coS 0,+1,sinf,i
=1, (cos B, + sin b, i)

v

Figure 2 Geometry of z and z?2 in the complex plane
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Hence
2,7, =(r; cos0; + 1, sin@,i)(r,cos 0, + 1, sinf,i)
= r1,(cos 6;cos 0, + cos 6,sin 6,i + sin 6,cos 0,i — sin 6,sin 0,)
=r1y[(cos 6,cos 6, — sin 0,sin 6,) + (sin 6,cos 0,i + cos 0,sin 0,i)]
= rny[cos(6; + 6,) + sin(8, + 0,)i]
It follows that
=lz1z; | =11y
=lzy ||z, | 6))
and
arg(z, z;) = 61 + 6,
= arg(z,) +arg(z;) (6)
In other words, the magnitude of the product of two complex numbers is the product of
their respective magnitudes and the argument of the product of two complex numbers is
the sum of their respective arguments.
In particular, for any complex number z, |z
More generally, for any positive integer n,
| z" = |z|" (7)

2| = |z|? and arg(z, ) = 2 arg(z).

and
argz" =nargz (8)
See Figure 2.
If z is a complex number with |z| =r and arg z = 6, then
z=1(cosf +sinbi)

and
Z=r1(cosf —sinBh)
r(cos @ — sin 0i) = r(cos(—0) + sin(—0)i) 9)
hence
Z | = || (10)
and
arg (z ) = —arg(2), (11)

in agreement with our previous observation that Z is obtained from z by reflection about
the real axis.

Division

If z; and z, are two nonzero complex numbers with |z; |= 1y, |z, | =15, arg(z, ) = 64,
and arg(z, ) = 6,, then

Z1 _Z1Zy
Z;  Z3Z3
1112 (cos(81 — 82) +sin(81 — 02)1)

(r2)?

= %[cos(@l — 6,) + sin(6, — 6,)i]
2

Hence
al - lal (12)

[z2]

Z2
and

arg (z—:)zel—ez. (13)
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In other words, the magnitude of the quotient of two complex numbers is the quotient of
their respective magnitudes and the argument of the quotient of two complex numbers is
the difference of their respective arguments.

Example Let z = 2(cos ( )+ s1n( ) i)and w = 3(005( )+ s1n( ) i). Then
zZw = 6[cos(—+—) +sm(—2+§)i]
—6[COS( )+sm( )l]
s+ )

=32+ 3V2i
Also,

T
3 12
2 T . T .
2 |cos () —sim(55)
=0.6440 — 0.1725i
where we have rounded the real and imaginary parts to four decimal places .

Example: Write the quotient \/1% in polar form.

The polar forms of 1 + i =+/2 (cos% + isin %)

And
V3—i=2 (cos (- %) + iisin (- %))
Therefore,
1+i 2
73 _li =3 {cos Z (— %)] + isin %— (— g)]}
Heos (55) + e (55)
Example:
Let z= COS(4) +Sln(4)l=iz+%i
Since |z| = 1andarg z = 2

z 1s a point on the unit circle centred at the origin,
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. T T,
Figure 3 Powers of z = cos 3 Fsingi

one -eighth of the way around the circle from (1, 0) (see Figure 3). Then

z3—cos(3-£)+sm(3 z)l_COS(— +sm(4) =—% \/—15
z* = cos (4 - z) + sin (4 . i) i =cos(m) + sin(m)i=—1
25=cos(5-£)+sin(5-£)l= ( )+sm(f) Z—%—%L
26=cos(6-£)+sm(6 i)lz ( )+sm(r)l=—i
z7=cos(7-£)+sin(7-£)l= ( )+Sln(4)l—\%—\%l
28—605(8-2)+sin(8-Z)L=cos(2n)+sin(27r)i=1

z22=2zz28(2)(1) =z
Hence each successive power of z is obtained by rotating the previous power through an
angle of g on the unit circle centred at the origin; after eight rotations, the point has

returned to where it started. See Figure 3. Notice in particular that z is a root of the
polynomial

P(w) = w8 —1.
In fact, z" is a solution of w& — 1 = 0 for any positive integer n since
e -1=E®)"-1=1"-1=1-1 = 0.
Thus there are eight distinct roots of P (w), namely, z, z2, z3, z*, z°, z°

, 2% z7, and z8,
only two of which, z* = —1 and z® = 1, are real numbers.
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3.3 The Complex Exponential Function

In this session, we shall first show that every complex number can be written in
exponential form and then use this form to raise a rational power to a given complex
number. We shall also extract roots of a complex number. Finally, we shall prove that
complex numbers cannot be ordered.

Ifz = x + iy, then e” is defined to be the complex number

e? = e*(cosy + isiny).(3.1)

This number e“satisfies the usual algebraic properties of the exponential function. For
example,

ezlezz — ezl+22 and Z1—2Zy

1

e?2 =€
In fact, if z; = x; + iy; and z, = x, + iy, , then, in view of the previous section,
we have

e“1e?2 = e*1(cosy, + isiny,)e?2 (cosy, + isiny,)

=eM1*%2 (cos(y; +y,) + isin(yy +,))
—e(X1+x2)+i(y1+y2) = pZ1t22
In particular, for z = iy, the definition above gives one of the most important
formulas of Euler

e = cosy + isiny (3.
which immediately leads to the following identities:
eiy+e_iy eiy—e_iy

,siny = Im(e?) =

cosy = Re(eV) = —

A

0 = cos O + isinO

0

(N
N

v

Figure 4. Euler’s definition of e'®

When y = 7, formula (3.2) reduces to the amazing equality
e™=cosm +isinm
=-1.
This leads to famous Euler’s formula
e™+ 1=0,
which combines the five most basic quantities in mathematics: e, m, i, 1, and 0. In this
relation, the transcendental number e comes from calculus, the transcendental number 7
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comes from geometry, and i comes from algebra, and the combination e™gives —1, the
basic unit for generating the arithmetic system for counting numbers.This seems a good
definition because e can be defined and anything can be done with it.
We now substitute it in the Taylor series thus:
e*ell =1+ it + (‘32 + (‘33 + (‘24 + o
2 3 4 5
T (S
t2 | tt . 3 5
:1_§+Z_m+l(t_§+a_m)
=cost+isint
This is not a proof, because before we had only proved the convergence of the Taylor
series for e* if x was a real number, and here we have pretended that the series is also
good if you substitute x = it.
As a function of t the definition above gives us the correct derivative namely, using the
chain rule (i.e. pretending it still applies for complex functions) we would get
ae't _ it
dt
Indeed, this is correct. To see this proceed from our definition
dL"t __d(cost+isint)

dt dt
d(cost .d(sint
_ dlcost) |, dGsinD)

dt dt
= —sint+4+icost

= i(cost +isint)
the formula e*.e* = e**¥still holds.
Rather, we have e!t+% = eltels,
To check this, replace the exponentials by their definition:
ele’s = (cost +isin t)(cost + i sint)
=cos(t + s) + isin (t +s5) = e't*S
Requiring e*.e¥ = e**Y
to be true for all complex numbers helps us decide what e
complex numbers a + bi.

=1+it—

a+bi

shoud be for arbitrary

Definition

For any complex number a + bi we set

ea+bi — eaebi
=e%(cosb +isinb)
One verifies as above that this gives us the right behavior under differentiation. Thus, for
any complex number r = a + bi the function
y(t) = e = e (cos bt + i sin bt).

satisfies

gy = d¢ ot
y'(t) =—-re
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. in
Example: Evaluate i) e ii) e ™"

Solution
1) Using Euler’s equation,
e =cosmt+isint =—1+4i(0)
=-1
1513 1715
i)y e z=elez

Using Euler’s formula, we can express a complex number z = r(cos 6 +i sin ) in
exponential form; i.e.,z = r(cos 8 +isin0) = re'®

The rules for multiplying and dividing complex numbers in exponential form are given
by

_ i6 i6,) — i(01+6
71z = (r1e%)(re%2) = (ryry)ell 1'9 2)
s
Z_ne’ (T_l) RICRTS
z, Tmeifz \r,

Also, the complex conjugate of the complex number z = re'? is given byz = re~%

1+i A\ 12
Example: Compute 1) —=—  2) (1+ 1) 3)(V3 i)
Solution: 1 + i = v2e™* and /3 —i = 2¢i"/6
1+ _ VzelT/* _ V2 ,5mi/12
V3-i  2e-im/6 2
(14 0)%* = (ﬁeir/z;)“ _ 912 p6mi
_ 512
12 , .
3)(V3—i) = (2e7im/6)"" = 212¢2m
Note that the Euler’s equation provides us with an easier method of proving De
Moivre’s Theorem.

4.0 Conclusion

In this unit, we have studied some theorems and determine the roots of equation using
complex variables. You are required to study this unit properly before attempting to
answer questions under the tutor-marked assignment.

5.0 Summary
In the unit, you have studied the following points

e Multiplication and Division of Complex Numbers in polar form
e The Complex Exponential Function
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6.0 Tutor Marked Assignment

1) Write the number in the form a + bi

. n Lo e
1) ez i) es i) e=
iV) e?2mi V) e im Vi) e2tmi Vii) eti

2) For each of the following, write the given z in rectangular coordinates and plot it in
the complex plane.

(@) |z| = 3,arg (2) =
(b)|z| = 5,arg (2) =
(©) |z| = 0.5,arg(z) =

(d)|z| = 2,arg (2) ==
3). For each of the following, find |z| and arg(z) and plot z in the complex plane.

5y 1

I w

3T
4

Az = —i (byz = =5 (c)z=1+i

(d)z=-1-i (€)z=2+2V3i () z=+v3—1i
4) Suppose w and z are complex numbers with |w| = 3,arg(w) = % , |zl = 2, and
argz = — % . Find both polar and rectangular coordinates for each of the following.

@w? Oz ©wz (DT ) Hw

5)Let v =a, + byi, w = a, + b,i, and z = a5 + b;i be complex numbers. Verify each
of the following.

@Dv+w=w+wv B)vw = wv (c)v(w + z) = vw + vz

ADw+w)y+z=v+WwW+2) (e)v(wz) = (vw)z

() (W+2)2 =w?+ 2wz + 22
6) Suppose z is a complex number with |z| =r and (z) = 6.

(a) Let w be a complex number with |w| =+/r and arg(w) = g .

Show that w? = z.
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UNIT 3 De Moivre’s Theorem and Application

CONTENTS
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3.3 The nth Root of Unity
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4.0 Conclusion
5.0 Summary
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1.0 INTRODUCTION

In this unit we introduce De Moivre’s theorem and examine some of its consequences. We
shall see that one of its uses is in obtaining relationships between trigonometric functions of
multiple angles (like sin 3x, cos 7x etc) and powers of trigonometric functions (like
sin?x ,cos*x etc).
Another important aspect of De Moivre’s theorem lies in its use in obtaining complex roots of
polynomial equations. In this application we re-examine our definition of the argument arg(z) of
a complex number.

2.0 Objectives
At the end of this unit, you should be able to:
0 employ De Moivre’s theorem in a number of applications
0 understand more clearly the argument arg(z) of a complex number
O obtain complex roots of complex numbers

3.0 Main Content

3.1 De Moiré’s formula.
For any complex number z, the argument of its square z? is
argz? = arg(z - z)
=argz + argz
= 2arg z.
The argument of its cube is
arg z3 = arg z. z*
=argz + arg z*
=argz + 2argz
= 3arg z.

41



Continuing like this, one finds that
arg z" = n arg z for any integer n.

Applying this to z = cosf + isin@ you find that z? is a number with absolute value
|z%|=|z|* = 1" = 1, and argument n, arg z = nf. Hence z™ = cosnf + isinnd
So we have found

(cos8 +1isin @ )" =cosnb +isinnb
This is de Moiré’s formula named after the French Mathematician Abraham De
Moivré’s (1667 — 1754)
Theorem: De Moivre’s theorem states that if

z=1(cos 0 + isin0)
and n is a positive integer, then
z" =[r(cos @ +isinf)]"
=1r" (cosnB + isinnb)
The theorem says that to take the nt® power of a complex number we take the n** power
of the modulus and multiply the argument by n
For instance, for n = 2 this tells us that
cos 20 + isin26 = (cos @ + isin 6 )?
= c0s20 — sin?0 + 2icosOsind.

Comparing real and imaginary parts on left and right hand sides this gives you the
double angle formulas

cos20 = cos?6 — sin?6
and

sin 260 =2sin 6 cos 0
Forn = 3 you get, using the Binomial Theorem, or Pascal’s triangle,

(cos @ + isin 8 )3 = cos30 + 3i cos?0 sinf + 3i? cosOsin? + i3 sin36
= c0s30 — 3 cos Bsin?0 +i (3 cos?Hsin § — sin30)
so that
cos360 = cos30 sinf — 3 cos Osin?6
and
sin36 = cos30 sinf — sin0

In this way it is fairly easy to write down similar formulas for sin46, sin580, etc.. .

