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MODULE 1
PRELIMINARIES

In this initialmodule we will present the backgrdumeeded for the study of real analysis. Unit
1.1 consists of a brief survey of set operationd &unctions, two vitaltools for all of
mathematics. In it we establish the notationarte $tee basic definitions and properties thatwill
be used throughout the book. We will regard thedwmet" as synonymous with thewords
"class", "collection”, and "family”, and we willndefine these terms or give a listof axioms for
set theory. This approach, often referred to as/éhaet theory, is quite adequate for working
with sets in the context of real analysis.

Unitl.2 is concerned witha special method of paaifedMathematical Induction. It is
related to the fundamental properties of the nhtwrenber system and, though it is restricted
to proving particular types of statements, it ipariant and used frequently.” Aninformal
discussion of the different types of proofs thatased in mathematics,such as contrapositives
and proofs by contradiction, can be found in ApjeAd

In Unit 1.3 we apply some of thetools presentethefirst two units of this unit to a
discussion of what it means for a set to be finiténfinite. Careful definitions are given and
some basic consequences of these definitions areedeThe important resultthattheset of
rational numbers is countably infinite is estabédh

In additionto introducingbasicconceptsand estaligterminology and notation,
thismodulealso provides the reader with some iiai@erience in workingwithprecise
definitions and writingproofs. The careful studyefal analysisunavoidablyentailsthe
readingand writing of proofs, and likeany skill,ist necessary to practice.Thismodule is a
starting point.

Unit 1 Sets and Functions

1.0 INTRODUCTION
To the reader: In thisunitwe give a brief reviewof the terminojognd notation thatwillbe
used in this text.We suggest thatyou look througiokdy and come back laterwhen you need
to recall the meaning of a term or a symbol.
If an elemenkis in a set A, we write

Xt A

and say that x ismemberof A, or thak belongs to A. I is notin A, we write
XeA.
If every element of a set A also belongs to d88sete say that A is a subset®find write
A OB or BOA

We say that a set A ispsioper subsetof a set B if ALIB, but there is at least one element
of B that is not in A. In this case we sometimes write

A [ B.
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2.0 OBJECTIVES

At theend of the Unit, readers should be able to

0] Understand the notation and state the basimitieh and properties that will be used
throughout the study.

(i) Understand the background needed in Real Asly

(i)  Understand different axioms use in set theory

3.0 MAIN CONTENT
1.1.1 Definition Two setsA and B are saidto beequal, and we write A = B, if they
containthesame elements.

Thus, to prove that the seisandB are equal, we must show that

ALB and B UA.
A set is normally denned by either listing its edats explicitly, or by specifying a property
that determines the elements of the setP Ifilenotes a property that is meaningful and
unambiguous for elements of a set S, then we write
XS :P(x)}

for theset of all elementsin Sfor which the propert is tine. If the seSis understood from the
context, thenit is often omitted in thisnotation.
Several specialsets are used throughout thisbodkhay are denoted by standard symbols. (We
willuse the symbol := to mean that the symbol anléit is beingdefinedby the symbol on the
right.)
. Theset ofnatural numbers N :={1, 2, 3....),
. The set ofntegersZ :={0, 1, -1, 2, -2,..),
. The set ofrational numbers Q := (m/n : m, n dZandn #0),
. The set ofeal numbersk.

The seR of real numbers is of fundamental importance ®rand willbe discussed at

length in Module 2.

1.1.2 Examples (a) The set

{XxON: X—3x+2=0}
consists of those natural numbers satisfying theedtequation. Since the only solutions of
this quadratic equation axe= 1 andx = 2, we can denote this set more simply by {1, 2}.
(b) A natural numben is evenif it has the forrn = 2k for somek //N. The set of even
natural numbers can be written

{2k KON).
which is less cumbersome th&m ON : n = 2k, kOO N}. Similarly, the set ofodd natural
numbers can be written

{2k - 1 :k ON). m

Set Operations
We now define the methods of obtaining new setsnfigiven ones. Note that these set
operations are based on the meaning of the wonds"amd", and "not". For the union, it is
important to be aware of the fact that the word t®mused in thenclusive sensellowing the
possibilitythatx may belong to both sets. In legal terminology, thidusive sense is sometimes
indicatedby "and/or".

1.1.3 Definition (@ Theunion of setsA andB is the set
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A OB :={x:xUAorxOB}.

(b) Theintersection of the sets A and B is the set
An B :={x:xOA andx] B}

(c) Thecomplementof B relative to A is the set
A\B := {x: xO A andxU] B}

i || &8>

AUB 0D ANB OB : A\B

Figure 1.1.1 (aAB (b)AnB (c) A\B

The set that has no elements is calleeéthpty set and is denoted by the sym@olTwo
setsA andB are said to bdisjoint if they have no elements in common; this can lpeessed by
writing AnB = [

To illustrate the method of proving set equalities will next establish one of the
DeMorgan lawdor three sets. The proof of the other one isalg#n exercise.

1.1.4 Theorem If A, B, Care sets, then
(@ A\ (B /L) = (A\B) n (A\C),
(b) A\ (B C) = (A\B)/7(A\C).

Proof: To prove (a), we will show that every elememir{B /7 C)is contained in bothA\B) and
(A\C), and conversely.

If xis inA\(B /7C), thenxs inA, butxis not inB //C.Hencexis inA, butx is neither irB
nor inC. Thereforex is in A but notB, andx is in A but notC. Thus x/7A\Bandx /7A\C,which
shows thak /7(A\B)» (A\C).

Conversely, ik /7(A\B)n (A\C),thenx /7(A\B) and X7 (A\C). Hence X7A and bothx /7
B and x/C.Thereforex /7 Aandx [/B//C), so thaix//(A\ (BL/ C).

Since the set?\(B) » (A\C)andA\(B £/ C) contain the same elements, they are equal by
Definition 1.1.1. Q.ED

There are times when it is desirable to form usiemd intersections of more than two sets.
For a finite collection of setgy, A,..., Ay}, their unions is the sétconsisting of all elements that
belong to at least one of the s&tsand their intersection consists of all elementstibing to all
of the setg\..

This is extended to an infinite collection of &g, A,..., A, ...} as follows. Theiunion
is the set of elements that belongtdeast one of the sets h this case we write

oo
n=1

A, = { x : xOAfor somenJAf.
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Similarly, theirintersectionis the set of elements that belong to all of tlsessd,. In this case we
write

ﬂ A, = { x : x JAfor alinCIsAy.
n=1

Cartesian Products
In order to discuss functions, we define the Cateproduct of two sets.

1.1.5 Definition If AandB are nonempty sets, then Bartesian productA x B of A
andB is the set of all ordered pairs (a, b) witx & and b=B. That is,

AxB:={(a,b):asA, b =B}

Thus if A ={1, 2, 3} and B = (1,5), then the ek B is the set whose elements are
the ordered pairs.
1,1), (1,5), (2,1), (2,5), (3,1), (3,5).

We may visualize the sétx B as the set of six points in the plane with therdomtes that
we have just listed.

We often draw a diagram (such as Figure 1.1.B)dwate the Cartesian product of
two setsA and B.However, it should be realized that this diagraayrbe a simplification.
For example, iA := {x eR : 1=sx <2} andB:={y=R : Oy <1 or 2<y < 3}, then instead of
a rectangle, we should have a drawing such asé-ifur3.

We will now discuss the fundamental notion dfiaction or a mapping

To the mathematician of the early nineteenth centhe word “function” meant a
definite formula, such &¢x) := x>+ 3x — 5, which associates to each real numlzerother
numberf(x). (Here,f (0) = -5,f (1) = -1,f (5) = 35). This understanding excluded the case of
different formulas on different intervals, so tfatctions could not be defined “in pieces”.

bl-——9(ab)

A

Figure 1.1.2 Figure 1.1.3

As mathematics developed, it became clear thatra general definition of "function”
would be useful. It also became evident that iimportant to make a clear distinction
between the function itselfand the values of timetion. A reviseddefinition might be:

A functionf from a setA intoa setB is a rule of correspondence that assigns to each
elemenk in A a uniquely determined elemérgtx ) in B.
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But however suggestive this revised definition rhigie, there, is the difficulty «
interpretingthe phrase "rule of correspondence”. In order &oifgl this, we will express th
definition entirely in terms of sets; in effect, we will defia function to be ilgraph. While this
has the disadvantage of being somewhat artifitidlastheadvantagef being unambiguot
and clearer.

1.1.6 Definition Let A andB be sets. Then function from A to B is a seff of ordered
pairs inA x B such that for eaca O A there exists a unique [IB with (a, b) Of. (In other
words, if (ab) Of and(a.b")df, thenb = b'.)

The setA of first elements of a functicf is calledthelomain of f and is ofter
denoted byD (f) . The set of all second elementsf is called theange of f and is ofter
denoted byR( f). Note that, althougD(/) = A, we only have R § )cB. (SeeFigurel.1,4,)

The essential conditidimat:

(a, b)Of anc (a b")Ofimplies that b=>0b'

is sometimes called theertical line testin geometrical terms it says every vertiline
x =awitha [ Aintersectsthgraph oifexactlyonce.
The notation

f:A- B

is often used to indicate thétis a function from /AintoB. We willalso say thaf is a
mappingof AintoB, or thatfmapsAintoB.If (a, b)is an element irf, it is customarto write

b=f(@) or sometimes a - b.

S——

A = D(f)

Figure 1.1.« A function as a graph
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If b = /(a), we often refer td as thevalueof /ata, or as thémage of a underf.

Transformations and Machines

Aside from using graphs, we can visualize a funcéie aransformationof the set Df) = A into
the set R ) OB. In this phraseology, whem,(b) Of, we think off as taking the elemeat
from A and "transforming” or "mapping” it into atementb = f(a) in R(f) 0B. We often
draw a diagram, such as Figure 1.1.5, even whesetis&@ andB are not subsets of the plane.

_— A

Figure 1.1.5 A function as a transformation

There is another way of visualizing a function: méynas anachinethat accepts elements of
D (f) — Aasinputsand produces corresponding elementR(@fC B asoutputs.If we take an
element* €D(f) and put it into /.thenoutcomes the correspondinigevd(x).If we put a
different elemeny e D(f)into /, then outcomes /(v)which may or may notetiffromf(x). If

we try to insert something that does not belonD () into/, we find that it is not accepted, for
/ can operate only on elements from D(/).(See Eigut.6.)

This last visualization makes clear the distinctimiween / and(x): the first is the machine
itself,and the second is the output of the machivigen x is the input. Whereas no one is likely to
confuse a meat grinder with ground meat, enougpl@éd@ve confused functions with their values
that it is worth distinguishing between them notzily.

{

Figure 1.1.6 A function as a machine . .-f.{"}
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Direct and Inverse Images
Letf: A - B be a function with domaib(f) = A and rangdr(f)0B.

1.1.7 Definition If Eis a subset oA, then thedirect image of E underf is the subset
f(E) of B given by
f(E) := {f(x) : x OE}.

If H is a subset dB, then theinverse imageof H underf is the subseft* (H) of A
given by

f(H) := {x DA f(x) OH}.

Remark The notatiorf' (H) used in this connection has its disadvantages. Memye
we will use it since it is the standard notation.

Thus, if we are given a sEtoA, then a point yB is in the direct imag&E)
if and only if there exists at least one poififlE such that,=f (x;). Similarly, given
a setH 0B, then a poinksis in the inverse imag@ (H) if and only ify,:= f (x)
belongs tdH. (See Figure 1.1.7.)

1.1.8 Examples (a) Letf: R -~ R be defined by(x) := x2. Then the direct image
of the seE :={x : 0=x <2} is the sef(E)={y : 0y < 4}.

If G:={y: 0<y< 4}, then the inverse image & is the sef'(G) = {x : -2 <x < 2}.
Thus, in this case, we see thif(E)) ZE.

On the other hand, we haf/&'(G))= G. But ifH := {y : -1 <y <: 1}, thenwe havé (f
' (H))={y: O<y< 1} #H.

A sketchof the graphdfmayhelp to visualizethese sets.
(b) Letf: A-B,and let GH be subsetsds. Wewill show that

f(G nH) OF'G) nf'(H).

For, if x Of (G nH), thenf(x) O G nH, so thatf(x) O G andf(x) OH. But this

implies thatx E f'(G) andx Of"(H),whencex]f(G)nf'(H). Thusthestated

implication is proved. [The opposite inclusion Isatrue, so that we actually have set
equality between these sets; see Exercise 13.]

Further facts about direct and inverse images iasngn the exercises.

Figure 1.1.7 Direct and inverse images
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40 CONCLUSION

SpecialTypesfFunctions

Thefollowingdefinitionsidentifylsome verymportantypesofunctions.
1.1.9 Definition Letf:A — B bedunctiorfrom AtoB.

€)) Thefunctiorfissaid tobanjective(or tobeone-ong
if\,\,hene\/e;.(1 £%o therf(x)#(x2) . I fisarinjective functionwealsosaythatt

isannjection.

(b) Thdunctiorfissaid tobsurjective(ortomapAonto B)if f(A)=B; thatis,if therange
R (f)=B.If fisasurjectivefunctiornyealsosaythdtisasurjection.

(c) If fisbothinjective andsurjectivethenf issaid tobbijective.If fisbijective,we
alsosay thdisabijection.

Inorder toprove thatanctionfisinjectivewemusestablishthat:

foralix , x,inAif () =f(xp), themnxg=x>.

Todothiswassumthatf (Xl) =f(xy) andshow tha<r1:x2

[In other words, thegraph fatisfieshefirsthorizontal linetesEveryhorizontal

line y =bwithbeBintersectthegraphfinatmosongooint.]
Toprovethattunctionfissurjectivewemustshow thatforatvyg Bthereexistsat least onex
€Asuch thaf(x)=Db.

[Inotherwordsthegraphoffsatisfies theecondhorizontallineteg&very horizontalline
y=bwithbeBintersectghegraphfinatleasbngooint.]

1.1.10 Example LetA:={x,eR:xZI1}and definef(x):=2x /(<)for all
XeA. Toshow thatfisinjective wetakegandkoin Aandassume that
f(xyy=F(xp) . Thusve have

2(1 = 2)(2

X1—1 Xo-1

which implies that ¥xo- 1) =X (x- 1), and hencg = X,. Thereforefis injective.
To determine the range 6f we solve the equation=2x/(x- 1) forxin terms O:
y. We obtainx =y/(y- 2), which is meaningful foyz2. Thus the range dis the se
B :={y OR; y#2}. Thus,fis a bijection ofA ontoB. m|

InverseFunctions

IT fisafunctionfrom AintoB therfisaspecial subset &% B(namely, ongassinghe
verticallinetesfiThe set obrderegbairs irBxAobtainedbyinterchanging
th emembersforderegbairsirfisnogenerallyfunction(Thatis,thesg¢maynopassboth of
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thehorizontaline tests.Howeveriffisabijectionthen thisnterchangedodé=ad
toafunctiongcalled th&inversefunction off.

1.1.11Definition Iff:A- BisabijectiorofAontoB then
g:={(b, a) CIBx A:(ap) L1f}

isgfunctioronBinto A.Thisfunctionscalledthénversefunctionof f andisienotebyf
! Thefunctionf *isalsocalled thewerseof f .

We can also express the connection beteed its inversé® by noting thaD(f) =
R(fY) andR(f) = D(f*) and that

b = f(a)if and only if a =f*(b)
For example, we saw in Example 1.1.10 that thetiomc
fx):= _2X_
) 1
is a bijection ofA := {x OR_; x # 1} onto the seB := {y OR_; y # 2}. The function inverse tb

is given by y
fLy):= y-2 foryOB.

Remark We introduced the notatidri*(H) in Definition 1.1.7. It makes sense eveh if
does not have an inverse function. However, ifrikerse functiori * does exist, thefi*(H) is
the direct image of the seitrB underf *

Composition of Functions
It often happens that we want to “compose” two fiomsf, g by first findingf(x) and then
applyingg to getg(f(x)), however, this is possible only whikr) belongs to the domain gf In
order to be able to do this fall f(x), we must assume that the rangéisfcontained in the
domain ofg. (See Figure 1.1.8).

1.1.12 Definition If f: A= Bandg:B— C, and ifR(f) JD(g) = B, then thecomposite
function g o f fiote the order!) is the function frafninto C defined by

(goNX) :=g(f(x)) forall xOA.

1.1.13 Examples (a) The order of the composition must be carefutited. For, let
andg be the functions whose valuexai are given by

f(x) == 2x and g(x):= 3¢ 1.

SinceD(g) = R_andR(f) K = D(g), then the domaib(g o f) is also equal tR_, and the
composite functiorg o fis given by

(g 0 f)(x) =3(2¢)% - 1 = 12-1.
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A oy
f g
— A
o

Figure 1.1.8 The composition of andg

On the other hand, the domain of the compositetimm€ o g is,alsoR, but
(fo g)(x) =2(3¢*- 1) =6x- 2.
Thus, in thiscase, we hageo fZf 0 g.

(b) In considering o f , some care must be exercised to be sure that tge cHifi is
contained in the domain gf For example, if

f(x):=1>¢ and g(x)=+vx

then, sincé(g) = {x : x= 0), the composite functiamo f is given by the formula

(g of) (x) =Vx — x?

only for x OD(f) that satisfyf(x) = 0; that is, foix satisfying -kx <1.
We note that if we reverse the order, then the ositipnf 0 gis given by the formula

(fog)(x) =1-x,

but only for thosex in the domairD(g) ={x : x = 0}.

We now give the relationship between compositetions and inverse images. The proof
is left as an instructive exercise.

1.1.14 Theorem Letf:A -Bandy: B - C be functions and Jdtbe a subset of C . Then
we have

@of) (H) =fYg'H))
Note thereversalin the order of the functions.

5.0 SUMMARY
Restrictions of Functions

If f:A-Bisafunction and if £#Z A, we can define a functiofy, : A1 - B by

f1(X):=f(x forx/ A
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The functionf is called the restriction ¢gfto A; Sometimes it is denoted by=f /A 1
It may seem strange to the reader that one woeldobose to throw away a part of a function, but
there are some good reasons for doing so. For ésaimfp: R - R is the squaring function:

f) :=¢ forxOR .

then f is not injective, so it cannot have an inversecfion. However, if we restricf to
thesetA,:= (x : x> 0), then the restrictiorf|A; is a bijection of A onto A. Therefore, this
restriction has an inverse function, which is thsitive square root function. (Sketch a graph.)

Similarly, the trigonometric functiorfgx) := sinxandC(x) : = cosxare not injective on all of
R. However, by making suitable restrictions of thésections, one can obtain theverse
sineand thanverse cosin&nctions that the reader has undoubtedly alreadyuntered.

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Unitl.1
1 If AandB are sets, show that[IB if and only if A nB = A.

2. Prove the second De Morgan Law [Theorem 1.1. 4(b)].

3. Prove the Distributive Laws:
@) An(BOC) =(AnB)d(ANC),
(b) AOBNC) =(AOB)n(AOC).

4, The symmetric difference of two sets A @3 the seD of all elements that belong
to either A oB but not both. Represebtwith a diagram.
(@) Show thad = (A\B)O(B\A).
(b) Show thaD is also given byp = (ALB)\(AnB).

5. For eacmON, letAq = {(n + 1)k : k ZN).
(a) What is A. nA5?
(b) Determine the sdts {An: n ZN) andN{A,: n ZN).

6. Draw diagrams in theplane of the Cartesian prtsdd xB for the given seté andB .
(@) A={X/R :1sx=s2or3<x<4], B={x/R:x=1orx=2}.
() A={1,2,3},B={x/R:1<x<3}

7. LetA: =B := {x/R: -1=<x < 1} and consider the subsét:= {(x,y) : X* +y* = 1} of
A xB.Is thisset a function? Explain.

8. Letf(X) := I x20,x [R..
(a) Determinethedirectimadé E ) whereE := (X R: 1<x <2).
(b) Determine theinverseimagé(G) whereG := { x/R: 1< x < 4}.

9. Letg (x = xzandf(x) =x+ 2 fox/ R, and leh be the composite functidn:=g o /.
(a) Find the direct image(E) of E := (x/R: 0<x<1).
(b) Find the inverseimade * (G )of G := (xR 0<x< 4).

10. Letf(x) : =x*for XOR, and lekE = {x[R : -1<x< 0) andF := (x



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.
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OR:.0<x s1}. ShowthaE nF ={0}and f(EnF) = (0),whilef(E) = f(F) =
[y JR_: 0<y< 1}. Hencef (EN F) is a proper subset &E) Nf(F). What happens if 0
is deleted from the seEsand F?

Letf andE, F be as in Exercise 10. Find the dei$~andf (E)\f (F)and show that it
is nottrue thatf(E\F) Of (E)\f(F).

Show that if : A~ B andE, Fare subsets &, thenf(EL F) = f(E)Jf(F)and
F(EnF)Of(E)n f(F).

Show that if: A— B andG, Hare subsets &, thenf ' (G 7H) = f }(G)Of *(H)

Show that the functioghdefined byf(x) :=xA/x2 +1 , xJR, is a bijection ofR
onto {:-1 <y<1}.

Forab JRwith a <b,find an explicit bijection oA := {x: a <« < b} ontoB :={y : 0 <y
<1}

Give an example of two functiofigy onR toR such thaff#g, but such thafog =
gof.

(a) Show that ft A~ Bis injective ancE /. A,thenf*(f(E)) = E. Give an
exampleto show that equality need not holflig not injective.

(b) Show that iff : A — Bis surjective andi /7B, thenf(f *(H))=H . Give an
example to show that equality need not holgliff not surjective.

(a) Suppose that / is an injection. Showfthaf(x) =x for all x /7D(f) and that

fof *(y)=y for ally[R(f).
(b) If f is a bijection ofA ontoB, show thatfis a bijection oB ontoA.

Prove that if : A - B is bijective andy: B— C is bijective, then the composigeo fis
a bijectivemap oA onto C.

Letf : A -Bandg: B- C be functions.
(@) Show thaif g o fis injective, therf is injective.
(b) Show that iy o fis subjective, then g is subjective.

Prove Theorem 1.1.14.

Letf, g be functions such th&g o f)(x) = x for alix Z7D(f) and o g)(y) =y for all
yOD(g). Prove thaty = f™.
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Unit 2 Mathematical Induction

1.0 INTRODUCTION
Mathematical Induction is a powerful method of grdloat is frequently used to establish
thevalidityof statements that are given in termghef natural numbers. Although its utility is
restricted to this rather special context, Mathéahinduction is an indispensable tool in all
branches of mathematics. Since many inductionpréafew the same formal lines of
argument, we will often state only that a resulofes from Mathematical Induction and leave
it to the reader to provide the necessary detailthis section, we will state the principle and
give several examples to illustratehow inductiv@ofs proceed.

We shallassume familiarity withthe set of naturahbers:

H'={1,2,3,}.

withthe usual arithmetic operations of addition amdtiplication, and with the meaning of a
natural number being less than another one. Wealst assume thefollowing fundamental
property ofA”

2.0 OBJECTIVES

At the end of the unit, readers should be able to

0) understand special method of proof called “Matfatical Induction”

(i) understand that the course is related to timeldmental properties of the natural
number system

(i)  Understand different types of proof that arsed in mathematics such as
contrapositives and proof by contradiction.

3.0 MAIN CONTENT
1.2.1 Well-Ordering Property of &~ Every nonempty subsetlghas a least element.

A more detailedstatement of thisproperty is a®¥ad: If Sis a subset aff'and if
S 70, then there exist® [JSsuch tham < kfor all k(. S.

On the basis of the Well-Ordering Property, welgheive a version of the Principle of
Mathematical Induction that is expressed in terfraibsets of#.

1.2.2 Principle of Mathematical Induction Let Sbe a subsaif ¢ithat possessethe
two properties:
(2) The number dS.
(2) For evenk [N, if k S, therk + 1 0IS.
Then wehave S .

Proof. Suppose to the contrary th8tzA. Then the set?l Sis not empty, so by the Well-
Ordering Principle it has a least elementSince 10Sby hypothesis (1), we know that > 1.
But this implies thatn >1 is also a natural number. Singe-1 <m and sincam is the least
element inN such thatn O S,we conclude than- 1 [IS.

We now apply hypothesis (2) to the elemlert m - 1in S,to infer thatk + 1 =(m -1)
+ 1 =m belongs taS But this statement contradicts the fact tmat’S. Sincemwas obtained
from the assumption th& sAis not empty, we have obtained a contradiction.
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Therefore we must ha® =¥, Q.E.D.

The Principle of Mathematical Induction is ofter &&th in the framework of proper-
ties or statements about natural numbers® (h)is a meaningful statement abautJy,
thenP (n)may be true for some values mfand false for others. For examplePif (n)is
the statementn®= n”thenP!(1)is true while P (n) is false for alln >1, n Og¥,. On the
otherhand, ifP,(n)is thestatement‘n 2>1", then R(l)is false, whileP,(n) is true for
alln>1,n O,

In this context, the Principle of Mathematical letlan can be formulated as follows.
For eacm ON,, let P (n) be astatemenabout n. Suppose that:

1) P(I)istue,
(2) For evenkJex, if P (k }istrue,then P (k +1)is true.

Then P (n)is true for allIN.

The connection with the preceding version of Matheoal Induction, given in 1.2.2,
is made by lettin§ := (n ON: P (n)is true). Then the conditions (1) and (2) of 1.2.2
correspond exactlyto the conditions (1') and (@%pectively. The conclusion th&t=Nin
1.2.2corresponds to theconclusion®®din )is true for alin OA.

In (2')the assumption "H (k)is trué" is calledthe induction hypothesis In
establishing(2'),we are not concerned withthe &dtuth or falsityof PK), but only with
thevalidityof theimplication"iP (k),then P (k+ 1)".For example, if we consider the
statementd(n): "'n = n + 5", then (2') is logically correct, for we can sim@dd 1 to
bothsidesoP (k)to obtairP (k+ 1).However, since thestatement P(l):"1 — 6"lsefawe cannot
useMathematical Inductionto concludethatn+ 5 for alh O,

It may happen thatstatemeRtén )are false for certainnaturalnumbers but then aee tr
for alln> nfor some particulamy. The Principleof Mathematical Inductioncanbe medifio deal
withthissituation.We willformulate the modified pdiple,but leave its verificationas an
exercise.(See Exercise 12.)

1.2.3 Principleof Mathematical Induction(second vesion) Letn, ONand letP(n)
be a statement for each natural numbermy. Supposehat:
(@)} The statemeif (ng)istrue.
(2) Forall k >ng,the truth of P (k) implies the truth of P (k+1) .
ThenP (n)is true for all & ny

Sometimes the numbegin (1)is calledthébase since it serves as the starting point, and
the implicationin (2),which canbe writteR (k)=P (k +1), is calledthebridge, sinceit
connects the cagdo thecasé& + 1.

The following examples illustratehow Mathematicahductionis usedto prove
assertionsabout natural numbers.

1.2.4 Examples (a)For eactm N, the sum of the first natural numbers is given by
1+2 ++n= Y3(n+1).

To prove thisformula, we I& be the set of ath N for which the formula is true. We
must verify that conditions (1) and (2) of 1.2.2 aatisfied. Ifi =1, then we have 1'5.1 . (1
+ 1) so that 100S and (1) is satisfied. Next, wessumethat k 0JS and wishto infer from
thisassumption th&t+ 1 [JS.Indeed, ik LIS then
1+2+--+k=%k(k+1).
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If we addk + 1 to both sides of the assumed equality,we obtain

1+2+-+k+(Kk+1)=%kk+1)+ k+1)
=%k + 1)K+ 2).

Since this is the stated formula for k + 1, we conclude th& + 1 €S Therefore, condition
(2) of 1.2.2 is satisfied. Consequently, by thedfpie of Mathematical Induction, we infer that
= N, so the formula holds for atle ¥,

(b) For eachn e<¥; the sum of the squares of the finstatural numbers is givenby
12+ 2 +-+n? =gn(n +1)(2n + 1).

To establish this formula, we note that it is tfoen = 1, since i= 161, 2. 3. If we
assume it is true fdt, then addingk+1)%to both sides of the assumed formula gives

P+ 2 +++ k+1)2=Yek(k +1)(2k +1)+ (k +1)2
=1/g(k+ 1)(2k* + k + 6k + 6)
= Yok + 1)K + 2)(K + 3).

Consequently, the formula is valid for alest.
(c) Given two real numbeesandb, we will prove thata— bis a factor oR" — b" for
all new”

First we see that the statement is clearly truaforl. If we now assume that- b
is a factor of 5—b%, then
é+1 _bk+1: ak+1_ a5< + abk_ H<+1

= a(d-b") + b* (a-b).

By the inductionhypothesia,— bis a factor of (a“- b*)and it is plainlya factor di*(a-
b).Thereforea — bis a factor o&***- b**!, and it follows from Mathematical Induction tfeat
— bis a factor of &— bfor alln e

A variety of divisibility results can be derivedfn this fact. For example, since
11- 7 = 4, we see that 1 47"is divisible by 4 for alh e x”
(d) The inequality 252 + 1 is false fom = 1, 2, but it is true fon = 3. If we assume that
22k + 1, then multiplication by 2 gives, whék+ 2 > 3, the inequality

2522k+ 1) =4 +2=F+ (K+2)>Kk+3=2k+1)+1.

Since X + 2 > 3 for alk >1, the bridge is validfor ak> 1 (even though the statement is false
fork =1,2).Hence, with the basg = 3, we can apply Mathematical Induction to conclude
that the inequality holds for ait 3.
(e) The inequality”z (n + 1)! can be established by Mathematical Induction

We first observe that it is true far=1, since 2=2 =1 + 1.If we assume thatzk +
1)!, it follows from the fact that 2k + 2 that

2 = 2-2K<2(k+1)1<(k+2) (k+1)! = (k+ 2)!,
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Thus, if the inequality holds fdx, then it also holds fok + 1. Therefore, Mathematical
Induction implies that the inequality is true fdir e s¥.

() IfreR, r# 1, andn e<x’, then

14r+r 4. +r"= 14
1+

This is the formula for the sum of the terms irgadmetric progression”. It can be
established using Mathematical Induction as folloFisst, ifn =1, then 1 4 = (1 -r?)/(l -
r). If we assume the truth of the formula for kand add the term** to both sides, we get
(after a littlealgebra)

LAr+ri4 e =1 T 4tz g2
1+ 1-r

which is the formula fon = k + 1 . Therefore, Mathematical Inductionimplies thédity of
the formula for alh eN.
[This result can also be proved without using Mathgcal Induction. If we let
Syi=14r+r2++1" thems,=r+r?+--+r"! sothat
(I-r)sy=s-rsp=1-r""

If we divide by 1 —r. we obtain the statedformula.]
(9) Careless use of the Principle of Mathematicdlctioncanlead to obviously absurd
conclusions.The reader is invited to find the eimahe "proof of the following assertion.

40 CONCLUSION
Claim: If n eNand if the maximum of thenatural numbpr@ndqis n, thenp = q.

“Proof." Let Sbe the subsetaff for which the claimis true. Evidently, €S since ifp,
ge <X and their maximum is 1 , then both equal 1 ang sog, Now assume that e S and
thatthemaximum gb andqis k +1. Then the maximum gf — 1 andq - 1 isk. But since €S,
thermp —1 = g -1 and therefor@ = g. Thus,k + 1 €S, and we conclude thattheassertionis
true for alh e A~
(h)  There are statementsthatare truerfanynatural numbers but that are not truefor
allof them.

For example, the formufa(n ) := n?- n+41givesa prime number foe 1, 2,---40.
However,p(41)is obviously divisible by 41, so it is not anpe number.

50 SUMMARY
Another version of the Principle of Mathematicadl ctionis sometimes quite useful. It is
calledthe" Principleof Strong Induction", even thott is in fact equivalent to 1,2.2.

1.2.5 Principle of Strong Induction Let S be a subsetEuch that
(1" 1leS
(2") Forevery kN, if{1,2,, Kk} <SS, thenk +4S.
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Then S =#.

We will leave it to the reader to establish theiegjence of 1.2.2 and 1 .2.5.

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Unit 1.2

1. Prove that 1/1. 2+ 1/2. 3-+ I/n(n + 1) =n/(n + 1) for alin eA.

2. Prove that 3+ 2° +--+ n*=[1/2n(n +1]? for alln esk”

3. Prove that 3 + 11-++ (81 - 5) =4’ - nfor all n eA”

4. Prove that % 3 +--+ (2n -1)? = (4n°>-n)/3forall ne,

5. Prove that4- 2+ 3 +--+(-1)"*1n%= (-1)™'n(n+1)/2for alln esA”
6. Prove chat® + 5nis divisibleby 6 for alh &4

7. Prove tha®"- 1 is divisible by 8 for alh /%4

8. Prove thatb- 4n -1 is divisibleby 16 for alh /Z¥..

9. Prove that® + (n + 1)° + (n + 2}%is divisible by 9 for alh [ZA"

10. Conjecture a formula for the sum 1/1.3+1/3:5+4/(2n - 1) (2n+1), and prove
your conjecture by using Mathematical Induction.

11. Conjecture a formula for the sum of the firsdd natural numbers 1 + 3-+ (2n -1),
and prove your formula by using Mathematical Inaurct

12. Prove the Principle of Mathematical InductioR.3 (second version).
13.  Prove that <2%or all n &V,

14.  Prove that& n! for alln > 4,n (&N
15.  Prove thati2-3 <2"?for alln > 5, n/ZX.
16. Find allnatural numberssuch tham?< 2". Prove your assertion.

17. Find the largest natural numimesuch than®-n is divisible bym for all n /¥, Prove
your assertion.

18.  Prove that 41 + 1A2+ -+ + | /\/n>+/nfor all n [ZX,
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19. LetSbe a subset df such that (a)'275 for all k/V. and (b)if k 7Sandk > 2, then
k- 175 .Prove thaS= .