It can be shown that the theorem is true for all rational values of n. Now suppose n is a
negative integer and we let n = — m where m is a positive integer then,
.. m 1
(cos @ + isin )™ = (cos O+isin B)™
= cos(—m®0) + isin(—m0)
= cos(nB) + isin(nf)
It can also be proved for fractional angles. Recall that by De’moivre’s theorem
(cosi{—’@ + isin g@)q = cospbl + isin pf
= (cos@ + isin B)P
It follows that cosi{—’@ + isin 59 is a qth root of (cos 8 + isin 8)P
De Moivre’s theorem has been proved for all rational values of n.

P
There is a need to find other values of (cos 8 + isin 8)4
To do this, suppose that
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(cos @ + isin 9)§ = p(cos ¢ + isin @)
Then,
(cos @ + isin )P = pi(cos ¢ + ising )1
= cos pl +isinpl =p? (cos qp + isin qp)
Equating the real and imaginary parts, we have
cospf = p9cosqp
and
sinpf = sinqg
By squaring and adding, we obtain p?? = 1 and (since p, which is the modulus of a
complex number is positive) p = 1 therefore
cospf = cosqo ; sinpf = sinqe ,
these equations are satisfied by
qp =p6 + 2km;  k = 0 or any integer.

Therefore,
__ pO+2km

q
10
Example: Find G + %1)

Solution:
1,1._ 1 .
Styi= 50+
The polar form of % + %i 1s \/Z—E (cos% +isin E)
by De Moivre’s theorem
10

10
(l + 1 i) = (ﬁ) (cos 1o +isin 10—”)
2 2 2 4 4

25 51 . . 5T
=— (coOS—+ 1 Sin—
210 2 2

1.,
=—1
32

Example: Evaluate (1 + i)?° using De Moivre’s theorem
Solution: z=1+ir=+v2andtan@ = % =1
This implies that 6 = %
s . . T
. z—\/i(cosz+lsmz) .
:N20 E .. E
Hence, (1 + i)?° = [\/f (c;)Os L T isin 4)]
= (21/2 20T 4 isin22T
(21/2) (cos . Hisin= )
=21%(cos5m + isin5m)

=219[-1 +i(0)]
=-210=-1024
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3.2 Roots and Fractional Power of a Complex Number

If n is a positive integer, the nth roots of a complex number are by definition the value of
w which satisfies the equation w™ = z

If w = p(cos @ + isin @) and z = r(cos 6 + isin ) then

p"(cos ng + isinng)= r(cos O + isin 8) where p"=r and ng = 0 + 2km, k is an
0+2km

integer or zero. By definition p and r are positive, such that p = V/r also, ¢ =
Taking in succession the values of k = 0,1, 2,3 ... n, we find that
0+2km .. 042k ..
os( - ) + isin ( - ) has n distinct values.
Hence there are n distinct nth roots of z given by the formula
6 . .6
w, = \r [cos +ikn + isin +Zk”] ,k=0,123,..... n-1

In a situation where n is a rational number say n = s,p and q are integers and q is

positive, the value of z™are the values of w which satisfy the equation
wl = zP

: . P/ .
Hence if z = r(cos 6 + isin 0) then the q values of z /a given by the formula
= rP [cos _6+2m1r + isin _6+ilmn:] ,

where V7P is the unique positive qth root of r?
De Moivre’s theorem can also be used to find the roots of complex numbers

Example: Find the fifth roots of -1
Solution: Recall that —1 = cos + isinn
If z5=—1=cos(m+ 2km) + isin(m + 2km), k =0,1,2,3, ... ... n-1

Therefore,
T+2kT T+2km
z=cos( . )-l-llTl(T)

For k =0,1,2,3,4, the solutlons are:

3 =cosm+isinm

(
(5?71) +isin (
5)*isin (
(

SN
———

Z = COS
z=cos( )+ism

o ..
Z = COS (?) + i sin

a|Sa
N—"

Example: Find the sixth roots of z = — 8 and graph these roots in the complex plane.

Solution: In trigonometric form, z = 8(cosm + isinm)
By w,, = \/_[co (9 tom )+ sin (9+2mn)]
_ \/— [ (7T+2k1'[)]
the sixth roots of - 8 1S obtained by taking k = 0,1,2,3,4,5
w, = V8 [COS(%) +isin (%)] = ﬁ(ﬁ + li)

2 2
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W = %[COS(%) +isin (%)] =/2i

w, = 3/8 [cos(s?n) +1isin (5?”)] = \/f(—

w; =38 [cos(%”) +isin (7?”)] = \/f(—

Wy = %[cos(%n) +isin (37")] =—2i

ws = %[COS(HTH) +isin (11?”)] = \/f(g — %l)
All these points lie on the circle of radius V2 as shown in figure 3.1

[m 4
(2 | u
H‘_"__':_'l -—1
.-'"'#- e
Wy 4 o B
g
|I I|
1 h |
—_ i [} e ] E
W 2 J+2 Re
II'.
LY »
Lry A Wl g
HH ff,--""
N
= | 74
— 24’ -

Figure 3.1 Complex numbers as points in the Argand plane

Example: Find all the complex roots of 27i
Solution: required to find the complex numbers z with the property z3 = 27i.

First write 271 in polar form, thus |27i| = |0 + 27i| = /0% + (27)% = 27

T
arg(27i) = >
271 =27 (cosz+isinz)
B 2 2

Now suppose z = r(cos 8 + i sin ) satisfies z3 = 27i, Then, by De Moivre’s Theorem,
r3(cos 30 +isin30) = 27i = 27 (cos% +i sing)

3.3 The nth Roots of Unity
(Roots of unity) Let n be a positive integer. The complex numbers e?™/™ has its nth
power equal to 1. Likewise, if k is a non-negative integer in the set k = 0,1,2, ... ... n-1,
then e?™*/ also has its nth power equal to 1. Such a number is called an nth root of
unity. These numbers can be drawn on the unit circle in the complex plane.
We recall that cos 0 + i sin 0 = 1 this implies that

1 =cos2mk + isin2nk, k =0,1,2,3, ...
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If w denotes the root cos( : ) + isin ( :n) ,k =0,1,2,3, ..., then the nth root of unity
may be written in the form 1, w, w?, w3, ..., @™ ! . We see that they form a geometric

. 1-w™ .
progression whose sum PR equal to 0.

Example:
Solve the equation z® + z° + z* + 23+ 22+ 2+ 1 =0 and deduce that
21 41 61 1
. cos(T) + cos (7) + cos (7) =-3
Solution
We know that
7_
28+ 25+ 2z + 23+ 22 +z+1 =ZZ_11,

Hence we consider the equation
z7—-1=0
Note also that
1 =cos0+isin0 = cos2mk + isin2nk,
Hence
z = cos (2%) +isin (7). k = 0,123,456
7 7
5 7 — : : _ 2km
The equation z” —1 =0 is satisfied by z = 1 and z = cos ( ) +is (T)’

therefore the given equation is satisfied by z = cos (g) + isin (27) ,k=1,2,34,5

That is,
Z—COS( )+Lsm (?)
Z=COS( +isin (g)

)
Z=COS(67)+lSln (g)
) +i

81
zZ = COS(
7

Z = COS +isin (==
(57) + tsin (57)
The sum of these roots is 2 [cos(Tn) + cos (4771) + cos (67n) ]

But from the given equation the sum of the roots is also -1.

Therefore,

cos(27n) + cos (47”) + cos (67”) = —%

3.4. Complex roots of a number.
For any given complex number w there is a method of finding all complex solutions of
the equation
zZ"=w (*)
ifn=2,3,4,..... is a given integer.
To find these solutions you write w in polar form, i.e. you find r > 0 and 6 such that
w = re'? then z = r'/"e®/™ i5 a solution to (). But it isn’t the only solution, because
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the angle 6 for which w = r® isn’t unique, it is only determined up to a multiple of 2.
Thus if we have found one angle 6 for which w = %%, then we can also write

w = riO+2km J =0, 41,42, ...
The nth roots of w are then

.0 _k
Z = 7,,1/1161 (?L+ZET[)
o UO+2km)
=3re n

= Yy (T2 ) k=0.1.23...n- ]
Here k can be any integer, so it looks as if there are infinitely many solutions. However,

if you increase k by n, then the exponent above increases by 2mi, and hence z;, does not
change. In a formula:

Zy = Zy
Zn+1 — 21
Zny2 = Zy
Zn+k = Zg

So if you take k = 0,1,2, ..., n — 1 then you have had all the solutions.
The solutions z; always form a regular polygon with n sides.
Example: Find all sixth roots of w = 1.
Solution: Required to solve z° = 1.
First write 1 in polar form,
1 = 1 . eOi
=1.2%k" k =0,+1,%2, ...,
Then we take the 6th root and find
7, = 11/6g2kmi/6
=ehm/3 | =0,11,12,..
The six roots are
zZo =1,
z, = e™/3 =%+§\/§

z, = e?™/3 = —%+%\/§

Z3=_1,
i 1 i
z4=e’”/3 = —E—E\/g
i 1 i
Zs=e’”/3 =E_E\/§

4.0 CONCLUSION

In this unit, we have studied some theorems and determine the roots of equations using
complex variables. You are required to study this unit properly before attempting to
answer questions under the tutor-marked assignment.
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5.0 SUMMARY

You recall that you learnt about De Moivre’s theorem, both for integer quantity and
fractional quantity. Also, you learnt about roots of unity among others. You are to study
them properly in order to be well equipped for the next course in mathematical methods

6.0 Tutor Marked Assignment

1) Use De Moivre’s theorem with n = 3 to express cos 36 and sin 36 in terms of
cos 0 and sin 6.

2) Apply De Moivre’s formula to prove that
i) cos 20 = cos?0 — sin’0
i1) sin @ — 2sin 6 cos 0

3) Find the indicated power using De Moivre’s theorem
i) (1+1)° i) (1 -8 iii) (2vV3 + 21‘)5 iv) (1- i\/§)5
4) Find the indicated roots and sketch the roots in complex plane.
1) The fifth roots of 32
i1) The cube roots of i
111) The cube roots of 1 + i

5). Find all the roots of the polynomial P(z) = z® — 1 —1 and plot them in the complex
plane.

(b) Let v be a complex number with |[v| =+/r and (v) = g +m.

Show that v? = z
(c) From (a) and (b) we see that every nonzero complex number has two distinct
square roots. Find the square roots, in rectangular form, of 1 +3 i and —9
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MODULE 2

Unit 1 Limits of functions of complex variables
Unit 2 Continuity of functions of complex variables
Unit 3 Differentiation of complex functions

UNIT 1: Limits of functions of complex variables
Content
1.0 Introduction
2.0 Objectives
3.0 Main content
3.1  Function of a complex variable
3.2 Real and imaginary parts of a complex function
3.3 Limit of a complex function

3.4  Limit at infinity

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 Reference/further Readings

1.0 Introduction

In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in
complex analysis, we study functions f (z) of a complex variable z € C (or in some
region of C). Here we expect that f (z) will in general take values in C as well.
However, it will turn out that some functions are better than others. Basic examples of
functions f(z) that we have already seen are:

f(z) = c, where c is a constant (allowed to be complex),

f(2) = 2,f(2) = zf(2) = Rez,

f(2) =Imzf(z) = |z|f(2) = e”.

The “functions" f(z) = argz f(z) = vz, and f(z) = logz are also quite
interesting, but they are not well-defined (single-valued, in the terminology of complex
analysis).
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2.0 Objectives
At the end of this unit, you should be able to:
v Define the function of a complex variable
v’ Identify real and imaginary parts of a complex function
v’ Define and discuss the Limit of a complex function

3.0 Main content
3.1 Functions of a complex variable
Definition 1:

Let S be a set of complex numbers in the complex plane. For every point z = x +
iy € S, we specific the rule to assign a corresponding complex number w = u + iv.
This defines a function of the complex variable z, and the function is denoted by
w = f(2). The set S is called the domain of definition of the function f and the
collection of all values of w is called the range of f.

Definition 2 A (single-valued) function f'of a complex variable z is such that for every
z in the domain of definition D of f, there is a unique complex number w such that

w = f (2).

Definition 3 A complex valued function of a complex variable? If z = x + iy, then a
function f(z) is simply a function F(x; y) = u(x; y) + iv(x; y) of the two real
variables x and y. As such, it is a function (mapping) from R? to R?.

Here are some examples:

1. f(z) = z Correspondsto F(x,y) =x+iy (u=x,v=y)

2.f(2) = z,with F(x,y)=x—iy (u=x,v=-y);

3.f(z) = Rez, withF(x,y) =x (u=x,v=0, taking values just along the real
axis);

4.f(2) = |z|, with F(x,y) = {/x? + y?, (u=/x%+y?,v = 0 taking values just
along the real axis);

5.f(2) = z?,with F(x,y) = (x? —y%) +i(2xy) (u=x%-vy%v=2xy)

6 f(z) = e*, withF(x,y) =e“cosy+i(e“siny) (u=e?cosy,v=e?siny)

3.1.1 Real and imaginary parts of a complex function
If f(z) = u + iv, then the function u(x; y) is called the real part of f and v(x; y) is
called the imaginary part of f. Of course, it will not in general be possible to plot the
graph of f(z), which will lie in C?, the set of ordered pairs of complex numbers, but it is
the set

{fzw) e C®:w = f(2)}.

The graph can also be viewed as the subset of R* given by

{Gsy;s; ) s =ulx;y);t =v(; )}k
In particular, it lies in a four-dimensional space.The usual operations on complex
numbers extend to complex functions: given a complex functionf(z) = u + iv, we can

define functions Re f(z) = u,Imf(z) = v, f(z) =u—iv, |F(2)| =+vu?+v2
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Likewise, if g(z) is another complex function, we can define f(z)g(z) and f(z) /g(z)
for those z for which g(z) # 0.
Some of the most interesting examples come by using the algebraic operations of C. For
example, a polynomial is an expression of the form

P(z) =a,z"+a,_1z" 1+ +a,
where the a; are complex numbers, and it defines a function in the usual way. It is easy
to see that the real and imaginary parts of a polynomial P(z) are polynomials in x and y.
For example,

P(z) = (1+i)z?>—-3iz= (x* —y? = 2xy + 3y) + (x? — y? + 2xy — 3x)i

and the real and imaginary parts of P(z) are polynomials inx and y. But given two
(real) polynomial functions u(x; y) and z(x; y), it is very rarely the case that there
exists a complex polynomial P(z) such that P(z) = u + iv.
For example, it is not hard to see that x cannot be of the form P(z), nor can Z. As we
shall see later, no polynomial in x and y taking only real values for every z (i.e.v =
0) can be of the form P(z).

Of course, since x = %(z +Z)andy = %(z — Z), every polynomial F(x,y) in x and y
is also a polynomial in z and Z, i.e.
F(x,y) = Q(z,2) = Xijs0¢ij2'2’
where ¢;; are complex coefficients.
Examples:

f(z) = arg z is defined everywhere except at z = 0, and Arg z can assume all
possible real values in the interval (—n, nt]. f (z) = z is such that u(x,y) = x and

v(x,y) =y
Find the real and imaginary parts of f(z) = Z, f(z) = % is defined for all z # 0 and is
such that

u(xy) = "

x2+ y2

and v(x,y) =

x2+ y2

3.1.2 Limit of a complex function

A (complex) function f is a mapping from a subset ¢ < € to C (in this situation we will
write f : G — C and call G the domain of f'). This means that each element z € G gets
mapped to exactly one complex number called the image of z and usually denoted by f
(z). So far there is nothing that makes complex functions any more special than, say,
functions from R™ to R™.

In fact, we can construct many familiar looking functions from the standard calculus
repertoire, such as f (z) = z (the identity map), f (z) = 2z + i, f (z) = z3, or
f(z) = é The former three could be defined on all of C, whereas for the latter we have

to exclude the origin z = 0. On the other hand, we could construct some functions which
make use of a certain representation of z, for example,

f (xly) = X— Zlys f(x'y) = yZ —ix, OI'f (T',(p) = Zrei((p+n').

Maybe the fundamental principle of analysis is that of a limit. The philosophy of the
following definition is not restricted to complex functions, but for sake of simplicity we
only state it for those functions.
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Definition: Suppose f is a complex function with domain G and z, is an accumulation
point of G. Suppose there is a complex number w, such that for every € > 0, we can
find § > 0 so that for all z € G satisfying 0 < |z — z,| < & we have |f (z) —w, <
€|. Then wyis the limit of f as z approaches z,, in short

limz—>zo f(Z) =Wy

This definition is the same as is found in most calculus texts. The reason we require that
Zpis an accumulation point of the domain is just that we need to be sure that there are
points z of the domain which are arbitrarily close to z,. Just as in the real case, the
definition does not require that z0 is in the domain of f and, if z, is in the domain of f,
the definition explicitly ignores the value of f (z,). That is why we require
0 < |z—2z.

Just as in the real case the limit w0 is unique if it exists. It is often useful to investigate
limits by restricting the way the point z “approaches”z,. The following is a easy
consequence of the definition.

Lemmal: Suppose lim,_,, f(z) exists and has the value wy, as above. SupposeG, < G,
and suppose z, is an accumulation point of G,. If f, is the restriction of f to G, then
lim,_,, f(z) exists and has the value wy.

The definition of limit in the complex domain has to be treated with a little more care
than its real companion; this is illustrated by the following example.

Example: lim,_,, g does not exist.
To see this, we try to compute this “limit" as z — 0 on the real and on the imaginary

axis. In the first case, we can write z = x € R, and hence

lim,_,,

N | N

. x . x
= lim,_,, - = lim,._,, -= 1
In the second case, we write z = iy where y € R, and then

L Z Ly Y

lim-=lim—=Ilim——= -1

z-0Z y-=01y y—-0 Ly
So we get a different “limit" depending on the direction from which we approach 0.
Lemma 1 then implies that lim,_, gdoes not exist.
On the other hand, the following “usual” limit rules are valid for complex functions; the
proofs of these rules are everything but trivial and make for nice exercises.

The absolute value measures the distance between two complex numbers.
Thus, z; and z, are close when |z; — z,| is small. We can then define the limit of a
complex function f(z)) as follows: we write

lim,,.f(z) =1L,
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where ¢ and L are understood to be complex numbers, if the distance from f(z) to L,
|f(z) — L| is small whenever |z — c| is small. More precisely, if we want |f(z) — L|
to be less than some small specified positive real number § then there should exist a
positive real number € such that, if |z — ¢| < § then |f(z) — L| < €. Note that, as with
real functions, it does not matter if f(c) = L or even that f(z) be defined at c. It is easy
to see that, if ¢ = (c¢;,c,), L = a + biand

f(z) = u + iviswritten as a real and an imaginary part, then

lziirg f(z) =L

if and only if
lim ulx,y) =a and lim v(x,y) = b.
(ey)—(c1,62) ( y) (xy)~(c1,c2) ( y)

Thus the story for limits of functions of a complex variable is the same as the story for
limits of real valued functions of the variables x; y. However, a real variable x can
approach a real number ¢ only from above or below (or from the left or right, depending
on your point of view), whereas there are many ways for a complex variable to approach
a complex number c.
Sequences, limits of sequences, convergent series and power series can be defined
similarly.
The formal definition of the limit of a function is stated as:
For any € > 0, there exists § > 0 (usually dependent on €) such that

If(z)—Ll<e if 0<|z—2z)|<$
The limit L, if it exists, must be unique. The value of L is independent of the direction
along which z — z, (see Figure 2.4).
The function f(z) needs not be defined at z, in order for the function to have a limit at
z0. However, we do require z, to be a limit point of S so that it would never occur
that f (z) is not defined in some deleted neighbourhood of z,. For example, let us

. . sinz
consider lim,_,; —.
z

The domain of the definition of % is C\{0}. Though % is not defined at z = 0,
this is a limit point of the domain of definition. Hence, the above limit is well defined.

i

The region 0 < |z — zy| < § in the z-plane is mapped onto the region enclosed by the curve in the w-plane. The curve lies
completely inside the annulus 0 < |w — L| < €

If L=a+iB, f(z) =ulx,y) +iv(x,y), z=x+iyandz, = x, + iy,
then
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lux,y) —al < If(y) — Ll < [ulx,y) — al + |v(x,y) — B
luCx,y) =Bl < If () — Ll < [ulx,y) —al + |v(x,y) — B
From the above inequalities, it is obvious that eq. (2.2.1) is equivalent to the following
pair of limits
M )0 g o) 400 Y) = @
lim(x~3/)—>(xo,J’0) v(x, y) =p
Therefore, the study of the limiting behavior of f (z) is equivalent to that of a pair of
real functions u(x,y) and v(x,y). Consequently, theorems concerning the limit of the
sum, difference, product and quotient of complex functions hold as to those for real
functions.
Suppose that lim,_,; f;(z) = L, and limg_; f,(z) = L,
Then
limz—»zo (f1(Z) + fz(Z)) =L tL,,
limz_,z, (fl(Z)fz(Z)) =LiL,,

. fi(@) _ Ly
limg_, 7 e L,+0

. z2-1 .
Example: l1mz_)i: = 2i

Because the definition of the limit is somewhat elaborate, the following fundamental
definition looks almost trivial.

Definition: Suppose f is a complex function. If z; is in the domain of the function and
either z; 1s an isolated point of the domain or

limz—>20 f(Z) =f(Z0)
then f is continuous at z,. More generally, f is continuous on G < C if f is continuous
atevery z € G.
Just as in the real case, we can “take the limit inside” a continuous function:

Lemma 2: If f is continuous at an accumulation point wy and lim,_,, g(z) =w, then

lim, . f(9(2)) = f (o)

In other words,
limz—>zof( g(z)) = f(limzazo g(z))

This lemma implies that direct substitution is allowed when f is continuous at the limit
point.
In particular, that if f is continuous at w, then lim,_,, g(z) = f (w,).

Example Prove that

lim,,z% =a? , a is a fixed complex number using the € — &
criterion.
Solution: It suffices to establish that for any given € > 0, there exists a positive number
such that
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|z2 — a?| < e whenever 0<|z-0<|z—a|<§é
Observing
zZ2—a’=z-a)z+a)=(z—-a)(z—a+ 2a)
and applying the triangle inequality, we obtain
|z2 —a?| = |z—al|lz— a+ 2a| <|z — a|(|z — a| + 2|a])
provided that z lies inside the deleted § neighborhood of a. Here, § is chosen to be less

€
——), 80
1+2|a|

|z2 —a?| <|z—a|(lz—al +2]a]) <

than min(1,
€

1+2|a|

Note that the choice of § depends on € and «.

(1+4+2|a]) =€

3.13 Limit at infinity: The definition of limit holds even when z, or L is the point at
infinity. We can simply replace the corresponding neighbourhood of z, or L by the
neighbourhood of infinity. The mathematical statement lim,_, f(z) = L
can be understood as:

For any € > 0, there exists §(€) > 0 such that

|f(z) — L| < € whenever |z| > %
Here, z refers to a point in the finite complex plane and |z| > % is visualized as a deleted

neighbourhood of . Also, we must be cautious that the results in the equations above
hold for z,, L; and L, in the finite complex plane only.

Suppose we define w = i . Then z — « is equivalent to w — 0. It is then not surprising
to have the following properties on limit at infinity

Theorem If z, and wy are points in the z-plane and the w-plane respectively, then.
(@) lim,_, f(z) = oo ifand only if lim_, % =0

(b) lim,_,., f(2) = w, if and only if lim,_,; f G) =Wy

Proof
(@) lim,_; f(2) = o implies that for any € > 0, there exists a positive number §
such that
|f(2)| > = whenever 0 < |Z — Zo| <&
The above result may be rewritten as
|L—0| < € whenever0 < |Z —Zy| <6

f(2
so we obtain

2% f(z)
(b)lim,_ f(2) = w, implies that for any € > 0, there exists a positive number §
such that

|f(z) — wy| < € whenever |z| > % , replacing z by é we obtain |f G) —wy < €

whenever 0 < |z — 0] < § so we obtain lim,_, f G) =W,

The above results provide the convenient tools to evaluate limits on infinity
For example:
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z—1 z2+1

1) lim —=0 2) lim — =0
) z-1 2241 ) z—1 7—1 )
. 1+ 4z%2 1 . z%+4 . =t 1
3 lim, ,—— =- 4) lim =i Z ==
) 7205422 " 5 ) Z—00 522+ PO s
V4
. 2Z+i
5) lim — =2
z—oo Z+1

4.0 CONCLUSION
In this unit, we have studied limits of complex functions. You are required to study this
unit properly before attempting to answer questions under the tutor-marked assignment.

5.0 SUMMARY

You recall that you learnt about function of a complex variable as well as limits of
complex functions. You are to study them properly in order to be well equipped for the
next course in mathematical methods.

6.0 Tutor Marked Assignment

1). Evaluate the following limits or explain why they don’t exist.
z3i-1

(b) Zl_i)rln_i[x + i(2x + y)]

2) Evaluate lim A

z—oo Z+2
z4+ 4z+1

5z%+ i

3) Evaluate lim
Z—00
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Unit 2 Continuity of functions of complex variables
Content

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 Continuity of a complex function
3.2 Uniform continuity

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 Reference/further Readings

1.0 Introduction

Continuity of a complex function is defined in the same manner as for a real
function. The Continuity of a complex function is defined using the concept of limits.