20. Let the numbergbe defined as followsq:= 1,X;, := 2, antkn+2 := Y2(Xn 1+ Xp) for all
n [N, Use thePrinciple of Strong Induction(1.2.5) towtthat K x.<2 for all n 4.

7.0 BIBLOGRAPHY/REFERENCES

Unit 3 Finite and Infinite Sets

1.0 INTRODUCTION

When we count the elements in a set, we say "ov, three,-", stopping when we have
exhausted the set. From a mathematical perspevcthe, we are doing is defining a bijective
mapping between sheset and a portion of the sesitafal numbers. If the set is such that the
counting does not terminate, such as the set ofatatumbers itself, then we describe the set as
being infinite.

The notions of "finite" and "infinite" are extremygbrimitive, and it is very likely that
the reader has never examined these notions verfulig. In this section we will define these
terms precisely and establish a few basic resuoitsstate some other important results that seem
obvious but whose proofs are a bittricky.

2.0 OBJECTIVES

At the end of the Unit, readers should be able to:

0) Understand the differences ans similaritiea @hite and infinite set

(i) Understand carefully some definitions and sdyasic consequences of these definition
and their desired

(i)  Understand that the set of rational numbsrsauntably infinite. It is established.

3.0 MAIN CONTENT
1.3.1 Definition €)) The empty set 0 is said to havel@ments.

(b) If nOK, a seSis said to have elementsif there exists a bijection from the set
An:=[1,2;-, n)onto5.

(9 A setSis said to bdinite if it is either empty or it has elements for some /¥

(d) A set 5 is said to bafinite if it is not finite.

Since the inverse of a bijection is a bijectionsieasy to see that a §ftasn
elements if and only if there is a bijection fr&uanto the set {1,2;:n}.Also, since the
composition of two bijections is a bijection, we skat a s, hasn elements if and only
if there is a bijectiofrom Sonto another sekthat has elements. Further, a s§&, is finite
if and only if there is a bijection froffy, onto another sé, that is finite.

It is now necessary to establish some basic piepeot finite sets to be sure that the
definitionsdo not lead to conclusionsthat confliathour experience of counting. From the
definitions, it is not entirelyclear that a finiset might not have elements fomore than one
value ofnn. Also it is conceivably possiblethat the s&t:= {1, 2, 3,---might be a finite set
according to this definition. The reader will bdieeed that these possibilities do not occur, as
the next two theorems state. The proofs of thesertans, which use the fundamental properties
of N described in Unit 1.2, are given in Appendix B.
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1.3.2 Uniqueness Theorem If S is a finite set, then the number of eleman&is a.
uniguenumber igy.

1.3.3 Theorem The seN of naturalnumbers is an infinite set.
The next result gives some elementary propertiéioé and infinite sets.

1.3.4 Theorem @ If Ais a set with m elements and B is a set witlements and if
ANB= @,then ALIB has m + n elements.

(b) If Aisaset with MNelements and CIA is a set witll elementthen A\C is a
setwith m —1 elements.

(© If C isaninfinite set and B iafinite set, then C\Bis an infinite set.

Proof. (a) Let /be a bijection oNy, ontoA, and letg be a bijection of#; ontoB. We

defineh on &t by h (i) :=f(i) for 1 =1,---, mandh(i) :=g (i-m}fori=m +1,---,

m + n.We leave it as an exercise to show tiigta bijection fronNp.,onto AUB.
The proofs of parts (b) and (c) are left to thedexasee Exercise 2. Q.E.D.

It may seem "obvious" that a subset of a finiteiseiso finite, but the assertion
must be deduced from the definitions. This anddbreesponding statement for infinite sets
are established next.

1.3.5 TheoremSuppose that S and T are sets andthaST
(a) If Sis afinite set, then T is a finite set.
(b) IfT is an infinite set, then S is an infinite set.

Proof. (a) If T =@, we already know thdt is a finite set. Thus we may suppose Thatd.
The proof is by induction on the number of eleméms

If Shas 1 element, then the only nonempty subséSmust coincide witls,soTis a
finite set.

Suppose that every nonempty subset of a setweilBiments is finite. Now &% be a set
havingk + 1 elements (so there exists a bijectfasf N1 ontoS), and leflT £S5.1f f(k + 1) [T,
we can consider T to be a subseSof=S \ {f (k +1)}, which hask elements by Theorem
1.3.4(b). Hence, by the induction hypothesis, a finite set.

On the other hand, ff( k + 1)/7T,thenT, ;=T \{f (k + 1)} is a subset d§. SinceS, hask
elements, the induction hypothesis implies Thas a finite set. But this implies that=
T1U{ f (k + 1)} is also a finite set.

(b) This assertion is the contrapositive of theseigm in (a). (See Appendix A for adiscussion
of the contrapositive.) QED.

Countable Sets

We now introduce an important type of infinite set.

1.3.6 Definition (@) A setSis said to bedenumerable (or countably infinite) if there
exists a bijection dNontoS

(b) A setSis said to beountableif it is either finite or denumerable.

(c) A set S is said to hencountableif it is not countable.
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From the properties of bijections, it is clear tBas denumerable if and only if there
exists a bijection ofS onto ¥, Also a setS, is denumerable if and only if there exists a

bijection fromSonto a sethat is denumerable. Further, a $eis countable if and only if
there exists a bijection froff; onto a set 7 that is countable. Finally, an infinite countable
set is denumerable.

1.3.7Examples (@) The setE:= [2n : n €A} of even natural numbers is
denumerable,since the mappifigN - E defined byf(n) :=2nfor n €<x; is a bijection of#”
ontoE.

Similarly, the se0 :={2n —1 :n € of oddnatural numbers is denumerable.
(b) The setZ of all integers is denumerable.

To construct a bijection dN ontoZ;, we map 1 onto 0, we map the set of even natural

numbers onto the s&t of positive integers, and we map the set of oddrahnumbers onto
the negative integers. This mapping can be disglayeghe enumeration:

A=(0,1,-1,2.-2,3, -3;-}.

(c) The union of two disjoint denumerable setsasuimerable.
Indeed, ifA ={a 1, &, a, :--andB = {b1, b, b, :--}, we can enumerate the elements of
AuUBas:

aq, by a8, s,

1.3.8 Theorem The set¥x ¥isdenumerable.

Informal Proof. Recall thatN x Nconsists of all ordered pairs,n),wherem, ne .
We can enumerate these pairs as:
(1.1), 1.2, (21, @3), 22, (B 1), (1,4)

according to increasing sum+ n,and increasing. (See Figure 1.3.1.) QED.

The enumeration just described is an instance ‘wfiagonal procedure"”, since we
move along diagonals that each contain finitely yneerms as illustratedin Figure i.3.1.
While this argument is satisfying in that it showsactly what the bijection of#” x

N ehould do, it is not a "formal proof, since it do¢slefine this bijection precisely. (See
Appendix B for a more formal proof.)

As we have remarked, the construction of an explipection between sets is often
complicated. The next two results are useful ial@dsthing the countability of sets, since they
do not involve showing that certain mappings anecbons. The first result may seem
intuitively clear, but its proof is rather techrigawill be given in Appendix B.
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1.3.9 Theorem  Suppose that Sand T are sets and thaST
(@) If S is a countable, set. then T is a countable set
(b) If T is an uncountable set, then S is an uncouataeét.

1.3.10 Theorem The following statements are equivalent:
@ Sis a countable set.
(b)  Thereexists a surjectioof s¥’ontoS.

(c) There existan injection of S inteW.

Proof. (a)=>(b)If Sis finite, there exists a bijectidnof some selN, ontoSand we definéd on A~

by H(k) ={h(K) fork =1, n,
{h(n) for k > n.

ThenH is a surjection of#ontoS.

If Sis denumerable, there exists a bijectibof N onto S, which is also a surjection of
avontoS
(b)= (c) If H is a surjectionofNontoS, we defineH; : S=N by lettingH1(S be the least
element in the sét"*(s):= {nON" H(n] = s}. To see that His an injection ofinto¥,note that
if s,t/7Sandng:=H1(s)=Ha(t),thens =H(ns;)=t.
(c)= (a) If Hy is an injection oSinto N, then it is a bijection oBontoH, (S)JA”
By Theorem 1.3.9(al{ | ( S )is countable, whence the Si$ countable. QE.D.

1.3.11 Theorem  The set of all rational numbers is denumerable.

Proof. The idea of the proof is to observe that the@ebf positiverational numbers iscontained
in the enumeration:
. Yo, 2, s, 2o, P, Yaye e,

which is another "diagonal mapping" $see Figure.2).3However, this mapping is not an
injection, since the different fractioffsand®, represent the same rational number.

To proceed more formally, note that sifeeNis countable (by Theorem 1.3.8), it follows from
Theorem 1.3.10(b) that there exists a surjectmiiNonto ¥ X . If

|2 wls m|&
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Figure 1.3.2The setg’
g: X A€ is the mapping that sends the ordered (paim)intothe rational number having
a representatiom/nthengs a surjection ontas’. Therefore, the compositigro fis a surjection
of N onto&’, and Theorem 1.3.10 implies thaf is a countable set.
Similarly, the set@of all negative rational numbers is countable. dilofvs as
inExample 1.3.7(b)that the s&t = ‘€0 {0} U is countable. Since containsA, itmust be a
denumerable set. QED.

The next result is concerned with unions of setsjiéw of Theorem 1.3.10, we need
not be womed about possible overlapping of the. gd&, we do not have to construct a
bijection.

1.3.12 Theorem If Aris a countable set for each MV, then the union ,.0~;U:::1 An
is countable.

Proof. For eachmiN, let pbe a surjection N ontoAn. We definey : N xN - A
by
P (M, n): =om (n).

We claim that ~ is a surjection. Indeed,aifd] A, then there exists a leastIsf such that
a [7An, whence there exists a least#¥'such thaa = ¢(n).Thereforea = ¢(m, n).
SinceN x &¥is countable, it follows from Theorem 1.3. 10 thatre exists a surjection

f 1 - A cwhencey o fis a surjection ofV onto A. Now apply Theorem 1.3.10again to
conclude tha\is countable. Q.E.D.

40  CONCLUSION
Remark A less formal (but more intuitive) way to see thattt of Theorem 1.3.12 is to
enumerate the elementsfgf,, mO, as:

A = {ag, a2, &3},

Ao = {@p1, Ao, A3},

As = {ag1, a3z, Ag3,°}-

We then enumerate this array using the "diagoaigolure”

ay1, Ao, A1, A13, A2, A31, A14, 7,
as was displayed in Figure 1.3.1.

The argument that the s& of rational numbers is countable was first giveri874
by Georg Cantor (1845-1918). He was the first matitecian to examine the concept of
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infinite set in rigorous detail. In contrast to theuntability ofg, he also proved the s&of
real numbers is an uncountable set. (This resulbevestablished in Section 2.5.)

In a series of important papers, Cantor developeektensive theory of infinite sets and
transfinite arithmetic. Some of hisresults weretewurprising and generated considerable
controversy among mathematicians of that era. tB@7 letter to his colleague Richard
Dedekind, he wrote, after proving an unexpectedréiig, "l see it,but | do not believe it",

We close this section with one of Cantor's moreamiable theorems.

50 SUMMARY
1.3.13 Cantor'sTheorem If A is any set, then there is no surjection ofrfodheset
P (A) of allsubsets of A.

Proof. Suppose that: A —P(A)is a surjection. Sinc@(a) is a subset of A, eitherbelongs
to <p(a) or it does not belong to this set. We let

D:={a JA:alig(a)}.

SinceD is a subset of A, §is a surjection, theD = ¢(a,)for some glJA.
We must have eithegaD or a,[1 D. If a,[J D, then since D #(ay), we must have

/% (ag),contrary to the definition oD. Similarly, if ap/7 D, thena,/Jg(a,) so that gD,
which is also a contradiction.

Therefore gicannot be a surjection. Q.ED.

Cantor's Theorem implies that there is an unengdmogression of larger and larger sets. In
particular, it implies that the collectioR(NV) of all subsets of the natural numbeéxsis
uncountable.

6.0 TUTOR MARKED ASSIGNMENT

Exercises for Unit 1.3

1 Prove that a nonempty set s finite if and only if there is a bijection froT;onto a
finitesetT,

2 Prove parts (b) and (c) of Theorem 1.3.4.

3. LetS:={l,2}andT:={a.b.c}.

(@ Determine the number of different injectiasfSinto T .
(b) Determine the number of different surjectionsfT onto S.

4. Exhibit a bijection betweed and the set of all odd integers greater than 13.

5. Give an explicit definition of the bijectiof from N onto /Z described in Example
1.3.7(b).

6. Exhibit a bijection. betweérand a proper subset of itself,

7. Prove that a seliis denumerable if andnly if there is a bijection fronil; onto a
denumerable s@b

8. Give an example of a countable collection afdisets whose union is not finite.

9. Prove in detail that BandT are denumerable, th&hlT is denumerable.
10. Determine the number of element®ifS) the collection of all subsets &f for each of
the following sets:
@  S:=(1,2),
(b) S={1.2,3),
(c) S-{1,2,3. 4).



Introduction to RezAnalysis

Be sure to include the empty set and thEisstif NP (S).
11 Use Mathematical Induction to prove that ifbtS hasn elements, theR(S)has 2 elements.

12 Prove that the collectigi@N) of a\l finite subsets adN is countable.

7.0 BIBLOGRAPHY/REFERENCES

MODULE 2
THE REAL NUMBERS

In this chapter we will discuss the essential proge of the real number systeR,
Although it is possible to give a formal constrantiof this systemon the basis of a more
primitive set (such as the s@tof natural numbers or the s& of rational numbers), we have
chosen not to do so. Instead, we exhibit a ligunflamental properties associated with the real
numbers and show how further properties can beadeldfrom them. This kind of activityis
much more useful in learning the tools of analykan examining the logicaldifficulties of
constructing a model faR,

The real number system can be described as a "etenptdered field", and we will
discuss that description in considerable detailUmt2.1,we first introduce the "algebraic"
properties—often called the “field" properties instract algebra—that are based on the two
operations of addition and multiplication.We counérthe section with theintroductionof the
"order" properties off_and we derive some consequences of these prsyartellustrate their use
in working with inequalities. The notion of abselwalue, which is based on the order properties,
is discussed in Unit 2.2.

In Unit 2.3, we make the final step by adding th&cial "completeness" property to the
algebraic and order properties®&f It is thisproperty, which was not fully understioontilthe
late nineteenth century that underlies the thebiyrits and continuity and essentially all that
follows in this book. The rigorous development ealranalysis would not be possible without
thisessential property.

In Unit2.4, we apply the Completeness Property @vivé several fundamental
resultsconcerning, includingthe Archimedean Property, the existesfcguare roots, and the
density of rational numbers if, We establish, in Unit 2.5, the Nested IntervalpRrty and use
it to prove the uncountability oK. We also discuss its relation to binary and dekima
representations of real numbers.

Part of the purpose of Unit 2.1 and 2.2 is to plevéxamples of proofs of elementary
theorems from explicitly stated assumptions. Stisdean thus gain experience in writing formal
proofs before encountering the more subtle and boatpd arguments relatedto the
Completeness Property and its consequences, Hawstudents who have previously studied
theaxiomatic method and the technique of proofshgpes in a course on abstract algebra) can
move to Unit 2.3 after a cursory look at the easiections. A brief discussion of logic and types
of proofs can be found in Appendix A at the backhefbook.
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Unitl The Algebraic and Order Properties ofR

1.0 INTRODUCTION

We begin with a brief discussion of the "algebrstizicture” of the real number system. We
will give a short list of basic properties of adulit and multiplication from which all other
algebraic properties can be derived as theoremtherterminology of abstract algebra, the
system of real numbers is a "field" with respectatidition and multiplication. The basic
properties listed in 2. 1.1 are known{as field axiomsA binary operationassociates with
each paifa, b)a unique elemer (a, b"),but we will use the conventional notationsaocf

b anda . bwhen discussing the properties of addition and iplidation.

2.0 OBJECTIVES

At the end of the Unit, reader should be able to

0] familiar with the essential properties of reaimbers syster

(i) exhibt a list of fundamental properties assbed with the real numbers
(i)  show how further properties can be deductearf them.

3.0 MAIN CONTENT

2.1.1 Algebraic Properties oR On the sefR of real numbers there are two binary
operations, denoted by + and and caltigition and multiplication, respectively. These
operations satisfy the following properties:

(Al) a+b=b+aforalla, bin R(commutative property of addition);

(A2) (a+b)+c=a+ (b+c)foralla, b, cin K(associative property of addition);

(A3) there exists an element Ofsuch that 0 4 = aanda+ 0 =aforallain R
(existence of a zero element);

(A4) for each a ik there exists an elemesatin & such thati + (-a) =0 and-a) +a=
0 (existence of negative elements);

(M) a.b=b. aforalla, bin R(commutative property of multiplication);

(M2) (a+b)ec=ac-(be-c)oralla, b,c)inR(associative property of multiplication)ivi3)
there exists an element 1&distinct from0 such that 1 a=aanda «1 =afor
all a inR (existence of a unit element);

(M4) for eacha#0 in R there exists an element I/aRnsuch that*(1/a) = 1 and
(/a) .a=1 ekxistenceof reciprocals);

(D) a.(b+c)faeb)+(aecland(b+c)ea=(be+a)+ (ceaforalla,b,cinR_
(distributive property of multiplication over aduin).

These properties should be familiar to the readlee first four are concerned with
addition,the next four with multiplication,and tlestone connects the two operations. The
point of the list is that all the familiar technegiof algebra can be derived from these nine
properties, in much the same spirit that the thaeref Euclidean geometry can be deduced
from the five basic axioms statedby Euclid in Eiements.Sincethis taskmore properly
belongs to a course in abstract algebra, we wilcaory it out here. However, to exhibit the
spirit of the endeavor, we will sample a few resalnd their proofs.

We first establishthe basic fact that the elem@ritsd 1, whose existence were asserted
in (A3) and (M3), are in fact unique.We also shbzvatmultiplicationby 0 always results in 0,

2.1.2 Theorem (a) If z and aare element® K with 2 + a =a, thenz = 0.
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(b) | f u andb 20 areelementin Rwithueb =b, thene 1.
(c) Ifa /R, then a0 =0.

Proof (a)Using (A3), (A4), (A2), the hypotheszs+ a = a,and (A4), we get
z=z+0=z+(aK-a))=(z+a)+(-ara+(-a)=0.

(b) Using (M3), (M4), (M2), the assumed equalityb = b,and (M4) again, we get
u=u.l=u.(b.(@/b))=ueb)s(1/b)=be+(1/b)=1.

(c) We have (why?)

a+a.0=a.0=a.(1t0)=a.1l=a
Therefore, we conclude from (a) ttza0 = 0. Q.E.D.
We next establish two important properties of nplittation: the uniqueness of
reciprocals and the fact that a product of two nerslis zero only when one of the factors is
zero.

2.1.3 Theorem (@) Ifaz0and binR are suchthata+b =1,thenb=1/a.
(b) Ifa.b=0,then eithera®orb=0.

Proof. (a) Using (M3), (M4), (M2), the hypothesas» b =1, and (M3), we have
b=I.b=((1/a). a).b=(lI/a).(a.b)$1/a).1=1/a.
(b) It suffices to assunmee= 0 and prove thdi = 0. (Why?) We multiplg - bby I/aand apply
(M2), (M4) and (M3) to get
(1/a).(ab)y=((l/a).a).b=1b=h.
Sincea b =0, by 2. 1 .2(c) this also equals
(1/a) . (a.b) =((2/a) .0 = 0.

Thus we have =0. Q.E.D.

These theorems represent a small sample of thbraiggroperties of the real number
system. Some additional consequences of the fiejgbpties are given in the exercises.

The operation ofubtraction is defined bya — b := a + (- b)for a, bin K, Similarly,
division is defined for &y in & with b #Z 0 bya/b :za « (I/b).In the following, we willuse
this customary notation for subtraction and divisi@and we will use all the familiar
properties of these operations. We will ordinadifgp the use of the dot to indicate multiplication
and writeabfor a « b.Similarly, we willuse the usual notation for expotseand write Zfor aa,a
for (a®)a;and, in general, we defirg®*!:= (a")afor n [Z¥. We agree to adopt the convention
that & = a. Further, if a# 0, we write a° = 1 and & for 1/a,and i, we will write a"for
(1/2)" when it is convenient to do so. In general, welfrgély apply all the usual techniques of
algebra without further elaboration.

Rational and Irrational Numbers

We regard the set of natural numbers as a subseRqfby identifying the natural number
OsAwiththe n-fold sum of the unit element @R, Similarly, we identify 002z with the zero
element of 00X, and we identify the n-fold sum of —1 with thedger—n.Thus, we
considers¥andZ to be subsets o,

Elements oR that can be written in the forbia wherea, b 022 anda #0 are called
rational numbers. The set of all rational numbersAi will be denoted by the standard
notation'®, The sum and product of two rational numbers &rag rational number (prove this),
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and moreover, the field properties listed at thgirbeng of this section can be shown to hold for
=

The fact that there are elementsArthat are not iQ is not immediately apparent. In
the sixth century B.C. the ancient Greek societ?ythagoreans discovered that the diagonal
of a square with unit sides could not be expressea ratio of integers. In view of the
Pythagorean Theorem for right triangles, this iegplihat the square of no rational number can
equal 2. This discovery had a profound impact andbvelopment of Greek mathematics.
One consequence is that elementsRofthat are not ing became known as irrational
numbers, meaning that they are not ratios of imgegalthough the word "irrational” in
modern English usage has a quite different meanwg, shall adopt the standard
mathematical usage of this term.

We willnow prove that there does not exist a raiorumber whose square is 2. In the
proof we use the notions of even and odd numbersalRthat a natural number is even if it has
the form 2 for somen O, and it isodd if it has the form2n — 1for somen O, Every
natural number is either even or odd, and no naturaber is both even and odd.

2.1.4 Theorem There does not exist a rational number r such that2.

Proof.Suppose, on the contrary, theandgq are integers such thgi/qf= 2. We may assume
thatp andq are positive and have no common integer factorsrdttan 1. (Why?) Singe —
29°,we see thap’is even. This implies thatis also even (becausepf= 2n -1 is odd, then its
squarepzz 2(2r? -2n +1) — 1 is also odd). Therefore, siqzandq do not have 2 as a
common factor, theq must be an odd natural number.

Sincepis even, thep = 2mfor somems¥; and hencen=2cf, so that &f=q°.
Thereforegfis even, and it follows from the argument in thegeding paragraph tlogis an even
natural number.

Since the hypothesis thgi/qf= 2 leads to the contradictory conclusion thasboth
even and odd, it must be false. QED.

The Order Properties of R |
The "order properties” oR refer to the notions of positivityand inequalitbesveen real
numbers. As with the algebraic structure of thetesysof real numbers, we proceed by
isolatingthree basic properties from which allotleeder properties and calculationswith
inequalitiescan be deduced. The simplest way tiidds to identify a special subsethofby
usingthe notion of "positivity".

2.1.5 The Order Properties off_There is a nonempty subset PRf called the set of
positive real numbers, that satisfies the followpmgperties:
(i) | f a, b belong ta?, thena + b belongs ta?.
(i) If a, bbelong to, thenab belongs ta?’.
(iii)  If abelongs taR, then exactly one of the following holds:
a [P, a=0, -a0%.

The first two conditions ensure the compatibility @rder with the operations of
additionand multiplication, respectively. Conditi@ri.5(iii) is usually called th&richotomy
Property, since it divideR into three distinct types of elements. It states the set {—a:
a 074 of negative real numbers has no elements in common with thé® s positive real
numbers, and, moreover, the geis the union of three disjoint sets.
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If a 0%, we writea >0 and say thad is apositive (orastrictly positive) real numberlf
aJ7u (0), we writea >0 and say tha is a ronnegativereal number. Similarly, if
—a 07 we writea <0 and say thad is anegative (or astrictly negative) real numberlf -a
07°0(0),we writea < 0 and say that is anonpositive real number.
The notion of inequality between two real numbeitsrvaw be defined in terms of the s#tof
positive elements.

2.1.6 Definition Leta, bbe elements ofR,
(@ Ifa-bd7, then we writea>borb < a.
(b) If a - b7V {0}, then we writea> borb < a.

The Trichotomy Property 2.1.5(iii)impliesthat fa, b /R exactly one of the
followingwillhold:
a>b, a=>h, a<b.

Therefore, if botta < bandb < a,thena = b.
For notational convenience, we will write
a<b<c
to mean that bota < bandb < c are satisfied. The other "double" inequalites b < c,a< b<
c,anda < b < care defined in a similarmanner.

To illustratehow the baste Order Properties ard taseerive the "rules of inequalities”, we
willnow establishseveral resultsthat the readeused in earlier mathematics courses.

2.1.7 Theorem Let a, b, de anyelements ofR,

(€)) If a > b and b>c. then a>c.

(b) Ifa>b,thenarc>b+c.

(c) If a>band c >0, then ca > cb.
If a > b and c< 0.then ca < cb.

Proof. (a) Ifa - b [7F andb - ¢ /77, then 2.1.5(1) implies th& - b)+(b -c) =a — cbelongs
to &% Hencea >c.
(b)I fa-b [P then(@a+c)-(b+c)=a-bisins Thusa + c> b +c.
(c) If a - b andc/iP, thenca - cb = ¢ (a - bjis in by 2.1.5(ii). Thusa > cb
whenc >0.

On the other hand, if €0, then-c /7, so thatcb - ca = (-c)(a- b)is in P. Thus
cb>cawhenc <0. QED.

It is natural to expect that thenatural numbers @wsitivereal numbers. This property is
derived from thebasic properties of order. The kégervation is that the square of any
nonzero real number is positive.

2.1.8 Theorem (a) If a JRand a# 0,then &> 0.
(b) 1>0,
(c) IfinEAthenn>0.
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Proof. (a)By the Trichotomy Property, & 20, then eithem/#” or -ali%. If a/#P, thenby
22.1.5(ii),a2 =a e« a P Also, if -a [, thena® = (-a)(-a) L%°. We conclude that i 70, then
a> 0.

(b) Since 14, it follows from (a) that 1 > 0.

(c) We use Mathematical Induction. The assertionnfe= 1 is true by (b). If we suppose the
assertion is true for the natural numbethen k%, and since L%, we havek + 1 by
2.1.5(i). Therefore, theassertion is true for alirs numbers. QE.D.

It is worth noting thatno smallest positive real number can exighis follows by
observing that it > 0, then since %2 > 0 (why?), we have that

0 <a<a.

Thus if it is claimed that is the smallest positive real number, we can ekl@absmaller
positivenumbet/,a.

This observation leads to the next result, whicl lvé used frequently as a method of
proof. For instance, to prove that a numbaer O is actually equal to zero, we see that it
suffices to show that is smaller than an arbitrary positive number.

2.1.9 Theorem If a JR s suchthat O< a <e for everye>0, then a 0.

Proof. Suppose to the contrary that > 0. Then if we takeey := %a, we have 0

<gp<a.Therefore, it is falsethat <efor everye> 0 and we conclude that= 0.
Q.E.D.

Remark It is an exercise to show thatif /& js such that &a < ¢ for everye>0,
thena =0,

The product of two positivenumbers is positive.ldoer, the positivity of a productof
two numbers does not imply that each factor istp@siThe correct conclusion is givenin the
next theorem. It is an important tool in workingtwinequalities.

2.1.10 Theorem If ab >0, then either
(1) a>0and b >0, or
(i)  a<0 andb<O.

Proof. First we note thaab >0 implies thata # 0 andb # 0. (Why?) From the Trichotomy
Property, eithema >0 or a <0. If a > 0, then 1/a> 0 (why?), and therefore

b=(1/a)(ab)>0. Similarly,ifa<0, then ¥ a <0, sothab =(1/a)(ab)<0.
QE.D.

2.1.11 Corollary Ifab <0, then either
) a <0 andb >0, or
(i) a>0and b< 0.

Inequalities

We now show how the Order Properties presentedhig dection can be used to "solve"
certain inequalities. The reader should justifyheaicthe steps.
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2.1.12 Examples (a) Determine the sét of all real numbers such that 2 + 3< 6.
We notethat we haVe

X[JAS2X+3<6 @2x<3 X<y .

ThereforeA = {x OR ; xX*<°/5).
(b) Determine the s@& := {x OA_: X +x>2).
We rewrite the inequality so that Theorem 2.1.10 loa applied. Note that

Therefore, we either have §)—1 > 0 andk + 2>0, or we have (ix —1 <0 and + 2 <0. In
case (i) we must have both»1 andx >—2, which is satisfied if and only

The symbok=shouldbe read “ifandonlyif”.

if x> 1. In case (ii) we must have botkk1 andx < -2, which is satisfied if and only
if x <-2.

We conclude thaB = {x J&_: x > 1} O{x JR_: x <-2}.
() Determine the set

2x+1
C::x{ﬂgo: s <]}

2xX+1 Xx-1

x+2 1<0e  p <0

We note that

x[JCe&

Therefore we have either > 1 <0 andk + 2> 0, or (ii)x —I >0 andx + 2 < 0.
(Why?) In case (i) we must have botk 1 andx >-2, which is satisfied if and only if
-2 Xx<1.In case (ii), we must have batk1 andx < - 2, which is never satisfied.

We conclude tha = {x OR ; —2 < x < 1}.

40 CONCLUSION

The following examples illustrate the use of thel@rProperties ofR in establishing
certain inequalities. The reader should verify #eps in the arguments by identifying the
properties that are employed.

It should be noted that the existence of squarésrobpositivenumbers has not yet
been established; however, we assume the exiswnitese roots for the purpose of these
examples. (The existence of square roots willbeudised in Unit 2.4.)

2.1.13 Examples (a) Leta>0andb> 0. Then
(1) a<be a’< b’ a < Vb

We consider the case whexer 0 andb > 0, leaving the case =0 to the reader. It follows from
2.1.5(i)that + b >0. Sinceb® - &=(b - a)(b+ a),it follows from 2.1. 7(c) thah — a >0
implies thath? - &> 0. Also, it follows from 2.1.10 th&f— &> 0 implies thab — a> 0.

If a >0 andb > 0, thenw/a> 0 andvb> 0. Sincea = (va)?andb = (vb)?, the second
implication is a consequence of the first one wiaeand b are replaced by/aand Vb,
respectively.

We also leave it to the reader to show thatiD andb >0, then

Q) a<b ed<bPoa<vb
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(b) If a andb are positive real numbers, then thaithmetic meanis ¥z (a+ b)and their
geometric mearis vVab. TheArithmetic- Geometric Mean Inequality for a, bis

) Vab < ¥ (a+h)

with equality occurring if and onliyf a = b.

To prove this, note that & > 0, b > 0, anda # b, thenva>0, Vb>0 andva#/b.
(Why?) Therefore it follows from 2.1.8(a) thafa — Vb)> 0. Expanding this square, we
obtain

a-2Vab+b >0,
whence it follows that
Vab< % (a b).

Therefore (2) holds (with strict inequality) whagb. Moreover, if a =b (>0), then both sides of
(2) equal a, so (2) becomes an equality. This rtvat (2) holds foa >0, b >0.
On the other hand, suppose that0, b > 0 and that/ab= % (a+ b} . Then, squaring
both sides and multiplying by 4, we obtain
4ab=(a+b)’=a’ + 2ab +b?
whence it follows that
0=a’-2ab+k=(a-by

But this equality implies that = b. (Why?) Thus, equality m (2) implies that b.
50 SUMMARY
Remark The general Arithmetic-Geometric Mean Inequalitytfte positive real

numbersay, ay,, ais

(3) (all a-21'”1 af1)1/nS§Lﬂ_;+-.. + alj
n

with equality occurring if and only i&= a, = ---= a,.It is possible to prove this more general
statement using Mathematical Induction, but theofoi® somewhat intricate. A more elegant
proof that uses properties of the exponential fioras indicated in Exercise 8.3.9 in Module 8.

(© Bernoulli's Inequality. If x>-1, then
@) (1 %"= 1+nx forall n W

The proof uses Mathematical Induction. The casel yields equality, so the assertion is
valid in this case. Next, we assume the validitytled inequality (4) fork /7 #and will
deduce it forkk + 1. Indeed, the assumptions that (x> 1 + kx and that 1+ x >0 imply
(why?) that

(L+x) T =(1+x)
>)1+kx). (1+x) = 1+(k+1x+k<é
>1+K+1x

Thus, inequality (4) holds for = k + 1. Therefore, (4) holds for all /7 A"

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Unit 2.1




10.

11.

12.

13.

14.

15.

16.
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Ifa, b 7/ N , prove the following.

@) Ifa+b =0, thenb=-a, (b) -(A) =a,

() (ha=-a (d  (-1)(-1)=1.
Prove that ifi, b0 <%, then

(@ -@at+b)=(a)+(-b), (b) (-a). (-b)=a.b
(c) 1/(-a) =-(I/a). (d) -@/b) = (-a)/bif b 0.

Solve the following equations, justifying eatépsoy referring to an appropriate property
or theorem.
) X+5

8, (b) ¥ =2x,
© x>l

3, @  &D(x+2)=0.
If a7 Ksatisfiesa.a = a, prove that eithes = 0 ora = 1.

Ifaz0 andb 20, show that I4b)=(1/a)(l/b).
Use the argument in the proof of Theorem 2.1.4hwmw that there does not exist a
rational numbes such that? = 6.

Modify the proof of Theorem 2.1.4 to show thHere does not exist a rational number
tsuch thaf=3.

(a) Show that ik, yare rational numbers, thenty andky are rational numbers.
(b) Prove chat ifxis a rational number and y is an irrational numtremnx + y is an
irrational number. If, in additior 0, then show thalyis an irrational number.

LetK := {s +V2: s, t/XQ). Show thakK satisfies the following:

@) If X1, %/ K,thenx; + xo/7K andx 1 X 7K.