2.0  Objectives

At the end of this unit, you should be able to:
e Define the Continuity of a complex function
e Discuss the Continuity of a complex function at a given point

3.0 Main content

3.1 Continuity of a complex function
As for functions of a real variable, a function f(z) is continuous at c if.
lim f(z) = £(c)

In other words:

1) Limit of the function exists;

2) f(z) is defined at c;

3) Its value at c is the limiting value.
That is, the continuity of a complex function is defined using the concept of limits.
A function f (z) is continuous if it is continuous at all points where it is defined. It is
easy to see that a function f (z) = u + iv is continuous if and only if its real and
imaginary parts are continuous, and that the usual functions z;,Z; Re z,Im z; |z|,e” are
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continuous. (We have to be careful, though, about functions such as arg z or log z
which are not well-defined.) All polynomials P(z) are continuous, so are all two-
variable polynomial functions in x and y. A rational function R(z) = P(z) = Q(2)
with Q(z) not identically zero is continuous where it is defined, i.e. at the finitely many
points where the denominator Q(z) is not zero. More generally, if f(z)) and g(z) are
continuous, then so are:

1. ¢f (z) where c is a constant;

2.f(2) +g(2)

3.f(2).9(2)

4. % is defined (for g(z) # 0)

5(g o f)(z) = g(f(z), the composition of g(z)and f(z) are defined.

Example: Consider f(z) = e?; its real and imaginary parts are, respectively,

u(x, y) = e* cos y and v(x, y) = e* sin y. Since both u(x, ) and v(x, y) are continuous at
any point (x,, y,) in the finite x-y plane, we conclude that e” is continuous at any point
Zo=Xotiy,inC

2
Example: Is the function such that f(z) = Im ;7 for z # 0 and f'(0) = 0, continuous at

=07?
Theorems on real continuous functions can be extended to complex continuous
functions. If two complex functions are continuous at a point, then their sum, difference
and product are also continuous at that point; and their quotient is continuous at any
point where the denominator is non-zero. For example, since g(z) = z? is continuous
everywhere, we conclude by the above remark that both z? + e? and z%/e? are
continuous in C. Examples of complex continuous functions in C are polynomials,
exponential functions and trigonometric functions.

Another useful result is that a composition of continuous functions is continuous. If
f (2) is continuous at z, and g(z) is continuous at ¢ , and if & = f (z,), then the
composite function  g( f(2)) is continuous at z = z,. Thus, functions like sin z? and
cos z2 are continuous functions in C.
Since continuity of f (z) implies continuity of its real and imaginary parts, the real
function

|f(z)|=\/u(x,y)2+v(x,y)2, f=u+ivandz=x+1iy
is also continuous. By applying the well-known result on boundedness of a continuous
real function in a closed and bounded region, we can deduce a related property on
boundedness of the modulus of a continuous complex function. We state without proof
the following theorem.
Theorem If f (z) is continuous in a closed and bounded region R, then |f (z)| is bounded
in the region, that is,

f2)<M, forall z €ER, (2.2.7)

for some constant M. Also, |f (z)| attains its maximum value at some point z, in R.

Example Discuss the continuity of the following complex functions at z = 0:
0,z=0

a) f(Z): {g z+ 0
lz| ’
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Imz

b) f(2) =
Solution
a) z=x+1iy,z#0
then,
Rez X
2l JxP?
Suppose z approaches 0 along the half straight line y = mx (x > 0).
Then,
lim RZ - lim —2—
z-0,y=mx,x>0 |z| x—0+ \/x2+m2y2 .

= lim
x—04+ xV1+m?2 \/1+m2

Since the limit depends on m, hngf (z) does not exist. Therefore, f (z) cannot be
VAR
continuous at z = 0.

mz_ y

1+[z]  14/x%+y?

b) z =x + iy, then
Now, consider the limit,

mf@) = om, mm =0=7(0)

Therefore, f (z) is continuous at z = 0.

Example: the function f(z) = |z| is continuous for all z.
For this, let z, be given. Then

lim,,, |z| = lim,_, J(Re 2)2 + (Im 2)? =/ (Re 2)? + (Im 2)? = |z,|

3.2 Uniform continuity

Suppose f(z) is continuous in a region R. Then by definition, at each point z, inside R
and for any € > 0, we can find § > 0 such that |f (2) — f (2,)| < € whenever | z — z,| <
§. Usually 6 depends on € and z, together. However, if we can find a single value of &
for each €, independent of z0 chosen in R, we say that f(z) is uniformly continuous in
the region R.
Example Show that
(@) fi(z) = z? is uniformly continuous in the region |z| < R, where 0 < R < oo,
Solution
It suffices to show that given any € > 0, we can find § > 0 such that [z2 — z,? | < €
when | z — zy| < §, where 6 depends on € but not on the particular point z0 of the
region. If z and z0 are any two points inside |z| < R, then
|22 = 2o% | = |z + 2o|| z — 2| < {] 2| | 20|} 2 — 20| < 2R| z — 2,
This relation between | f;(z) — f1(2,)| and | z — z,| dictates the choice of § = € 2R ,
where § depends on € but not on z, Now, given any € > 0, suppose | z — zy| < 6. Then
by inequality (i), we have
| f1(2) — f1(20)| = |z% — 2,%| < 2R|z— 2| < 2R& =
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Hence, f;(z) = z? is uniformly continuous in |z| < R.

and |f,(2) — f,(2,)| can be made to be larger than any positive number when z0
becomes sufficiently close to 0. It is not possible to find § that depends on € but not z0
such that for any given €, we have

Ile(Z) — f2(20)| < € for|z—z,| < 6.
Hence, f,(2) = - is not uniformly continuous in 0 < |z |< 1.
Most of the theorems related to the properties of continuity for real functions can be

extended to complex functions. However, this is not quite so when we consider
differentiation

4.0 CONCLUSION

In this unit, we have studied Continuity of a complex function. You are required to study
this unit properly before attempting to answer questions under the tutor-marked
assignment.

5.0 SUMMARY
You recall that you learnt about Continuity of a complex function You are to study them
properly in order to be well equipped for the next course in mathematical methods

6.0 Tutor Marked Assignment

Show that f,(z) = i is not uniformly continuous in the region 0 < |z| < 1.
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UNIT 3: Differentiation of complex functions
Content
1.0 Introduction
2.0 Objectives
3.0 Main content

3.1  Differentiation of complex functions
3.2 Rules for differentiation

33 Constant Functions
3.4  Complex velocity and acceleration

4.0  Conclusion

5.0 Summary

6.0  Tutor Marked Assignment
7.0 Reference/Further Readings

1.0 Introduction
2.0  Objectives

At the end of this unit, you should be able to:

Y

Define and discuss the differentiability of a complex function using the concept
of limit

State the rules of differentiation of complex numbers

Define constant functions

Obtain Complex velocity and acceleration of functions

YV V

3.1 Differentiation of complex functions (or simply Complex derivatives)
The fact that limits such as limzﬁog do not exist points to something special about

complex numbers which has no parallel in the reals—we can express a function in a very
compact way in one variable, yet it shows some peculiar behavior “in the limit." We will
repeatedly notice this kind of behavior; one reason is that when trying to compute a limit
of a function as, say, z — 0, we have to allow z to approach the point 0 in any way. On
the real line there are only two directions to approach 0—from the left or from the right
(or some combination of those two). In the complex plane, we have an additional
dimension to play with. This means that the statement

“A complex function has a limit..." is in many senses stronger than the statement “A real
function has a limit..." This difference becomes apparent most baldly when studying
derivatives.
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Differentiability ~ Similar to the calculus of real variables, the differentiability of a
complex function is defined using the concept of limit. Having discussed some of the
basic properties of functions, we ask now what it means for a function to have a complex
derivative. Here we will see something quite new: this is very different from asking that
its real and imaginary parts have partial derivatives with respect to x and y. We will not
worry about the meaning of the derivative in terms of slope, but only ask that the usual
difference quotient exists.

Definition A function f'(z) is complex differentiable at ¢ if
1- f (Z) - f (C)
im———~
Z—C zZ—-C
exists. In this case, the limit is denoted by  f'(c). Making the change of variable
[ (c+h)—f ()
h
exists, in which case the limit is again f'(c). A function is complex differentiable if it is
complex differentiable at every point where it is defined. For such a function f(z), the

derivative defines a new function which we write as

, d
f'@ or Lf(2)
For example, a constant function f(z) = C is everywhere complex differentiable and its
derivative f'(z) = 0.The function f(z) = z is also complex differentiable, since in this
case

z = ¢+ h, f(z) is complex differentiable at c if and only if the limit }lirr(l)

f@)-f) _ z-c _
zZ—C - zZ—C -
Thus, (z)" = 1. But many simple functions do not have complex derivatives.
For example, consider f(z) = Re z = x. We show that the limit
limf (c+h)—f (c)
h—0 h
does not exist for any c. Let ¢ = a + bi, so that f(c) = a. First consider h = t a

real number. Then f(c + t) = a + tandso Tl @) - a+z—a =1

So if the limit exists, it must be 1. On the other hand, we could use h = it.
In this case, f(c + it) = f(c) = a,and
flcth)-f() _a-a _
h it
Thus approaching ¢ along horizontal and vertical directions has given two different
answers, and so the limit cannot exist. Other simple functions which can be shown not to

have complex derivatives are Im z; Z, and |z|.

3.2 Rules for differentiation
1. If f (z) is complex differentiable, then so is cf(z), where c is a constant, and

(cf(2)) = cf'(2);
2. (Sum rule) If f(z) and g(z) are complex differentiable, then so is f(z) + g(z), and

(f(2) + g(2)0 = f0(z) + g0(2);
3. (Product rule) If f(z) and g(z) are complex differentiable, then so is f(z).g(z) and

(f(2)_9(2) = f(2)g9(2) + f(2)9'(2);
4. (Quotient rule) If f(z) and g(z) are complex differentiable, then so is
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f(z) = g(z), where defined (i.e. where g(z) # 0), and (;E—Z) =1 ,(Z)g(;)(; Z(Z)g'(z)

5. (Chain rule) If f(z) and g(z) are complex differentiable, then so is f(g(z)) where
defined, and (f(9(2)))" = f'(9(2)).g'(2).

6. (Inverse functions) If f(z) is complex differentiable and one-to-one, with nonzero
derivative, then the inverse function f~1(z) is also differentiable, and

@) = 7=

Thus for example we have the power rule (z™)" = nz""!, every polynomial

P(z) = a,z" + a,_1z" 1 + --- + a, is complex differentiable, with

P'(z) =na,z" '+ (n—1Da,_1z" %2+ +a;

and every rational function is also complex differentiable. It follows that a function
which is not complex differentiable, such as Re z or Z cannot be written as a complex
polynomial or rational function.
Assume that f'is defined in a neighborhood of z — z,. The derivative of the function f at
Z—Zy1is

f(zo+Az)—f (20)
Az

. . f(2)-f(zo0)
fI(ZO) = limy,_,o = hmz—>zo 2 °

0
assuming that this limit exists.

If f'has a derivative at z = z,,, we say that f is differentiable at z = z,.

Example Show that the functions Z and Re z are nowhere differentiable, while |z|? is
differentiable only at z = 0.

Solution According to definition (2.3.1), the derivative of z is given by

d . F+AZ-Z . Az . i
— =lim === lim e ~2i4r9az
dz Az—0 Az Az—0 Az Az—0

The value of the limit depends on the path approaching z. Therefore, z is nowhere
differentiable. Similarly,

2 Rez =il(z+z‘)
dz dz 2

1., 2+ Z+Az+A 2)—(z— 2)
1 im ( )—( )
2 Az—0 Az

Az+AZ

1.
—lim
2 Az—0 Az

1 1. Az
=-+-lim —
2 2 Az—0 Az

Again, Re z is shown to be nowhere differentiable. Lastly, the derivative of |z|?
is given by

64



. |z+Az|?—|z|?
lim [Zrad iz

=
Az—0 Az

d
—|Z
dz

= lim [z‘+ z£+Az‘]
Az—0 Az

The above limit exists only when z = 0, that is, |z|? is differentiable only atz = 0

Examples:
f(z) = Z is continuous but not differentiable at z = 0.
f (z) = x3 is differentiable at any z € C and f, = 3x?

Holomorphicity

Definition Suppose f : G — C is a complex function and z, is an interior point of G.
The derivative of f at z, is defined as f’(z,) = lim L2~ (2)=f(Z0)
zZ

-z Z—Z

provided this limit exists. In this case, f is called differentiable at z,. If f 1is
differentiable for all points in an open disk centered at z, then f is called holomorphic
at z,. The function f is holomorphic on the open set G < C if it is differentiable (and
hence holomorphic) at every point in G. Functions which are differentiable (and hence
holomorphic) in the whole complex plane C are called entire.(Some sources use the
term ‘analytic’ instead of ‘holomorphic’. in our context, these two terms are
synonymous. Technically, though, these two terms have different definitions. Since we
will be using the above definition, we will stick with using the term ’holomorphic’
instead of the term analytic)

The difference quotient limit which defines f'(z,) can be rewritten as

' . f(zo+h)—f(20)

= lim 12"/ %0)
f'(20) = lim -
This equivalent definition is sometimes easier to handle. Note that h is not a real number
but can rather approach zero from anywhere in the complex plane.
The fact that the notions of differentiability and holomorphicity are actually different is
seen in the following examples.