(b) If x 20 andx OKjthen 1/ xOK.

(Thus the seK is asubfieldof R. With the order inherited fro, the seK is an
ordered fieldthat lies betweep andR).

@) Ifa <bandc < d,prove thaa+c <b + d.
(b) If 0 <a<band 0< c <d, prove that < ac<bd.

(@) Show that i >0, thenl/a > 0 and |/(l/a)a=
(b) Show that ifa< b, thena<¥%(a + b) < b.

Leta, b, ¢, dbe numbers satisfying€¥a <b andc<d< 0. Give an example where
ac < bd,and one wherbd < ac.

Ifa, bOR, show thag® + b% = 0 if and only ifa= 0 andb =0.
If 0<a < b, show thag’<ab <b?.Show by example that it doestfollow that
a’<ab <t

If 0 <a < b, show that (aj <vab< b, and (b) 1b<1/a.

Find all real numbepsthat satisfy the following inequalities,
(@) x> 3x+4, (b) 1«P<4,
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(©)  lx<x d) k< X

17. Prove the following form of Theorem 2.1.9alfIR is such that &a < efor everye> 0,
thena= 0.

18. Leta, bR, and suppose that for every 0 we have &b + . Show that <b.

19.  Prove that [ % (a+B¥ % (a® + b?) for all a, b 0K, Show that equality holds if
and only ifa =b.

20. (a) If 0 <c< 1, show that 0 <’ ¢ < 1.
(b)  If 1 <c, show that 1 & < c?.

21. @) Prove there is moJ¢#Such that 0 k< 1. (Use the Well-Ordering Property
of &)

(b) Prove that no natural number can be both endrodd.

22. (a) Ifc> 1, show thatt>c for all n ON, and that &c forn> 1.
(b) If 0 <c< 1, show that"< c for alln ON, and that"< ¢ for n>].

23.  Ifa>0,b>> 0 andn O, show that <b if and only ifa’<b". [Hint: Use Mathematical
Induction].

24. (@) Ifc>1andm, nOw, show that™ c"if and only ifm> n.
(b) If 0 <c <1 andm, nOg¥, show that & ¢ if and only ifm>n.

I/m

25. Assuming the existence of roots, show tratifthenc’™ <c!if and only ifm>n.

26.  Use Mathematical Induction to show thatif_andm,n [, therd™" =a"a"and
@")"=a™

7.0 REFERENCES / TEXTBOOK

Unit 2 Absolute Value and the Real Line

1.0 INTRODUCTION

From the Trichotomy Property 2.1.5(iii), we are wssl that ifa 0K _ anda # 0, then

exactlyone of the numbeasand—ais positive.The absolute value ok® is defined to be the
positiveone of these two numbers. The absoluteevali@ is defined to be 0.

2.0 OBJECTIVES

At the end of the Unit, the readers should be able to:

0) understand and define the concept of “Absoltakie”

(i) understand the concept of “Field” properties

(i)  understand and farmiliar with the “Order” grerties in Real Analysis

3.0 MAIN CONTENT
2.2.1 Definition The absolute value of a real numagtenoted bya\,is defined by
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a if a >0,
\a\ ::{0 ifa=0,
-a if a<O.

For example, |5\ =5 and \ — 8| = 8. We see frioendefinition thatd| > 0 for alla 7 R,
and that\a\ = 0 if and only ifa = 0. Also | —a\ = \a\ for all a /7 &, Some additional
properties are as follows.

2.2.2 Theorem (@ \ab\=\a\\b\forall a,bJ R,
(b) \a\’=a’forall a [7k_

(©) If c> 0, then\akc ifand only if - c< a< c,

(d) -\a\<ac<\a\forallaeXk,

Proof. (a) If eithem or b is 0, then both sides are equal to 0. There aredther cases to
consider.Ifa >0, b >0, thenab > 0, so thatab\= ab =\a\\b\If a > 0, b <0, thenab <0, so
that\ab\ = —ab = a( - b) =\a\\b\The remaining cases are treated similarly.

(b) Sincea®> 0, we have® =\a?\ = \aa\ = \a\\a\ = \af.

(c) If |al < c, then we have bota < cand —a < c (why?), which is equivalent te-c<

a < c.Conversely, if —€ < a < c, then we have both < cand —a <c (why?), so that

\a\< c.

(d) Takec = | in part (c). Q.E.D.

The following important inequality willbe used frgntly.

2.2.3 Triangle Inequality  If a, b OR, thena + b\ s\a\ + \b\.

Proof. From 2.2.2(d), we havéa\ < a < \a\ and —\b\sb <\b\.On adding these
inequalities,we obtain

-(lal + bl)y<a+ b sfa/ + bl
Hence, by 2.2.2(c) we hawe + b\ < \a\ + \b\. QE.D.

It can be shown that equality occurs in the Trianglequality if and only iib > 0,
which is equivalent to saying thaiandb have the same sign. (See Exercise 2.) There arg man
useful variations of the Triangle Inequality. Hare two.

2.2.4 Corollary If a, bJ R, then

(@) llal -\b\K\a - b\,

(b) \a-b\<\a\+\b\.

Proof, (a) We writea = a - b + band then apply the Triangle Inequality to \gét=\(a— b + \b\
<\a- b\ + \b\.Now subtractb\to get\a\ - \b\< \a - b\.Similarly, from

\b\ = \b - a +a\<\b - a\ + \a\we obtain-\a - b\ = -\b = -\b- a\<\a\ - \b\. If we
combinethese two inequalities,using2.2.2(c), welgeinequality in (a).

(b) Replaced in the Triangle Inequalitydiyto get\a - b\<\a\ + 1 - b\. Since | b\ = \b\we
obtaintheinequalityin (b). QED.

A straightforward application of Mathematical Intloo extends theTriangle Inequalityto
any finite number of elementskf.
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2.2.5 Corollary If a3, @+, a,are anyeal numbers, then
Putapt- +anl< fpl + Bl +or + Bl

The following examples illustrate how the propeniegbsolute value can be used.

2.2.6 Examples €)) Determine the sétof x 7 & such that [+ 3| < 7.

From a modification of 2.2.2(c)for thecase of stiitequality,we see that /7 A
ifand only if — 7 €x + 3 < 7, which is satisfied if and only if — 10 x2 4. Dividing by 2,
we conclude thah = {x [J K -5 <« <2).
(b) Determine the s& := {x [J K |x- 1|]Qx\} .

One method is to consider cases so that the absadlite symbols can be removed.
Here we take the cases

()x=>1, (ij0<x<1 (iii) x <0

(Why did we choose these three cases?) In catiee(ipequality becomes -1 <x, which is
satisfied without further restnction. Therefore xalbuch thatx >1 belong to the sé&t. In
case(ii), the inequality becomes(x — 1) < x,which requires thak>% . Thus, this case
contributes ai such that 2 x<1 to the seB. In case (iii), the inequality becomes —x (.
— 1) <x, which is equivalent to 1 < 0. Since this statemsiialse, no value offrom case
(iif)satisfies the inequality. Forming the union thie three cases, we conclude tBat {

x OR.x >'1,}.

There is a second method of determining theBdesed on the fact that< b if and
only if a’< b®when botha > 0 andb > 0. (See 2.1.13(a).) Thus, the inequalityl] <x| is
equivalent to theinequalityL|f<\x\2.Since &= a*or anya by 2.2.2(b), we can expand the
square to obtairf — 2x +1 <&, which simplifies tox >%4 Thus, we again find that
B={x0OR: > 1/ 2} This method of squaring can sometimes be useditardage, but
often a case analysis cannot be avoided when deaiih absolute values.

(c) Let the functiorf be defined by(x) := (2>¢ + 3x + I)/(2x - 1) for 2<x <3.
Find a constantl such thatfl(x)| <M for all x satisfying 2<x < 3. We consider separately the

numerator and denominator of
FOII = 12¢ + 3 + 1
|2 -1

From the Triangle Inequality, we obtain
|2¢ + X+ 1|< 2kP + 3K + 1< 2.3 +3.3+1=28

since ¥| < 3 for thex under consideration. Also 2 1p2\x\ -1> 2.2-1=3

since X|< 2 for thex under consideration. Thug)2x- 1|< 1/3 forx=> 2. (Why?)

Therefore, for 2Zx< 3 we havef|x)| < 28/3. Hence we can také = 28/3. (Notethat we have
found one such constakt; evidently any numbeH > 28/3 will also satisfyfl(x)| < H.lt is
also possible that 28/3 is not the smallest passibbice foM.) m]

4.0 CONCLUSION

The Real Line

A convenient and familiar geometric interpretatioh thereal number system is the real
line.In this interpretation, the absolute vahaé of an element in X _is regarded as the
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distance froma to the origin 0. More generally, thiistancebetween elementsandb in Kis
|a-b\.(See Figure 2.2.1.)
We will later need precise language to discussntiteon of one real number being
"close to" another. i is a given real number, then sayingthat a real euhb "close to'ashould
mean that the distange - a | between them is "small". A context in which tidsa can be
discussed is provided by the terminology of neighbods, which we now define.
4 -3 -2 -1 0 1 2 3 4

| | | | | | | | | Yy,
>

[e—I(-2)-(-3) = 5 —

Figure 2.2.1 The distance betweer~ -2 andb = 3

2.2.7Definition Leta/7 K_ande> 0. Then the- neighborhoodof a s the set V{) : =
{x aJ R|x—al<e} .

ForaJ K_, the statement thabelongs td/( &)is equivalent to either of the statements (see

Figure 2.2.2)
—e<X—a<c©e a<£<Xx<a+te.

{ o )
\ e T

a—-¢& a a<

Figure 2.2.2 An e-neighborhood o&

v

5.0 SUMMARY
2.2.8 Theorem Leta/ZR_. Ifx belongs to the neighborhoqd V (a) for every,
thenx =a.

Proof. If a particularx satisfiegx — a|<efor everye> 0, then it follows from 2.1.9
that|x — a\ =0, and hence = a. Q.E.D.

2.2.9 Examples (@) LetU :={x : 0< x <1). If a/7 U, then letebe the smaller of the two
numbersa and 1— a.Then it is an exercise to show th&f) is contained irlJ. Thus each
element oU has some-neighborhood of it contained .

(b) If I := {x : 0 < x <1), then for any> 0, thee-neighborhood/(0) of O contains points not
in I, and so(0) is not contained in 1. For example, the numiere/ 2 is in V(0) but not in 1.

(©) If |[x — a\ <andly — b\ <, then the Triangle Inequality implies that

X+y)- (@ +Db)[=[(x-4 + (y -b)|
<|x—af ly-b|<2e.

Thusif.x,ybelongtothe-neighborhoodsfa,brespectively, thextybelongstthe
2 e-neighborhoodd+b(but notnecessarilytotieneighborhoodfa+b). 0

6.0 TUTOR MARKED ASSIGNMENT
Exercises fotunit2.2

1 If a, b JR_ andb 20, show that:
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(@) Bl =va% (b) \a/b\=\a\/\b\.
If a, b ZIR, show thata + b\ =\a\ + \b\if and only ifab >0,
Ifx, y, ZJR_ andx< z, showthak <y <zif and onlyif k-y| + [y —2\= k — z|.
Interpret this geometrically,
4, Show thay— a\ <eif and only ifa— e<x < a+¢.
If a<x<b anda<y<b, show thaty — y\ < b — a,Interpret this geometrically.
6. Find alk ZZR  that satisfy the following inequalities:
(@)  |4&-5|< 13, (b) F-1]<3.
Find alka R _ thatsatisfythe equatiort 1| +\x —2| = 7.
Find alk IR _thatsatisfythe following inequalities.
@ WX-1\>Wx+1\ (b) W\ +\x+1]<2.
9. Sketch the graph of the equation \x| — \x —1].
10. FindalkZIR that satisfy the inequality 4 x + 2k + [x - 1| < 5.
11. Findalk ZIR_ that satisfyboth2x— 3| < 5 andx + 1|> 2 simultaneously.

o

12.  Determine and sketch the set of péiry)in &_ x K that satisfy:
@ K=l (b)  W\+iy\=1,
() \xy\=2. d)  Kkl-W=2

13. Determine and sketchtheset of pairy)in &_ x &_ that satisfy:
@ Kl <yl ®  H+M=1
© k=2 @  k-yl=2

14. Lete> 0 ands> 0, andaliR, Show that/(@)nV(a)Sand\/ (@uVv (agare
y-neighborhoods o for appropriate values ¢f

15.  Show that iy, b R, anda # b, then there existneighborhoodd) of aandV of bsuch
thatU nV = @.

16.  Show that if &)X then
@) max{a.bF %2 @+ b +|a- b\)and minfa, b} =% (a + b -\a-b\).
(b) min{a,b, c} =min{min{ab},c).

17. Show that i&, b, 7R, then the "middle number" mid{b, c} = min{max(a, b},
max(@, c:}. max{c,a)}.

7.0 REFERENCES

Unit3 TheCompletenessProperty oR.

1.0 INTRODUCTION

Thusfar,wehawiscussethealgebraicpropertiesandtheorderpropertiescétie
numbersystem nthissectionweshallpresentonemorepropeitbhtisoftercalled
the’CompletenedBroperty"ThesystemZofrationalnumbersalsohasthealgebraicaddrpro

perties  describedintheprecedingsections,butwehamesethat’2cannobe  represented
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asarationalnumber; thereforg2doesnot belongt®.This observation showsthenecessity
ofanadditionalpropertyttharacterizéherealnumber  system. Thisadditional property,
theCompleteness (ortBepremumiProperty, isanessentmbperty of&and wewillsay

thatRisacomplete ordered fieldis thisspecial property that permits

ustodefineanddevelopthevariouslimiting procedurethatwillbediscussed in
thechaptersthédllow.
Thereareseveraldifferent waystodescrib€bmpletenesoperty.Wechoose

givewhatisprobably themostefficientapproachby assgthateachnonempbpundedsubset
ofRhasaupremum.

2.0 OBJECTIVES

At the end of the unit, readers should be able to

Q) the theory of “Completeness”, properties toeddgpic and order properties I&f
(i)  discuss the theory of limits and continuity.

3.0 MAIN CONTENT
Supremaandinfima

Wenowntroducehenotionsofupperboundandlowerbound forasetafgabers.
Theseideaswillbeofutmostimportanceinlatctions.

2.3.1 Definition  LetSbeanonemptysubset&f

(@) TheseSssaidtobeoundedabovéfthereexistsanumber eRsuchthat
s<uforallseS Eachsuchnumbeiscalledampperbound ofS.

(b)  ThesetSssaidtobeoundedbelowfthereexistsanumbes € Asuchthat
w < sforallseS.Eachsuchnumbeiiscalledégowerbound ofS.

(c) Asetissaid todmunded  ifitisbothboundedaboveandbounded below.Aset
saidtob@inboundedfitisnotbounded.

Forexample, thesBt={xeR.. x<2}isbounded above; thenumber2andany
numberlarger than2isanupperboundofS.Thissethaseolow bounds, sothattbet
isnotboundedbelow.Thusitisunbounded(eventhougloitisbedbove).

If asethasone upperbound, thenithasinfinitelymamyen bounds,because
ifusan  upperbound  8fthen  thenumbers u+lu+2,--arealso upper bounds
ofS.(Asimilarobservation isvalidforlow&ounds.)

Inthesetofupper boundssandhesetoflower bounds  8fvesingleouheir
leastandgreatestelementsgespectively,forspecial attention inthefollowinglefinition.
(SeeFigurg.3.1.)

sup §

‘ :
e A i
X

5 i N
lower bounds of § upper bounds of §
Figure 2.3.1 infS and suB
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2.3.2 Definition Let Sbe a nonempty subsetRf

(@) If Sis bounded above, then a numbéer said to be a supremum (deast upper bound of
Sif it satisfies the conditions:
(1) uis an upper bound & and
(2) if vis any upper bound & thenu < v.

(b) IfSis bounded below, then a numlags said to be amfimum (or a greatest lower
bound) ofSif ii satisfies the conditions:
(1)  wisalower bound db,and
(2)  if tis any lower bound db, thent < w.

ltisnotdifficulttosee  thaherecanbeonlyonesupremum  ofagivensubsgIbfen
wecan refer tthesupremurnfaset insteadfasupremumborsupposethat ujand

urarebothsupremaf S. Ifu; <up,then théypothesithat u, isssupremum implies that

uicannot be an upper bound & similarly, we see thati,<u; is nopossible.
Therefore, we must hawg = u,. A similar argument can be given to show thatitifienum
of a set is uniquely determined.

If the supremum or the infimum of a seéxists, we will denote them by

supS and in&.

We also observe that ifis an arbitrary upper bound of a nonempty Sghen supS <u’.
This is because suipis the least of the upper boundsSof
First of all, it needs to be emphasized that ireofdr a nonempty s&in X to have a
supremum, it must have an upper bound. Thus, netyesubset ofR_has a supremum;
similarly, not every subset & has an infimum. Indeed, there are four possieditior a
nonempty subses of X; it can
(1) have botha supremum and an infimum,
(it) have a supremum but no infimum,
(iii)  have a infimum but no supremum,
(iv)  have neithera supremum nor an infimum.
We also wish to stress thatin order to show tiesup S for some nonempty subs&tdf
K. we need to show thabth (1) and (2) of Definition 2.3.2(a) hold. It willbestructive to
reformulate these statements. First the readerldlsme that the following two statements
about a numbar and a sef are equivalent:
(1) uis an upper bound @&,
(1) s<uforallsesS.

Also, the following statements about an upper bawgic seGare equivalent:

(2) ifvisanyupperbound &theru:<v,

(2)  ifz<uthen zisnotanupper bound3f

(2") ifz<uthen thereexists,eSsuch thar<s,,

(2™) ife=0,thenthere existseSsuch thati—e<s.
Thereforewecanstate twalternateformulatiorisrthe supreme.
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2.3.3 Lemma Anumbeuisthesupremurnfanonemptgubse®ofRifandonlyif
usatisfietheconditiors:

Q) s< uforallseS,

(2) ifv<u,thenthereexist®Ssuchthat«ks'.

Weleave ittotheeadetowrite outth@etailofthegproof.

2.3.4 Lemma .
Anupperbound uaﬁonemptysetSlihistshesupremumoi‘lﬁndonlyisfforever)e>Other@x
istsangSsuchthaty-e<s .

Proof. Ifuisanupperbound&hatsatisfiesthestatednditiorandifv <u,therwe put e:=u—v.
Then &> 0, sothereexisteSsuchthat = u - e<s _ Thereforey
isnotanupperbound&andweconclude that= sufs.

Conversely, suppose thessupsandets>0.Since u—e<<utheru—
eisnotanupperbound &ThereforesomeelementofSmustbegreaterthar-¢;thais,u - e<s
(See Figure 2.3.2.) Q.E.D.

Figure2.3.2 u=sus

Itisimportantorealizethatthesupremum ofasetmay ormaynotblesnent
ofthesetSometimesisandsometimes itisnot,dependingorgheticulaset. We consider
afewexamples.

2.3.%=xamples (@) If anonempty seEBasafinitenumber elementghenitcan
beshown that Bas alargest elementwandaleastelementw.Then u :supsland

w=infS;andtheyarebothmembers8f(ThisiscleariShasonlyonelement,aniécanbeprovedb
yinduction onthenumberofelementﬁnseeExercis%1and2.)

(b) Theseb, = {x0 <x <liclearly haslforanupper bound:Weprove thatl
itssupremurasfollowslfv<|,thereexistsaalemem'eszsuchthat<s‘.(Name)nesuchele
ments'.)’hereforevisnotanupperboundSzfandsincev isararbitrary numbew<1,weconclude
thatsuﬁsz:l.ltissimiIarIyshownthatinf?-O.Notahat

boththesupremurandtheinfimumad$, arecontained i1%,..
(c) The setS;: ={x:0<x<1}clearly has 1for an upper boundsing thesameargument
asgivenin(b), weseethatéiép:l.Inthiscase,the%doesnotcontain

itssupremum.Similarlyme3 =0isnotcontained %

40 CONCLUSION

The CompletenessPropertgf K_
It isnotpossibletoprove onthebasisofthefieldandorgeopertiesf R that werediscussed
inUnit 2.1 thateverynonempty subset 8fthat isbounded above has supremunn
R However,itisadeepamadndamentgiropertyoftherealnumbersystem that thisisindeed
thecase. Wewill makefrequentand essential use softlproperty, especially
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inourdiscussionflimitingprocesses.Thefollowirgjatementconcerningthe
existence.ofsuprema isourfinalassumption abo®Thus,wesaythat R isacomplete
orderedield.

50 SUMMARY
2.3.6 TheCompletenessPropertgf&_ Everynonemptgetofeahumbershathas

anupperboundalsohasupremumitR

Thisproperty isalsocalled tBaipremum Property of.The analogousproperty
forinfimacanbededuced fromtBempletenesxoperty asfollowSupposthaiSs
anonempty subset di thatisboundedbelow.ThenthenonemptySset{ - ss1S} isbounded
above, andtffeupremurfroperty implies that=supSexists in K.The readershould
verifyindetailthat uistheinfimumot.

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Unit 2.3

1. LetS = (x OK_: x=0). Show in detail that the sBthas lower bounds, but no upper
bounds. Show that ir§; = 0.

2. LetS={x OR: x >0}. DoesShave lower bounds? Do&shave upper bounds? Does
inf S exist? Does suexist? Prove your statements.

3. LetS = {1/n: nOA). Show that suf - 1 and infs> 0. (Itwill follow from the
Archimedean Property in Unit 2.4 that B&f=0.)
LetS, := (1 -(-1)/n:n OAF. Find inf §; and sus;.
LetSbe a nonempty subsetkfthat is bounded below. Prove that &¢ —sup
(-s:41S}.

6. If a setSc R contains one of its upper bounds, show that tippeubound is the
supremum of.

7. Let SORX be nonempty. Show thaflR is an upper bound &if and only if the
conditionstCR andt >u imply thatt 0 S,

8. LetSOR be nonempty. Show thatuf= supS, then for every numberJsithe
numberu —1 /nis not an upper bound & but the numbeu + 1/nis an upper
bound ofS. (The converse is also true; see Exercise 2.4.3.)

9. Show that ifA andB are bounded subsets &f thenAUB is a bounded set. Show that
supAuB) —sup{supA, supB}.

10. LetSbe a bounded setif and letS, be a nonempty subset®fShow that inf
S<infS<supS< supS.

11.  LetSJR and suppose that := supSbelongs t&'. If udS, show that sulJ|u|)=
Supfs*, u}.
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12. Show that a nonempty finite S&flk contains its supremum. [Hint:Use Mathematical
Induction and the preceding exercise.]

13. Show that the assertions (1) and (1") befonenha 2.3.3 are equivalent.

14. Show that the assertions'(2), (2", (2"), &1 before Lemma 2.3.3 are equivalent.

15. Write out the details of the proof of Lemma2.3

7.0 REFERENCES/TEXTBOOK

Unit4 Applications of the Supremum Property

1.0 INTRODUCTION

We will now discuss how to work with suprema anfima. We willalso give some very
important applications of these concepts to detimelamental properties &. We begin with
examples that illustrate useful techniques in apglyhe ideas of supremum and infimum.

2.0 OBJECTIVES

At the end of the unit, readers should be able to

0] apply the concept of “Completeness” propert@slerive several fundamental results
concerningk_

(in) understand the conception of Archimedean Rtgpée existence of square root and the
density of rational numbers i

3.0 MAIN CONTENT

2.4.1 Example(a) It is an important fact that taking suprema iaficha of sets is compatible with
the algebraic properties Bf. As an example, we present here the compatibilitpking suprema
and addition.

Let Sbe a nonempty subset kfthat is bounded above, and déebe any number iR. Define
the sela + S:=(a +s: s //S}.We will prove that

sup@t+S) = a +supsS.

If we letu := supS,thenx < ufor all x IS so that + x<a + u. Thereforea + uis
an upper bound for the set+ S; consequently, we have sapS)< a + u.

Now if uisanyupper bound of the sat+ S thena + x < vfor all x S,
Consequentlx <v— afor all x [0S, so thatv — ais an upper bound &. Thereforeu = sup
S< v — awhich gives us +u <v . Sincev is any upper bound @ + S,we can replace by
sup@t S to geta + u<sup@ +S).

Combining these inequalities,we conclude that

sup@+S)=a+u=a+supS

For similar relationships between the suprema aniina of sets and the operations of
addition and multiplication, see the exercises.

(b) If the suprema or infima of two sets are inealy it is often necessary to establish
results in two stages, working with one set atreetiHere is an example,
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Suppose thah andB are nonempty subsetsbfthat satisfy the property:
a<b foralla/7/Aand alb [/B.

We will prove that
SUpA <infB.

For, giverb [B,we havea< bfor allalJA.

-Thismeansthdtis an upper bound &, sothatsup < b.Next, sincethe lastinequalityholds for all
b /7B ,we see that the numbersupA is a lower bound fadti Therefore, we conclude that séip
<infB. v

Functions

The idea of upper bound and lower bound is apgbedinctions by considering the range of
a function. Given a functioffi : D - XK, we say thafis bounded aboveif the setf(D) =
{f(x) : x OD) is bounded above i&; that is, there exist8 OR such that/(;ck B for all x 7
D. Similarly, the function / i®ounded belowif the setf (D ) is bounded below. We say thfat
is boundedif it is bounded above and below; this is equivakensaying that there exisB
OR such thatf(x)| <B for all x Z7D.

The following example illustrateshow to work withpsema and infima of functions.

2.4.2Example Suppose that / arglare real-valued functions with common domain D
OR. We assume thgandg are bounded,
(@) Iff (x ) <g (x)for allx(D, then sugf(D) < sup gD),which is sometimes written:

Supf(x) <supg (D)
xOD xOD

We first note thaf(x) < g(x)<supg(D),which implies that the number sg{D) is an
upper bound fgtD). Therefore, suf(D) <supg(D).
(b) We note that the hypothebisx ) <g (x)for allx 27D in part (a) does not imply any relation
between suf{D) and infg (D),

For example, if(x) := x?andg (x) := xwith D ={x : 0 <x <1}, thenf(x) <g (x )for
all x{OD. However, we see that 5ufD) = landinfg(D) = 0. Since sug(D) = 1, the conclusion of (a)
holds.
(©) If f(A)<g(y) for allx, y//D, then we may conclude that sfi®)<infg(D),
which we may write as:

supf (x)=mf g(y).
XD yLD

(Note that the functions in (b) do not satisfythygothesis.)
The proof proceeds in two stages as in Exampld @3. The reader should write
outthedetailsof the argument,

Further relationships between suprema and infinfarwdtions are given in the
exercises.
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The Archimedean Property.

Because of your familiarity with the s& and the customary picture of the real line, it may
seem obvious that the set N of natural numbeniounded ink, How can we prove this

"obvious" fact? In fact, we cannot do so by usingythe Algebraic and Order Properties
given in Unit2.1. Indeed, we must use the CompkgenProperty ofR_as well as the

Inductive Property oN(that is, ifn/Z¥, thenn + 1 OA").
The absence of upper bounds f#imeans that given any real numbehere exists a
naturalnumben (depending ox) such that < n.

2.4.3 Archimedean Property If x OR, then there exists@@Such that xn,

Proof. If the assertion is false, ther<x for all n Os¥; thereforex is an upper bound ef.
Therefore, by the Completeness Property, the notyesepst has a supremun
OR.Subtracting 1 fronu gives a numben — 1 which is smaller than the supremurof
Thereforeu —1 is not an upper bound of;, so there exists /z#vith u —1 < m. Adding
1 givesu <m +1, and sincen + 1 /7. 9, this inequality contradicts the fact theis an
upper bound af¥; QELD.

2.4.4 Corollary If S:={1/n:n0OxA}. theninf S= 0.

Proof. SinceS# 0 is bounded below by 0, it has an infimum andete:= inf S.It is clear
thatw > 0. For any> 0, the Archimedean Property implies that thetistexJ#Suchthat 1<

n, which implies I/ n <e. Therefore we have
O0<w<l/n<e.

But sinces>0 is arbitrary, it follows from Theorem 2.1.9 that= 0. Q.E.D.

2.4.5 Corollary Ift >0, thereexists WA suchthat 0 /n<t.

Proof. Since inf{l/n : n /ZAf = 0 andt >0, thent is not a lower bound for the set
{I /n:n/N}. Thus there existgJs¥'such that 0 <I/pxt. Q.E.D.

2.4.6 Corollary If y >0, thereexists gls¥such thany, —1<y<n,

Proof. The Archimedean Property ensures that the siyset(m £V y < m} of SAis not
empty. By the Well-Ordering Property 1.2E}has a leastelement, which we denoteyrhen
n,— 1 does not belong t§, and hence we havg—1 <y <n,. Q.ED.

Collectively, the Corollaries 2.4.4-2.4.6 are sames referred to as the Archimedean
Property ofR.

The Existence of/2

The importance of the Supremum Property lies irfdlethat it guarantees the existence of real
numbers under certain hypotheses. We shall makefugein this way many times. At the
moment, we shall illustrate this useby proving thastence of a positive real number
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suchthatx’= 2; that is, the positive square root of 2. It vem®wn earlier (see Theorem
2,1.4)that such ancannot be a rational number; thus, we will be deg\he existence of at
leastone irrational number.

2.4.7 Theorem Thereexists a positive real number x such tHat 2.

Proof. Let S:= {sR; 0 < s, €<2}. Since 10S, the set is not empty. Als& is bounded
above by 2, because tif>2, thent>> 4 so thatt /7 S. Therefore the Supremum Property
implies that the seéhas a supremum, and we lek := supS. Note thatx > 1.
We willprove thaté = 2by ruling out the other two possibilitie€< 2 and®> 2.
Firstassume thaf<2. We will show that thisassumption contradictsfew that
x =sup S by findingann O such thatx + 1/n0S, thus implying thatx is not an upper
boundfoS To see how to choosenote that 1°<1/nso that

2
[x+; ]: B 21+ 1 (X + 1)
n n An
Hence if we can chooseso that

1(2x+1)<2 ¢

n

thenwe gefx + 1/n)?< x* + (2 — %) = 2. By assumption we have 2> 0, so that
(2 —x?)/(2x+ 1) > 0. Hence the Archimedean Property (Corollay5} can be used to
obtaim Oesuch that
12:x°
n 2x+1
These steps can be reversed to show that for lluEe ofn we havex + |/n €S, which
contradicts the fact thas an upper bound &. Therefore we cannot hawé< 2.
Now assume tha®> 2. We will show that it is then possible to fimdes#8uch that
x —1l/mis also an upper bound 8fcontradicting the fact that—supS. To do this, note that

2
[X-l }%—&(+1>x2—2
m m Am

Hence if we can chooseso that

= < x2-2
m

then(x —I/m)?>x*— (xX* —2) = 2. Now by assumption we haxe—2 >0, so that
(x* - 2)/2x> 0. Hence, by the Archimedean Property, theret®risIs¥'such that
1x2-2
m2x—

These steps can be reversed to show that fohthiceaf m we havex(- 1/m)?> 2. Now if €S, then
s’< 2 < (x — I/m)?,whence it follows from 2.1.13(a) thei x — /m . This implies that
xx2 —I /mis an upper bound f& which contradicts the fact that= supS.Therefore we cannot have
> 2.
Sincethe possibilitieg’< 2 and x>> 2 have been excluded, we must h&ve 2.
QED.
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By slightly modifying the preceding argument, treader can show that & > 0,
then there is a unique> 0 such thab® = a. We callb the positive square rootof a and

denote it byb = va or b = a'’2. A slightly more complicated argument involving the
binomial theorem can be formulated to establishetkistence of a uniqugositive nth root

of a, denoted by/aor &'", for eachn [,

40 CONCLUSION
Remark If in the proof of Theorem 2.4.7 we replace the Séiy the set of rational

numbersT = {r Q0 <, r’<2}, the argument then gives the conclusion that sup

T satisfiesy’= 2. Since we have seen in Theorem 2.1.4thennot be a rational number, it
follows that the seT that consists of rational numbers does not hawgeesum belonging to
the setq, Thus the ordered fieldg of rational numbers doe®t possess the Completeness
Property.

Density of Rational Numbers in&®_

We now know that there exists at least one irratioeal number, namelya2. Actually there
are "more" irrational numbers than rational numberghe sense that the set of rational
numbers is countable (as shown in Section 1.3)ewie set of irrational numbers is uncountable
(see Unit 2.5). However, we next show that in spitthis apparent disparity, the set of rational
numbers is "dense" iR_in the sense that given any two real numbers ikeaegational number

between them (in fact, there are infinitely mangtstational numbers).

2.4.8 The Density Theoremlf x and y are any real numbers with x <y, thear&hexists a
rational numbemr G suchthatx<r<y.

Proof.It is no loss of generality (why?) to assume that0. Sincey - x> 0, itfollows from
Corollary 2.4.5 that there exigt§&lg¥'such that Xiky - x. Therefore,we havex + 1<ny.If we
apply Corollary 2.4.6 tox > 0, we obtairm 0¥ withm —1 <nx < m.Therefore,

m< nx + 1 <ny, whencenx < m < ny.Thus, the rationalnumber= m/n satisfiesx<r <.
QED.

50 SUMMARY
To round out the discussion of the interlacingadfanal and irrational numbers, we
have the same "betweenness property" for the satatibnal numbers.

2.4.9 Corollarylf x and yarereal numbers with xy, then there exists an irrational number z
such thatx< xvy.

Proof. If we apply the Density Theorem 2.4.8 to the reahbersx//2and yA/2, we obtain a
rational number#0 (why?) such that

Y <r<
V2 V2
Then z :x /2 is irrational (why?) and satisfies<z <. Q.ED.

6.0 TUTOR MARKED ASSIGNMENT
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Exercises for Unit 2.4
1. Show that sup(l-/An: n [7A) = 1.