Example the function f (z) = z3 is entire that is, holomorphic in C: For any z, € C
— 3_,3
Z—Z Z—Zp z—zy Z7 2

(z2+220+20%)(z—20)

=lim
Z—Zg Z—Zzp

=lim z2 + zz, + z,°
Z—Z

—12, 2
=3z,
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Example The function f (z) = Z? is differentiable at 0 and nowhere else (in particular,
f is not holomorphic at 0): Let’s write z = z, + re'®. Then

2
72-7,2 (zo +re‘9) —Zo?

z—2, Zo +relf—z,

_(zo+ re_w)z—%z

ret®

B %2+2%re—i9+r23—2i9_%2 B 2%re‘i9+rze_2i9

ret® rett
— 2Z—Oe—2l9 + re—3i9

If zy # 0, then the limit of the right-hand side as z — z, does not exist since r — 0 and
we obtain different answers for horizontal approach i.e. (6 =0 ) and for vertical
approach ie. (0 = g). (A more entertaining way to see this is to use, for example,

z(t) = zy + %e"t which approaches z, as t — o). On the other hand, if z, = 0 then the
right-hand side equals re=3 = |z|e=3¥.
Hence,

z

lim
z—0

= lim ||z|e‘319|
z—0

=lim|z| =0
z—0

Example The function f (z) = Z is nowhere differentiable:

Z-Zgy Z—Zg

= lim
z—zyZ— 20 z—ZyZ~ 20

I Ny

= lim
z—0

N

does not exist, as discussed earlier.

The basic properties for derivatives are similar to those we know from real calculus. In
fact, one should convince oneself that the following rules follow mostly from properties
of the limit. (The ‘chain rule’ needs a little care to be worked out.)

Lemmal Suppose f and g are differentiable at z € C, and thatc € C,n € Z,and h
is differentiable at g(z).

@ (f(2) +cg(2) = f'(2) +cg' (@)
® (F@). 9@) =f@Dg(@) +f(2)g' @
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© (F(2)/9(z) =129 (Z)(XZ(Z)Q ©  whenever g(z) # 0

(d) ") =nz""!

@ (h(g@) =h(9(2))g'(@
We end this section with yet another differentiation rule, that for inverse functions. As in
the real case, this rule is only defined for functions which are bijections. A function
f+ G — H is one-to-one if for every image w € H there is a unique z € G such that
f (z) = w. The function is onto if every w € H has a pre-image z € G (that is, there
exists az € G such that f (z) = w). A bijection is a function which is both one-to-one
and onto. If f: G — H is a bijection then g is the inverse of f if for all z €

H f(9(@) = z

Lemma 2 Suppose G and H are opensetsinC, f : G — Hisabijection,g: H - G
is the inverse function of , and z, € H. If f is differentiable at g(z,), f '(9(z,)) # O,
and g is continuous at z, then g is differentiable at z, with

i _ 1
9'(z0) = £'(9(20))
Proof. We have, g'(z,) = lim 9(2)~9g(20)
Z—>Zy Z—2Zg
9(z2)—g(zo)

z-zo £(9(2)-f(g(z0)

1
=lim ——————
fg@)-f(g(zo)

2720 T —g(zo

Because g(z) = g(zy) asz — z,, we obtain:

"(zg) = lim s
0 — .
g 925 (ze) TEDTE@)

9(2)-g(zo
Finally, as the denominator of this last term is continuous at z,,, by Lemma 2.6 we have:
, _ 1 1
9'(20) = lim LW@)=1W@@0) — f1(g(z,))

g(2)-g(zg) 9@)-9(zo

3.3 Constant Functions

As an example application of the definition of the derivative of a complex function, we
consider functions which have a derivative of 0. One of the first applications of the
Mean-Value Theorem for real-valued functions is to show that if a function has zero
derivatives everywhere on an interval then it must be constant.

Lemma3 Iff: I — Risareal-valued function with f '(x) defined and equal to 0 for
all x € I, then there is a constant c € R suchthat f (x) = cforallx € I.
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Proof:. The proof is easy: The Mean-Value Theorem says that for any x,y € I,
fO)=f() = flx +aly— )y - x)

for some 0 <a < 1. If we know that f' is always zero then we know that

f'x +aly—x) =0,
so the above equation yields f (y) = f (x). Since this is true for any x,y € I, f must
be constant.
There is a complex version of the Mean-Value Theorem, but we defer its statement to
another course. Instead, we will use a different argument to prove that complex
functions with derivative that are always 0 must be constant.

Lemma 3 required two key features of the function f, both of which are somewhat

obviously necessary. The first is that f be differentiable everywhere in its domain. In

fact, if f is not differentiable everywhere, we can construct functions which have zero

derivative ‘almost’ everywhere but which have infinitely many values in their range.

The second key feature is that the interval I is connected. It is certainly important for the

domain to be connected in both the real and complex cases. For instance, if we define
1 if Rez>0

f2) = {—1 if Rez<0

then f '(z) = O for all z in the domain of f but f is not constant. This may seem like a

silly example, but it illustrates a pitfall to proving a function is constant that we must be

careful of.

Recall that a region of C is an open connected subset.

Theorem If the domain of f is a region G< C and f'(z) = 0 for all z in G then f is a
constant.

Proof. We will show that f is constant along horizontal segments and along vertical
segments in G. Then, if x and y are two points in G which can be connected by
horizontal and vertical segments, we have that f (x) = f (y). But any two points of a
region may be connected by finitely many such segments by Theorem 1.16, so f has the
same value at any two points of G, proving the theorem.

To see that f is constant along horizontal segments, suppose that H is a horizontal line
segment in G. Since H is a horizontal segment, there is some value y, € R so that the
imaginary part of any z € H is Im(z) = y,. Consider the real part u(z) of the
function. Since Im(z) is constant on H, we can consider u(z) to be just a function of x,
the real part of z = x + iy,. By assumption, f'(z) = 0, so for z € H we haveu,
(z) = Re( f'(z)) = 0. Thus, by Lemma 2.13, u(z) is constant on H. We can argue the
same way to see that the imaginary part v(z) of f (z) is constant on H, sincev,(z) =
Im( f 0(z)) = 0. Since both the real and imaginary parts of f are constant on H, f itself
is constant on H.

This same argument works for vertical segments, interchanging the roles of the real and
imaginary parts, so we’re done.
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3.4 Complex velocity and acceleration
A complex number z can be visualized geometrically as a position vector in the complex
plane. Suppose z(t ) is considered as a position vector with the running parameter ¢ .
The terminal point of the position vector traverses a curve C in the complex plane.
Similar to the differentiation of a vector function, we define the derivative of z(t ) with
respect to ¢ to be

4 _ iy 2920

dt At—0 At
Suppose we separate z(t ) into its real and imaginary parts and write
z(t) = x(t) + iy(t). Then the derivative of z(t) can be expressed as

dz dx . dy

= l
dt dt + dt

The derivative gives the direction of the tangent vector to the curve at ¢. If the parameter

: : : : d : : :
¢t 1s considered as the time variable, then d—Zt represents the velocity with which the

. . o d?z .
terminal point moves along the curve. Also, the second-order derivative d—; gives the

acceleration of the motion along the curve.

Example Suppose the motion of a particle is described using the polar coordinates (7, 6)
and its position in the complex plane is represented by

z(t) = r(t)e??®
By differentiating z(t) with respect to the time variable ¢,  find the velocity and
acceleration of the particle, separating them into their radial and tangential components.

Solution Starting with z = ret? where z, r and 0 are all functions of t, we differentiate
z with respect to the time variable t and obtain

u=zre? +ire®d
Here, u is called the complex velocity and the dot over a variable denotes differentiation
of the variable with respect to t. Also, e? and ie“®represent the unit vector in the radial
direction and tangential direction, respectively. The radial component of velocity u, and
the tangential component of velocity uy are then given by u, = 7 and uy = r6
The complex velocity may be written as

u = (u, +iug)e’? .

The complex acceleration can be found by differentiating u again with respect to t . We
obtaina = ‘Z—lz = (#—710%)e' + (27 0 + rb)ie®

The radial component of acceleration a,-and the tangential component of acceleration ag
are then given by

a,=%—18%> and ag=2r0+7r6

Examples:

Properties involving the sum, difference or product of functions of a complex variable
are the same as for functions of a real variable. In particular, the limit of a product (sum)
is the product (sum) of the limits.

The product and quotient rules for differentiation still apply.

The chain rule still applies.

69



4.0 Conclusion In this unit, we have studied differentiation of complex functions.
You are required to study this unit properly before attempting to answer questions under
the tutor-marked assignment.

5.0 Summary You recall that you learnt about differentiation of complex functions,
rules for differentiation as well as Constant Functions and Complex velocity and
acceleration. You are to study them properly in order to be well equipped for the next
course in mathematical methods

6.0 Tutor Marked Assignment
Where are the following functions differentiable? Where are they holomorphic?
Determine their derivatives at points where they are differentiable.

(@) f (z) = e e V.

() f (2) = 2x + ixy?

(© f (z2) = x* + iy

d) f (z) =e*e™V.

(e) f (z) = cosx coshy — isinxsinhy.
B f () =Imz.

(@) f (2) =1z = x* + 2.

(hf(z) =zImz.

0 f (@) ="

y
() f (2) = 4(Re z)(Im z) — i(2)*.
k) f (2) = 2xy — i(x + )2
D f(z) = z2 - 72
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Module 3: Analytic functions
Content

1.0 Introduction
2.0 Objectives
3.0 Main content
3.1 Definitions and Examples of Analytic functions
3.2. Properties of analytic functions
3.3 Analyticity and differentiability
3.4 Real versus complex analytic functions
4.0 Conclusion
5.0 Summary
6.0 Reference/further Readings

1.0 Introduction
Analytic functions
In mathematics, an analytic function is a function that is locally given by a
convergent power series. Analytic functions can be thought of as a bridge between
polynomials and general functions. There exist both real analytic functions and
complex analytic functions, categories that are similar in some ways, but
different in others. Functions of each type are infinitely differentiable, but
complex analytic functions exhibit properties that do not hold generally for real
analytic functions. A function is analytic if and only if it is equal to its Taylor
series about x, converges to the function in some neighborhood for every x, in its
domain.
2.0 Objectives
At the end of this unit, you should be able to:
* Define Analytic functions
= State the properties of analytic functions

3.0 Main content
3.1 Definitions & Examples of Analytic functions
Definition:

A function f is real analytic on an open set D in the real line if for any x, in D one can
write
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[ee)

FG) = = xo)"

n=0
=ag+a;(x—x) + a,(x —x9)% + az(x — xy)3 + .

in which the coefficients a,ya; ....., are real numbers and the series is convergent to f(x)
for x in a neighborhood of x,. Alternatively, an analytic function is an infinitely
differentiable function such that the Taylor series at any point X, in its domain

= £
TG = Y L0

converges to f(x) for x in a neighborhood of x,. The set of all real analytic functions on
a given set D is often denoted by C*(D).

A function f defined on some subset of the real line is said to be real analytic at a point x
if there 1is a neighborhood D of x on which f is real analytic.
The definition of a complex analytic function is obtained by replacing, in the definitions
above, "real" with "complex" and "real line" with "complex plane."

Examples

Most special functions are analytic (at least in some range of the complex plane).
Typical examples of analytic functions are:

e Any polynomial (real or complex) is an analytic function. This is because if a
polynomial has degree n, any terms of degree larger than » in its Taylor series
expansion will vanish, and so this series will be trivially convergent. Furthermore,
every polynomial is its own Maclaurin series.

o The exponential function is analytic. Any Taylor series for this function
converges not only for x close enough to x, (as in the definition) but for all values
of x (real or complex).

o The trigonometric functions, logarithm, and the power functions are analytic on
any open set of their domain.

Typical examples of non analytic functions are:

o The absolute value function when defined on the set of real numbers or complex
numbers is not everywhere analytic because it is not differentiable at 0. Piecewise
defined functions (functions given by different formulas in different regions) are
typically not analytic where the pieces meet.
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o The complex conjugate function z — z* is not complex analytic, although its
restriction to the real line is the identity function and therefore real analytic, and it
is real analytic as a function from R? to R

The following gives another example of a non-analytic smooth function.
Alternative characterizations

If f is an infinitely differentiable function defined on an open set D C R, then the
following conditions are equivalent.

1) f is real analytic.

2) There is a complex analytic extension of f to an open set G € C which
contains D.

3) For every compact set K € D there exists a constant C such that for every x €
K and every non-negative integer & the following bound holds

gff.) < CRHE

The real analyticity of a function f at a given point x can be characterized using the
Fourier—Bros—lagolnitzer ( FBI) transform.
Complex analytic functions are exactly equivalent to holomorphic functions, and are
thus much more easily characterized.