2. If S:={1/n - 1/m:n:m/&x),find inf Sand sus.

3. LetS 0K _be nonempty. Prove that if a numien & _has the properties; (i) for every
nOe the numbewu —1/nis not an upper bound &, and (ii) for every number Os¥”
the numbeu — 1/n is an upper bound & thenu = supS (This is the converse of
Exercise 2.3.8.)

4, LetSbe a nonempty bounded set&n
@ Leta >0, and leaS:= (as:s[19). Prove that
inf (@S) = ainf § sup& =asupS
(b) Letb <0 and lebS = {bs:s/[5}.Prove that
inf (bS)=b supS, supbS =binfS

5. Let X bea nonempty set and I¢t X — & have bounded range i, If alJ&, show
that Example 2.4.1 (a) implies that
supfa + f(X):x0 X} = a + sup{f (x):xOX}
Show that we also have
inf{a + f(X):x0 X} = a +inf{ f(x):xOX}

6. LetA andB be bounded nonempty subsetsiyfand leA + B:={a + b: a /A, b
OB}.Prove that sup(A B) =supA + supB and inf(A +B)=infA +infB.
7 Let X be a nonempty set, and fetndg be defined orX and have bounded ranges in
K. Showthat
sup{f(x) + g(x):xX} <sup{f(x):x0OX} + sup{g(x) : x [7X)
and that
inf{ f(x): xCX} + inf{ g(x):xOX} < inf{ AX) + g(x): x 7 X}

Give examples to show that each of these inegsatiin be either equalities or strict inequalities.

8. LeX =Y := {x OR; 0 <x < 1}. Defineh: Xx Y- Rbyh(Xx, y) := X +Y.
(@) For eaclx O X, find f ( x ) := supf(x, y)y O Y}; then find inf (f(x): xO X}.
(b) For eaclyldY, find g (y ):= inf{ h(x, y): x OX};'thenfind sup{g(y):
y0Y).Compare with the result found in part (a).

0. Perform the computations in (a) and (b) of ttee@ding exercise for the function
h: XxY - Rdefined by

0 ifx <y,
h(x, y) := {1 if x>y,
10.  LetXandYbe nonempty sets and ket Xx Y — & have bounded range iR,
Letf : X - Randg : Y- X be defined by

f(x) :=supfh(x,y) : yY), g (y) :=inf(h(xy) : x OX}.
Prove that
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supg(y): yOY}I< inf{ f(x) : xIX}
We sometimesexpressthishyiting

aup infh(x, y)< inf suph(x, y)

y X Xy

Note thatExercises8and9showthattheinequalitymayith®re anequality omstrict
inequality.

11 LetXandvbenonemptysetsandtet XxY - K_ haveboundedrangefletF: X
~RandG:Y - Kbedefinedby

F(x) := sup{h(x,y): YZ7Y},  G(y):=supfh(x, y): x LJX}.
Establish thPrincipleofthelteratedSuprema:
supfh(x,y): xOX,yOY} = sup{F(x):xX}=sup{G(y): yIY}

Wesometimes expressthisinsymbolsby
suph(xy)=supum(xy)=supsuh(xy).
X,y Xy y X

12. Givenany 0K showthatthereexistsaiquerZsuchthat - 1 <x <n.

13.  Ify=>0,showthatthereexists]s¥ suchthat 1/X y.

14. ModifytheargumentinTheorem 274oshowthatthereexistsapositiverealnunybech
thatyz=3.

15. ModifytheargumentinTheorem 2.4.7toshowtlaatif>0,thenthereexistsapositieal
numberzsuchthat=a.
16. ModgifytheargumentinTheorem 2.4.7toshowthattbeitsapositiverealnumbesuch

thau =2.
17. CompletetheproofoftheDensityTheorem2.4.8byrangiieassumption thet-0.

18. Ifu>0isanyreal number andk<yshowthatthereexistsarational numbeuch thatx
<ru <y.(Hencethe sétu:r0-lisdenseink,)

7.0 REFERENCES

Unit5 Intervals

1.0 INTRODUCTION
TheOrderRelationafideterminesanaturalcollectionofsubsetscalledintstvehe

notationsangerminologyorthesespecialsetswillbefamiliar fromearliercosrke
a,bdRsatisfya<b thenth@peninterval determinedbyandistheset
(@, b):={xOR.a< x<Db}

Thepointsandarecalledthendpointoftheinterval;however,theendpointsarenot
includedinanopenintervafbothendpointsareadjoinedtothisopeninterval,thenwe
obtaintheclosaatervadeterminedbgando;namely,thset
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[a,b]:=(xOR:a< x <b}.

The twdialfopen (orhalfclosed intervalsdetermined lay ando are [a,b), which
includestheendpoiatand(ab],whichincludestheendpoibt

Eachofthesefourintervalsisboundedandhaslengthdédifie— a.If a = b, the
correspondingopenintervalistheemptysed) =@,whereasthecorrespondingclosed
intervalisthe singletondet,a] ={a}.

There are five types of unbounded intervals forctvithe symbolso (or+co) and —ooare
used as notational convenience in place of theaanidp Theinfinite open intervals are the sets
of the form

(a, ) = {xOR_: x> a} and (oo, b):={xJR_:x <b}.

The first set has no upper bounds and the secoedhas no lower bounds. Adjoining
endpoints gives us thefinite dosed intervals:

(a, ) = {x OR_: a<x} and (oo, b):={xJR_:x <b}.

It is often convenient to think of the entire $tas an infinite interval; in this case, we write (-
00,00) := R, No point is an endpoint ofof-,0).

Warning It must be emphasized thatand —eo arenotelements ofR, but only convenient
symbols.

2.0 OBJECTIVE

At the end of this Unit, readers should be able to

0] understand the “Nested Interval” property arnts uses in proving the
unaccountability ofR

(in) understand its relation to binary and decineglresentation of real numbers.

3.0 MAIN CONTENT
Characterization of Intervals

An obvious property of intervals is that if two pos$x,y with x <y belong to an intervhlthen any
point lyingbetween them also belongd t@hat is, ifx < t <y, then the point belongs to the
same interval asand y. In other words, Kandy belong to an intervdl thenthe intervelx, y]

is contained ih. We now show that a subsetRfpossessing this property must be an interval.

2.5.1 Characterization Theoremf S is a subset aRthatcontains at least two points and has the
property

(1) fx,yZ/S and x<y, therjx,y]cS,then Sis an interval.

Proof. There are four cases to considerS{i$ bounded, (ii¥ is bounded above but not

below, (iii)Sis bounded below but not above, and 8§ neither bounded above nor below.
Case (i): Letn := infSandb := sup 5. Then 5 fa, b] and we will show that

(a,b)ds.
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If a <z <b, then z is not a lower bound &f so there existallS with x < z. Also, z is
not an upper bound @& so there existg S with z <y. Thereforez [J[x, y], so property (1)
implies thatz[1S.Since z is an arbitrary element(af, b)wve conclude thé&, b)(0 S

Now if a0 Sandb 0S,thenS=[a,b], (Why?)Ifa //Sandb//S ,thenS =(a,b).The
other possibilities lead to eith8r= (a,b]or S=[a,b).

Case(ii): Leb := supS ThenS0O (- oo, b] and we will show that (-ee, b) OS For, ifz< b,
then there exisk,y /Ssuchthaz[ x,y] OS (Why?) Therefore ¢o, b) US.If bUS,thenS =
(-o0, b],and ifb /7S thenS= (-o0, b).

Cases (iii)and (iv) are left as exercises. Q.E.D.

Nested Intervals
We say that a sequence of interva)als¥; is nestedif the following chain of inclusions holds (see
Figure 2.5. 1):

10100 1,0 Tpeq -

p A =~
I3
e J,k‘_ N
5
[ [ I 1 1 1 1 1
[ [ L L ! 1 T J J 1
LTT_J
14
i\ A

Figure 2.5.1 Nested intervals

For example, ifl, ;= [0, 1/n] for n O ¢¥, thenl,Oln.for eachn O s77so that this
sequence of intervals is nested. In this case, eleenent 0 belongs to alland the
Archimedean Property 2.4.5 can be used to showGhatthe only such common point.
(Prove this.) We denote this by writifg-, 1n={0},

It is important to realize that, in general, a rdstequence of intervals nesot have
a common point. For example,Jf := (0, I/n) for n O ¢¥; then this sequence of intervalsis
nested, but there is no common point, since foryegrenx > 0, there exists (whyhd ¥
such that Irh<x so thatx /7 J,. Similarly, the sequence of intervafg :=(n, ), n O &, is
nested but has no common point. (Why?)

However, it is an important property & that every nested sequenceclosed, hounded
intervals does have a common point,as we willnoswer Notice that the completenessAf
plays an essential role in establishing thisprgpert

2.5.2 Nested Intervals Property Ifl=[an.bn], n 0N, is a nested sequence of closed
bounded intervals, then there exists a nungb&ksuch that1, for all nOA.

Proof. Since the intervals are nested, we hiaiZ&;for all nON, so thatw,< b;for all
nO9. Hence, the nonempty sfgtn: nOA) is bounded above, and we fbe its supremum.
Clearlya,< &for all nO.

We claimalso that <b.for all n. This is established by showing that for any paldr
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n, thenumberb is an upper bound for the sfa.k ONJ.We consider two cases, (i) If
n < k, then sincel,0 Iy, we havea< by < b, (i) If k < n, then sincelJl,, we have
a<a,<b,. (See Figure 2.5.2.) Thus, we conclude thatbgfor all k, so thatb is an
upper bound of the sefax.k OwAf. Hence, &< byfor each nOw. Since a,<é<b,for

all n, we havet I, for all nNOA. Q.E.D.
e
! 1 |
a a, b, by

Figure 2.5.2 Ifk<n,then 1,0 I

253 Theorem If I, : =[an,b,], n/EX, is anested sequence ofclosed, bounded intervals saicheh
lengthdd, — & of |, satisfy

inf{ by,-a,:nOAF =0,
then the numbef contained inJ for all n J¢¥is unique.

Proof. If m=inf{b,: n Owj,then an argument similar to the proof of 2.5.2 d¢&® used
to show thata,<gfor all n, and hence thaf<n.In fact, it is an exercise (see Exercise
10) to show thak. Olfor all nO if and only if E<x <. If we have infb,— & : n O
A) = 0, then for anye>0, there exists arm O such thad <7 - &£ by — a<e.
Since thisholds for adb 0O, it follows from Theorem 2.1.9 thap - = 0. Therefore, we
conclude thak = ris the only point that belongs lidor every nCIv, QE.D.

The Uncountability of K-

The concept of a countable set was discussed inIiand the countability of the s& of
rational numbers was established there. We willasgvthe Nested Interval Property to prove that
the setR _is anuncountableset. The proof was given by Georg Cantor in 1874hénfirst of

his papers on infinite sets. He later publishedafpthat used decimal representations of real
numbers, and that proof willbe given later in gestion.

2.5.4 TheorenThe set£of real numbers isnot countable.

Proof. We will prove that the unitintervdl := [0, 1] is an uncountable set. This implies that
theset& is an uncountable set, forK were countable, then the subset / would also etable,
(See Theorem 1.3.9(a).)

The proof is by contradiction.If we assume thiatcountable, then we can enumerate the
set ad = {xq, X2,"**, Xn -} . We first select a closedsubinteriglof | such thak;[1l;,. then select
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a closed subinterva} of I; such that,[ll,, and so on. In this waywe obtain nonempty closed
intervals

11Olp0---0 1p---

such that Ol andx,.1,for all n. The Nested Intervals Property 2.5.2 implies tiext exists
a point €01 such that E0I.for all n. Therefore &z x.for alt n /A4, so the

enumeration ofl is not a complete listing of the elementslpfs claimed. Hencd, is an
uncountable set. QED.

The fact that the se of real numbers is uncountable can be combinedthwtHact that the set
7g_of rational numbers is countable to conclude that set\"g_of irrational numbers is
uncountable. Indeed, since the union of two couetséts is countable (see 1.3.7(c))RIf &

is countable, then sincB= QU (R} K), we conclude thag is also a countable set, which is a
contradiction. Therefore, the set of irrational temsA\ g is an uncountable set,

Binary Representations

We will digress briefly to discuss informally thénéry (and decimal) representations of real
numbers. It will suffice to consider real numbegsaAeen 0 and 1, since the representations for other
real numbers can then be obtained by adding aeositnegative number.

The remainder of this section can be omitted astaréading.

If x O[O, 1], we willuse a repeated bisectionprocedurassnciate a sequen@g) of Os and 1s
as follows. Ifx# ¥ belongs to the left subinterval fBywe takeas := 0, while ifx belongs to
the right subinterval'l,, ] we takea,= 1. If x = % , then we may take a, to be either 0 or 1. In
any case, we have

a atl

We now bisect the intervaffas, /o(a:+ 1)}. If x is not the bisection point and belongs to
the left subinterval we tak& := 0, and ifx belongs to the right subinterval we take=1 .
If x =Y orx =%, we can takey, to be either 0 or 1 . In any case, we have

ai a1 al+1

a;
2 tF s gy

We continue thisbisection procedure, assigninpetnth stage the valag:= 0 if X is not the
bisectionpoint and lies in the left subintervaldassigning the valua, := 1if x. lies in the
right subinterval. In thisway we obtain a sequefageof 0s or 1s that correspond to a nested
sequence of intervals containing the pairftor eacn, we have the inequality

(2) a1 a an & & a,+1
PR SR = il SR S

If x is the bisection point at the nthstage, thenm/Zwith modd. In this case, we may choose either
the left or the right subinterval, however, onée sabinterval is chosen, then allsubsequent st
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in the bisection procedure are determined. [Ftares, if we choose the left subinterval so ghat
0, thenx s the right endpoint of all subsequent subintsnaaid henca=1 for all
k>n+ 1. On the other hand, if we choose the righinsetval so thate, = I, thenx is the left
endpoint of all subsequent subintervals, and hagc® for allk >n + 1 . For example, K= %,
then the two possible sequencesdae 1,0,1,1, 1;-and 1, 1,0,0,0,-]

To summarizelf x O [0, 1], then there exists a sequencg] (@f 0Osand 1ssuch that
inequality(2) holds for all nOJ$4” In this case we write

(3) X:(-alaZ"'an"')Z

andcall (3) ainary representation of x. This representation is unique except when
x = m/Z'for modd, in which casg has the two representations

X = (alazanllooo )2: (alaza]lolll )2

one endingin Os and theother ending in 1s.

Conversely, each sequence of Os and 1s is theybmearesentation of a unique real
number in[0, 1]. The inequality corresponding to (2) detares a closed interval with
length1/2 and the sequence of these intervals is nestedefohne, Theorem 2.5.3 implies
thatthereexists a unique real numiesatisfying (2) for evenyn 0¥, Consequentlyx has
thebinary representatioayéy &y -+ )2

40 CONCLUSION

Remark The concept of binary representation is extremelportant in this era of
digital computers. A number is entered in a digitainputer on "bits", and each bit can be put
in one of two states—either it will pass currenitowill not. These two states correspond to
the values 1 and 0, respectively. Thus, the birgpyesentation of a number can be stored in a
digital computer on a string of bits. Of course arctual practice, since only finitely many
bits can be stored, the binary representations beistuncated. Ih binary digitsare used for

a numberx [0, 1], then the accuracy is at most"1/Bor example, to assure four-decimal
accuracy, it is necessary to use at least 15 bihgrs(or 15 bits).

Decimal Representations

Decimal representations of real numbers are sinildsinary representations, except that we
subdivideintervals intienequal subintervals instead of two.

Thus, givenx [0, 1], if we subdivide [0, 1] into ten equal sufirvals, therx belongs to a
subinterval p1,/10(b,+ 1)/10] for some integdp, in (0, 1,---. 9}. Proceeding as in thebinary
case, we obtain a sequeifflog of integers with 6<b,<9 for alln O¢¥such thax satisfies

() by . b, by by . by b+ 1
To* B ttY 10 10t 16 tvt T19

In thiscase we say thahas adecimal representationgiven by
X = blbzbn

If x> 1 and ifB OW'is such thaB < x < B + 1, thenx =B.b;b,---b,--where the decimal
representation of — B[O, 1] is as above. Negative numbers are treateithdly.
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The fact that each decimal determines a unique meatber follows from Theorem
2.5.3, since each decimal specifies a nested sego¢imtervals with lengths 1/1.0

The decimal representation ®f(J[0, 1] is unique except when X is a subdivision
pointat some stage,which can be seen to occur whan'10' for somem, nOwW, 1 <m <10".
(We may also assume thattis not divisible by 10.) Whem is a subdivision pointat the
«thstage, one choice forb,corresponds to selecting the left subinterval, whic
causesallsubsequent digitsto be 9, and the othmcecltorresponds to selectingthe right
subinterval, which causes all subsequent digitset®. [For example, & = %2 thenx = .4999
---=.5000:--+, and ify = 38/100 thery = .37999---= .38000--.]

Periodic Decimals

A decimalB.hib, by is said to b@eriodic (or to berepeating), if there exisk, ns#8uch thaly=
bnfor all n =k. In this case, the block of digitby---bk+m-1iS repeated once thehdigitis
reached. The smallest numbarwith this property is called theperiod of the deaimFor
example, 19/88 = .215909090 ---has periodn = 2with repeating block 90 starting lat= 4.
A terminating decimal is a periodic decimal whére tepeated block is simply the digit O.

We will give an informal proof of the assertion:p@sitive real number is rational if
and only if its decimal representation is periodic.

For, suppose that = p/q where p,qU% have no common integer factors. For
convenience we will also suppose that@<q. We note that the process of "long division"
of g into p gives the decimal representationpdf|. Each step in the division process produces
a remainder that is an integer from Qgte—1. Therefore, after at mogtsteps, some remainder
will occur a second time and, at that point, thgitdin the quotient will begin to repeat
themselves in cycles. Hence, the decimal representaf such a rational number is periodic.

Conversely, if a decimal is periodic, then it représ a rational number. The idea of the
proof is best illustrated by an example. Supposiextk7.31414--- 14 --- We multiply by a power
of 10 to move the decimal point to the first repaatblock; here obtaining ¥0= 73,1414
---.We now multiply by a power of 10 to move one blackhe left of the decimal point; here
getting 100&@ = 7314.1414--. We now subtract to obtain aninteger; here gettd@0¢ 1k =
7314 - 73 = 7241, whence 7241/990, a rational number.

5.0 SUMMARY
Cantor's Second Proof

We will now give Cantor's second proof of the unuability of K, This is the elegant
"diagonal” argument based on decimal representatibreal numbers.

2.5.5 Theorem The unit interva[0, 1] :={x OX_: 0<x <1} is not countable.
Proof. The proof is by contradiction. We willusethe fawat every real numbed] [0, 1] has
a decimal representation = 0.b;b,bs:--, whereb; = 0, 1 ---, 9. Suppose that there is an
enumeratiorxy, Xz, %z -+ of all numbers in [0, 1], which we display as:
X1 = 0b11b12b13"' bln"',
X2 = 0b21b22b23"' b2n"',
X3 = 0131035033+ b+,

Xn = 0bn1bnzlnz - e+
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We now define a real numbgr:=0.y1yoy3-- Yno---by settingy::=2 if by;>5andy;..= 7 if
b11, < 4; in general, we let

__{ 2 ifbpn=>5
W=7 if bui<4
ThenyO [0, 1]. Note that the number y is not equal to ahyhe numbers with twodecimal
representations, sincg,z0, 9 for alln O Further, sincg andxydiffer inthe nth decimal

place, thery # x,for anyn O¢¥. Thereforey is not included in theenumeration of
[0, 1], contradicting the hypothesis. Q.E.D.

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Unit 2.5

1. If | :=[a,b)andl’ :=[a’,b'} are. closed intervals ik, show thatOI' if and only if
a<aandb<b,

2. If SOR_is nonempty, show tha is bounded if and only if there exists a closed
bounded interval such thaS [l.

3. If SOK is a nonempty bounded set, daé [infS,supS],show thatSls. Moreover,
if Jis any closed bounded interval contain®ghow thats[1J.
4. In the proof of Case (ii) of Theorem 2.5.1, explwhyx, yexist inS.

5. Write out the details of the proof of case (iv)lineorem 2.5.1.

6. If 1,01,0---01,0---is a nested sequence of intervals anth i [an,bn], show that
A<@H< - < an< --andb=bo> - > by

7. Letl,:= [0, I/n] forn OA. Prove thafi;—; 1= (0).

8. LetJn:= (0, I/n) forn O Prove thaf;-; J~= 0.

9. LetK, := (n,0) for n O, Prove than;-, K= 0.

10. With the notation in the proofs of Theorents2and 2.5.3, show that we have
nON;~; InAlso show thatd, n]=Ny=; In

11 Show that the intervals obtained from the inktipgain (2) form a nested sequence.

12. Give the two binary representation§/gﬂnd7/16.

13. (a) Give the first four digits in the binanpresentation of’.
(b) Give the complete binary representatioff:of

14. Show that i& , b1 {0, 1,---, 9} and if

a & ey @ - b b B
Tot 1@ 7Y 10 T 1o ettt 1m0
then n @=manday, =b,fork =1 ,--- , n.

15 Find the decimal representation o —



16.

17.

7.0
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Expresd/; and%,sas periodic decimals.

Whatrationalsarerepresented  bytheperiodic@ésin25137---137 ---and 35. 14653

653--?
REFERENCES/BIBLIOGRAPHY

MODULE 3
SEQUENCES AND SERIES
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Now thatthefoundationsdhereal number systenk_have been laigve are prepareto
pursuequestion®f a more arlytic nature, and we willbegin with a study of th
convergence of sequences. Some of the early resays be familiar to the reader frc
calculus, but the presentation here is intendedetesigorous and will lead to certain m¢
profound theorems than are usually discussearlier courses.

We willfirst introduce the meaning theconvergence of a sequence of real num
and establishsome basic, Im#teful result@bout convergent sequences. We then prsome
deeper resultoncerning the convergence of sequences. Thesedéncthe Monoton
Convergence Theorem, the Bolz-Weierstrass Theorem, and the Cauchy Criterion
convergence of sequences. It is important for ¢élaeler to learn both the theorems and the
theoremsapply to special sequenc

Because of the linedimitations inherent in a book it is necessary to decide w
to locatethe subject of infinite series. It would be readdeao follow this chapter witla
fulldiscussionof infinite sees, butthiswould delay the important topics of continui
differentiation,andintegrationConsequently, we have decided to compromise. Af
introductiorto infinite series is given ilUnit 3.7 at the end of thiModule, and a more
extensivetreatment is givéter in Module 9. Thus readers who want a fullescussionof
series at thispointcan moveNtdule9 after completing this module.

UNIT 1
1.0 INTRODUCTION

Augustin-Louis Cauchy

Augustin-LouigCauchy (178-1857) was horn in Paris justafter the
startof the French Revolution. His father was a lawyethie Paris polic
department, and the family was forced to flee dutimg Reign of Terrot
As a result, Cauchy's early years were difficul ae developed stror
anti-revolutionary and prosyalisi feelings. After returning to Pans,
Caucly's father became secretary he newly-formed Senate,
which included the mathematicians Laplace and LeggaThey wert
impressed by younGauchy's mathematictaleniand helped him begin his cart
He enteredthe Ecole Polytechnique in 1805 and soon estal
exceptionalmathematician. 111815, the year royalty was restored, h
faculty of theEcolPolytechniquebuthisstrong politicaliews and
standards inmathematics ofterresultedin bad relationswith Hoslleac
revolution of 1830Cauchy refused to sign the nloyaltyoath and left Fri
self-imposed exileln 1838, he accerd a minor teaching posn Paris,
Il reinstated him tdnis former position at the Ecole Polytechnique, ne
death.

PR
A > = T M

Cauchy was amazingly versatile and prolific, makguipstantial contributions to ma
areas, includingeal and complex analysis, numberory, differential equations, mhematical
physicsand probability. He publisheeightoooks and 789 papers, and his collected work&8i

volumes,He was one of the most important mathematiciarthenfirst falf of the nineteent
century.

J T T

(i) establish some basic, hugeful, results about convergent seque

(i)  understand some deer results concerning the convergence of sequéheesem
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3.0 MAIN CONTENT

A sequence in a s&is a function whose domain is the $€bf natural numbers, and whose
range is contained in the s@tIn this chapter, we will he concerned with seqesninX_
and will discuss what we mean by the convergendkesfe sequences.

3.1.1 Definition A sequencef real numbers (or a sequence itR) is a function defined
on the set¥={1, 2, ---} of natural numbers whose range is containedersgtX of realnumbers.

In other words, a sequencedassigns to each natural number 1, 2,--- a uniquely

determined real number. X : ¥~ R _is a sequence, we will usually denote the valu¥ afn
by the symbok,rather than using the function notatirfn) . The valuesare also called the
terms or theelementsof the sequence. We will denote this sequence éydhations

X, (%), (% :nOXA}.

Of course, we willoften use other letters, suchf agyk),Z=(z.),and so on, to denote sequences.

We purposely use parentheses to emphasize thatrdeeing induced by the natural
order of ¥’is a matter of importance. Thus, we distinguistationally between the sequence
(Xn: n O, whose infinitely many terms have an orderingl tireset of value§x,: n O in
the range of the sequence which are not orderedeXample, thesequence:= ((-1)" : n
O has infinitely many terms that alternate betweehand 1, whereas the set of values
{(—1)":nOxAFis equal to theset { —1, 1),which has only tweraknts.

Sequences are often defined by givinga formulatHernth termx,. Frequently, it is
convenient to listthe terms of a sequence in ostepping when the rule of formation seems
evident. For example, we may define the sequeneziprocals of the even numbers by writing

run ]
X= [2 468

though a more satisfactory method is to specifydah@ula for the general term and write

SE

or more simplyX = (1/2n)

Another way of defining a sequence is to specié/hlue ofx;and give a formula for
Xn+1. (N = 1) in terms ofx,. More generally, we may specifgand give a formula for
obtainingxn+1from x1, X, --+, Xn . Sequences denned in this manner are saiditalbetively (or
recursively) defined.

3.1.2 Examples(a) If b 0K, the sequencB := (b,Kf, b3, ---), all of whose terms equél, is
called theconstant sequencé. Thus the constant sequence 1 is the sequencel (1, ), and
the constant sequence 0 is the sequence (0;, O,

(b) If b OAZ, thenB := (b")is the sequend® =(b,b?,b%,---,b", ---) . In particular, if
b =Y,then we obtain the sequence
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1. _ 4111
>N = X124 gt ]

(c) The sequence ¢2n : nOA) of even natural numbers can be defined indugtilsg

X1 =2, Xn+11= X 12,
or by the definition
y1:=2, Yn+1= Y1 HYo.
(d) The celebrated Fibonacci sequefice (f,) is given by the inductive definition

fr=1f2:=1, foer := for * fo (N2 2).

Thus each term pastthe second is the sum of itsinweediate predecessors. The first ten
terms of- are seentobe(l,1,2,3,5,8,13,21,34;5p,

The Limit of a Sequence

There are a number of different limit concepts @alranalysis. The notion of limit of a
sequence is themost basic, and it willbe thefoétisi® module.

3.1.3 Definition A sequence& = (X,)in R is said to converge X, orx is said to
be a limit of &), if for every e>0 there exists a natural numbi€r €) such that for all
n>K (¢€),theterms¢satisfyjxn — x\ <e.

If a sequence has a limit, we say that the sequsmo®vergent if it has no limit,we
say that the sequencedivergent.

Note The notatiorK(f.) is used to emphasize that the choic& alepends on the value of
However, it is often convenient to writ€ insteadofK (), In most cases, a "small" value
offwill usuallyrequire a "large" value df to guarantee that the distangge-} x\ between
xpandx is less tharfor alln >K = K(¢).

When a sequence has limjtwe will use the notation
lim X =x or limé,) = x.

We willsometimes use the symbolisg — X, which indicates the intuitive idea that the values
Xn'approach” the numbarmasn - co.

3.1.4 Uniqueness of Limits A sequencein Kcan have, at most onelimit.

Proof. Suppose that' andx" are both limits ofX,). For eacte. >0 there exisK' such thatx,
— X'\<e/2 for alln >K",and there exist" such thatx, - x"\ <e/2for alln >k". We letK be
the larger oK' andK". Then forn >K we apply the Triangle Inequality to get

X' - X"V =X - % X X
S =X\ +\ %, - X"\<g|2+ €]|2 =¢|2

Sincee> 0 is an arbitrary positive number, we concludgth— x" —O. QED.
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Forx OR ande> 0, recall that the-neighborhood ok is the set
VYO) := [uOR_: lu-x\<e} .

(See Unit 2.2.) Since U Y (x)is equivalent tdu — x\ <, the definition of convergence of a
sequence can be formulated in terms of neighboghde give several different ways of saying
that a sequencgconverges tain. the following theorem.

3.1.5 Theorem LetX = (x,) beasequenceof real numbers, andl&tX, Thefollowing

statements are equivalent.

(@ X converges to X.

(b) For evene> 0, there exists a natural number K such thatalbn > K, the terms ysatisfy
\Xq - X\ <e.

(© For everye> 0, there existanatural number K such that for altxK, the terms psatisfy
X—E<X <X+ €.

d For everye-neighborhood Y(X) of X, there exists a naturallmem such that for allezK, the terms
X, belongto V(X).

Proof. The equivalence of (a) and (b) is just the debnitiThe equivalence of (b), (c), and (d)
follows from the following implications:

u-x| <¢ &-e<u-x<ee X-E<U<Xtee ulV (x). €

With the language of neighborhoods, one can desttrdconvergence of the sequeXce
(xn)to the numbex by sayingfor eache-neighborhood V(%) of x, all but a finite numbetarins
ofX belong to V(x)The finite number of terms that may not belongh&etneighborhood are the
termsxy Xo, « -+, X1

Remark The definition of the limit of a sequence of reainbers is used to verify that a proposed
valuex is indeed the limit. It doasot provide a means for initially determining what tiialue of

x might be. Later results will contribute to this ebdt quite often it is necessary in practice to
arrive at a conjectured value of the limit by direalculation of a number of terms of the
sequence. Computers can be helpful in this respettsince they can calculate only a finite
number of terms of a sequence, such computationstdn any way constitute a proof of the value
of the Limit.

The following examples illustrate how the defimtics applied to prove that a sequence has a
particular limit. In each case, a positivés given and we are required to findadepending on
€, as required by the definition.
3.1.6 Examples (@) lim(l/n)=0.

If e> 0 is given, then/k> 0. By the Archimedean Property 2.4.5, there ratural
numberK = K(¢) such that 1/Ks. Then, ifn > K, we have/In <1/K <e. Consequentlyif

n=> K, then
4 -0 FQ
n n

Therefore, we can assert that the sequémeonverges to 0.
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(b)  lim(/(n*+1)) =0
Lete>0 be given. To fin, we first note that if mIgy; then

1 1 1
el oS
Now choose such that 1K <g, as in (a) above. Than> K implies that 1/r<e, and therefore
1 _ 1 L
e +[1 -0 17 ° <€

Hence, we have shown that the limit of the sequemso.
Givens> 0, we want to obtain the inequality

: 3n+2 ) _
(c) lim [W] =3
Givee> 0, we want to obtain the inequality

h+2
n+1

1)

- 3l<e

whennis sufficiently large. We first simplify the expeesn on the left:

n+2

h+2-2-3
n+1

n+1

-1
n+1

1 _ 1

T 1 N

Now if the inequality Ih <eis satisfied, then the inequality (1)holds. Thu& #K <g, then for
anyn =K, wealso have 1n<eandhence (1)holds. Therefore the limit of the seceien3.
(d) If 0< b <1, then limp") = 0.

We willuse elementary properties of the naturahtidgm function. Ife> 0 is given, we
see that

b"<e ninb<ineen>Ine/Inb.

(The last inequality is reversed becausedi®.) Thus if we choodé to be a number such

thatK > In &/ In b, then we willhave 0 k'<sfor alln > K. Thus we have lim") = 0.

For example, ib = . 8, and ife = .01 is given, then we would neKd> In .01/In.8~20.6377.
ThusK=21 would be an appropriate choice féor .01.

40 CONCLUSION

Remark The K(g) Game In the notion of convergence of a sequence, onetavligep in
mind the connection between tend theK is to think of it as a game called tk¢) Game. In
this game, Player A asserts that a certain numberthe limit of a sequencg,). Player B
challenges this assertion by giving Player A a #isealue fore> 0. Player A must respond to
the challenge by coming up with a valueko$uch thatx,— x\ <efor all n >K. If Player A can
always find a value dk that works, then he wins, and the sequence is cgent However, if
Player B can give a specific valuesf O for which Player A cannot respond adequatélgnt
Player B wins, and we conclude that the sequenes dat converge ta

In order to show that a sequen€e= (x,) doesno! converge to the numbex; it is
enough to produce one numizes> 0 such that no matter what natural numkdschosen,

k 0
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one can find a particulamsatisfyingnk=K such that,-x |> € (This will be discussed in more
detail in Unit 3.4.)

3.1.7 Example Thesequence(0, 2, 0,2, 0, 2,---)doesiotconvergetothenumber O.

If Player A asserts that 0 is the limit of the senee, he willlose th& () Game
when Player B gives him a value e€2. To be definite, let Player B give Player A
the valuey = 1. Then no matter what value Player A choose&sKiohis response will
not be adequate, for Player B will respond by d&lgcan even numbem > K. Then the
corresponding value i%, = 2 so that|x, - O] = 2 > 1 =¢,.Thus the number O is not the
limitof the sequence. o

4.0 CONCLUSION
Tails of Sequences

It is important to realize that the convergencedigergence) of a sequenke— (,) depends
onlyon the "ultimate behavior" of the terms. Bystiwe mean that if, for any natural number
m, we drop the firsim terms of the sequence, then the resulting sequémmverges if and
onlyif the originalsequence converges, and in #sec the limitsare thesame. We
willstatethisformally after we introduce the iddadtail” of a sequence.

3.1.8 Definition If X =(X3,X2,**, Xn,**+) IS @ sequence of real numbers #na is a given
natural number, then tfa -tail of X is the sequence

X = e )= e X521+

For example, the 3-tailof thesequeKcg2,4, 6, 8, 10;--, 2n, ---).is the sequencesX (8,
10, 12;--, 2n+ 6,-+).

3.1.9 Theorem LetX= (% : nOA) be a sequence of real numbers and léfl IN. Then
the m-tailX, = (Xm+n : N JA) of X converges if and only if X converges. In thise]im X =
lim X.

Proof. We note that for anp /%#, thepth term oKgis the(p + m)th term ofX. Similarly,
if g > m,then thegthterm ofX is the(q — mth term ofX,.

AssumeX converges tax. Then given any. >0, if the terms ofX for n >K(g)
satisfy\x, - X\ <ethen the terms of fork>K (¢€) - msatisfy\x, - X\ <e.Thus we can take
Kmn(e) =K(g)-m, so thaiX, also converges to x.

Conversely, if the terms of.for k >Kn(e) satisfy ¥« — Xe, then the terms of for n
>K (g) + m satisfy , — x| <e. Thus we can takk () = Ky, (€) + m.

Therefore X converges ta if and only if X, converges ta. QED

We shallsometimes say that a sequétiaéiimatelyhas a certain property if some taiDof
has this property. For example, we say that theueseg (3, 4, 5, 5, 5;-:5, ) Is
"ultimatelyconstant”. On the other hand, the seceidB, 5, 3, 5;--, 3, 5,::-) is not ultimately
constant. The notion of convergence can be staieg this terminology: A sequengeonverges ta
if and only if the terms of are ultimately in everg-neighborhood ak. Other instances of this "ultimate
terminology” willbe noted below.
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5.0 SUMMARY
Further Examples

In establishing that a numbeis the limit of a sequende,), we often try to simplifythe difference
\x, — X\before considering ag»0 and finding &(g) as required by the definition of limit. This was
done in some of the earlier examples. The nextt issaimore formal statement of this idea, and the
examples that follow make use of this approach.

3.1.10 Theorem Let () be a sequence of real numbers and l€0&, If (a)is a
sequence of positive real numbers with(a,) = 0 and if for some constant CO>and some
ms¥ ' we have

X, =Y <Ca, forall n > m,
then it follows thalim(x,) = x.

Proof. If e>0 is given, then since liraQ) = 0, we know there existé = K(e /C)such that
n > Kimplies

an=|an-0|< e /C.
Therefore it follows that if both >K andn >m, then

|xn-x\<Can<C(e/C)==.

Sincee> 0 is arbitrary, we conclude that= lim(x,). Q.E.D.

1+na

Sincea >0, then 0 Ra <1 + na, and therefore 0 <1/(1 ®a)<l/(na).Thus we
have

3.1.11 Examples (a) Ifa>0, thenlim [ L =0

L
1 _-o‘g _1]_& forall nOA”
[

1+ra L a

Since lim(lh) = 0, we may invoke Theorem 3.1.10 with=1/aandm = 1to infer that
lim(1/(I+na))=0.
(b) If 0<b<1,thenlim®") =0.

This limit was obtained earlier in Example 3.1.6()e will give a second proof that
illustrates the use of Bernoulli's Inequality (§e@mple 2.1.13(c)).

Since 0 ¥ < 1, we can writdo = 1/(1 +a),wherea := (1/b) — 1 so thata > 0. By
Bernoulli's Inequality, we have (1a)"> 1 +na.Hence

! 1 i
0<b"= (I+a" = T+na < ha

Thus from Theorem 3.1.10 we conclude tha¢dibr=0.

In particular, ifb =.8, so thata =.25, and if we are givea = .01, then the preceding
inequality gives u(e) = 4/(.01) = 400. Comparing with Example 3.1.6(dhene we obtained
K = 25, we see this method of estimation does notigvibe "best” value d¢f. However, for the
purpose of establishing the limit, the siz&a$ immaterial.

() Ifc >0 thenlimc*")=1.

The case = 1 is trivial, since then ¢£")is the constant sequence (1;-9,which evidently
converges to 1.

If ¢> 1, then ¥"= 1 +d,for somed,> 0. Hence by Bernoulli's Inequality 2.1.13(c),
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c=(1+dy)">1+nd, for  n /[N
Therefore we have ¢ —2nd,, so thatd,< (c —I)/n. Consequently we have

"1 =d, (¢ 1Y% forn ON.
We now invoke Theorem 3.1.10 to infer that leH{) = 1 whenc >1.

Now suppose that 0c<<1; then &"= 1/(1 +h,)for someh,>0. Hence Bernoulli's
Inequality implies that
1 1 1
Cc= (1+hn)” < l+nhq < m
From which it follows that 0 ki< 1/nc for n Os¥ Therefore we have

I 1
0<1-"= ﬂ+—hn‘|11 <h<pe—
so that
1

1
)< [C_] L foralln s

We now apply Theorem 3.1.10 to infer that lii{{3 = 1 when 0 € < 1.
(d)lim(n*M=1

Since "> 1 forn> 1, we can writen™' "= | + k,for somek,> 0 whenn >1. Hencen
= (1 +k,)" for n >1. By the Binomial Theorem, if >1 we have

1/n

n=1+nk, + */on(n Ak, + - > 1 + ¥(n -1k,

whence it follows that
n—1 ¥n(n-1)kK,

Hencek?,<2/n for n >L.Ife>0 is given, it follows from the Archimedean Propettiat there
exists a natural numbBisuchgtha®/N<e? It follows that ifn > sup{2,N } then 2/h<e?, whence

0<n*"- 1=k.,<(2/n)"? <¢
Sincee> 0 is arbitrary, we deduce that lint(")= 1.

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Uni3.1

1. The sequendg;,) is defined by the following formulas for timth term. Write the first five
terms in each case:

(@ X, :=1+ (-1}, (b)  x":=(-1)'n,
() Xn:= 1 (d x:= _1
n(n + 1) n?+ 2
2. The first few terms of a sequengg) are given below. Assuming that the "natural paftte
indicated by these terms persists, give a fornaulthénth termx,.
@ 5,7,9,11,-, (b) 1/2,-1/4,1/8,-1/16,

©  1/2,2/3,3/4,4/5;, @ 1,49 16;-.




10.

11.

12.

13.

14.

15.
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List the first five terms of the following indixely defined sequences,
(@) Xn= 1. Xpe1=3Xn+ 1,

(b) Y1:=2, Yne1= Y2 G+ 2lyn),

(c) z2:=1, 2:=2, zZw2x=(Zntl +2)/(Z0e1— 20),

(d) $1=3, =5 S22 =HtSpa

For anyb 0K, prove that limig/n) = 0.

Use the definition of the limit of a sequencestablish the following limits.

. n _ 2n
@ lim [Tﬂ'ﬁ] () lim [T-l-:iz}
©  lim (23,1 @ i AY,1

" [z‘njf’s_] m [ T +3]
Show that
Iimhf 1} "m,[_é’ ]

@ "™fn 7 b) n+2
© m{ﬁ[ 0 ] @ (rrmn[ o ]

n+H1 n“+1

Letx, := 1/In(n+1) for n O
(@) Use the definition of limit to show that lirg(= 0

(b) Find a specific value &f(c) as required in the definition of limit for each(d
=1/2, and (iig = 1/10

Prove that lim{)= 0 if and only lim §,]) = 0. Give an example to show that the
convergence ofxj|) need not imply the convergence ).
Show that ik,> 0 for alln O and limg,)= 0, then lim {/x) =0

Prove that if limx) = x and ifx >0, then there exists a natural numidesuch thaik,> 0
for alln =M.

n n+

Show that lim 1 1] -0

Show that lim (1/3=0

LetbOR satisfy 0 < 1. Show that linr{d") = 0.[Hint: Use the Binomial Theorem as in
Example 3.1.11(d).]

Show that lim (@) = 1.

Show that lim¢/n!) =0
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16.  Show that lim@n!) = 0.[Hint: if n> 3, then 0 <Zn! < 2(/3)"2]

17. if lim(xn) =x >0, show that there exists a natural nunsuch thaif n >K, then
Yoyxn< 2X.

7.0 REFERENCES/FUTHER READINGS

Unit 2 Limit Theorems

1.0 INTRODUCTION

In this unit we will obtain some results that eraln$ to evaluate the limits of certain sequences
of real numbers. These results will expand ouectithn of convergent sequences rather
extensively. We begin by establishing an imporgaperty of convergent sequence that will be
needed in this and later units.

2.0  OBJECTIVES

At the end of the unit, readers should be able to

0) understand common Limit theorems and Proofs

(in) show with example squeeze theorem and diveérgeauence

3.0 MAIN CONTENT
3.2.1 Definition A sequenc& = (x,) of real numbers is said to beundedif there exists

a real numbeM > 0 such that}| <M for all n A

Thus, the sequence)is bounded if and only if the set,{: N0} of its values is a
bounded subset &,

3.2.2 Theorem A convergent sequence of real numbers is bounded.

Proof,Suppose that lim{) = x and lete : =1. Then there exists a natural numbér=
K (1) such thatx,— x|<1for all n > K. If we apply the Triangle Inequality with > K we
obtain

Kol = K =X + X[ < o = X[ + [X] <1 + K].

If we set

M= [lxll’ kzlv ) Pq(-llv 1 +*I]
then it follows thatx,|< M for all n ZEx. QED.

We will now examine how the limit process interaeith the operations of addition,
subtraction, multiplication, and division of seques. IfX =(x,)andY = (y,) are sequences
of real numbers, then we define their sum to be dhquenceX +Y : = (% + VYn ),
theirdifference to be the sequencé— Y := (% — y»).and theirproduct to be the sequence
X .Y = (Xyn). If ¢ OR, we define themultiple of X by ¢ to be the sequenceX :
=(cxn),Finally, if Z =(z,) is a sequence of real numbers wigk 0 for alin /%X, then we

define theguotient of X andZ to be the sequence X/Z (%, /z,).
For example, iX andY are the sequences

X:=(2,4,6:2n,), Y =, Yo s, 0, Y, o)
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then we have

3919 7+ 1
X*Y¥= 11237 n J
. y= |77 -1
""" 1123 "n '

X.Y= Q, 2,2, 2 )1
X =(6, 12, 18;--, 6n--),
XIY =(2, 8, 18;--, 2%, -+)

We note that iZ is the sequence
Z:=(0,2,0,,1+(-1),--),

then we can defin¥ + Z, X — ZandX . Z, butX/Zis not defined since some of the termg of
are zero.

We now show that sequences obtained by applyeggtbperation s to convergent
sequences give rise to new sequences whose lanitsecpredicted.

3.2.3 Theorem (@ LetX = (X,)and Y = (y) be sequences of real numbers that
converge to x and y, respectively, and etk . Then the sequence X + Y, X -, X.Y, and cX
converges to x +y, X —Y, Xy, and cx, respectively

(b) If X = (xn) converges to x and Z =pJ2s a sequence of nonzero real numbers that
converges to z and iz, then the quotient sequence X/Z converges to x/z.

Proof (a) To show that limg+ yy)| =X + Yy, we need to estimate the magnitudeaf { yn) —
(X +y)|. To do this we use the Triangle Inequality 2.2.8Mtain
|&n +yn) — (X + Y)I= [ = X) + (= Y)
< Pa—=X|+ -yl

By hypothesis, i£> 0 there exists a natural numi@such that iin >Ki,then \»x — x\
<e/2; also there exists a natural numKesuch that ifn > K, then\y, - y\ <e/2, Hence if
K(¢e):=sup{Kq,K:},itfollows thatif n >K ( €) then

|2 +Yn) — (X + Y)E o= X[ + [y —YI

<Vzg + Yoe = ¢

Sincee>0 is arbitrary, we infer thaX + Y = (X,+ y,) converges ta +y.

Precisely the same argument can be used to show thaY = (x— Yy, ) converges to
X-Y.

To show thaX . Y = (4yn) converges txy ,we make the estimate

XY= XY [=\(XnYn - XnY )+ (XY — XY)|
<[Xn(Yn = Y)| + |06 = X)y|
= Xallyn = Y| + % = X]lyl.

According to Theorem 3.2.2 there exists a real reniv3> 0 such thatx}| < M, for all n
Os¥and we seM = supfM, ly|}. Hence we have the estimate
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Xn¥n - XY\< My, - Y\ + M\, - x\.

From the convergence #fandY we conclude that i€> O is given, then there exist natural
numberK;andK;such that ilh >K;then\x, — x\ <¢/ 2 M , and ifn > Kythen\y,- y<e/2M.
Now letK(e) = sup{K1,Kz2} ; then, ifn =K ( &) we infer that

\XnYn- XY\ < M\y—y| HMX, - X\
< M(&/2M) + M(e/2M) = &.

Sincee> 0 is arbitrary, thisproves that the sequeXoé= (xy,) converges tay.

The fact thatX = (¢ X,) converges texcan be proved in the same way; it can also be
deduced by takiny to be the constant sequenced, ¢ ---). We leave the details to thereader.
(b) We next show that if Z = (gis a sequence of nonzero numbers that conveoges t
nonzero limit z, then die sequencéz{lof reciprocals converges tozlFirst leta := ¥2|z| so
thata>0. Since limg,) = z, there exists a natural numisgsuch that ifn >kjthen\z, — z|<a.

It follows from Corollary 2.2.4(a) of the Triandkeequality that a < -jz— z\<\z,\—|z\ for n
>K 1, whence it follows that ¥2|7{ \z\ - « < \z,)\ for n>K ;. Therefore I/|z|< 2/|z| fom >
Kiso we have the estimate

1
z

z—2% 1

zz | e

1
z

|z — 2|

< % z-zl  Foral n>K;
Now, i f > 0 is given, there exists a natural nurgisuch that if > Kothen\z, — 2\ </e|z?%
Therefore, it follows that iK(¢) =sup{K1,K >} ,then

1. %‘qg) For all n >Ke)

Zn

Sincee>0 is arbitrary, it follows that
im |[2] = 2
Z z
The proof of (b) is now completed by takiMdgo be the sequence g}) and using the
factthatX . Y = (x,/zn} converges ta(l/z)= x/z. Q.E.D.

Some of the results of Theorem 3.2.3 can be extertmeMathematical Induction, to a
finite number of convergent sequences. For exanipke,= (a,),B = (bv), -+, Z = (z) are
convergent sequences of real numbers, then their’sset B + .-+ Z=(a, + by + -+ z) isa
convergent sequence and
1) lim(a, + by +---+ z,) = lim(bn) + -+ + lim(z,)

Also their produch . B---Z := (a.bn+-z,) is a convergent sequence and
(2) lim(anbn-+- z)) = (lim(ay)) (lim(br)) -+ (liM(zy)).

Hence, itk OFand ifA = (a,) is a convergent sequence, then
3) lim(@?) = (im(ag)"
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We leavethe proofs of these assertions to the meade

3.2.4 Theorem If X = (xn) is a convergergequencef real numbers and ifz O for
all n O, thenx = lim(x,)= 0.

Proof. Suppose the conclusionis not true and #a&0; thene := — x is positive. SinceX
converges ta, there is a natural numbKrsuch that

X-e<XN<X+e¢ forall n > K

In particular, we havex<x + €= x + (-X) = 0. But this contradicts the hypothesis
thatx,>0 for alln Os¥. Therefore, thiscontradiction implies thxat0. Q.E.D.

We now give a useful result that is formally strenthan Theorem 3.2.4.

3.2.5 Theorenif X =(x,)and Y = () areconvergent sequences of real numbers angyix
for all n O, then lim,)<lim(yn).

Proof.Let z, 1= y, - X80 that Z := (8 =Y - Xand z=> 0 for all n O" It follows from
Theorems 3.2.4 and 3,2.3 that

0 <lim Z = lim(yy) — lim (xn),
so that linfx,) <lim(yy). QED.

The next result asserts that if allthe terms afravergent sequence satisfy an inequality of
the forma < x,< b, then the limit of the sequence satisfies the sarmaquality. Thus if the
sequence is convergent, one may "pass to the limgh inequality of this type.

3.2.6 Theorentf X = (x,) is a convergent sequence and if<x,<b for all n O, thena
<lim(x,) <b.

Proof.Let Y be the constant sequen¢b,b, b, :--)sTheorem 3.2.5 implies that lixh <
lim Y=b. Similarly one shows tha< lim X. Q.E.D.

The next result asserts that if a sequentesqueezed between two sequences that converge
to thesame limitthen it must also converge to this limit.

3.2.7Squeeze Theorem Suppose that X £x,),Y = (y» ), and Z = (z) are sequences of
real numbers such that

< %<V 7 for all nOwW”
and thatlim(x,) = lim(z,). ThenY = (y,) is convergent and

lim(x,) = lim(y,) = lim(z,)

Proof.Let w:= lim(x,) = lim(z,).If e>0 isgiven, then it followsfrom the convergencexadndZ to
wthat there exists a natural numBesuch that iih > K then

Xn—w| < € and Ih- w|<e

Since the hypothesis implies that
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Xn—0 <Yn-0 < Z- @ foral nON
it follows (why?) that
- <Y - w<E
for all n =K. Sincee> 0 is arbitrary, this implies that liy() = w. QED.

4.0 CONCLUSION

Remark Since any tail of a convergent sequence has the $#amt, the hypotheses of
Theorems 3.2.4, 3.2.5, 3.2.6, and 3.2.7 can beemedkto apply to the tail of a sequence. For
example, in Theorem 3.2.4,Xf = (x,) is "ultimately positive" in the sense that theristsm v~
such that,> 0 for alh = m,thenthe same conclusionthat O willhold. Similar modifications are
validfor theother theorems, as the reader shouiy.ve

3.2.8Examples (@) The sequend® )is divergent.

It follows from Theorem 3.2.2 that if the sequeKce (n)is convergent, then there exists a
real numberM> 0 such that = |n|< M for all n ZZ¥. But this violates the Archimedean
Property 2.4.3.

(b) The sequence ((-!)") is divergent.
This sequenc&X = ((—1)")is bounded (takéM = 1),so we cannot invoke Theorem 3.2.2.
However, assume that:= lim X exists. Lets := 1so that there exists a naturalnumiesuch
that

|(-1)—al<l forall n>K;

If nis an odd natural number with >K 1, this gives | — 1 —a|<1, so that -2 & <O.
(Why?) On the other hand,nfis an even natural number witti>K ; | this inequality gives |1
— ak 1 so that 0 & <2. Sincea cannot satisfy both of these inequalities, the kiypsis that
Xis convergent leads to a contradiction. TherefbeesequencX is divergent.

(©) lim [rZIn_J: 1]

If we let X := (2) andY := (1/n), then ((2r + 1)/n) = X + Y. Hence it follows from
Theorem 3.2.3(a) that litd(+ Y) = lim X+ IlimY =2+ 0= 2.

@ 'm [%%1]

Since the sequencézn + 1) and(n + 5) are not convergent (why?), it is not possible
to use Theorem 3.2.3(b) directly. However, if wetevr
2n+1_ 2+ 1A
n+5 1+ 54

we can obtain the given sequence as one to whielrém 3,2.3(b) applies when we take
‘= (2 + 1h) andZ := (1 + 5/n).(Check that all hypotheses are satisfied.) Since Xi
=2andlimz=1+0. we deduce thatlim((2+ )/(n+ 5)) = 2/1 = 2.

@ m [ﬁzﬂ_pl]

Theorem 3.2.3(b) does not apply directly. (Why?) W& that
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iy 2

f+1 =~ n+1n
but Theorem 3.2.3(b) does not apply here eithecalbie(n + 1/n) is not a convergemt
sequence, (Why not?) However, if we write

n_ o
r+1 - 1+ 17

then we can apply Theorem 3.2.3(b), since lim(20 and lim(I+//n?)=1+ 0
Therefore lim(2/(n’+ 1)) =0/1 = 0.

o m [ﬁ'-_”é'—]

We cannot apply Theorem 3.2.3(b) directly, sinae ¢bquencen) is not convergent
[neither is the sequence (si). It does not appear that a simple algebraic maation
willenable us to reduce the sequence intoone tatwhheorem 3.2.3 will apply. However, if
we note that — ¥Xsinn <1. then it follows that

1 sinn 1

ST << for all
n n n

Hence we can apply the Squeeze Theorem 3.2.7eptimt lim-! sinn) = 0. (We note that
Theorem 3.1.10 could also be applied to thissequgnc

(9) Let X = (x)) be a sequence of real numbers that converges®, Let p be a
polynomial; for example, let
p(t):=at + agat“ + - + as' + ag,

wherek O "andg0& for j = 0, 1,---, k. It follows from Theorem 3.2.3 that the sequence
(p (xn)) converges tp (x) .We leave the details to the reader as an exercise.

(h) Let X =(x,) be a sequence of real numbers that converges foR, Let r be a
rational function (that isr(t) :=p(t)/q(t),wherep and q are polynomials). Suppose
that g(x;] ~ O for alln e N and thatq(x} ~ 0. Then the sequende (Xn))converges to
r(x)—p(x}/qg(x) We leave the details to the reader as an exercise.

We conclude this section with several resultswiieibe useful in the work that follows.
50 SUMMARY
3.2.9 Theorem Let the sequence X = ({xconverge to x. Then the sequencs,|(|>of

absolute values converges to |x|. That is, ifimEx,), then\x\=lim(|xn|).

Proof. It follows from the Triangle Inequality (see Coeol 2.2.4(a) that
Kl - KI| < Ko —X| forall n ON

The convergence ok{)) to K| is then an immediate consequence of the convesg#ri,) to x.




Introduction to ReeAnalysis

3.2.10 Theorem Let X = (%)be a sequence of real numbers that convergesitm x
suppose thatz 0. Then the sequengg *n)of positive square roots converges and lim

(Y X0 =+x.
Proof. It follows from Theorem 3.2.4 that lim(x,) = 0 so the assertion makes sense. We
now consider the two cases: XiF 0 and (i) x> 0.

Case (i) Ifx =0, lete> 0 be given. Sincr,— 0 there exists a natural numigesuch
that if n > K then

0<xn=xn -0 <2,

Therefore [see Example 2.1.13(a)k0/x<e for n > K. Sincee> 0 is arbitrary, this implies
that/x,—~0.
Case (i) Ifx> 0, theny/x> 0 and we note that

\/zn'\/zz(\/}n'\/z)(\/zn"'\/z): Xp = X
Vaen +Vx Van + Vx

Sincevx, +vx = /x> 0, it follows that

’\/En'\/;‘g %}kﬂ - X

The convergence afx,— /x follows from the fact thatn —x. Q.E.D

For certain types of sequences, the followingltgsovides a quick and easy “ratio
test” for convergence. Related results can be fouige exercises.

3.2.11 Theorem Let (%) b e a sequence of positive real numbers suchLthmat
lim(X,+1/%n) exists. If L €, then (%) converges anim(x,) = 0.

Proof. By 3.2.4 it follows that. > 0. Letr be a number such thiatc r <1, and let :=r—L
>0. There exists a numbkrJs¥ such that ifh > K then

X+t _|_<F
Xn

It follows from this (why?) that ih =K, then

<Reg=L+(F-L)=r

Xn

Therefore, ifn > K, we obtain

0 Kne1 Kl < Xppal 2<e - <xir T2

If we set C :=x«/r¥, we see that 0x;.1 <Cr"*for all n > K. Since 0 ¥ <1, it follows from
3.3.11(b) that lim(") = 0 and therefore from Theorem 3.1.10 that }ghéE O. Q.E.D
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As an illustration of the utility of the preceditfteorem, consider the sequelicg given by
Xn:= n/2". We have

n+l n+12" . 1 [1+ l]
“n 2™n 2 n

sothatlim,+1/X,).= % .Since ¥ < 1, it follows from Theorem 3.2that lim(n/2") =0.

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Unit 3.2

1. For x, given by the following formulas, establish eithiéme convergence or the
divergenceofthe sequense= (X;)
(a) _ n () .- (1)
= n+ 1 "o+ I
(c) _ d yx .= 2°+3
X n+1 " n’+1
2. Give an example of two divergent sequencasdY such that:
@ their sunX + Y converges, (b) their produXlY converges.
3. Show that ifX andY are sequences such thaand X + Y are convergent, theviis
convergent.
4. Show that iX andY are sequences such théatonverges tx #0 andXY converges,
thenY converges.
5. Show that the following sequences are not cayardr
@ (@), ® ().
6. Findthe limits of the following sequences:
@ lim [+ 1n)2] ®) i [ (-1§ ]
n+ 2

(c) Iinj{-l J (d) n”ﬁm[ ]
+1 nn

7. If (bn)is a bounded sequence and &gh(= 0. show that lingb,) = 0. Explain why
Theorem 3.2.8annot be used.

8 . Explain why the result in equation (3) beforedilem 3.2.4£annotbe used to evaluate the
limit of the sequence ((1 +d)/").

9. Lety, := vn + 1 - v/nfor n O¥” Show thaty(,) and(v/ny,)converge. Find their limits.

10. Determine the following limits,

(@  lim(@/n)") (b)  lim (O + 1))
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11.  If0<a<b, determine lim a™!+p™!
a'+b"

12.  Ifa>0,b> 0, show that lim\{(n + a)(n + b)— nN)= (a+b)/ 2.

13. Use the Squeeze Theorem 3.2.7 to determiriumthe of the following.
@ " (O (D!

14.  Show that i, := (@"+b")*/"where 0<a < b, then lim (z) =b.

15. Apply Theorem 3.2:11 to the following sequenedserea, b satisfy 0 @ <1,b >1.

16. (a) Give an example of a convergent sequengef(positive numbers with

lim(X,+1/%) = 1.
(b) Give an example of a divergent sequence wiik froperty. (Thus, this
property cannot be used as a test for convergence.)

17. LetX = (x,) be a sequence of positive real numbers such thét lin/x,) = L > 1. Show
thatXis not a bounded sequence and hence is not conterge

18. Discuss the convergence of the following segesnwhere, bsatisfy 0 @ <1, b >
1.
@  (n%a"), b  ©W),
()  (rnY (d  q/n".

f

19. Let(x,) be a sequence of positive real numbers such thatnﬁ”,) =L <1. Show that
there exists a numbemwith 0 < < 1 such that & x,<r" for all sufficiently largenO]
. Use this to show that lim{) = 0.

20. (a)Give an example of a convergent sequengef positive numbers with lim") = 1.
(b)Give an example of a divergent sequegeof positive numbers with limg"" = 1.
(Thus, this property cannot be used as a tesbfMecgence.)

21. Suppose thdtx,)is a convergent sequence ahd,)is such that for ang>0there
existsMsuchthalx, — yn\<efor alln > M. Does it follow that ¥,)is convergent?

22. Show that ifX;) and(y,) are convergent sequences, then the sequamgemnd(v,,) defined
by u, :=max{X,, yn}andv,,=min[x,y] are also convergent. (See Exercise 2.2.16.)

23. Show that ifxn), (yn), (zn) are convergent sequences, then the seqyencedefined
by Wi := mid[Xxn, Y, Zn]is also convergent. (See Exercise 2.2.17.)

7.0 REFERENCES/FURTHER READINGS

Unit 3.3 Monotone Sequences

1.0 INTRODUCTION

Until now, we have obtained several methods of s#mgwhat a sequenck¥ = (x,) of real
numbers is convergent:
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(1) We can use Definition 3.1.3 or Theorem 3.1.Eedlly. This is often (but not
always) difficult to do.

(i) We can dominat&, — x\by a multiple of the terms in a sequelfag known
to converge to 0, and employ Theorem 3.1.10.

(iif)  We can identifyX as a sequence obtained from other sequences ¢hiab@wn
to be convergent by taking tails, algebraic comimna, absolute values, or square roots, and
employ Theorems 3.1.9, 3.2.3, 3.2.9, or 3.2.10.

(iv)  We can "squeezeX between two sequences that converge to the sanhefich
use Theorem 3.2.7.

(V) We can use the "ratio test" of Theorem 3.2.11.

Except for (iii), all of these methods require thet already know (or at least suspect) the value
of the limit, and we then verify that our suspicisrcorrect.

There are many instances, however, in which tiseme ibbvious candidate for the limit of
a seguence, even though a preliminary analysissogyest that convergence is likely. In this and
the next two sections,we shall establish resudtsdan be used to show a sequence is convergent
even though the value of the limit is not knowneThethod we introduce in thissectionis more
restricted in scope than the methods we give iméhe two, but it is much easier to employ. It
applies to sequences that are monotone in theviolipsense.

2.0  OBJECTIVES

At the end of the unit readers should be able to

0) understand monotone increasing and decreasing
(in) state monotone Convergence Theorem

(i)  understand Euler's number with example.

3.0 MAIN CONTENT
3.3.1 Definition Let X = (x,) be a sequence of real numbers, We say®isahcreasing if it
satisfies the inequalities

XISKS oo+ SKnS X1 < v

We say thaXis decreasing if it satisfies the inequalities
XIZXo> -+ K> Xs 1> oo

We saythak is monotone if it is either increasing or decregsin
The following sequences are increasing:
(1,2,3,4;--,n, -+), (1,2,2,3,3,3;),
(a,a,a, d, ) if a>1

The following sequences are decreasing:
1, 1/2, 1/3;--,1/n ), @, 1/2,1/12, -, 124 ..,
(b, B*,b3%,--,b", ) if O<b<l.

The following sequences are not monotone:
(+1l _1! +1 Tt (_I)n+11“') ’ (_11 +2! _3;“ ) (_l)nn“')

The following sequences are not monotone, butateeultimately” monotone:
(7,6,2.1, 2. 3, 4;+), (-2,0.1,1/2,1/3, 1/4,).
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3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is con-
vergent if and only if it is bounded. Further:
(a) If X=(x,) is abounded increasing sequence, then

lim(X,) = sup§, : n OAy.

(b) I fY =(yn)is abounded decreasing sequence, then
lim(y,) = inf{y, : n 7} .

Proof. It was seen in Theorem 3.2.2 that a convergenesegumust be bounded.
Conversely, leX be a bounded monotone sequence. Thiereither increasing or decreasing.

(a) We first treat thecase wheXe= (xn)is a bounded, increasing sequence. SK
bounded, there exists a real numiérsuch thatx,< M for all nO. According to the
Completeness Property 2.3.6, the supremusupi, : n O exists in&; we will show that
X = lim(xy).

If &> 0 is given, thew — «is not an upper bound of the s&t:{n 0AF, and hence there
exists a member of sgtsuch thax —e<x « . The fact thaiX is an increasing sequence implies
thatx< x,wheneven > K, so that

X —e<X, < X< X<X +¢ forall n=K.
Therefore we have
WX |<eforall n>K.

Sinces>0 is arbitrary, we conclude that) converges ta .

(b) If Y = (yn) is @ bounded decreasing sequence, then it is tlatX .= — Y =(—w)is a
bounded increasing sequence. It was shown in pamgalim X =— sup{-y.: n ZZEA¥. Now
lim X=—lim Y and also, by Exercise 2.4.4(b), we have

Sup{yn : n LFA¥

Therefore limY = -lim X = inf{y,: n OA¥

The Monotone Convergence Theorem establishes tlsterge of the limit of a
bounded monotone sequence, It also gives us a Weglaulating the limit of the sequence
providedwe can evaluate the supremum in case (a), or flreum in case (b). Sometimes it
is difficult to evaluate this supremum (or infimurbut once we know that it exists, it is often
possible to evaluate the limit by other methods.

3.3.3 Examples (@  lim(Wn)=0.

It is possible to handle this sequence by usingrEne 3.2.10; however, we shall use the
Monotone Convergence Theorem. Clearly 0 is a Idwend for the set {fn: n Ogxy,and it is not
difficult to show that O is the infimum of the §ét/n: N0} ; hence 0 = lim(\/n).

On the other hand, once we know at (I/+/n) is bounded and decreasing, we know that it
converges to some real numkeBinceX = (I/+/n) converges ta, it follows from Theorem 3.2.3 thiat. X
= ( In)converges t&°. Therefore¢ = 0, whence= 0.

(b) Letx,:= 1+ 1/2 + 1/3 +-+|/nfor n O,

Sincex 1 = X, + 1/(n+ 1) >X,,we see thafx,) is an increasing sequence. By the Monotone

Convergence Theorem 3.3.2, the question of whisiaesequence is convergeni or not is reduced to the

question of whether the sequence is bounded ékttestipts to use direct numerical calculationsrioeat
a conjecture concerning the possible boundedndse sEquencéx,) lead to inconclusive frustration.
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A computer run will reveal the approximate valugs 11.4 forn =50,000,an,~12.1 forn =
100,000. Such numerical facts may lead the cabsaheer to conclude that the sequence is bounded.
However, the sequence is in fact divergent, whielstablished by noting that

_ 1 11 1 1
X' =14+ = 4+ [==+ | e+ o

1 1 P [
>—_1_'T:l"[4+},+'+[n2+‘ +2J

Since(xn)is unbounded, Theorem 3.2.2 implies thatit is djeet.

The termsxiincrease extremely slowly. For example, it can lhews that to achieve
%:>50 would entail approximately 5.2 x4@dditions, and a normal computer performing 400
million additions a second would require more tH&0,000 years to performthe calculation
(there are 31,536,000 seconds in a year). Evepersamputer that canperform more than a
trillion additions a second, would take more théd Years to reachthat modest goal.

Sequences that are defined inductively must béetladifferently. If such a sequence is
known to converge, then the value of the limit cmmetimes be determined by using the
inductive relation.