3.2 Properties of analytic functions

o The sums, products, and compositions of analytic functions are analytic.

o The reciprocal of an analytic function that is nowhere zero is analytic, as is the
inverse of an invertible analytic function whose derivative is nowhere zero. (See
also the Lagrange inversion theorem.)

o Any analytic function is smooth, that is, infinitely differentiable. The converse is
not true; in fact, in a certain sense, the analytic functions are sparse compared to
all infinitely differentiable functions.

o For any open set 2 € C, the set A(f2) of all analytic functions u: 2 = Cisa
Fréchet space with respect to the uniform convergence on compact sets. The fact
that uniform limits on compact sets of analytic functions are analytic is an easy
consequence of Morera's theorem. The set As=(fJof all bounded analytic
functions with the supremum norm is a Banach space.

A polynomial cannot be zero at too many points unless it is the zero polynomial (more
precisely, the number of zeros is at most the degree of the polynomial). A similar but
weaker statement holds for analytic functions. If the set of zeros of an analytic function
f has an accumulation point inside its domain, then f is zero everywhere on the
connected component containing the accumulation point. In other words, if (r,) is a
sequence of distinct numbers such that f(r,,) = 0 for all » and this sequence converges to

73



a point 7 in the domain of D, then f is identically zero on the connected component of D
containing .

Also, if all the derivatives of an analytic function at a point are zero, the function is
constant on the corresponding connected component.

These statements imply that while analytic functions do have more degrees of freedom
than polynomials, they are still quite rigid.

3.3 Analyticity and differentiability

As noted above, any analytic function (real or complex) is infinitely differentiable (also
known as smooth or C*). (Note that this differentiability is in the sense of real variables;
compare complex derivatives below.) There exist smooth real functions that are not
analytic: see non-analytic smooth function. In fact there are many such functions.

The situation is quite different when one considers complex analytic functions and
complex derivatives. It can be proved that any complex function differentiable (in the
complex sense) in an open set is analytic. Consequently, in complex analysis, the term
analytic function is synonymous with holomorphic function(See the last unit).

3.4 Real versus complex analytic functions

Real and complex analytic functions have important differences (one could notice that
even from their different relationship with differentiability). Analyticity of complex
functions is a more restrictive property, as it has more restrictive necessary conditions
and complex analytic functions have more structure than their real-line counterparts.

According to Liouville's theorem, any bounded complex analytic function defined on the
whole complex plane is constant. The corresponding statement for real analytic
functions, with the complex plane replaced by the real line, is clearly false; this is
illustrated by

1
x2+1

f&) =

Also, if a complex analytic function is defined in an open ball around a point x, its
power series expansion at x, is convergent in the whole ball (analyticity of holomorphic
functions). This statement for real analytic functions (with open ball meaning an open
interval of the real line rather than an open disk of the complex plane) is not true in
general; the function of the example above gives an example for x, =0 and a ball of
radius exceeding 1, since the power series

1 —x* +x* —x°... diverges for x| > 1.

Any real analytic function on some open set on the real line can be extended to a
complex analytic function on some open set of the complex plane. However, not every
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real analytic function defined on the whole real line can be extended to a complex
function defined on the whole complex plane. The function f(x) defined in the paragraph
above is a counterexample, as it is not defined for x = % i. This explains why the Taylor
series of f(x) diverges for |x|>1, i.e., the radius of convergence is 1 because the
complexified function has a pole at distance 1 from the evaluation point 0 and no further
poles within the open disc of radius 1 around the evaluation point.

4.0 Conclusion In this unit, we have studied differentiation of complex functions.
You are required to study this unit properly before attempting to answer questions under
the tutor-marked assignment.

5.0 Summary
In the unit, you have studied the following

= Analytic functions

» the properties of analytic functions

= typical examples of analytic and non analytic functions

= important differences between real and complex analytic functions

6.0 References/ Further Readings

e K A Stroud; Engineering Mathematics Palgrave New York(2011)

e Complex Variables (2nd Edition), M.R. Spiegel, S. Lipschutz, J.J. Schiller, D.
Spellman, Schaum's Outline Series, Mc Graw Hill (USA), ISBN 978-0-07-
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Unit 2 Analytic functions 2

Content

1.0 Introduction

2.0 Objectives

3.0 Main content
3.1 Branch Points and Branch Cuts
3.2 Cauchy-Riemann Equations
3.3 Harmonic functions

4.0 Conclusion

5.0 Summary

1.0 Introduction

A function of a complex variable w = f(z) can be viewed as a mapping of points in the
z-plane to points in the w-plane. If to each value of the independent variable z there is
one and only one image point w, then the mapping is said to be single valued. In
contrast, let us examine a multiple-valued function. Consider a small circular path about
a point z,. This circular path can be represented by the equation z = z, + re‘® where r
> 0 is some small constant value and 6 varies in a counter clockwise direction about the
point  z,. If we have a function w = f(z) such that w = f(z, + re’®) takes on
different values as 6 increases by 2, then the point z, is called a branch point of the
function and the different values of w are called branches of the function.
By definition, a multiple-valued function occurs if to each value of z there is more than
one value for the dependent variable w. The several values of w are said to be branches
of the complex valued function. If it is possible to solve an equation of the form
F(z, w) = 0, connecting the complex variables

z=x+iy and w=u+iv,
to obtain single-valued functions

wy = f1(2), w, = f2(2), w3 = f3(2), ...

then these functions are called branches of the function w. A point z, satisfying the
property that there is no neighbourhood |z — z,| < € in which the function w = f(2) is
single-valued, then the point z, is called a branch point of f(z).

2.0 Objectives
At the end of the unit, you should be able to

e Define Branch Points and Branch Cuts
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e Identify Cauchy-Riemann Equations

e State the necessary and sufficient conditions for the existence of the derivative of
a complex function f(z) = u + iv

e Identify and define Harmonic functions

3.0 Main content
3.1 Branch Points and Branch Cuts

A branch point is said to be of order n — 1 whenever a function w = f(z) is an n-
valued function in the neighbourhood |z —z,| < e. A line which connects two and
only two branch points is called a branch cut or branch line.

Roughly speaking, branch points are the points where the various sheets of a multiple
valued function come together. The branches of the function are the various sheets of the
function. For example, the function w = z""* has two branches: one where the square root
comes in with a plus sign, and the other with a minus sign. A branch cut is a curve in
the complex plane such that it is possible to define a single analytic branch of a multi-
valued function on the plane minus that curve. Branch cuts are usually, but not always,
taken between pairs of branch points.

Branch cuts allow one to work with a collection of single-valued functions, "glued"
together along the branch cut instead of a multivalued function. For example, to make

the function f(z) = v/zv/1 — z single-valued, one makes a branch cut along the interval
[0, 1] on the real axis, connecting the two branch points of the function. The same idea
can be applied to the function Vz; but in that case one has to perceive that the point at
infinity 1s the appropriate 'other' branch point to connect to from 0, for example along the
whole negative real axis.

The branch cut device may appear arbitrary (and it is); but it is very useful, for example
in the theory of special functions. An invariant explanation of the branch phenomenon is
developed in Riemann surface theory (of which it is historically the origin), and more
generally in the ramification and monodromy theory of algebraic functions and
differential equations.

A branch cut is a curve (with ends possibly open, closed, or half-open) in the complex
plane across which an analytic multivalued function is discontinuous. For convenience,
branch cuts are often taken as lines or line segments. Branch cuts (even those consisting
of curves) are also known as cut lines (Arfken 1985, p. 397), slits (Kahan 1987), or
branch lines.

For example, consider the function z*which maps each complex number zto a well-
defined number 2. Its inverse function '5, on the other hand, maps, for example, the

value z=1 to V1 = +1. While a unique principal value can be chosen for such
functions (in this case, the principal square root is the positive one), the choices cannot
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be made continuous over the whole complex plane. Instead, lines of discontinuity must
occur. The most common approach for dealing with these discontinuities is the adoption
of so-called branch cuts. In general, branch cuts are not unique, but are instead chosen
by convention to give simple analytic properties (Kahan 1987). Some functions have a
relatively simple branch cut structure, while branch cuts for other functions are
extremely complicated.

An alternative to branch cuts for representing multi-valued functions is the use of
Riemann surfaces.

In addition to branch cuts, singularities known as branch points also exist. It should be
noted, however, that the endpoints of branch cuts are not necessarily branch points.

Branch cuts do not arise for the single-valued trigonometric, hyperbolic, integer power,
and exponential functions. However, their multi-valued inverses do require branch cuts.
The plots and table below summarize the branch cut structure of inverse trigonometric,
inverse hyperbolic, non-integer power, and logarithmic functions adopted in
Mathematica.

Function name Function  Branch cut(s)
inverse cosecant eso™ z (=1, 1

inverse cosine pos™! z (=oo, =1land (1, o)
inverse cotangent pot™! z (=i, @

1Iverse hyperb()llc gsch'l (=, 4}
cosecant

inverse hyperbolic cosiy ! (=00, 1)
cosine |
inverse  hyperbolic coth~! [=1.11
cotangent

inverse  hyperbolic sech (o9, 0land (1,09}
secant

ipverse hyperbolic - (=100, =Dgrd Uy 1)
sine

inverse  hyperbolic La

nh=' (=oa, =1land [1;ea)
tangent

inverse secant sec™! ¢ (=1, 1)
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inverse sine sin”' z (=oa. =1)and (1, ca)

inverse tangent tan~" 7 (=10, ={land [i i o0)

natural logarithm Inz (=00, 0|

power on@d  (—e0,O)for Rn] =0; (moo, Olfor R[n] >0
square root vz (=0, 0)

3.1.1Branch point at infinity
Consider the two-valued function
1

01 == s e
which has singularities at the points z;, z,, ...., Z,in the finite z-plane. Let z denote a
variable point in the z -plane and construct straight lines from the point z to each of the
points zy, Z,, ...., Z, and denote the length of these lines by 14,7y, ....,7,. These straight
lines make angles 6;,0,, ...0,, respectively with a horizontal line through each of the
points zy,Zy, ..., Zy,.
The figure 4-1 (a) illustrates these constructions for the points z;, and z,,. The variable
point z can then be represented in terms of moduli 7,7y, ....,1,and arguments
0,,0,, ...6, by writing

z=z,+mef z=z,+1e'% . z=z,+re% ... (2)
and the equation (4.1) can then be expressed as
1

wq = i LR R L TR PR PR PR PR (3)
Jrllrz:----;rn el(91+62+,...+6n
o E
! % L =
& /:f? = SE
,_,-'—"'",{:l gk ¢ Toarg -
Jll hef
Tk > g
lllr-"ﬁ\'-ﬂ.m - 5z =
S - » T —1
Zm Ty
F i — &
-plane - ) Fre-
“m—1
s-plans
(a} b}
Figure 4-1. Branch points of the function o = fi=) = — : - -
Afte 3 (= =y 0= Z2) -- - [=
rl’l —r—7 - - T T T Y = Tt T T R TTTTO T T I J I - . T T

0, +2m and the other Values of 6,i qt m return to their original values. The equatlon
(4.1) becomes w, = w;e”" = —w;.

Observe, that if we move the point z in a small circle about any one of the points
Z4,Zy, --- -, Zn,the same thing happens. We observe that w,changes to w, = —w;.
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In order to examine the behaviour of the function w; at the”point” z = oo we make the
substitution z = % and examine the behaviour of w,for z’ near the origin 0’ of the z’"'-

plane.
1 1 1
To make the algebra tractable, replace z4, z,, ...., Z, by ol T
1" 2, n
and write
1 T2y iy (22
w0, = V2172, 2 (20)

J(zll zil)(zlr z;/) """ (zlr z:u)' - V(1 -20)(z5 =20 (zn' =21).

For z’ near the origin 0’ let z’ = re'® and show that as r tends toward zero one obtains

. 2 . .
w, = (re‘e)n/ . Also as z' moves about the origin 0’ the angle 6’ changes to 6 + 27
and w;changes to w, = w,e™™. Therefore, if n is even, w,; keeps its same value and if n
1s odd, then

w, becomes w, = —w;. This shows that functions of the form
1

= V212
w = !
J (z-21)(2-22) (z-23) (z—22))

w

1

w =
Je20(-2e-2)..a-22m)
have respectively 2, 4, . . ., 2m branch points but no branch point at infinity. In contrast,
functions having the forms

1

JE—20(z-2:(2-25))
1

(L) =
JE—20(z-2)(5-25) 20 -25))

w =

1

w =

J(Z—Z1)(Z—Zz)(2—23)----(Z—sz)(2—22m+1))
have respectively, 3, 5, . . ., 2m + 1 branch points with each function having a branch
point at infinity. In the case of an even number of branch points, the branch points are
connected in groups of any two pairs, where the connecting cuts do not cross one
another. In the case of an odd number of branch points the cuts are made in groups of
any two pairs, where connecting cuts do not cross one another. The remaining point is
joined to infinity by a cut line which does not cross the other cut lines.