For example, suppose that convergence has beebligstd for the sequendg,)
defined by
1

X1 =2, Xn+1= 2 + ; , nON”

If we letx = lim(x,) then we also have =lim(x,:1) since the 1-tailX.1) converges to the same
limit. Further, we see that>2, so thak # 0 andx,# O for allndJs¥. Therefore, we may apply
the limit theorems for sequences to obtain

0 _ 1 _ 5.1
X= IIm(Xn+1) =2 +T(Xn) =2 +X

Thus, the limitx is a solution of the quadratic equatigm- 2x —1 = 0, and since must be

positive, we find that the limit of the sequence is1 +v/2.

Of course, the issue of convergence must not berdégnor casually assumed. For
example, if we assumed the sequengedefined by y := 1, yna := 2y,+ 1 is convergent with
limity, then we would obtain y = 2y + |, so that — 1. Of course, thisis absurd.

In the following examples, we employ thus methocewdluating limits, but only after
carefully establishing convergence using the MametcConvergence Theorem. Additional
examples of this type will be given in Unit 3.5.

3.3.4 Examples (a) LetY =(y,) be defined inductively byiy.= 1, yn+1:= Y4 (2y, + 3) for
n> 1. We shall show that lirv = 3/2.
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Direct calculation shows that y= 5/4. Hence we have y, < 2. We show, by
Induction,that,< 2 for alln OsA” Indeed, this is true far =1, 2. Ify,< 2 holds for some
k O<X, then
Yir1= Ya (3cr3) < Va (4 + 3) la< 2,

so thaty1<2. Thereforgy,<2for all n O
for somek\then 2™ + 3 2y + 3,
We now show, by Induction, thak y,.for all n 0. The truth of this assertion has

been verified fon = 1. Now suppose thgt<yy.1 for somek; then 3x + 3 < 3+1 + 3, whence it
follows that

Yir1 = Ya (h+3) < Ya (Bhar+ 3) =< 2,

Thusyi< Yi«implies thatyi:1< Yi+2. Thereforey,<yn.1 for alln OA”
We have shown that the sequente (yn)is increasing and bounded above by 2. It
follows from the Monotone Convergence Theorem Yhabnverges to a limit that is at most 2,

In this case it is not so easy to evaluateyinify calculating supf.: n OA%. However, there is
another way to evaluate its limit. Singg, =Yz (2y, + 3) for alln O, the nthterm in the 1-tail

Y1, of Y has a simple algebraic relation to the nthterrd.&ince, by Theorem 3. .1.9, we have y
= lim Y1 =1lim Y, it therefore follows from Theorem 3.2.3 (why?) that

y=%( +3)

from which it follows thay =3/2.
(b) Let Z = (z) be the sequence of real numbers defined by Z, z,.| :=v2z, for n DA, We
will show that lim(z) = 2.

Note thatz=1 and, = v2; hence 1 #<z<2. We claim that the sequeritds
increasing and bounded above by 2. To show thiwivehow, by Induction, that

1 <z,<zn+1 < 2for alln O. This fact has been verified far= 1. Suppose that it is true for
=k; then 2<2z<2z,1<4, whence it follows (why?) that

1 «/2 <zk+1 =V224<Zs2= 2z <V4 = 2

[In thus laststep we have used Example 2.1.13{ahpte the validity of the inequality<1z<z,<
2 implies the validity of Kzu1 <;k2< 2. Therefore Kz,<z.1 < 2 for alln O,

SinceZ = (z,) is a bounded increasing sequence, it follows fith& Monotone
Convergence Theorem that it converges to a numbersap{z,}. It may be shown directly
that supg&.} = 2, so thatz = 2. Alternatively we may use the method employegart (a). The
relation z:+1 =v2z, gives a relation between théh term of the 1-taiZ;0f Z and thenth term
of Z. By Theorem 3.1.9, we have li= z =lim Z. Moreover, by Theorems 3.2.3 and 3.2.10,
it follows that the limitz must satisfy the relation

V4 :\/iz

Hence z must satisfy the equatin 2z which has therootg =0, 2. Since the terms of
z = (z,) all satisfy 1< z,< 2, it follows from Theorem 3.2.6 that we must hdvez< 2.
Thereforez = 2. m
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The Calculation of Square Roots
We now give an application of the Monotone Conveoge Theorem to the calculation of
square roots of positive numbers.

3.3.5 Example Let a >0; we will construct a sequends,) of real numbers that
converges ta/a.

Let s;> 0 he arbitrary and defirgnt1 :=1/,(s,+ a/s)) for n DA We now show that
the sequencés,)converges ta/a. (This process for calculating square roots wasmnm
Mesopotamia before 15@0c.)

We first show thas?®> a for n > 2. Sinces,satisfies the quadratic equatish—
25w15, + a = 0, this equation has a real root. Hence theridigtant 4%,.; — 4a must be
nonnegative; thatisn.;>aforn> 1.

To see thaty) is ultimately decreasing, we note thatiige2we have

_ 1 a —a
- - - = +— = = =>
SH—SH1=S 5 [Sn&] 2 s, =0

Hence s..1<s, for alln > 2. The Monotone Convergence Theorem impliesghat
lim(s,)exists. Moreover, from Theorem 3.2.3, the lismtust satisfy the relation

1 a
s=sh [ s
whence it follows (why?) that= a/sor $’= a. Thuss =va.

For the purposes of calculation, it is often imaottto have an estimate lobw rapidly
thesequencés, ) converges ta/a. As above, we havga < sfor all n >2, whence it follows
thata/s,< va <s,.Thus we have

0 <s,-Va <s,-als = (S5 —a)ls, forn> 2

Using this inequality we can calculafeto any desired degree of accuracy.

4.0 CONCLUSION

Euler's Number

We conclude this section by introducing a sequethe¢ converges to one of the most
important "transcendental” numbers in mathemat@sond in importance only to

3.3.6 Example Let en:=(1 + 1h)"forn O¥. We will now show that the sequenge=
(en)is bounded and increasing; hence it is converddm.limit of this sequence is the famous

Euler number ewhose approximate value is 2.71828182845904%vhich is taken as the base
of the "natural” logarithm.

If we apply the Binomial Theorem, we have

_ 1" _ n ., nh=1 4 nO-1n2) . 1
e”_[1+n]'1+ 1n 2 i 3 ~

4.4 NN - 221
n '

If we divide the powers afinto the terms in the numerators of the binomiafticients,
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we get

- 1) ¢ 1fq.1]f1.2
en = 1+1+ 2![ n] 3![ n][ n

Similarly we have

) 1.1 )11 _
en = 1+l+ 2![ n+1] "3 [ vl [n+1

* ﬁ [1%][12 nfljl[ _ n+1]

Note that the expression fegcontainsn + 1 terms, while that foe,. containsn + 2 terms,
Moreover, each term appearinge,is less than or equal to the corresponding fin e,+},and
en+has one more positive term. Therefore we 12< e;< ex<---< en<e <--+, S0 that the terms
E are increasing.

To show that the terms E are bounded above, we note thai #1, 2,:--, n,then (1 -
p/n) <1. Moreover 2'< pl[see 1.2.4(e)] so thal/p! <l/2”*. Therefore, ifn >1, then we
have

11 1
2<en<1+1-i?22+ 2&”_1-+—

Since it carbe verified that [see 1.2.4(

1

+ +. +1 2:511—<1

2?

we deduce that 2es< 3 for allnds¥. The Monotone Convergence Theorem implies tha
sequencé converges to a real number that is between 2 akide3define thdumbere to be
the limit of this sequence.

By refining our estimates we can find closer ratiapproximations ie,but we canncevaluate it
exactly sinceeis an irrational number. However, it is possiblegizulateetoas many decimal places
desired. The reader should use a calculator @ngauater) t evaluatesfor "large” values cn. |

5.0 SUMMARY

Leonhard Euler
Leonhard Euler (1701783) was brn near Basel, Switzerland. His clergy-
man father hoped that his son would follow him itheministry, but when
Euler entered the University of Basel at age 1¢ nmithematicetalentwas
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noted by Johann Bernoulli,who became his mentod 787, Euler went to Russia to join
Johann's son, Daniel, at the new St. Petersburdeheg There he met and married Katharina
Gsell, the daughter of a Swiss artist. During theirg marriage they had 13 children, but
only five survived childhood.

In 1741, Euler accepted an offer from Frederick @reat tojointhe Berlin Academy,
where he stayed for 25 years. During this perioovhete landmark books on calculus and a
steady stream of papers. In response to a requasisfruction in science from the Princess of
Anhalt-Dessau. ha wrote a multt-volume work on rsméethat became famous under the title
Letters to a German Princess.

In 1766, he returned to Russiaat the invitationath@rine the Great. His eyesight
had deteriorated over the years, and soon afterehisn to Russia he became totally blind.
Incredibly, his blindness made little impact on hiathematical output, for he wrote several
books and over 400 papers whileblind.He remainegt buod active until the day of his death.

Euler's productivity was remarkable: he wrote terlis on physics, algebra, calculus,
real and complex analysis, analytic and differéigggometry, and the calculus of variations. He
also wrote hundreds of original papers, many ofctwhwon prizes. A current edition of his
collected works consists of 74 volumes.

6.0 TUTOR MARKED ASSIGNMENT
Exercises for Unit 3.3

1. Letx; := 8 andXn+1:= ¥, + 2 for n ZEX. Show thai(x,) is bounded and monotone. Find
the limit.

2 Let x;> 1 andx,.1:= 2 -Uxfor n [&X. Show thaix,)is bounded and monotone. Find
thelimit.

3. Lety=> 2 antky.1:= 1 +vx — 1 forn [E¥ ‘Show that(x,)is decreasing and bounded
below by 2. Find the limit.

4, Letx; := 1 andx,.+1:= 1 +v2 + x for n ZZ¥ Show that(x,)converges and find the
limit.

5. Lety; == \/Ewherep >0, andy,+1: = /p + vy ofor n O Show that(y,) converges
and find the limit[Hint: One upper bound is 1 1;/5]
6. Leta >0 and letz>0. Define z.1:=,/p + y nfor n 0¥, Show that (2 converges and

find the limit,
7. Letx; :=a >0 andky+1: =X, + 1/, for n 0¥ Determine if(x,) converges or diverges.
8. Let (a,) be an increasing sequengl,) a decreasing sequence, and assumedalst

brfor alln OA” Show that limg,) <lim(by,),and thereby deduce the Nested Intervals
Property 2.5.2 from the Monotone Convergence Tie@&.2.

0. Let A be an infinite subset df that is bounded above and let=supA, Show there
exists an increasing sequeligg) with x,€ Afor all n Og#8uch that =lim(x,).
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10. Let(x,) be a bounded sequence, and for eackerlet s, := sup{x : k =n}and t,:=

inf{x; : k >n} .Prove thafs,) and(t,) are monotone and convergent. Also prove that
if lim(s,) = lim(t,), then(x,) is convergent. [One calls lim{ the limit superior of
(Xn), and lim¢,) thelimit inferior of (x,).]

11. Establish the convergence or the divergentieeo$equenceyf), where
1 1 1
= + e+ ——
Y=gt 5 forn O~

12.  Letx,:= 1/P+ 1/Z +--- + 1h* for eac OV Prove that,) is increasing and bounded,
and hence convergeslipt: Note that ifk >2, then 1< 1/k(k-1) = 1/k-1)-1k/]

13. Establish the converges and find the limit§effollowing sequences.

(@ @+, (b) (@ + 1),
1Y d (-1,
©) &1:1 N @ (@-1"

14. Use the method in Example 3.3.5 to calcuf@ecorrect to within 4 decimals.

15. Use the method in Example 3.3.5 to calcuf&tecorrect to within 5 decimals.
16. Calculate the numbetin Example 3.3.6 fon= 2, 4, 8, 16.
17. Use a calculator to compu@ggfor n = 50,n = 100, andh = 1,000.

7.0 REFERENCES/FURTHER READINGS

Unit 4 Subsequences and the Bolzano — Weierstraseélorem

1.0 INTRODUCTION

Inthis sectionwewillintroducethenotionafabsequenadasequencafreahumbers.
Informally, aubsequenafasequence isaselection oftermsfrom thegeguence
suchthattheselectedtermsforma newsequence. Udwsiiyectiomsmadefordefinite
purpose.Forexample, subsequencaseoftenusefuliastablishingheconvergencerthe
divergence ofthesequence. Weuwillalsoprovetheimportaxistencéheorem knowas
theBolzano-Weierstra3heorem, whichwillbeusedtoestablish anumber sigrificant
results.

2.0 OBJECTIVES

At the end of the unit, readers should be able to

0) understand the notion afSubsequence of a sequence of a real numbers.

(i) prove important existence theorem known asBbkzano-Weierstrass Theorem.

3.0 MAIN CONTENT

3.4.1 Definition Let X = (X,) be a sequence of real numbers andfai,<---<n<:-- be a
strictly increasing sequence of natural numberenThe sequencé = (x,) givken by

(X‘"ﬁ’ xb’ e er )
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is called asubsequenceof X.

For example, i := (1, %2, %5, -++), then the selection of even indexed terms presiuc
the subsequence

111 1
x_ [2’ 41 6;”1 2;”}

wheren; = 2,m, = 4,---, n= 2, ---. Other subsequencesXf (1/n) are the following:

135 &1 | 2l4le (X)!

The following sequences anet subsequences &= (1/n)

) (40 o)

A tail of a sequence (see 3,1.8) is a special wypesubsequence. In fact, the-tail
corresponds to the sequence of indices
Mm=m+1lmp=m+2-n=m+k,-,

But,clearly, not every subsequence of a given semueeed be a tail of the sequence.
Subsequences of convergent sequences also corteetige same limit, as we now
show.

3.4.2 Theorem If a sequence X =(of real numbers converges oreal numbexk,
then any subsequence=¢x.) (k)f X also converges to x .

Proof: Lete>0 be given and lé{(¢) be such that ih > K(g),then|x— x| < ¢.
Since m<n<---<n<--- is an increasing sequence of natural numbers #asilyproved(by
Induction) thatnc>k. Hence, if k =K (¢€),we also havenc=k >K(e ) sothatk\xn — x\

<eTherefore the subsequergxe) also converges t.
QED

3.4.3 Example (@ lim®"=0if0<b< 1.

We have already seen, in Example 3.1.1l(b), th& #b <1 and ifx, := b", then it
follows from Bernoulli's Inequality that liig) = 0. Alternatively, we see that since b <1,
thenxn+1 = b™'< b"= x50 that the sequence,)is decreasing. It is also clear that0,<1,
so it follows from the Monotone Convergence Theo®&2 that the sequence is convergent.
Let x :=limx,. Since(xzn) is a subsequence ¢k,) it follows from Theorem 3.4.2 that =
lim(x2n).Moreover, it follows from the relatiom, =b*" = (b")? = x4, and Theorem 3.2.3 that

X = im(Xzn) = (lim(xy))? =2

Therefore we must either haxe=0 orx = 1. Since the sequenfg) is decreasing and bounded
above byb <1, we deduce that= 0.
(b)  limc™) =1forc > 1.

This limit has been obtained in Example 3.1.11@)d >0, using a rather ingenious
argument. We give here an alternative approadhdocase > 1. Note that iz, :=c /", thenz,>1
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and z.< zfor all n e¥” (Why?) Thus by the Monotone ConvergenceTheorkenlimit z :=
lim(z,) exists. By Theorem 3.4.2, it follows that lim(zy). In addition, it follows from the relation

Z2n — C1/2n — (Cll v2 _ Z]JZn

z =lim(zn) = (im(z,))¥? =2

and Theorem 3.2.10 that

Therefore we havé=. zwhence it follows that either z = 0 or z = 1. Siggel for all n O, we
deduce thar=1.
We leave it as an exercise to the reader to carthidease 0&<1. O

The following result is based on a careful negatitie definition of linfx,) =x. It leads to
a convenient way to establish the divergence efjaence.

3.4.4 Theorem Let X= (x,) be a sequence of real numbers. Then the folloarag@quivalent:

0 The sequence X ={pdoes not converge tdxRk,
(i) There, exists any> 0 such that foany KIs¥; there exists ¥ such than> k

and |>§,k— XB &o.
(i)  There existsan o> 0 and a subsequenke~ (>g1)k of X'such thatx, - xX\= & for all
kO~
Proof: (i) = (ii) If (x,) does not converge iqthen for some> 0 it is impossible
to find a natural numbeék such that for alh >k the termsx.satisfy\x, — Xxp €o. That is,for

eachkerit is not truethat forall n > k the inequalityX, - X| <eo holds. In other words, for
eachkOswthere exists a natural number >k such thatd, — x| > €o.

(ii) = (iii) Let g0 be as in (ii) and let;JAbe such thanl> 1 and\x— >l<|2 €0. Now let
nJsAbe such thany> njand \x- X\ > £o; let ns0dsbe such thanzs>n, and \x, — %\ > «o.
Continue in this way to obtain a subsequence ¥.rpof X such thatx, - x\ > g¢for all k
O,

(i) = (i) Suppose X =(x,) has a subsequenc€ = (x,) satisfying the condition
in (iii). Then X cannot converge te;for if it did, then, by Theorem 3.4.2, the subsemee
X' would also converge ta. But this is impossible, since none of the termsXobelongs
to theeop-neighborhood of QED.

Since all subsequences of a convergent sequendeconugrge to the same limit, we
have part (i) in the following result. Part (ii)lfmvs from the fact that a convergent sequence is
bounded.

3.4.5 DivergenceCriteria  If a sequence X £x,) of real numbers has either of the
following properties, then X idivergent.

0] X has two convergent subsequenxes (xng andX" = (x,) whose limitsire not
equal.

(i) X'is unbounded.

3.4.6 Examples @ The sequencé:= ((—1"))is divergent.
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The subsequencé := ((—I)®*")= (1, 1,--) converges to 1, and the subsequexite
(—1)* = (-1, — 1;--) converges to —1. Therefore, we conclude from Témad3.4.5(i) that X
is divergent.

(b) The sequence (l,%, 3, ¥a) is divergent.

This is the sequencé=(y,),wherey, = nif nis odd, and;, —1/nif nis even. It can
easily be seen thatis not bounded, Hence, by Theorem 3.4.5(ii), tligisace is divergent.
(c) The sequenc8:= (sim) is divergent.

This sequence is not so easy to handle. In disgugsive must, of course, make use of
elementary properties of the sine function. We ltgbat sinft/6) = %2 = sin(&/6) and that
sinx>%% for x in the intervall := /6, 51/6). Since the length of;is 5m/6-—/6 = 21/3 >2,
there are at least two natural numbers lying indigewe letn; be the first such number.

Similarly, for eachk ¥, sinx > % forx in the interval.
Lo= (m/6 + 2r(k— 1), 5/6 + 2r(k - 1)).

Since the length ofik greater than 2, there are at least two naturalbers lying inside 1 we
let noe the first one. The subseque®e= (simy)of Sobtained in this way has the property
that all of its values lie in the intervaV}, 1].

Similarly, if k Os#andJis the interval
J = (76 + 2t(k —1), 11/6 + 2r(k —1).

then it is seen that sir< - %2 for allx(J@and the length alkis greater than 2. Lety be the first
natural number lying idy. Then the subsequeng® :=(sinm¢} of Shas the property that all of its
values lie in the interval [- 1,- %2 ].

Given any real numbae; it is readily seen that at least one of the sylsecesSandS"
lies entirely outside of the %:-neighborhood @f Thereforec cannot be a limit ofS.

Sincec OR, is arbitrary, we deduce thais divergent. o

The Existence of Monotone Subsequences

While not every sequence is a monotone sequenceiill@ow show that every sequence has a
monotone subsequence.

3.4.7Monotone Subsequence Theorem IfX = (x,)is a sequence of real numbers, then
thereis a subsequence &fthatis monotone.

Proof. For the purpose of this proof, we will say that thibd termxqis a "peak” ifxm=>xnfor
all n such thatn > m. (That is, Xnis never exceeded by any term that follows it ie th
sequence.) Note that, in a decreasing sequencey e@gem is a peak, while in an
increasingsequence, no term is a peak.

We will consider two cases, depending on whexhaas infinitely many, or finitely many,
peaks.

Case 1: Xhas infinitely many peaks. In this case, we lis ffeaks by increasing
subscriptsm , Xyt X ---.Since each term is a peak, we have

Therefore, the subsequerfeg,) of peaks is a decreasing subsequenie of
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Case 2:X has a finite number (possibly zero) of peaks.these peaks be listed by
increasing subscriptgy , %y, -+, %y, Lets: = m+ 1 be the first index beyond the lastpeak. Since
Xgds not a peak, there existes; such thaks< xs. Sincexds not a peak, there exisig>s, such
thatxs< xs.Continuing in this way, we obtain an increasirg ¢f X. , QED.

It is not difficult to see that a given sequenceynmave one subsequence that is
increasing, and another subsequence that is degeas

The Bolzano-Weierstrass Theorem

We will now use the Monotone Subsequence Theorgroie the Bolzano-Weierstrass Theorem,
which states that every bounded sequence has@rgent/subsequence. Because of the importance of
this theorem we will also give a second proof based on the Nested Interval Property.

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a
convergent subsequence.

First Proof: It follows from the Monotone Subsequence Theoreat thX = (x,) is a
bounded sequence, then it has a subsequefice (x) that is monotone. Since
thissubsequence is also bounded, it follows froeMbnotone Convergence Theorem 3.3.2
that the subsequence is convergent. QED.

Second Proof.Since the set of valuds, : n O is bounded, this set is contained in an interval
l1:=[a,b].We takey: = 1.

We now bisectil intotwo equal subintervalsahd I', and divide the set of indices {
O n> 1} into two parts:

A ={nOF n>ng,x, 00"}, By :={nOAN n>ny,x, 01"}

If A1 is infinite, we takd, :=1; and letn, be the smallest natural number in.ASee 1.2.1.)
If Aqis a finite set, the®;must be infinite, and we take:=l'; and leh,be the smallest
natural number i,
We now bisect,into two equal subintervall, andl",and divide the sdin O n
>n ) intotwo parts:
A2:={nD?\7:”n>n2,anI'2}, Bz:={nD9Vf'n >n2,anI"2}

If A, is infinite, we takds; :=I;and letngbe the smallest natural number in. K A, is a finite
set, therB,must be infinite, arid we tale := 1", and lehs be the smallest natural numbeBin

We continue in this way to obtain a sequence ofedemtervaldol,---Ol 0 and a
subsequencéx,) of X,such thak,0ly for kO Since the length df isequal tob-a) /251, it
follows from Theorem 2.5.3 that there is a (unigcenmon poin€lfor all kKON, Moreover,
sincex,and both belongtdy, we have

ko, - &l < (b— 812
whence it follows that the subsequefig, of X converges t& QED.

Theorem 3.4.8 is sometimes calledthe Bolzano-Wrsss Theorerfor sequencegecause there
is another version of it that deals with boundésliseR (see Exercise 11.2.6).
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40 CONCLUSION
It is readily seen that a bounded sequence carMaaioels subsequences that converge to different
limits or even diverge. For example, the sequefeel()")has subsequences that converge to -1,
other subsequences that converge to +1, andsubasquences that diverge.

Let X be a sequence of real numbers andldie a subsequence ¥f ThenX'is a
sequence in its own right, and so it has subsegaeNte note that K" is a subsequence of
X',then it is also a subsequenceXof

5.0 SUMMARY

3.4.9 Theorem LetX = (%) be a bounded sequence of real numbers and [&tx
LKhavehe propertythat every convergent subsequent% converges to x. Then the sequence
X converges to X.

Proof. SupposeM > 0 is a bound for the sequence X so tkatd M for all n 0. If X does

not converge tx, then Theorem 3.4.4 implies that there exist O and a subsequenxe=
(Xn) of X such that

(1) k- e forall KO

Since X' is a subsequence of the numbeM is also a bound foX. Hence the Bolzano-
Weierstrass Theorem implies th&t has a convergent subsequen€e Since X" is also a
subsequence oX, it converges tax by hypothesis. Thus, itsterms ultimately belongthe
go-neighborhood ak, contradicting (1). QED.

6.0 TUTOR MARKED ASSIGNMENT

Exercises for Unit 3.4

1. Give an example of an unbounded sequence thatd@nvergent subsequence.
2. Use the method of Example 3.4.3(b) to showift@etc<1, then lim¢¥™=1.

3. Let (f,) be the Fibonacci sequence of Example 3.1.2(d),letnd;= f,+1/f,.Given
that lim kn) = Lexists, determine the value lof

4. Show that the followingsequences are divergent.
(@) 1 -(-1) + 1/n), (b) (simmnt/4).

5. LeX = (x,) and¥ =(y,)be given sequences, and let the "shuffled" sequé&nee(z,)be
defined byz:=x1, Z> ;= y1. ***, Zon-1:= Xn, Z2n = Yn,*+, Show thatZ is convergent if and only if
bothX andY are convergent and lii=lim Y .

6. Letxn:=n *'"fornOw,
(a) Show thak , + 1 < Xqif and only if (1 + 1h)"< n, and infer that the inequality is
valid for n > 3. (See Example 3.3.6.) Conclude tha&t) is ultimately
decreasing and that=lim(x,)exists.
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11.

12.

13.

14.
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16.
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(b) Use the fact that the subsequefxgg also converges toto conclude that —1.

Establishthe convergence and find the limitheffollowing sequences:

@  ((1+1h*)"%), (b) (@ +1a)",
©  (@+n’), (d) (1 +2n))

Determine the limits of the following.

@ (@), b) (@ +12)™).

Suppose that every subsequenc¥ ef(x,)has a subsequence that converges to 0.
Show that linX = 0.

Let (x,) be a bounded sequence and for eadilets,: = supfsc k =njand S :=
inf{ s,). Show that there exists a subsequencs.pfh@t converges ts.

Suppose that>0 for allnOsvand that lim((-1¥x,)exists. Show thai,) converges.

Show thalf (x) is unbounded, then there exists a subsequepi=uch that lim(Ixy)
=0.

Ifx, := (-1)"/n, find the subsequence 6, ) that is constructed in the second proof of
the Bolzano-Weierstrass Theorem 3.4.8, when weltaké 1, 1]

Let (xn)bea bounded sequence and $et= supf, nOwW). Show dial if s¢
{Xn.:nOA), then there is a subsequencéxgf that converges ts.

Let (n)be a nested sequence of closed bounded inteRaalgacs¥; let x,0l,,. Use
the Bolzano- Weierstrass Theorem to give a prottie@Nested Intervals Property 2.5.2.

Give an example to show that Theorem 3.4.9 fathe hypothesis thaf is a bounded
sequence is dropped.

REFERENCES/FURTHER READINGS

Unit5 The Cauchy Criterion

1.0

INTRODUCTION

The Monotone Convergence Theorem is extraordinaisigful and important, but it has the
significant drawback that it applies only to sequenthat are monotone. It is important for us to
have a condition implying the convergence of a eeg@l that does not require us to know the
value of the limit in advance, and is not restddi® monotone sequences. The Cauchy Criterion,
which will be established in this section, is sadondition.

2.0

OBJECTIVES
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At the end of the Unit, readers should be able to
0) know the usefulness of the Monotone Convergdraorem
(i) understand the Cauchy Criterion and its diowhlity.

3.0 MAIN CONTENT
3.5.1 Definition A sequenc& = (x,) of real numbers is said to b&Cauchy sequence

if for every e> 0 there exists a natural numbé(e) such that for all natural numbers
m=>H (&), the terms, . xrsatisfy, — Xq|<e.

The significance of the concept of Cauchy sequéasen the main theorem of this section,
which asserts that a sequence of real numbersnigecgent if and only if it is a Cauchy
sequence. This will give us a method of provinguence converges without knowing the
limit of the sequence.

However, we will first highlight the definition a€auchy sequence in the following
examples.

3.5.2 Examples (a) The sequence (1)is a Cauchy sequence.
If e>0 is given, we choose a natural numbler H ( ¢) such thatH >2/ €. Then ifm, r= H,
we have 1 n<1/H<e/2 and similarly lih<e/2.Therefore, it follows that im, H>H, then

1 1. 1 1
n rri_n+ m+2<

2 ~¢

Sinces> 0 is arbitrary, we conclude that (Qis a Cauchy sequence.
(b) The sequence (1 + (—"1Lis nota Cauchy sequence.
The negation of the definition of Cauchy sequescdhere existgo>0 such that for
everyH there existat leastome> H and at least on@ > H such thatq, — xm\> .
For theterms,:= 1+ (— 1)',we observe that if n is even, then—2and x.= 0, If we take
&o = 2, then for anyH we can choose an even number H and letm ;.= n + 1to get

% — %1] = 2 =¢0

We conclude thak)is not a Cauchy sequence. o
Remark We emphasize thatto prove a sequdngg is a Cauchy sequence, we may
not assume a relationship betweeandn, since the required inequalitg, — %\ <emust
hold foralln, m>H(&).But to prove a sequencenista Cauchy sequence, we may specify a
relation between andmas long as arbitrarily large valuesroindm can be chosen so that

[Xn — Yn|= €o0.

Our goal is to show that the Cauchy sequencgwacesely the convergent sequences.
We first prove that a convergent sequence is alyasexuence.

3.5.3Lemma If X — (%) is a convergendequencef realnumbers, theiX is a Cauchy
sequence.

Proof. If x :=limX, then givere> 0 there is a natural numhé(e/2) such that iin >
K(e/2) then|Xn-Xm|<eo/2. Thus, ifH(e) := K(¢/2) and ifn, m>H (¢) , then we have

o — Xl = [(%n = X) + (X — X))l
= X[+ |0 =X) + n—X<|el2 +€/2 =¢
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Sincee> 0 is arbitrary, it follows thaix,) is a Cauchy sequence. Q.ED

In order to establish that a Cauchy sequencengergent, we will need the following
result. (See Theorem 3.2.2.)

3.5.4 Lemma A Cauchy sequence of real numbers is bounded.

Proof: Let X := (x,) be a Cauchy sequence andslet 1. IfH := H(1) andn > H, then %, —
x| < 1. Hence, by the Triangle Inequality, we hayge< |x4| + 1 for alln > H. If we set

M= SUp{lel, P(Zlv IXH-ll’ kHl + 1}’
then it follows thatqn| <M for all n O Q.E.D

We now present the important Cauchy Convergeniberion.

4.0 CONCLUSION
3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof: We have seen, in Lemma 3.5.3, that a converggoesee is a Cauchy sequence.
Conversely, leX = (x,) be a Cauchy sequence, we will show &t convergent to
some real number. First we observe from Lemma #hatsequenck is bounded. Therefore, by
the Bolzano-Weierstrass Theorem 3.4.8, thereubsesjuencX’ = (xn) of X that converges to
some real number. We shall complete the proof by showing tKatonverges ta .
Since X=(x,) is a Cauchy sequence, given 0 there is a natural numbk(e/2) such
that ifn, m> H(e/2) then

@ kn— x| <&l2

Since the subsequenké = (x.) converges ta*, there is a natural numbr> H (¢/2)
belonging to the setn{, ny, -+ } such that

b — X | <e/2.
SinceK=H(e/2), it follows from (1) withm =K that

Xn— X <e/2 for n=H (e/2)

Therefore, iln > H(e/2), we have . .
kn =X = |(Xn - %) + (X — X))
< X =% + Xk = X|
<2 +¢&l2=¢

Sincee> 0 is arbitrary, we infer that lig{) = x . Therefore the sequendeis convergent.
Q.E.D

We will now give some examples of applicationshef Cauchy Criterion.

3.5.6 Examples (@ LetX = (x,) be defined by
X1:= 1,% = 2, and  Xp:= % X2t Xn1) forn >2.
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Can be shown by Induction thatsk,< 2 for allJs#. (Do So.) Some calculation shows that
the sequenck is not monotone. However, since the terms areddrby averaging, it readily

seen that 1
ko — X1l = 0T forn O~
Prove this by Induction.) Thus,nf > n,we may employ the Triangle Inequality to obtain

Ko — Xn| < Mo - Xoe1] + Koer— X2l + F Xma— Xal

— 4%— + +L
zn:r 2 2m-2

1 1 1

Therefore, givers> 0, if nis chosen so large that i#2s/4and if m>n, then it follows
thatix, - xm\<e. Therefore Xis a Cauchy sequencedf By the Cauchy Criterion 3.5.5 we
infer that the sequencéconverges to a numbgr

To evaluate the limit, we might first "pass to the limit" in the rule a@éfinition = %2
(Xh1+ Xn2) to conclude that must satisfy the relation=%2(x + x) ,which is true, but not
informative. Hence we must try something else.

SinceX converges tx, so does the subsequen€avith odd indices. By Induction,
we reader can establish that [see 1.2.4(f)]

X2n+1:1+_; % + +221T

=1+ 2 {1—%}
3 4

It follows from this (how?) that = lim X =lim X’ = 1 +%/3="/3
(b) LetY = (y,) be the sequence of real numbers given by

- L -1 — 1., 1 ™
o= Y= %ry“ Y ST Yoo
Clearly,Y is not a monotone sequence. Howevan ¥ n,then

[_1)n+2 +(__1)n+3 ot (_1)m+1
(n+1)!  (n+2)! mi
Since 2r-1< r! [see 1.2.4(e)], it follows thatih > n, then (why?)

1 1
(n+1)!  (n+2)! m!

Ym-Yn =

[Ym -Yn| <++

1 1 1
=< 21—n *om F<oma o
Therefore, it follows thatyf) is a Cauchy sequence. Hence it converges to iaylidsi the
present moment we cannot evaluatirectly; however, passing to the limit (with resp®m)in
the above inequality, we obtain.

yn —yK 1/2"

Hence we can calculaggo any desired accuracy by calculating the tegnfisr sufficiently
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largen. The reader should do this and show yhatapproximately equal to 0.632120559. ( The
exact value of is 1 — 1¢.)

(c) The sequence [% —;+ e —rlJ diverges
LetH := (h,) be the sequence defined by
1 1 1
hw= 7+ +-+ |, for  nOA

which was considered in 3.3.3(b)nif> n,then

—h= L 4.4 L
i = o = 1Tt m
Since each of these — nterms exceeds @ thenhp, — h> (M — n)/m =1 — n/m.In
particular, if m = 2n we havehy, — h>%. This shows thaHis not a Cauchy sequence
(why?); thereforeH is not a convergent sequence. (In terms that will be chtoed in Unit

3.7, we have justproved that the "harmonic sed§s", 1/nis divergent.)
O

3.5.7 Definition We say that a sequenie= (x,) of real numbers isontractive If there
existsa constar@, 0 <C <1, such that

Kt Xor1] < Clara—%
for all n ¥’ The numbeC is called theconstantof the contractive sequence.

3.5.8 Theorem Every contractive sequence is a Cauchy sequence, anefdneris
convergent.

Proof. If we successively apply the defining condition &ocontractive sequence, we can work
our way back to the beginning of the sequencelmsv&

Keez=Xne1] < CPwi=X] < Cr— 4]
< CPra—Xn2 < =+ < Clha—X
For m >n, we estimatéx, — %\ by first applying the Triangle Inequality and thesing the
formula for the sum of a geometric progression (s&et(f)) This gives
MYl < XorXmal + Xma = Xnal - + Kns1— X

S(Cm-z + Cm—3+. e+ Cn-l) |X2_ Xll
_~ndyf, 1< mn
<iese

<c™ [1—1(3] Yo —x4.
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Since 0 €< 1, we know limC")= 0 [see 3.1.11(b)].Therefore, we infer ta) is aCauchy
sequence. It now follows from the Cauchy Convergetigterion 3.5.5. thdtx,) is a convergent
sequence. QE.D.

50 SUMMARY

In the process of calculating the limit of a cootree sequence, it is often very
important to have an estimate of the error at thestage. In the next result we give two such
estimates: the first one involves the first tworterin the sequence and n; the second one
involves the difference, — %,-1

3.5.9 Corollary IfX := (xn) is a contractive sequence with constan®GC< 1,and if X:=
lim X, then o
() K -xl <bopiiz

.. * C
(") IX - x’ll < 1-C *n—xnll-

Proof.From the preceding proof,ifi > n,then\y, - X,| < (C*/ (1 —C))\X2 —X4].
If we letm— coin this inequality, we obtain (i).
To prove (ii), recall that ifn>n, then

XXl < PXarXmal +++ + Kner =X
Since it is readily established, using Inductidmatt
[tk Xnneket| < Ck|Xn—Xn-1|
we infer that

X=X < (C™™--+ + C? + ClXy — Xn1]

_C_
< 1-C *n_xn-ll-

We now letm — oo in this inequality to obtain assertion (ii). Q.E.D

3.5.10 Example We are told that the cubic equatigh— 7x +2 = 0 has a solution
between 0 and 1 and we wish to approximate thigisal This can be accomplished by means of
an iteration procedure as follows. We first rewttte equation ag = (*+ 2)/7 and use this to
define a sequence. We assign;m arbitrary value between 0 and 1, and then define

Xor1:= U7 O0Ch + 2) for newW
Because 0x< 1, it follows that G< x,<1 for alln € 4. (Why?) Moreover, we have
X2 = Xn+1|= Yz (X3n+1 +2) _1/7(X3n +2)| :l/7|X3n+1—X3n|

= Y21+ Xne 1% + Xon| Xenrr Xl <7 Pre1— X

Therefore(x,) is a contractive sequence and hence thereresisith that lim¢;) = . If we pass to the limit
on both sides of the equality, = (0, + 2)/7, we obtaim = (> + 2)/7 and henaé-7r + 2 = 0. Thus
is a solution of the equation.

We can approximateby choosingx;, and calculating,xs, - --successively. For example, if we
takex= 0.5, we obtain (to nine decimal places):

X =0.303571429, x3=0.289710830,
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X~=0,289188016, x5=0.289 169244,
Xe= 0.289168571, etc.

To estimate the accuracy, we note taki|<0.2. Thus, aften steps it follows from Corollary 3.5.9(i)
that we are sure that | x,\ <3Y/(7"%20). Thus, when = 6, we are sure that

X" - x¢< 3%(7* 20) = 243/48020 < 0.0051.
Actually the approximation is substantially bettgan this. In fact, sinceg|— Xs\ <

0.0000005, it follows from 3.5.9(ii) th&t - xs| <¥ ks - Xs| < 0.0000004. Hence the
first five decimal places o§are correct. O

6.0 TUTOR MARKED ASSIGNMENT
Exercise for Unit 3.5

1. Give an example of a bounded sequence that & @auchy sequence.
2. Show directly from the definition that the fallmg are Cauchy sequences.
n+1 1 1
(@) [ o J (b) 1 > + + n_']
3. Show directly from the definition that the follimg are not Cauchy sequences.
n
@ [(c1r) ®) [n + D ] . © .

4. Show directly from the definition that K.} and §,) are Cauchy sequences, theny;)
and &.yn) are Cauchy sequences.

5. If x, :=v/n, show thatx;) satisfies lim3n.1—x,| = 0, but that is not a Cauchy sequence.

6. Lt p be a given natural number. Give an example ofjaesee X,) that is not a Cauchy
sequence, but that satisfies lig}— x| = 0.

7. Let ) be a Cauchy sequence such thad an integer for eveny e 7. Show thatx,) is
ultimately constant.

8. Show directly that a bounded, monotone incrgesgguence is a Cauchy sequence.
9. If 0 < < 1 andn+1—Xa| <" for all n €, show thatx,) is a Cauchy sequence.

10. If ;<X are arbitrary real numbers agd= %2 §,» + Xn1) for n> 2, show thaty) is
convergent. What is its limit?

11.  Ifyi<y, are arbitrary real numbers ayck Yayna + Zayn2for n —2, show thaty) is
convergent. What is its limit?

12. If x> 0 andb,+1:= (2 +%,)™ for n > 1, show thabg) is a contractive sequence. Find the
limit
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13. Ifx; .= 2 andkn+1:= 2 + 1k, for n > 1, show thaty,) is a contractive sequence. What is
its limit?

14. The polynomial equatioff — 5« + 1 = 0 has a roowith 0 < < 1. Use an appropriate
contractive sequence to calculatgithin 10*.

7.0 REFERENCES/FURTHER READINGS

Unit 6 Properly Divergent Sequence

1.0 Introduction
For certain purposes it is convenient to definetwdhmeant for a sequenceg)(of real numbers
to “tend toto”.

2.0 Objectives

At the end of the Unit, readers should be ableto

(0 understand what is meant for a sequence ofwgabers

(i) understand the Properly divergent sequentledrconcept of monotone sequence.

3.0 Main Content
6.1 Definition  Let (x,) be a sequence of real numbers

0) We say thatx,) tend to +oo, and write limk,) - + oo, if for everyaX_ there exists a
natural numbeK(a) such that ifh > K(a), thenx>a.
(i) We say thatX;) tend to —co, and write limg,) = —oo, if everyBU«K there exists a

natural numbek(B) such that ih > K(B8), thenx,< .
We say thatx,) is aproperly divergent in case we have either liRg) = +oo or lim(x,) =
—00,

The reader should realizethat we are usingthesgwnsohnd—oopurely as a convenient
notation in theabove expressions. Results that have beevegron earlier sections for

conventional limits linfx,) = L (for L ORK) may nomremain true when linxg) = +oo.

3.6.2 Examples (a) lim{) = +oo.
In fact, ifaORis given, leK () be any natural number such tKétr) >a.

(b)  lim(n?)= +oo.
If K(a) is a natural number such th&fa) >a, and ifn >K(a) then we have
> n>a

(c) If c> 1, then lim¢") = +oo.
Let c = 1 +b, whereb >0. If a0Ris given, letK(a) be a natural number such that
K(a)>al/b. If n> K(a)it follows from Bernoulli's Inequality that

c"=(1+b)">1+nb>1 +a>a.

Therefore lim¢") = +co. O
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4.0 CONCLUSION

Monotone sequences are particularly simple in te¢artheir convergence. We have
seen intheMonotone Convergence Theorem 3.3.2 timatatone sequence is convergent if and
only if it is bounded. The next result is a refotation of that result.

3.6.3 Theorem A monotonesequence of real numbers is properly divergenhd anly
if it is unbounded.

@ If (xn) is anunbounded increasing sequence, lmefx,) = +oco.

(b)  If'(xy) is an unbounded decreasing sequence, liran(x,) = —co.

Proof (a) Suppose thdk,) is an increasing sequence. We know thgtxif)is bounded,
thenit is convergent. If,) is unbounded, then for anyJRthere exista(a) OASuch that
a<xy@). But since X,)is increasing, we have< X)for all n >n(«).Since ais arbitrary, it
follows that limn)= +co.

Part (b) is proved in a similar fashion, QED.

The following "comparison theorem" is frequentlyedsin showing that a sequence is
properly divergent. [In fact, we implicitly usediit Example 3.6.2(c).]

3.6.4 Theorenhet (X,)and (y,) be two sequences of real numbers and suppose that
(1) Xn<ynfor all nOwW.

(a) If lim(x,) = 400, thenlim(y,) = +co.
(b) Iflim(yn)=—oo, therdim (X,)= —oo.

Proof. (a) If lim(x,) = +o, and if a0Ris given, then there exists a natural number
K (a)such that ifn >K(a), then a<x,.In view of (1), it follows thata<y.for all n
>K (). Sinceais arbitrary, it follows that limf,) = +oo.

The proof of (b) is similar. QE.D.

Remarks (a2) Theorem 3.6.4 remains true if condition (1uiBmately true; that is, if
there existsnOdaABuch thak,<y.for all n >m.

(b) If condition (1) of Theorem 3.6.4 holds andith(y, ) = +oo, it doesnot follow that lim
(Xn) = +oo. Similarly, if (1) holds and if linfx,) = -oo, it doesnot follow that lim(y,) = +c0. In
usingTheorem 3.6.4 to show that a sequence tendsotfrespectively,—oo] we need to show
that the terms of the sequence are ultimately grdetspectively, less] than or equal to the
corresponding terms of a sequence that is knovenih to+oo[respectively,—oo].

Since it is sometimes difficult to establishan ungiy such as (1),the following "limit
comparison theorem" is often more convenient tathese Theorem 3.6.4.

5.0 SUMMARY

3.6.5 TheoremLet (x,)and (y,) betwo sequencesf positive real numbers and suppose that for
LOR,L> 0, we have

2 limXa/yn) = L.
Thenlim(x,) =400 if and only iflim(y,) = +co.

Proof. If (2)holds, there existdASuchthat
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Yol <xo/yn<loL for all n > K

Hence we havefL) y.< x.< (/L) yifor alln > K.The conclusion now follows froma
slightmodification of Theorem 3.6.4. We leave tle¢ads to the reader. Q.E.D.

The reader can show that the conclusion need ridtiheither L =0 or L = +oo.

However, there are some partial results that caesheblished in these cases, as will be seen
in the exercises.

6.0 TUTOR MARKED ASSIGNMENT
Show that if(x) is an unbounded sequence, then there exists ferigradivergent
subsequence.
2. Give examples of properly divergent sequeneggnd (y,) with y,# 0 for all
nOASuchthat:
@ &-/yn) is convergent, (b) (X/yn) is properly divergent.
3. Show that ik>0 for allnC<x; then lim(x,)= 0 if and only if lim (1k,)= +oo.
4. Establish the proper divergence of the follggequences.
(& Wn), (b) (n+1),
(© Wn—1), (d) n+1).
5. Is the sequence (sinn) properly divergent?
6. Let &,) be properly divergent and 18t,) be such that ligx.y») belongs toR, Show that
(yn) convergestoO.
7. Let &,) and(yn) be sequences of positive numbers such thatiya) = 0.
(@) Show that if limX,) = 400, then lim{y,)= +oo.
(b) Show that i{y,) is bounded, then li(r,) = 0.
8. Investigate the convergence or the divergenteedbllowing sequences:
@) Vn? + 2), (b) n/(n?+1)),
(c) Jn? + 1/4/n), (d) (sim/n).
9. Let(x,) and(y,) be sequences of positive numbers Such thgxiyn) = +oo.
(a) Show that if linfy,) = 400, then lim§,) = +co.
(b) Show chat ifx,) is bounded, then linyg)= 0.
10. Show that if limg,/n) =L, whereL >0, then limg,) = +oo.
7.0 REFERENCES/FURTHER READINGS

Unit 7 Introduction to Infinite Series
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1.0 INTRODUCTION
We will now give a brief introduction to infiniteeses of real numbers. We will establish a
few results here. These results will be seen tarmeediate consequences of theorems we
have met in thisModule.

MAIN CONTENT
In elementary texts, an infinite series is sometititkefined” to be "an expression of the form"

(1))(1 + X oot Xy + el

However, this"definition" lacks clarity, sincethesea priori no particular value that we can
attach to this array of symbols, which calls for iafinite number of additions to be
performed.

3.7.1 Definition If X := (Xxn)is a sequence iR, then theinfinite series (orsimply the
series)generated byX is thesequencs := (x) defined by

S =X
S =St X  (FX+X)

K =Skt Xk  (Fxt Xt X)

The numbersg.are called théerms of the series and the numbersre called thgartial
sumsof thisseries. If lind exists, we say that thisseriec@vergentand call this limit thesum
or thevalue of thisseries. If this limit does not exist, we $hat the serieSis divergent.

It is convenient to use symbols such as

(0]

() Y () o X X o X X
to denote both the infinite seri&gyenerated by the sequente: (x,) and also to denote the
value limS in case this limit exists. Thus the symbols i iffay be regarded merely as a
way of exhibiting an infinite series whose convexgge or divergence is to be investigated. In
practice, this double use of these notations dagtdead to any confusion, provided it is
understood that the convergence (or divergenct)eo$eries must be established.

Just as a sequence may be indexed such thasitgl@ment is not,, but isXo, or Xs
or Xgg, We Will denote the series having these numbetiseasfirst element by the symbols

(00 (00] oo
X or Y X or > X
n=0 n=5 n=99

It should be noted that when the first term in #egies isxy, then the first partial sum is
denoted by.

Warning The reader should guard against confusing the wtselsuence" and "series".
In nonmathematical language, these words are h@ageable; however, in mathematics, these
words are not synonyms. Indeed, a series is a seg8e= (s, obtained from a given sequence
X = (xn) according to the special procedure given in Dgdim 3.7.1.

e}
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3.7.2 Examples (@) Consider the sequen¥e= (r")n.-o wherer R, which generates
thegeometric series
[ee)
(3) ) M= 14r+r2++r"+...
n=0

We will show that iff| < 1, then this series converges to 1)(1See also Example
1.2.4(f).) Indeed, i, := 1 +r + r%for n >0, and if we multiplys,by r and subtract the result
from s,, we obtain (after some simplification):

s(1-r)=1-r"*

Therefore, we have

n+l

1
S T

from which it follows that el
by - = |< Il
1r = 1

Since f|"™'= 0 wherer] < 1, it follows that the geometric series (3) comesrto 1/(1 )

when | < 1.
(b) Consider the series generated by Z’ﬁ%b that is, the series:

(o8]

@ (1= (+1) + (D)+ (+1) + (D

n=0

It is easily seen (by Mathematical Induction) that 1 ifn> O is even andn=0ifnis
odd; therefore, the sequence of partial sums@sl(D;--). Since this sequence is not
convergent, the series (4) is divergent.

(c) Consider the series.

®) S dt o e

By a stroke of insight, we note that

1 1 1
WD) Tk kel

Hence, on adding these terms frkm 1 tok = n and noting the telescoping that takes place, we

obtain n 1

ST T W

Whence it follows that,— 1. Therefore the series (5) converges to 1.

We now present a very useful and simmeessargondition for the convergence of a
series. It is far from being sufficient, however.

3.7.3Thenth Term Test If the serie®, Xx,converges, thelm(x,) = 0.
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Proof. By Definition 3.7.1, the convergence @f xjrequires that ling) exists. Since, =
$— $u.then limé,) = lim(s,) — lim(s,.1)= 0. QED.

Since the following Cauchy Criterion is preciselgeéormulation of Theorem 3.5.5,
we will omit its proof.

3.7.4Cauchy Criterion for Series The serie§. x.,converges if and only if for evesy 0
there existd(s) OV suchthat ifm > n>=M(¢), then

(6) |Sm_$| =\Xn+1t+ Xpept oot Xm|<<9
The next result, although limited in scope, isrebgjimportance and utility.

3.7.5Theorem Let (%) be a sequence of nonnegative real numbers. Tieeseries
Y. X,converges if and only if the sequence (&) of partial .sumsis bounded. In thiscase,

[oe]

n; Xo= lim(sg) = supfs : KOAF
Proof.Sincex,>0, the sequenc®of partial sums is monotone increasing:
S<$HS v S

By the Monotone Convergence Theorem 3.3.2, theesep$ = (k) converges if andonly if it
is bounded, in which case itslimit equals sp{ QE.D.

3.7.6Examples (a) The geometric series (3) diverges|if] 1.
This follows from the fact that the term&lo not approach 0 when >1.

1

(b)  Theharmonic series Zl X =
n=

diverges
Since the terms V=0, we cannot use theh Term Test 3.7.3 to establishthis
divergence. However, it was seen in Examples hBa8(d 3.5.6(c) that the sequeigg of
partial sums is not bounded. Therefore, it folléesn Theorem 3.7.5 that the harmonic series is
divergent.
(c) The2-series OZO] xJ;i§ convergent.
n=1 n

Since the partial sums are monotone, it sufficey®vto show that some subsequence of
(sW)is bounded. Ik =2'-1=1, thersy=1.1fky:=2?- 1 =3, then

= 1 1 1 <1 -12- = llO-
S =7 {22 32J 22 2
and ifks := 22— 1 = 7, then we have
1 4 1
SKS:SQ'*'{ZZ +%2 %2 %2] sk + 2 <1 +%+ 52

By Mathematical Induction, we find thatkf:= 2, — 1, then
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0y< L1+ Yot (W) ++ (%)

Since the term on the right is a partial sum oéangetric series with r =%, it is dominated by
1/(1—%2) = 2, and Theorem 3.7.5 implies mat thei2es converges.

(d)  Thep-series ). 1<=:r1]qgnverges whep> 1.
n=

Since the argument is very similar to the specalecconsidered in part (c), we will
leave some of the details to the reader. As beiokg= 2' — 1 = 1, thersq= 1. If
K, := 2 -1 = 3, then since™23", we have

_1 _ 1
el {413) 13 b

Further, ifks:= 2° - 1, then (how?) it is seen that

4 1 1
Sa<Set & 1+ >t T
Finally, we letr := 1/2%; sincep > 1, we have 0k 1. Using Mathematical Induction, we
show thaif k;= 2 — 1, then
1

O<Skj<1+r+r2+---+ ri< Er

Therefore, Theorem 3.7.5 implies that fheeries converges whe 1.
(o)

(e) Thep-series), #’verges when0<g 1.
n=1

We willuse the elementary inequality<n whennOs¥’and 0 9 < 1. It follows
that

< % fomﬁﬁ?\f

Since the partial sums of the harmonic series@rbaunded, this inequality shows that the partial
sums of thp-series are not bounded when®<1. Hence the p-series diverges for these values
of p.

() Thealternating harmonic seriesgiven by

+1
(7) 020: -(;4—):=-..+ l l +,; (_1)n+1
n=1 n 1 2 3 "

is convergent.

The reader should compare this series with the twienseries in (b), which is
divergent. Thus, the subtraction of some of thensem (7) is essential if this series is to
converge. Since we have

1 1 1 1
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it is clear that the "even" subsequef®g) is increasing. Similarly, the "odd" subsequersge:)

is decreasing since
1 411 1 1 1 1
== 17 |273 |4 5 on  2n+1

Since 0 s;<synt 1/(2n+ 1) =s55041<1, both of these subsequences are bounded beldwariny
above by 1. Therefore they are both convergentatice same value. Thusthe sequefsg of
partial sums converges, proving that the altergatermonic series(7) converges. (It is far from
obvious that the limit of this series is equali@l) O

40 CONCLUSION

Comparison Tests

Our first testshows that if the terms of a nonnggateries are dominated by the corresponding
terms of aconvergent seriethen the first series is convergent.

3.7.7 Comparison Tedtet X :=(xy)andY:= (y,) be real sequences and suppose that for
some KW' we have

(8) 0<X:<Yn for n>¢

(@  Then the convergence ¥f ynimplies the convergence Bf X,
(b)  The divergence @ x,\implies the divergence @¥f vy

Proof(a) Suppose thd vy, converges and, gives»0, letM(g) O be such that im > n
>M(e), then
yn+1+ T ym<g

If m > sup[K, Mg)], then it follows that
0 an+l+ cee XmSyn+1+ oo + ym<3,

from which the convergence Bf x,follows.
(b) This statement is the contrapositive of (a). QED.

Since it is sometimes difficult to establish theegmalities (8), the next result is
frequentlyvery useful.

3.7.8Limit Comparison Test  SupposethatX = (¥) andY:= (y, are strictly positive
sequences and suppose that the following limitsexisk;

—tm [ %n
© r: Ilm[yn}

(@) Ifr #0then), x,is convergent if and only yis convergent.
(b) Ifr=0andif) y,isconvergent, theh x,is convergent.

Proof,..(a) It follows from (9) and Exercise 3.1.17 thaerh existsK 09 such that ¥
<Wyn<2" forn>. K, whence
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(*12r)yn<xn<(2r)ynfor n=K.

If we apply the Comparison Test 3.7.7 twice, weambthe assertion in (a),
(b) If r =0, then there exist§ Oe¥8uch that

0 KXn<VYn for n>K
so that Theorem 3.7,7(a) applies. QED.

5.0 SUMMARY

Remark The Comparison Tests 3.7.7 and 3.7.8 depend omdnavstock of series that
one knows to be convergent (or divergent). Theeewdl find that thep-series is often useful
for this purpose.

(00]
3.79 Examples (a) The serieszlﬁzf_T converges.
n=

It is clear that the inequality

1 ,
0 <<ﬁz—+fw—n D%ﬁz—
is valid. Since the seri@ 1/n®is convergent (by Example 3.7.6(c)), we can afijly

Comparison Test 3.7.7 to obtain the convergentieedjiven series.

. @ 1 .
(b) The serler%jl _on+l is convergent.

If the inequality
1 1

(10) m-n+l
were true, we could argue as in (a). However, i€fa)sefor alln Js¥. The reader can
probably show that the inequality 1 1

Of"n+v1 W

Is valid for alln O, and this equality will work just as well. Howeyérmight take some
experimentation to think of such an inequality #meh establish it.
Instead, if we tak&, := 1/(0* —n + 1) andy,:= 1/’ then we have

Xn n* 1

Yo NP—n+1 1 (Lh)+ (17

Therefore, the convergence of the given seriesvallfrom theLimit Comparison Test
3.7.8(a).

- 1.

. 1
(c) The series;
=l Jn +1
This series closely resembles the seYJes1//n which is ap-series withp = % ; by
Example 3.7.6(e), it is divergent. If we lgt= 1A/ n + 1 andy,:= 1A/n, then we have

R S B

Yn Vvn+1 J1+1/n

is divergent.
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Therefore the Limit Comparison Test 3.7.8(a) applie
. ® 1
(d) The serlesn;1 —nlf.-convergent.

It would be possible to establish this convergdmncshowing (by Induction) that
n<n! for n > 4, whence it follows that 1 1
0 <<err —ﬂ24.

Alternative, if we letx ;= 1/n! andy, := 1h? then (whem > 4) we have
2

X, _ N _n 1
0= Yo nl 1.2-(n-1) n-

Therefore the Limit Comparison Test 3.7.8(b) ampliéNote that this test was a bit
troublesome to apply since we do not presently ktt@wconvergence of any series for which
the limit of x,/y,is really easy to determine.) o

6.0 TUTOR MARKED ASSIGNMENT

1] Let 3 a, be a given series and et b, be the series in which the terms are the
same and in the same order aZ in a, except that the terms for whieh= 0 have been
omitted. Show that, a, converges t@ if and only if), bn,converges t@\.

2] Show that the convergence of a series is nettdtl by changingfanite number of
its terms. (Of course, the value of the sum maghaeged.)

3] By using partial fractions, show that
L 1 b L 1
@ Y mrDey  C L ®) 2 @)@+ D) a
® 1 1
© & D) 4
4] If Y, Xx, and), vy, are convergent, show thgt (xn +y;,) is convergent.
5] Can you give an example of a convergent sétiex, and a divergent serigs vy,

such thad, (x, +yn) is convergent? Explain.
6] (@) Show that the serir% cosn is divergent.
(b) Show that the seri&% (cosn)/n? is convergent.
n=

7] Use an argument similar to that in Example 3fyt6 show that the serigé %%‘—
convergent. L

8] If ¥ a,witha,> 0 is convergent, then® a?, always convergent? Either prove it
or give a counter example.

9] If ¥ a,witha,> 0 is converget, then &/ always convergent? Either prove it
or give a counter example.

Andn+1



10]

11]

12]

13]

14]

15]

7.0
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IfY a, witha,> 0 is convergent,th§ + always convergent? Either prove it
or give a counter example.

If ¥ a,with a,> 0 ia convergent, andlif, ;= (a; + - +a,)/n for N0, show that

Y, byis always divergent.

Let:o;l a(n) be such that (a(n)) is a decreasing sequenceicfyspositive numbers.
If s(n)denotes thath partial sum, show (by grouping the terms(2n) in two
different ways ) that ¥a(a) + 2a(2) +--- + 2'a (2) <s(2")< (a(1) +2a(2)+--- + 2n-
1)) +a(2"). .

Use these inequalities to show t:f:{;l\t a(n) converges if and only 2"a(2")

converges.

This result is often called th@auchy Condensation Testit is very powerful.

Use the Cauchy Condensation Test to discuqs-meiesf (1/n°) for p> 0.
n=1

Use the Cauchy Condensation Test to estaliiskivergence of the series:

1 1
@ X man ® X n(Inn)(1n 1nn)

1
© 2 n(1nn)(1n 1nn)(1n 1n 1rn)
Show that it > 1, then the following series are convergent:
_1 1
(@ Zhnne ®) 2 n(In n)(1n 1nn)°

REFERENCES/FURTHER READINGS
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MODULE 4

LIMITS

“Mathematical analysis” is generally understoodeter to that area of mathematics in which
systematic use is made of various limiting conceptshe preceding chapter we studied one
of these basic limiting concepts: the limit of ajsence of real numbers. In this chapter we
will encounter the notion of the limit of a funatio

The rudimentary notion of a limiting process emsrge the 1680s as Isaac Newton
(1642-1727) and Gottfried Leibniz (1646-1716) sgleg with the creation of the Calculus.
Though each person’s work was initially unknowntle other and their creative insights
were quite different, both realized the need teonigdate a notion of function and the idea of
guantities being “close to” one another. Newtonduske word “fluent” to denote a
relationshipbetween variables, and in his majorkw@rincipia in 1687 he discussed limits
“to which they approach nearer than by any givdfedince, but never go beyond, nor in
effect attain to, till the quantities are diminishafinitum”. Leibniz introduced the term
“function” to indicate a quantity that dependedaowariable, and he invented “infinitesimally
small” numbers as a way of handling the concept lrhit. The term “function” soon became
standard technology, and Leibniz also introducedtémm “calculus” for this new method of
calculation.

In 1748, Leonhard Euler (1707-1783) published his-tolume treatiséntroductio in
Analysin Infinitorum,in which he discussed power series, the exponeatidl logarithmic
functions,Calculi Differentalisin 1755 and the three-volunhestitutiones Calculi Integralis
in 1780-70. These works remained the standarddekion calculus for many years. But the
concept of limit was very intuitive and its loosesded to a number of problems. Verbal
descriptions of the limit concept were proposedther mathematicians of the era, but none
was adequate to provide the basis for rigorousfproo

In 1821, Augustin-Louis Cauchy (1789-1857) publghas lecture on analysis in his
Cours d’Analysewhich set standard for mathematical expositionrf@amy years. He was
concerned with rigor and in many ways raised theelleof precision in mathematical
discourse. He formulate definitions and presenteduraents with greater than his
predecessor, but the concept of limit still remdimdusive. In an early chapter he gave the
following definition:

If the successive values attributed to the samebiar approach indefinitely a fixed
value, such that they finally differ from it by kitle as one wishes, this latter is called the
limit of all the others.

The final steps in formulating a precise definitmmimit were taken by Karl Weierstrass
(1815-1897). He insisted on precise language ayjudaus proofs, and his definition of limit
is the one we use today.
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Gottfried Leibniz
Gottfried Wilhelm Leibniz (1646-1716) was born ieipzig, Germany.
He was six years old when his father, a profestphibosophy, died
and left his son the key to his library and a ¢ifdooks and learning.
Leibniz entered the University of Leipzig at age dfaduate at age
17, and received a Doctor of law degree from thevéisity of
Altdorf four years later. He wrote on legal mattdrgt was
more interested in philosophy. He also developeagir@l theories about language and
the nature of the universe. In 1672, he went tasRes a diplomat for four years. While
there he began to study mathematics with the Dotathematician Christiaan Huygers.
His travels to London to visit the Royal Academytlfier stimulated his interest ip
mathematics. His background in philosophy led ronvery original, though not always
rigorous, results.
Unaware of Newton’s unpublished work, Leibniz pab&d papers in the 1680s that
presented a method of finding areas that is knamaayt as the Fundamental Theorem| of
Calculus. He coined the term “calculus” and invdrtteedy/dxand elongate&® notations
that are used today. Unfortunately, some followefsNewton accused Leibniz df
plagiarism, resulting in a dispute that lasted lumibniz’'s death. Their approaches [fo
calculus were quite different and it is now evidémat their discoveries were made
independently. Leibniz is now renowned for his wonk philosophy, but his
mathematical fame rests on his creation of theubadc

Unit 1 Limits of Functions

1.0 INTRODUCTION

In this section we will introduced the importantioa of the limit of a function. The intuitive
idea of the functior having a limit L at the poirt is that the value$ (x) are close td. when
xis close to (but different fron. But it is necessary to have a technical way ofking with
the idea of “close to” and this is accomplishethia in thes-6 definition given below.

In order for the idea of the limit of a functidnat a pointc to be meaningful, It is
necessary thdtbe defined at points neerlt need not be defined at the pombut it should
be defined at enough point s closechoake the study interesting. This is the reasortHer
following definition.

2.0 OBJECTIVES

At the end of the unit, readers should be able to:-

(1) Understand the limit of a function.

(ii) Understand sequential criterion for limits.

(i)  Understand Divergence Criteria with examples.

3.0 MAIN CONTENT
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4.1.1Definition LetAcR, A point c ORis acluster pointof Aif for everys > 0 there exists
at least one poinJA, x # ¢ such thaf x — ¢| < 6.

This definition is rephrase in the language of hb@hoods as follows: A poirt is a
cluster point of the sét if every -neighborhood/s(c) = (c -3, ¢ +3) of ac contains at least
one point ofA distinct fromc.

Note: The pointc may or may not be a memberAfbut even it is irA, it is ignored when
deciding whether it is a cluster point Afor not, since we explicitly require that there be
points inV;(c) N A distinct fromc in order forc to be a cluster poirA.

For example, iA := {1, 2}, then the point 1 is not a cluster poaitA, since choosing :=
1/, gives a neighborhood of 1 that contains no paifis distinct from 1. The same is true for
the point 2, so we see thfathas no cluster points.

4.1.2 Theorem A numbercO& jis a cluster point of a subs&f & if and only if there
exists a sequence,fan A such that limé,)= ¢ anda,#c for all nCJA,

Proof. If cis a cluster point o, then for anynds¥the (1h)- neighborhood/y, (c) contains

at least one point,m A distinct fromc. Thena,UA,a, #c, and |an— c| < 1himplies lim@,)
=c.

Conversely, if there exists a sequerag i A \{c} with lim(a,) = c, then for anys > 0
there existKsuch that ifn > K, than a e V;s(c).Therefore the-neighborhoodvs (c) of ¢
contains the pointa,, for n> K, which belong tA and are distinct froro. Q.E.D.

The next examples emphasize that a cluster pbiatset may or may not belong to the
set.

4.1.3 Examples (@) For the open intervady := (0, 1), every point of the closed
interval [0, 1] is a cluster point &;. Note that the points 0, 1 are cluster point&ofout do
not belong tdA;. All the points ofA;are cluster points o4;.

(b) A finite set has no cluster points.

(c) The infinite set N has no cluster points.

(d) The setAs:= {1/n : nOA¥ has only the point 0 as a cluster point. Nonethef points in
Ayis a cluster point ofy.

(e) If 1 :=[0, 1], then the se&s := 1 N ‘G consists of all the rational numberslint follows

from the Density Theorem 2.4.8 that every poirt is a cluster point ofes. 0

Having made this brief detour, we now return t® tloncept of the concept of the limit of
a function at a cluster point of its domain.

The Definition of the Limit

We now state the precise definition of the limitaofunctionf at a pointc. it is important to
note that in this definition, it is immaterial whetf is defined at or not. In any case, we
excludec from consideration in the determination of the timi
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4.1.4 Definition Let AcX, and letc be a cluster point oA. for a functionf : A —» X, a
real numbetL is said to be &mit of f atc if, given anye > 0 there exists &> 0 such that ik
DAand 0 <|x—d <§,then | f(x)-L| <e.

Remarks (a) Since the value af usually depends ofy we will sometimes writé (g)
instead ob to emphasize this dependence.
(b) The inequality 0 4 x - ¢ is equivalent to saying+ c.

If L is a limit off atc, then we also say tHatonvergestoL atc. We often write

L=Ilimf(x)orL =Ilimf.

X—C X—C

We also say thatf(x) approachek asx approaches”. (But it should be noted that the
points do not actually move anywhere.) The symhbolis

f(x) —»L as X— C

is also used sometimes to express the facf the limitL atc.