3.1.2 Riemann surface for n-valued functions
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To avoid the problem that the same value of z corresponds to two or more values of w
the z-plane is split into n parallel z-planes called sheets of a Riemann surface, where n
corresponds to the multiplicity of the function. These n-sheets are separated by an
infinitesimal distance and connected along a branch cut or along each of the branch cuts
if more than one branch cut exists. In this way as z moves around the first sheet the
image of w is that of the first branch w; = f;(z). As z moves around the second sheet,
the image of w is that of the second branch w, = f,(z). In general, the value of z on the
ith-sheet, fori =1, 2, . . .,n , produces a single-valued function w; = f;(z).. As z moves
around a sheet and crosses a branch cut or branch line, then there occurs a change in the
branch of the function. All the sheets are connected along the branch line(s) or branch
cut(s) and is to be regarded as a continuous surface called the Riemann surface. The
following are some examples to illustrate the above concepts.

Example
Consider the function w?
valued.
It has the two branches w; = f;(2). =+Vz and w, = f,(z) = —/z.
Let z = rel(®+2k™ where k = 0,1 and write

w? =z inthe form w? =z =re
and then solve for w to obtain the functions

w = zV? = y1/2gi042km)/2 | = |

z.This function has a branch point at z = 0 and is two-

i(0+2km)

We obtain
for k = 0 the first branch of the function w; = f;(2). = +Vz = +/r e'¥/?

for k = 1 the second branch of the function w, = f,(z). =-Vz = +Vr eié”)
Note that when k=3, 5, 7. .. we are back on the first branch and when k=4, 6, §, ...
We are back on the second branch. We desire to define a domain where these branches
of the function are single-valued and analytic at each point of the domain. The derivative
of the function

w, = f1(z) =r/? cos2 +irl/? sing =u(r,6) + iv(r, 9).

ou au v dv .

can be obtained from the derlvatlvesa— 20" 27" 28 and the formula of equations (1.78)
and (1.79). One can verify the partial derivatives

ou 1 _ 0 ov 1 _ .. 0

— =-r"12cos= - =1 Y?sinz

A T T

u .
— = —-r1/25in> === 1/Zsm—
a0 2 2 a0

and the derivative

dw1 f (z) = _\/— — %Z—1/2 — %r—1/ze—i9/2

In a similar manner one can Verlfy the derivative

dwz 1 L(rr——)

_]c ()__( \/_)_—Z 1/2=2 —1/2

The functions a)l and w, fall to be analytlc at the points z =0 and z = o . The
points z = 0 and z = oo are singular points associated with the function @ = z/2. Let
us examine the behaviour of the function w; as we move around the singular point z =
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0. If we hold » constant and let 8 vary from 6 to 6 + 2w we find w; = r'/2e/2

changes to r1/2¢(6+2m)/2
and similarly if we investigate the behaviour of the function /2 as we move around the
singular point z = 0, holding » constant, and letting 6 change to 6 + 2m we find that
w, = —r1/2,16/2 changes to —r1/2pi(0+2m)/2 — _pim 11/2,i6/2 — w4
This shows that as 8 increases by 27 the functions w; and w,change into each other. If
we construct a branch cut from 0 to 1 along the negative x-axis and require that z not be
allowed to cross the branch cut, then the functions w;and w,will become single-valued
and analytic when defined by the equations

wy = f1(z) =re/? r>0, -t<f<m

W, = fo(2) =\rel®+?m/2 >0 —mg<O<nm
Note that at each point on the branch line or branch cut there occurs a discontinuity in
the functions w, and w,. The branch cut is a way of preventing these discontinuities to
occur and hence keep the square root function single-valued.

3.1.3 Transcendental and logarithmic branch points

Suppose that g is a global analytic function defined on a punctured disc around z,. Then
g has a transcendental branch point if z, is an essential singularity of g such that
analytic continuation of a function element once around some simple closed curve
surrounding the point z; produces a different function element. An example of a
transcendental branch point is the origin for the multi-valued function

1
9(2) = exp (z7%)
for some integer £ > 1. Here the monodromy around the origin is finite.

By contrast, the point z, is called a logarithmic branch point if it is impossible to return
to the original function element by analytic continuation along a curve with nonzero
winding number about z,. This is so called because the typical example of this
phenomenon is the branch point of the complex logarithm at the origin. Going once
counterclockwise around a simple closed curve encircling the origin, the complex
logarithm is incremented by 2mi. Encircling a loop with winding number w, the
logarithm is incremented by 2mi w. There is no corresponding notion of ramification for
transcendental and logarithmic branch points since the associated covering Riemann
surface cannot be analytically continued to a cover of the branch point itself. Such
covers are therefore always unramified.

In complex analysis, an essential singularity of a function is a "severe" singularity near
which the function exhibits extreme behavior.

In complex analysis, a branch of mathematics, analytic continuation is a technique to
extend the domain of a given analytic function. Analytic continuation often succeeds in
defining further values of a function, for example in a new region where an infinite
series representation in terms of which it is initially defined becomes divergent.
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Examples of Branch points

« 0 is a branch point of the square root function. Suppose w =z"2, and z starts at 4
and moves along a circle of radius 4 in the complex plane centred at 0. The
dependent variable w changes while depending on z in a continuous manner.
When z has made one full circle, going from 4 back to 4 again, w will have made
one half-circle, going from the positive square root of 4, i.e., from 2, to the
negative square root of 4, i.e., —2.

« 0 1is also a branch point of the natural logarithm. Since €’ is the same as e, both
0 and 2mi are among the multiple values of Log (1). As z moves along a circle of
radius 1 centred at 0, w = Log (z) goes from 0 to 2mi.

e In trigonometry, since tan(n/4) and tan (5n/4) are both equal to 1, the two
numbers n/4 and 5n/4 are among the multiple values of arc tan(1). The imaginary
units { and —i are branch points of the arctangent function (arc tan (z) =
(1/2i)log(i — z)/(i + z)). This may be seen by observing that the derivative (d/dz)
arc tan (z) = 1/ (1+2°) has simple poles at those two points, since the
denominator is zero at those points.

o If the derivative f' of a function f has a simple pole at a point a, then f has a
logarithmic branch point at a. The converse is not true, since the function f(z) =
z* for irrational o has a logarithmic branch point, and its derivative is singular
without being a pole.

3,2 Cauchy-Riemann Equations
This section discusses the necessary and sufficient conditions for the existence of the
derivative of a complex function f(z) = u + iv If the complex derivative f'(z) is to
exist, then we should be able to compute it by approaching z along either horizontal or
vertical lines (i.e. direction parallel to the y-axis or direction parallel to the x-axis. Thus
we must have
P T f(z+)-f(z) _ .. f(z+it) — f(2)
f'@=lim ——==lim ——=

where t is a real number. In terms of u and v,
fz+t)-f(z) _

. . u(x+ty)+ivx+ty)—u(xy)-v(x,
lim lim E+ty)+iv+ty)—uxy)-v(xy)
t-0 t t-0 t
. u(x+t,y)—u(x, .y v(x+t,y)—v(x,
= lim SSFEVUCY) L iy YOV vEY)
t—0 t t—0 t
__Ou i ov
T oox ox
Taking the derivative along a vertical line gives
. f(z+it) - f(z . uxy+t)+ivixy+t)—ulxy)-v(x,
lim ( ),f()=—111m xy+D+ivixy+H)—-uxy)-v(xy)
t—0 it t—0 t
.y u(x,y+t)—u(x, Y v(x,y+t)—v(x,
— —jlim YeyrO-u@y) L o0, VEyHO-vxy)
t—0 t t—0 t
. 0u ov
=—l—+ —
dy ~ 0dy

Equating real and imaginary parts, we see that If a function f(z) = u + iv is complex
differentiable, then its real and imaginary parts satisfy the Cauchy-Riemann equations:
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ou _ v ov du

ax  ay’ ox ay
Moreover, the complex derivative f'(2) is then given by

av 6v , ou
f(2)=— + =% " l%
Iff(z) = ulx,y) + iv (x, y) is defined in a neighborhood of z = x + iy, and if f'is
differentiable at z, then

U (x,y) = Uy x,y), and Uy (X, )= — v (X, ). (D
These are called the Cauchy-Riemann equations.
Conversely, if the partial derivatives of u# and v exist in a neighborhood of
z = x + iy, ifthey are continuous at z and satisfy the Cauchy-Riemann equations at z,
then
f () = u(x,y) + iv (x,y) is differentiable at z.

The Cauchy-Riemann equations therefore give a criterion for analyticity. Indeed, if a
function is analytic at z, it must satisfy the Cauchy-Riemann equations in a
neighborhood of z. In particular, if f does not satisfy the Cauchy-Riemann equations,
then f cannot be analytic.
Conversely, if the partial derivatives of u and v exist, are continuous, and satisfy the
Cauchy-Riemann equations in a neighborhood of z = x + iy, then f (z) =
u(x,y) + iv(x,y)is analytic at z.
Examples:

3.2.1 Cauchy-Riemann relations in polar coordinates.
Consider the polar coordinates

2=(x*-y?)and § =tan

_1X

Differentiating » and 6 with respect to both x and y, we obtain

ar X ar .
L= Z=(cosf and L= 2L=5sing
ox r ay r
and
a0 y 1 . a0 x 1
—_ = = = —-sinf, —= —— =-cosB
ox x2—y2 r > 9y x24+y2  r

Using the chain rule, the first-order partial derivatives of u are given by

ou duodr du 060 ou 1 0u .
g_x_g_rg_x-l_g_Ggg g —CO 59—;£sm9 (1)
u u oar u 'LL .o
—=—— =2%5ing += Lcosd i
ady ar dy 69 6 87’ + r 060 ( )
Similarly, the first-order partial derivatives of v are given by
0 _ 9% 059 — 2 Xsing (iii)
gx - gr T 0
u u . .
— sinf + = = cos 0 1
ay  or +; r 26 (iv)

Using one of the Cauchy—Riemann relations, we combine equations. (i) and (iv) to give
du ou du 1 Ju 1 du

5_52(5_;5)(:059 ( +—£)sin9=0 (v)
Similarly, using equations (ii) and (iii) and applying the other Cauchy—Riemann relation,

we have
u ou (6u 1 6u)

: 10 :
podblys sm9+( +——u)c050=0 (vi)

ax | ay r a6
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In order that equations. (v) and (vi) are satisfied for all 8, we must have
u_ 1o ou_ 1 du

= n
ar r 06 and ar r 06

These are the Cauchy—Riemann relations expressed in polar coordinates.

Example Discuss the differentiability of the function

f@) =fx+iy)=lxylatz=0
Solution: let f(x + iy) = u(x,y) + iv(x,y) so that
u(x,y) =+/lxy| and v(x,y) =0
Since u(x, 0) and u(0, y) are identically equal to zero, we have u,(0,0) = u,,(0,0) = 0
Also, since v(x, y) is identically zero, it is obvious that v,(0,0) = v,,(0,0) = 0
Hence, the Cauchy—Riemann relations are satisfied at the point (0, 0).
However, suppose z approaches the origin along the ray x = at,y = pt,t >0,
assuming that a and f§ cannot be zero simultaneously. For z = at + i ft, we then have
f@-f©) _ f@ _ laBl
z—0 z a+if
The limit of the above quantity as z — 0 depends on the values of @ and f3, so the limit
is non-unique. Therefore, f (z) is not differentiable at z = 0, though the Cauchy—
Riemann relations are satisfied at z = 0.
Let us check the continuity of v, at (0, 0). Since
2 = Iyl Txyl
u,, fails to be continuous at (0, 0). By virtue of Theorem 2.4.2, it is not surprising
that f(z) = {/|xy| can fail to be differentiable at z = 0 since the Cauchy— Riemann
relations are necessary but not sufficient for differentiability.

Example: The function z2? = (x? —y?)+ 2xyi satisfies the Cauchy- Riemann
equations, since

O 2 _02)y— 9. — 9 9 =2y = -2 (x2 —y2

o X7 =¥ =2x=Q2xy) and = (2xy) = 2y = — - (x* —y*)
Likewise e” = e* cosy + ie* sin y satisfies the Cauchy-Riemann equations,
Since aa_x (e*cosy) =e*cosy = % (e*siny) and

9 ox — X eima — 9 ox
P (e*siny) = e*siny = % (e*cosy)
Moreover, e” is in fact complex differentiable, and its complex derivative is
d

a z_i x i X o}
—e —ax(e cosy)+ax(e siny)

=e*cosy +e*siny
= e?
. . d
The chain rule then implies that, for a complex number a, ;e“z = ae®.0One can

define cos z and sin z in terms of e'? and e ™.
From the sum rule and the expressions for cos z and sin z in terms of e'* and e, it is
easy to check that cos z and sin z are analytic and that the usual rules hold :

d . a .
—C0SZ = —SInz, —SInNZ = C0SZ
dz dz

On the other hand, z does not satisfy the Cauchy-Riemann equations, since
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] ]

200 =1%#=(-)
Likewise, f(z) = x* + iy? does not. Note that the Cauchy-Riemann equations are two
equations for the partial derivatives of u and v, and both must be satisfied if the function
f(z)is to have a complex derivative. We have seen that a function with a complex
derivative satisfies the Cauchy-Riemann equations. In fact, the converse is true:

Theorem: Let f(z) = u + iv be a complex function defined in a region (open subset) D
of C, and suppose that u and v have continuous first partial derivatives with respect to x
and y. If u and v satisfy the Cauchy-Riemann equations, then f(z) has a complex
derivative.
The proof of this theorem is not difficult, but involves a more careful understanding
of the meaning of the partial derivatives and linear approximation in two variables.
Thus we see that the Cauchy-Riemann equations give a complete criterion for
deciding if a function has a complex derivative (that is, the Cauchy-Riemann equations

gives a criterion for analyticity) . There is also a geometric interpretation of the Cauchy-
ou du v dv

Riemann equations. Recall that Au = (5,5) and that Av = (5,5). Then u and v
satisfy the Cauchy-Riemann equations if and only if
v ov du Ju

w=(55)=(=5%)
If this holds, then the level curves: u =c¢; and v =c, are orthogonal where they
intersect.
Instead of saying that a function f(z) has a complex derivative, or equivalently satisfies
the Cauchy-Riemann equations, we shall call f(z) analytic or holomorphic. Here are
some basic properties of analytic functions, which are easy consequences of the Cauchy-
Riemann equations:

Theorem: Let f(z) = u + iv be an analytic function.

1. If f'(2) is identically zero, then f(z) is a constant.

2. If either Re f(z) = u or Im f(z) = v is constant, then f(z) is constant.

In particular, a non constant analytic function cannot take only real or only pure
imaginary values.

3.1f |f (2)|is constant or arg f(z) is constant, then f(z) is constant.

For example, if f'(z) = 0, then
1(z) — ou ov

0 =_f 5;4‘l5;
Thus,

ou ov

oxox - )
By the Cauchy-Riemann equations, % = % = 0. as well. Hence f(2) is a constant. This
proves (1).

: . ou _a

To see (2), assume for instance that u is constant. Then % = i = 0, and, as above, the
Cauchy-Riemann equations then imply that Z—Z = Z—; =0 . Again, f(z) is

constant.
Part (3) can be proved along similar but more complicated lines.
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3.3 Harmonic functions

Let f(z) =u+iv be an analytic function, and assume that u and v have partial
derivatives of order 2 (in fact, this turns out to be automatic). Then, using the Cauchy-
Riemann equations and the equality of mixed partials, we have

9u 9 ou_ 009v_ 0 ov _ 9 ou _  d%u
‘9x2  9xdx odxdy 9dyodx  dydy  dy?
. 2%u . 9%u
In other words, u satisfies: —+—=0
dx2  0y?

The above equation is a very important second order partial differential equation, and
solutions of it are called harmonic functions. Thus, the real part of an analytic function is
harmonic. A similar argument shows that v is also harmonic, i.e. the imaginary part of
an analytic function is harmonic. Essentially, all harmonic functions arise as the real
parts of analytic functions.

Theorem: Let D be a simply connected region in C and let u(x; y) be a real-valued,
harmonic function in D. Then there exists a real-valued function v(x; y) such that
f(z) = u + iv is an analytic function.

We will discuss the meaning of the simply connected condition in the exercises in the
next handout. The problem is that, if D is not simply connected, then it is possible that u
can be completed to an analytic “function" f(z) = u + iv which is not single-valued,

even if u is single valued. The basic example is Re log z = %ln(x2 + y2) A calculation

(left as homework) shows that this function is harmonic. But an analytic function whose
real part is the same as that of log z must agree with log z up to an imaginary constant,
and so cannot be single-valued.

The point to keep in mind is that we can generate lots of harmonic functions, in fact
essentially all of them, by taking real or imaginary parts of analytic functions. Harmonic
functions are very important in mathematical physics, and one reason for the importance
of analytic functions is their connection to harmonic functions.

3.3.1 Harmonic conjugate

Given two harmonic functions ¢(x, y) and Y(x, y) and if they satisfy the Cauchy-
Riemann relations throughout a domain D, with ¢, = ¢, and ¢, = -,

We call 1 a harmonic conjugate of ¢ in D.

Note that harmonic conjugacy is not a symmetric relation because of the minus sign in
the second Cauchy-Riemann relation. While ¥ is a harmonic conjugate of ¢, —¢ is a
harmonic conjugate of .

For example, e*sin y is a harmonic conjugate of e*cos y while —e*cos y is a harmonic
conjugate of e*siny.

Theorem

A complex function f(z) = u(x,y) + iv(x,y),z = x + iy, is analytic in a domain
D if and only if v is a harmonic conjugate to u in D.
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Proof
= given that f = u + iv is analytic, then u and v are harmonic and Cauchy-
Riemann relations are satisfied. Hence, v is a harmonic conjugate of u.
& Given that v is a harmonic conjugate of u in D, we have the satisfaction of the

Cauchy Riemann relations and the continuity of the first order partials of uand vin D.

Hence, f = u + iv is differentiable for all points in D. Since D is an open set, every
point in D is an interior point, so f is analytic in D.

Example Find a harmonic conjugate of the harmonic function
u(x,y) =e*cosy+ xy
Solution
1. Take(xg,¥o) = (0,0), uy(x,0) = x and u,(x,y) = —e*cosy +y

v(x,y) = [ —xdx + foy(—e‘x cosy + y)dy

0
x? —x s 2
=-2 —e*siny+%
2 2

2. From the first Cauchy-Riemann relation, we have
M _e~¥cosy +
ady T ax yry
Integrating with respect to y, we obtain
2
v(x,y) = —e*siny + y? + n(x)
where 77(x) is an arbitrary function arising from integration.

Using the second Cauchy-Riemann relation, we have
U _ -x g () = — 4 = X ginv —
Pl siny + n'(x) = 5y = € siny—x

Comparing like terms, we obtain n'(x) = —x, and subsequently,

2
nkx) =— x? + C, C is an arbitrary constant.

Hence, a harmonic conjugate is found to be (taking C to be zero for convenience)

y2_x2

2
The corresponding analytic function, f = u + iv, is seen to be
iz?

f@)=e"—-— z=x+iy

v(x,y) = —e *siny +

which is an entire function.
3. Itisreadily seen that e ™ cosy = Ree ™ and xy = ilm z?

A harmonic conjugate of Re e™% is Im e %, while that of %Im z% is —%Re z2,
Therefore, a harmonic conjugate of u(x, y) can be taken to be

v(x,y) =Ime? — %Re z2

y2_x2

2

= —e¥siny +
Example
Show thatf’(z) = Z—Z (z,0) — ig—; (z,0). Use the result to find a harmonic conjugate of

u(x,y) =e*(xsiny —ycosy)
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Solution
Observe that f'(z) = Z—z (x,y) — ig—; (x,y) .Puttingy = 0, we obtain

fG) =55 (x,0) = i35 (x,0)

Replacing x by z, we obtain f'(z) = Z—Z (z,0) — iz—; (z,0)

Application of the C-R Equations
A consequence of the Cauchy-Riemann equations is that

f(z2) = ux + ivx = vy — iuy.(2)
We will use these formulas later to calculate the derivative of some analytic functions.
Another consequence of the Cauchy-Riemann equations is that an entire function with
constant absolute value is constant. In fact, a more general result is that an entire
function that is bounded (including at infinity) is constant
Given a harmonic function u, one can use the Cauchy- Riemann equations to find its
harmonic conjugatev, and vice-versa.
Examples:
Check that u(x,y) = 2xy is harmonic, and find its harmonic conjugate v.
Given a harmonic function v(x, y), how would you find its harmonic conjugate u(x, y)?

Theorem
If ¢ is a harmonic conjugate of ¢, then the two families of curves

e(x,y)=aand P(x,y)=f
are mutually orthogonal to each other.

Proof
Consider a particular member from the first family
P(x,y) =a .
the slope of the tangent to the curve at (x, y) is given by ﬁ where

dx dy dx
Giving
dy _ _9¢ 3¢
dx  oax/! oy’

Similarly, the slope of the tangent to a member from the second family at (x, y) is given
by

dy oy 09

ax  ox/ay’
The product of the slopes of the two tangents to the two curves at the same point is

found to be ( % %)(—% %)=—1

B ox ! dy ox ! oy
. . . dp 2 ) 3
by virtue of the Cauchy-Riemann relations: ~= = %W and 2=_%

ox ay ay ox

Hence, the two families of curves are mutually orthogonal to each other.
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Example

Supposing the isothermal curves of a steady state temperature field are given by the
family of parabolas y? = a ? + 2ax is real positive, in the complex plane, find the
general solution of the temperature function T(X, y). Also, find the family of flux lines of
the temperature field.

Solution
First, we solve for the parameter « in the equation of the isothermal curves. This gives

a=—x+x%+y?,
where the positive sign is chosen since a > 0. .
A naive guess may suggest that the temperature function T(x, y) is given by

T(x,y) = —x++/x2+y2
However, since T(x, y) has to be harmonic, the above function cannot be a feasible
solution. We set

T(x,y) = f(©)
Where t =./x2 + y? —x and f is some function to be determined such that T (x, y) is
harmonic. To solve for f(t), we first compute
82T " at\2 ) o 02t
==f'® (—) H 05
2
="t >( 1) O

2
——f Onns ' OG,n
Since the Laplace equatlon T(x, y) satisfies
_ X " 1 / — '® — 1
2 (1 \/x2+y2)f (t) + w/x2+y2f (t) 0 or JHO)] 2t
Integrating once gives
I — l ! — C_
Inf'(t) = 2lnt+C or f'(t) =7
Integrating twice gives f(t) = C;Vt + C,
where C; and C, are arbitrary constants. The temperature function is
T(x,y)=f(t) = Cl\/,/x2 +y2—-x+C,
When expressed in polar coordinates
T(r,0) = C1/r(L = cos0) + C, = C,V2rsin + G,
Since T(r,0)can be expressed as v2C;Im 72 + C,, the harmonic conjugate of
T(r,0) is easily seen to be F(r,0) = —\/EClRezl/Z +C3 = —C\2r cosg + C5
Where C; is another arbitrary constant.

Note that mcos§=Vr+rcose=\/ X’ +y?+x
So that F(x,y) = —C‘l\/,/x2 +y24+x+C

The family of curves defined by

2+

x++x%2+y2=por y?=p?-2px, >0
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are orthogonal to the isothermal curves y? = a? — 2ax, a > 0
Physically, the direction of heat flux is normal to the isothermal lines. Therefore, the

family of curves orthogonal to the isothermal lines is called the flux lines. These flux
lines indicate the flow directions of heat in the steady state temperature field.

The flux function F(r, 0) is a harmonic conjugate of the temperature function. The
families of curves: T(r, 8) = a and F(r, 0) = B, a and B being constant, are mutually

orthogonal to each other.

4.0 CONCLUSION

In this unit, we have studied some examples of branch Points and branch Cuts, the
necessary and sufficient conditions for the existence of the derivative of a complex
function You are required to study this unit properly before attempting to answer
questions under the tutor-marked assignment

5.0 Summary
In the unit, you have studied the following

e Definitions and Examples of Branch Points and Branch Cuts

e (Cauchy-Riemann Equations

e the necessary and sufficient conditions for the existence of the derivative of a
complex function f(z) = u + iv

e Harmonic functions

6.0 Tutor Marked Assignment

1. Write the function f(z) in the form u + iv:
i. a) z+iz? b)i c)g
2. f(z) = e?, describe the images under f (z) of horizontal and vertical lines, i.e.

what are the sets f(a + it) and f(t + ib), where a and b are constants and t runs
through all real numbers?

1Ny

3. Is the function = continuous at 0?2 Why or why not? Is the function = analytic

N

z
where it is defined? Why or why not?
4. Compute the derivatives of the following analytic functions, and be prepared to
justify your answers:
iz+3
2) z2—-(2+i)z+(4-31)
b) eZ?

1
C) e?+e~%

5. Let f(z) be a complex function. Is it possible for both f(z) and f(z) to be
analytic?
6. Use the Cauchy-Riemann equations to show that Z is not analytic.
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7. Use the Cauchy-Riemann equations to show that é is analytic everywhere except

atz = 0.
8. Let f(z) = u + iv be analytic. Recall that the Jacobian is the function given by
the following determinant:
Ju OJu
o(uv) ax 5
T oty)  |ov o ovf
dx dy
b. Using the Cauchy-Riemann equations, show that this is the same as

If'(@)|?

9. Define the complex sine and cosine functions as follows:
i. cosz =%(eiz + e7%) ; sinz =%(eiz — e7i%)
10. Note that, if t is real, then this definition of cos t and sin t agree with the usual

ones, and that (for those who remember hyperbolic functions) cos z = —i cosh iz
and sinz = —isinh iz. Verify that cos z and sin z are analytic and that
(cosz)' = —sinz and that (sinz)’ = cos z. Write, z as u + ivwhere u and v are

real-valued functions of x and y, and similarly for sin z.
11. Verify that 1/,, Im 1/, and Re log z = %ln(x2 + y?) are harmonic.

12. Which of the following are harmonic?
a) x3—y% b xdy—xy® c)x?-2xy
13. If f(z) = u+ iv is a complex function such that u and v are both harmonic, is
f(z) necessarily analytic?
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