If the limit of f atc does not exist, we say tHfativergesatc.

Ouir first result is that the valueof the limit is uniquely determined. This uniquesiées
not part of the definition of limit, but must bedieed.

4.1.5 Theorem If f: A— K and ifc is a cluster point oA, thenf can have onlypne limit
atc.

Proof. Suppose that numbekrsandL 'satisfy4.1.4 For any > 0, there exist8 (¢/2) > 0 such
that if xe Aand 0 <| x — c| <& (¢/2), then| (x) -L | <e/2. Also there exist8" (/2) such
that ifxe Aand 0 <| x — c| <&" (e/2), then | f(x) -L*| <e/2. Now letd := inf {5 (¢/2), 8"

(¢/2)}. Thenifxe Aand 0< | x—c | <§, the Triangle Inequality implies that

| L-L | = | L]+ ]| f-L]| >e2+e2=e.
Sincee > 0 is arbitrary, we conclude that- L' = 0, so thal. = L. Q.E.D.

The definition of limit can be very nicely des@tb in terms of neighborhoods. (See
Figure 4.1.1.) We observe that because

Vs(€) = (c =8, c +8){x: |x—| <3},

The inequality 0 < |x — ¢ <& is equivalent to saying that# c andx belong to thed-
neighborhoodv; (c) of c. Similarly, the inequality| f(x)-L | < ¢ is equivalent to saying
thatf (x) belongs to the-neighborhoodVv,(L) of L. In this way, we obtain the following
result. The reader should write out a detailed @t to establish the theorem.

17
Given V(L) -4
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Figure 4.1.1 The limit offatcisL.

4.1.6 Theorem Letf A — X and letc be a cluster point oA. Then the following

statements are equivalent.
0) lim f (x) =L.

X—C

(i) Given any e-neighborhoodv,(L) of L, there exists @&-neighborhood/; (c) of ¢ such
that if x # ¢ is any point invs(c) N A, thenf (x) belongsv,(L).

We now give some examples that illustrate howdisf@nition of limit is applied.
4.1.7 Exampleqa) limb="Db
X—C
To be more explicit, l€t(x) := b for all x e R. We want to show that lifn(x) = b.

X—C

If ¢ > 0 is given, we led := 1. (in fact, any strictly positivé will serve the purpose.) Then if
0<| x-c| <1, we have| f(x) =b | b-b| =0 <e. Sincee > is arbitrary, we conclude
from Definition 4.1.4 that linf (x) = b.

X—C

(b) limx = c.

X—C

Let g(x) := x for all x 0K, If £> 0, we choosé () :=&. Then if 0 <| x —c| <38 (g), we
have| g ¥ —c | = | x—c| <e. Sincee > 0 is arbitrary, we deduce that tirs c.

X—C

(c) limx® = c?
X—C
Leth (x) := x*for all xOR. We have to make the deference

lh-¢ | =] 2%-¢&|

Less than a perassigned 0 by takingx sufficiently close tac. To do so, we note that ~c?
= (X + ©) (X - 9. Moreover, if| x—c| <1, then

| x| <|c| +1so that |x+c| <|x] +]c| =2]|c| +1.
Therefore, if| x - ¢| <1, we have
(1) |- | = |x+c| |x-c| <@ ]|c| +1) |- .

Moreover this last term will be less thanprovided we take|x - ¢| <&/ (2 |c| +1).
Consequently, if we choose
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5 (5) = inf{l,2 |:|+1}

then if 0 <| x — ¢ | <&(e), it will follow first that |x — ¢ <1 so that (1) is valid, and
therefore, sincd x —c| <&/(2|c| + 1) that

| ¥~ | <@]|c| +1) | x-c] <=
Since w have a way of choosiide) > O for an arbitrary choice ef> 0, we infer that

lim h(x) = lim x*=c?.

X—C X—C

. 1 1.
= = = > i
(d) “Tﬁc » c itt> 0
Let ¢(x) := 1k for x > 0 and letc > 0. To show that linpy= l/cwe wish to make the
difference X=e
1 1 1
X) - = - = = =
% o X C

less than a preassigned 0 by takingx sufficiently close ta > 0. We first note that

%

for x > 0. It is useful to get an upper bound for themtet/cx) that holds in some
neighborhood o€. In particular, if | X — c| <Y,c, then Ye<x <3/,¢ (why?), so that

X |
o I

Le-%

CX

1
X4

X

o< ¥ 1 forl x - ¢| <%«
cx C

Therefore, for these valuesxfve have

) p(x) -

o |-

< 22 k - cke
C

In order to make this last term tharit suffices to takgx — ¢ <% ¢ &. Consequently, if we

choose
§ () := inf { Yac, YaC?e }

then if 0 <| x - c| <& (¢), it will follow first that | x - c| <icso that (2) is valid, and therefore,
since | x - ¢| <(ic?) ¢, that

‘ 1




Introduction to ReeAnalysis 115

P—— == ~— =
cX C
Since we have a way of choosifi¢e) > 0 for an arbitrary choice af> 0, we infer that lim
X—C
p=1]/c.
(e) limxX-4 4
241 5

Lety(x) := (0C - 4) / (¢ + 1) forx e R. Then a little algebraic manipulation gives us
15x3—4x%— 24|

4
‘I‘U(X) 5 % 5(x2+ 1)

_15x%+6x+ 12|

ST |x-2].

To get a bound on the coefficient pix —2 |, we restrick by the condition 1 x< 3.
Forx in this interval, we havexé+ 6x + 12< 53 + 63 + 12 = 75 and & + 1)> 5(1 + 1) =
10, so that

“P(x)—ﬁsz—ilx—Zl =2 1 x-21.

Now for givene> 0, we choose

3 (¢) :=inf {1, Ze}.
Then if 0 <l x —21< & (), we have| w(x),- (4/5) | <(15/2)1x—21<e>0is
arbitrary, the assertion is proved. o

40 CONCLUSION

Sequential Criterion for Limits

The following important formulation of limit of aifiction is in terms of limits of sequences.
This characterization permits the theory of chaftéo be applied to the study of limits of
functions.

4.1.8 TheorentSequential Criterion)etf: A— R and letc be a cluster point oA. Then the
following are equivalent.
@) limf=L.

X—C
(i) For every sequences in A that converges ta such thatx,# c for all n e N, the
sequencef((x,)) converges ta.

Proof. (i)=(i). Assumef has limitL atc, and supposexf) is a sequence i with lim(x,) =c

andx.# c for all n. We must prove that the sequentéx{)) converges td.. Let ¢ > 0 be
given. Then by Definition 4.1.4, there exists 0 such that ik e A satisfies 0 ¢ x — ¢ 1<,

thenf (x) satisfies| f(x) =L | <e. We now apply the definition of convergent seqeefur
the givend to obtain a natural numbé&r (5) such that ifn >K (3) then | x — c < &. But for
each such,we have| f (x;) —L | <e. Thisifn>K (§), then| f (x)) —L | <e&. Therefore,
the sequencd (x,)) converges ta.

(i) = (i). [The proof is a contrapositive argument.Ji)fis not true, then there exists an
go-heighborhood/,(L) such that no matter whaineighborhood o€ we pick, there will be at
/
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least one numbegin A N Vs(c) with xs# ¢ such thaf (x;) € V,o(L). Hence for every e ¢4, the
(1 /n)-neighborhood o€ contains a numbe¢,such that

0<| x—c| <1/n andxeA,
but such that

| x(%)-L | >& forallne st
We conclude that the sequengg) (n A Y{ c} converges ta, but the sequencé (x,)) does not
converge toL. Therefore we have shown that if (i) is not trueert (ii) is not true. We
conclude that (ii) implied (i). Q.E.D.

We shall in the next unit that many of the basmitl properties of functions can be
established by using corresponding properties mvergent sequences. For example, we
know from our work with sequences thatif)(is any sequence that converges to a number
then ¢, converges ta®. Therefore, by the sequential criterion, we canctede that the
functionh (x) :=*has limit limh (x) = ¢

X—C

5.0 SUMMARY

Divergence Criteria

It is often important to be able to show (i) thateatain number isot the limit of a function
at a point, or (ii) that the functiothoes not have limit at a point. The following result is a
consequence of (the proof of) Theorem 4.1.8. Weelethe details of its proof as an
important exercise.

4.1.9 Divergence Criteria Let AOR, letf :A — R and letc 0K be a cluster point ok
(@) If LOR, thenf doesnot have limitL aftc if and only if there exists a sequenag) {n A
with x, # ¢ for all n e #’such that the sequencg)(converges ta but the sequencé(X,))
does not converge ta
(b) The functionf doesnot have a limit at if and only if there exists a sequenag) (n A
with x.# ¢ for all n e ¥’ such that the sequence)(converges ta but the sequencd(X,))
doesnot converge ink,

We now give some applications of this result tovgnow it can be used.

4.1.10 Example (a)lim (1/x) does not exists iR,
x—0
As in Example 4.1.7 (d), let(x) :=1/kx for x> 0. However, here we consider0.
The argument given Example 4.1.7 (d) break down=f0 since we cannot obtain a bound
such as that in (2) of that example. Indeed, iftake the sequence,f with x,:= 1/n for ne
A, then limk,) = O, butp(x,) = n. As we know, the sequence(X,)) = (n) is not convergent
in K, since it is not bounded. Hence, by Theorem 40}, % (1/x) does not exist ik,

x—0

(b) Iimosgn@) does not exist.
X—

Let thesignum function sgn be defined by

+1 forx>0,
SgnK) :={ 0 forx=0,
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-1  forx<O.
Note that sgn{ =x / | x| for x# 0. (See Figure 4.1.2.) We shall show the sgn doekave
a limit atx = 0. We shall do this by showing that there isgus@ce X,) such that linX,) = 0,
but such that (sgr{)) does not converge.

{I
1€

v

>-1

Figure 4.1.2 The signum function.
Indeed, lex.:= (-1)" /n for n ¢ N so that limg,) = 0. However, since
Sgnky) = (-1) forne ¥,
if follows from Example 3.4.6 (a) that (sgr)) does not converge. Therxeioore lim sgn(

does not exist.
(c) lim sgn(1k) does not exist iR,
x—0
Let g(x) := sin(1k) for x # 0. (See Figure 4.1.3.) We shall show thatoes not have
limit at ¢ = 0, by exhibiting two sequences) (yn) with x,# 0 andy# 0 for alln e s¥"and
such that lim¢,) = 0 and limk,) = 0, but such that ling(x,)) # lim(g(y»)). In view of theorem
4.1.9 this implies that ling cannot exist. (Example why.)

Figure 4.1.3 The functiong(x) = sin(1k) (x # 0).

Indeed, we recall from calculus that &10 if t = nz for n e 2z, and that sin=+ 1 ift ——;n
+ 2nn for n e Z. Now letx,:= 1z for ne ¥ then lim,) = 0 andg(x,) = sinnz = 0 for alln
e A, so that limg(x,)) = 0. On the other hand, Lgt= G + 2mn)™ for n e then limgy,) =

a
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0 andg(yn) = sin ¢ + 2mn) = 1 for allne &4 so that limg(y,)) = 1. We conclude that lim
sin(1b<)0does not exist. X
X—

In order to have some interesting application$is and later examples, we shall make use of walla properties of
trigonometric and exponential that will be estdimid in Module 8.

6.0 TUTOR MARKED ASSIGNMENT

1. Determine a condition ohx —1 | that will assure that:
@ | ¥-1] <, () | ¥-1]| <110°
©) | *=1] <1h foragivemeN,  (d) | x*~ 1| < 1hfora givenn eN

2. Determine a condition ohx- 4 | that will assure that:
@ |™2]|<, (b) |Vx-2] <10%

3. Letcbe a cluster point ok OR and letf: A— R, Prove that linf(x) = L if and if lim
| f)-L | =0. x—e x>

4. Letf: K — K.and letc e R. Show that linf(x) =L if and only if limf(x + ¢) = L.

X—C x— 0

5. Letl:= (0,a) wherea > 0, and legy(x) := x* for x e 1. For any points, ce 1, show that|
g(x) —¢® | <2a | x —c|. Use this inequality to prove that liki= c* for anyc e 1.
X-C

6. Let 1 be interval iR, letf; 1 — R, and lefc ¢ 1. Suppose there exist constaitandL
such that| f(x) —L|<K | x—c| forfe 1. Show that linf (x) =L.
X—C

7. Show that limé= c® fro anyc e R.

X—C

8. Show that lim\x = vc for anyc > 0.

X—C

9. Use either the-5 definition of limit or the Sequential Criterionrfmits, to establish the
following limits.

. 1 . X 1
() XE;? - L (b) >I<Im1 Pl
2 2_
) lim X =o, @ limEe=EEel
Y G I x| Yol x+1 2
10. Use the definition of limit to show that

@) limeé+ 4x) = 12, () im=2 =4,

2 s 2x + 3

11. Show that the following limits dwtexist.
(@) lim = (x>0) (b) Iim\/l—x x> 0),
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X—0 X_)O

(c) Iirgn &k + sgn K)) (d) Iin?) sin(1%).

12. Suppose the function R — R has limitL at 0, and lea> 0. Ifg: R — R is defined by
g(x) :=f(ax) for x e R, show that Igrrg(x) =L.
X—

13. LetceX and leff : K — & be such that linf(x))? = L.

X— C

(a)Show that iL. = 0, then limf(x)
> C
(b) Show by example thatlif£ 0, thenf may not have a limit at.

14. Letf : R _be defined by settinffx) := x if xis rational, and(x) = 0 if xis irrational.
(@) Show thdthas a limit ak = 0.
(b) Use a sequential argument to show tha#i0, thenf does not have a limit at

15. Letf: R — R, let1be an openinterval iR, and letc 1. If f;is the restriction of to 1,
show thaf;has a limit at if and only iff has a limit at, and that the limits are equal.

16. Letf: R — R, letJ be a closed interval i, and letc e J. If f,is the restriction of to
J, show that iff has a limit at thenf;has a limit at. Show by example that it does not
follow that if fzhas a limit at, thenf has a limit at.

7.0 REFERENCES /FURTHER READINGS

Unit 2: Limit Theorems

1.0INTRODUCTION

We shall now obtain results that are useful inudaking limits of functions. These results are
parallel to the limits theorems established in Uhi for sequences. In fact, in most cases
these results can be proved by using Theorem arid&esults from Unit 3.2. Alternatively,
the results in this section can be proved by ustdgarguments that are very similar to the
ones employed in Unit 3.2.

2.00BJECTIVE

At the end of the unit, readers should be able to:
() Understand the conceptfas bounded on a neighborhood.
(i) Define squeeze Theorem of a Cluster Roint

3.0MAIN CONTENT

4.2.1 Definition Let A OR, letf : A>ZR, and letc e R be a cluster point ok. We say that
is bounded on a neighborhood ofc if there exists a-neighborhoodV;s(c) of ¢ and a
constanM >0 such that we hav{a f(x) | <M for all x e AN V; ().

4.2.2 Theorentf A OR andf: A — R has a limit atc €&, thenf is bounded on some
neighborhood o€.
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Proof. If L:=lim f, then fore = 1, there exist§ > 0 such thatif 0 { x —c| <, then
X—C
| 1(x) —L | 1; hence (by Corollary 2.2.4 (a)),
| £09 | - |L] <[ feo-L ] <1.
Therefore, ifx e A N Vi(c), x # ¢, then | f(x) | < |L| + 1. Ifc O A, we takeM = |L| + 1,

while if c e Awe takeM := sup {| f(c) |, | L| + 1}}. If follows that if x eA N Vs(c), then | f
(x) | < M. This shows thattis bounded on the neighborhodgl(c) of c. Q.E.D.

The next definition is similar to the definitiororf sums, differences, products, and
guotients of sequences given in Unit 3.2.

4.2.3 Definition Let AOR and letf andg be functions defined oA to K, We define the
sumf + g, the differencd — g,and the produdtg on Ato X to be the functions given by

(f+9) ) =1(x) +9(3), (-9 () =10 - g(x),
(fg) (x) =1(x) 9(x)
for all x eA. Further, ifb e X, we define thenultiple b fto be the function given by
(b () :=Dbf(x) forall xeA.

Finally, if h (x) # O forxeA, we define thequotientf / h to be the function given by

£) ® ::%3 forall x € A.

4.2.4 Theorem Let A OR, let fandg be functions oA to R, and let € R be a cluster point
of A. Further, leb e R,

(@ limf=Landlimg=M,then:

X—C X—C

im@f+g)=L+M, Ilim(f-g)=L-M,
X— C X=>C

lim (fg)=LM, lim (bf) =bL.
X— C X=>C

(b) IFh: A— R,ifh(x)#0 for allxe A,and if imh=H # 0, then

X—C

im(£) = <.

X—C

Proof. One proof to this theorem is exactly similar tottbhTheorem 3.2.3. Alternatively, it
can be proof by making use of Theorems 3.2.3 adadB4For example, letx{) be any
sequence i such thak, # ¢ for n e ¥, andc = lim(xy). It follows from Theorem 4.1.8 that

Lim(f(x)) = L, lim(g(x)) = M.
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On the other hand, Definition 4.2.3 implies that

fg) () =f(xn) g(x0)  forneA”

Therefore an application of Theorem 3.2.3 yields

Lim((fg) () = im(f(x,) 9(x))
= [limf(x))] [lim(g(xn))] = LM.
Consequently, it follows from Theorem 4.1.8 that

Lim(fg) = lim((fg) (x)) = LM.

The other parts of this theorem are proved inrala manner. We leave the details to the
reader. Q.E.D.

Remarks (1) We note that, in part (b), the additional asption thatH = lim h # 0 is
made. If this assumption is not satisfied, thenlithé x=e

may or may not exist. But even if this limit doegs¢, we cannotuse Theorem 4.2.4 (b) to
evaluate it.

(2) LetA JR, and leffy, f,,-, f.be functions oA to R, and let be a cluster point oA. If

Le=lim f,  for k

X—C

11..., n,

then it follows from Theorem 4.2.4 by an Inductemgument that
Li+ Lot - + Lo= lim(fy+fo + - + 1),
X—C

and
Ly Lo Lp=lim(fy - fo - f).

In particular, we deduce thatlif= lim f andn e ¥, then

X—C

L= lim(f(x))".

4.2.5 Examples (&§ome of the limits that were established in Unlt dan be proved by
using Theorem 4.2.4. For example, it follows frdnstresult that since lim = c,

X—C

then limx? = ¢, and that ifc> 0, then

X—C
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(b) lim 0 + 1)(¢ - 4) = 20.

It follows from theorem 4.2.4 that
Lim ¢ + 1) (¢ - 4) =(lim(é + 1)) (lim (¢ - 4))
X—2 %2 X—2

=5.4=20.

(c) I|m (xzj:)—g.

If we apply Theorem 4.2.4 (b), we have
T R g [y
x—2 xX?+1 ;i_)mz(x2+1) 5

Note that since the limit in the denomlnator [idm (&+ 1) = 5] is not equal to O, then
Theorem 4.2.4 (b) is applicable.
4_2

3

(d) nm— —4 -2

—23X — 6

If we letf (X) := x> 4 andh (X) := 3x— 6 forx ¢ R, then wecannotuse Theorem 4.2.4
(b) to evazluate limf(x)/h(x)) because
X—

= ||m h(x) = lim (3X - 6)

X—>

=3limk-6=32-6=0.

X—2

However, ifx # 2, then it foIIows that
x?%— _ Ge+2)(x-2) _
3x—6 3(x-2)

(x +2).

Therefore we have

.1 1f,. 4
I|m =lim= (X + 2) :—(Ilm X+ 2):—.
3 3 3
X—>2 X—>2 %> 2

Note that the functiog(x) = ( - 4) / (3 - 6) has a limit ak = 2 even though it is not defined
there.

(e) lim = does not exist in R.

X— 0

Of course lim 1 =1 and := lim x = 0. However, sincél = 0, wecannotuse
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x—0 %> 0

Theorem 4.2.4 (b) to evaluateolim XL/In fact, as was seen in Example 4.1.10 (a), the
X—!

functiong(x) = 1k does not have limit at = 0. This conclusion also follows from Theorem
4.2.2 since the function(x) = 1k is not bounded on a neighborhoodef 0.
(Why?)
(f) If pis a polynomial function, then lip (X)= p(c).
X—C

Letp be a polynomial function o so thatp (x) = ax" + X+ g+
ao for all x 0K, It follows from Theorem 4.2.4 and the fact that X = ¢, that

X—C

lim p ()= lim [aX" + g X + - + ax +a)
X—C

X—C

= lim (ax") + lim (.2X™) + -+ lim (ax) + lim &
X—C X->C X—C X-C

=ac" + aC™ ot A+ &

=p (0).

Hence limp (X) = p (c) for any polynomial functiom.
X—C

(9) If pandq are polynomial function o and ifq (c) # 0, then

qx) q(co)
X—C

Sinceq (x) is a polynomial function, it follows from a theore@malgebra in algebra that there
are at most a finite number of real numbers, an [the real zeroes af(x)] such thaty (o)
= 0 and such that ¥K{ a4, -, am}, thenq (X) # 0. Hence, ik & [aa, -, ay], We can define

. ()
r(x) :==—.
) q(x)

If cis not a zero of(x), theng (c) # 0, and it follows from partf) that limqg (x) =q (c) # 0.
Therefore we can apply Theorem 4.2.4 (b) to corethat X e

CoewliMp  p

lim— =—"=

X—C qx) lim a(x) a(c)
X—C

The next result is a direct analogue of Theoren63.2

4.2.6. Theorenhet AR, letf: A— Rand letce R be a cluster point &. If
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a< f(x)<b forall xOA, x#c,

and if limf exists, them<lim f<b.

X—C X—C

Proof. Indeed, ifL = lim f, then it follows from Theorem 4.1.8 that X)) is any sequence

X—C

of real numbers such thatt x.c¢ A for all nO¢¥ and if the sequence,j converges te, then

the sequencé(x,)) converges tt. Since & f (x,) < b for all nJY; it follows from Theorem
3.2.6thaa<L <h. Q.E.D.

We now state an analogue of the squeeze Theoih BVe leave its proof to the reader.

4.0 CONCLUSION
4.2.7 Squeeze TheoremLet A X, letf, g, h: A— R, and lett ORbe a cluster point of
A.lf

f)<g(X<h(x forall xOA, x#c.

and if limf =L = lim h, thenlimg = L.

X—C X—C X—C

4.2.8 Examples (a)im x ¥2=0 (x> 0).
X—>
Letf (x) :=x*?for x> 0. Since the inequality <x“*< 1 holds for 0 < 1
(Why?), it follows that® < f (x) = x**< x for 0 <x < 1. Since

limx2=0 and limx=0,

x—0 x—0

it follows from the Squeeze Theorem 4.2.7 thatiifth= 0.

x—0

(b) limsinx=0.

X—0

It will be proved later (See Theorem 8.4.8atth
-x<sinx<x  forallx>0.
Sinceolim (&) = 0, it follows from the squeeze Theorem that diimx = 0.
X—

x— 0

(c) lim cosx = 1.
x— 0

It will be proved later (see Theorem 8.4.8) that
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12
(1) 1-x"<cosx<1 fro allx OR,

Since lim (1 —%xz) =1, it follows from the squeeze Theorem thatdiosx = 1.
x—0 *-0

(d) lim (=2=)=0.
X—0

We cannot use Theorem 4.2.4 (b) to evaluate limg. (Why not?) However, it
follows from the inequality (1) in part) that

-%xs(cosx-l)/xso forx>0
and that
0<(cosx—1) /x<- %x for x< 0.

Now letf (x) := x/2 forx> 0 andf (x) := 0 forx < 0, and letr (x) := 0 forx> 0 andh (x) := -
x/2for x < 0. Then we have

f (X) < (cosx- 1)Kx<h(x) forx#0.
Since it is readily seen that lifir O = lim h, it follows from the squeeze theorcgm that lim
X—

x—0 Xx— 0

(cosx -1) k= 0.
(e) lim(s2x)= 1.
x— 0

Again we cannot use Theorem 4.2.4 (b) to evaltlas limit. However, it will be proved
later (see Theorem 8.4.8) that

X-%XSSSinXSX forx>0
and that
. 1
xSsmxSx-gx3 forx < 0.

Therefore it follows (why?) that
1 —%xz <(sinx) /x<1 forx#0.

But since lim (1 %xz) =1 % .lim > = 1, we infer the Squeeze Theorem that lim xgifx =1
x—0 x—0 x—0

(Hlim (x sin(14)) = 0

Lef (x) =x sin(1k) for x# 0. Since — X sinz< 1 for allze R, we have the inequality
- | x| () =xsin(1K) < | x|
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for all xOR, x # 0. Since I|>[n|0x| = 0, it follows from the squeeze Theorem thatflim0. For

a graph, see Figure 5.1.3 or the cover of this book |

There are results that are parallel to TheorenB3gd 3.2.10; however, we will leave
them as exercises. We conclude this unit with alrebat is, in some sense, a partial
converse to Theorem 4.2.6.

5.0 SUMMARY
4.2.9 Theorem LetA R, letf: A— R and letc 0R be a cluster point dA. If

limf>0 [respectively, linf < O],

X—C X—C

then there exists a neighborhodg(c) of c such thaf(x) > 0 [respectivelyf(x) < 0] for allx e
A N Vs(c), Xx#c.

Proof. LetL := lim f and suppose that> 0. We take: =L > 0 in Definition 4.1.4, and

X—C
obtain a numbes > 0 such thatif 0 4 x —c| <& andx e A, then | f(X) - L| <% L. Therefore

(why?) it follows that ifx e AN Vs (c), X # ¢, thenf(x) > L> 0.
If L <0, a similar argument applies. Q.E.D.

6.0 TUTOR MARKED ASSIGNMENT

1. Apply Theorem 4.2.4 to determine the followingits:

(@ lim+1) (x+3) xOR), (b) |im§§f§ x> 0),
x—1 x—1

(© lim(—=- - (x> 0), (d) lIm3= (xOZ).
X— 2 x—0

2. Determine the following limits and state whitiedrems are used in each case. (You may
wish to use Exercise 14 below.)

(@) |im\/2;‘++31 (x> 0), (b) |im’£ (x> 0),
X— 2 X—2

© IImE 0 5o, @ 1M x>0).
x—0 x—1

3. Find limY1+2x— ‘/21 +3x  wherex > 0.
x + 2x

X—0

4. Provec;that lim cos(&) does exist bgt that limcos(1k) = 0.
X— X —
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o

Le f, g be defined orA OR_to K, and letc be a cluster point oA. Suppose that is
bounded on a neighborhoodadnd that limg = 0. Prove that linig = 0

X—C X— C
Use the definition of the limit to prove thestiassertion in Theorem 4.2.4 (a).
Use the sequential formulation of the limit toye Theorem 4.2.4 (b).
Letn e N be such that > 3. Derive the inequality ¥* < X" < x*for 1 < < 1. Then use the
fact that limx*= 0 to show that linx"= 0.

Xx—0 x—0

© N

©

Letf, gbe defined orA to R _and letc be a cluster point ok.
(&) Show that if both limhand lim ¢ + g) exist, then ling exists.

X—CX—C X—C

(b) Iflimfand limfg exist, does it follow that ling exists?
X—C = C X—C
10. Give examples of functidnand g such thaf andg do not have limits at a poimtbut
such that botli + g andfg have limits at.
11. Determine whether the following limits existX,

(2) lim sin(b¥)  &#0), (b), limx sin(15%) (x#0),
(c) Ii)m sgn sin(X) (x# 0), (d)0 limVx sin(1x®) (x> 0).

12. Letf: R — K be such thai(x +y) = f(x) +f(y) for all x, yin R. Assume that lifh=L

Xx—0

exists. Prove that = 0, and then prove théthas a limit at every poirt OX, [Hint: First
note thaff(2x) = f(x) + f(x) = 2f(x) for x DR, Also note thaf(x) = f(x - ¢ =f(c) for x, cin R.]

13. LetAOR, letf: A— & and lettdRK be a cluster point d&. If lim f exists, and if| |

X—C

denotes the function defined for Aby | f| (X) := |[f(X) |, prove that lim|f| = |lim f|
X—C X—C

14.A0OR, letf: A— R, and letc R be a cluster point k. In addition, suppose th§x) >
0 for allx e A, and let,/fbe the function defined for DA by (/7)) := / F(x) . If lim f

exists, prove that ling/f=/lim f.

X—C X—C

7.0 REFERENCES / FURTHER READINGS

Unit 3 Some Extension Of The Limit Concept

1.0 INTRODUCTION

In this unit, we shall present three types of esi@ms of the notion of a limit of a function
that often occur. Since all the ideals here arsetjoparallel to the ones we have already
encountered, this unit can be read easily.

2.0 OBJECTIVES
At the end of the Unit, readers should be able to:
(i) know three types of extensions of the notiom diimit of a function
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One-sided Limits
There are times when a functibmay not possess a limit at a pointyet a limit does exist
when the function is restricted to an interval oe side of the cluster point

For example, the signum function considered inngde 4.1.10 (b), and illustrated in
Figure 4.1.2, has no limit at= 0. However, if we restrict the signum functiontbe interval
(0, ), the resulting function has a limit of 1 @t= 0. Similarly, if we restrict the signum
function to the interval e, 0), the resulting function has a limit of — 1cat O.
These are elementary examples of right-hand athdefd limits at = 0.

4.3.1 Definition LetAOR and letf : A— K,
() If ceRis a cluster point of the s&tN (c, «0) = {x OA: x >c}, then we say that OR is
aright-hand limit of f at c and we write

Limf=L or lim f(x) =L

X— Cct+ X— Ct+

TThis unit can be largely omitted on a first readifighis chapter

if given anye > 0 there exists &= d(g) > 0 such that for ak e A with 0 <x — c¢< 9, then
| i) -L| <e.
(i) If cOAR.is a cluster point of the satN (- «0, €) = (X € A : Xx<C), then we say thdte R is
aleft-hand limit of f at c and we write

Limf=L or limf(x) =L
X— C- X— C-
if given anye > 0 there exists &> 0 such that for alt e A with 0 <c — x< 8, then | f(x) —
L | <e.

Notes (1) The limits limf and limf are callecbne-sided limits offat c. It is possible that

X— C+ X— C-
neither one-sided limit may exist. Also, one ofrthenay exist without the other existing.
Similarly, as is the case fé(x) := sgnk) atc = 0, they may both exist and be different.
(2) IfAis an interval with left endpoirt, then it is readily such that A — & _has a limit
atcif and only if it has a right-hand limit & Moreover, in this case the limit lifrand the

X—C

right-hand limit limf are equal. (A similar situation occurs for the-ledind limit whenA is

X— C+

an interval with right endpoirtt.)

the reader can show thfatan have only one right-hand (respectively, leftd)dimit at a
point. There are results analogous to those eshaaliin Units 4.1 and 4.2 for two-sided
limits. In particular, the existence of one-sidediits can be reduced to sequential
considerations.

4.3.2 Theorem Let AR, letf: A— K, and letc 0K be a cluster oA N (c, ). Then the
following statements are equivalent:



Introduction to ResAnalysis 129

@) limf=L.

X— C+

(i) For every sequencey] that converges to such thai, e A andx,>c for all n € N, the
sequencef(x,)) converges td.

We leave the proof of this result (and the formiataand proof of the analogous result
for left-hand limits) to the reader. We will nok&athe space to write out the formulations of
the one-sided version of the other results in Ufigsand 4.2.

The following result relates the notion of theitimf a function to one-sided limits. We
leave its proof as an exercise.

4.3.3 Theorem LetAOR, letf: A— R, and lefc € R be a cluster point of both of the sets
AN (c,o) andAN (- o, c). Then limf =L if and only if limf =L lim f.

X—C X— C+ X— C+

4.3.4 Examples (a)Letf(x) :=sgnk).

We have seen in Example 4.1.10 (b) that sgn doekave a limit at 0. It is clear that lim
X— Ct+

sgn§) =+ 1 and c;[hat lim sgw) = - 1. Since these one-sided limits are differéralso
X —0-

follows from Theorem 4.3.3 that sgidoes not have a limit at O.
(b) Let g(x) := e for x # 0. (See Figure 4.3.1.)

Figure 4.3.1 Graph ofg(x) = e"*(x # 0).

We first show thag does not have a finite right-hand limitat 0 since it is not bounded
on any right-hand neighborhood §),of 0. We shall make use of the inequality
1) 0<<e fort> 0,
which will be proved later (see Corollary 8.3.3)fdllows from (10 that i’k > O, then 0 < &
<e*® Hence, if we take;, = 1/n, theng(x,) >n for all n OV Therefore lime**does not exist

In(go X — 0+
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However, line**= 0. Indeed, i < 0 and we také= - 1k in (1) we obtain 0 < - ¥/e™*,

X — 0-

Si/ncex < 0, this implies that 0et*< - x for all x < 0. It follows from this inequali(’)ty that lim
1/x Xx—0-

e " =0.

(c) Leth(x) := 1/€** + 1) forx # 0. (See Figure 4.3.2.)
We have seen in part (b) that 0 x & for x> 0, whence

1 1
0<——=<

—<
ei/ir 1 el/x X

Which implies that limh = 0.

X — 0+

Figure 4.3.2 Graph ofh(x) = 1/ + 1) k # 0).

Since we have in part (b) that lieh* = 0, it follows from the analogue of Theorem 4.2.4
(b) for left-hand limits that *~°

. \ N 1
x“—m)-(el/n 1/ 1 To+1 1.
X 0- liméx+1

Note that for this function, both one-sided I19n&iigst in R, but they are unequal.

Infinite Limits

The functionf(x) := 1&%or x # 0 (see Figure 4.3.3) is not bounded on a neighimatiof 0, so
it cannot have a limit in the sense of Definitia.4. While the symbol® (= + ) and « do
not represent real numbers, it is sometimes usefioé able to say thaf(x) = 1 tends too
asx — 0”. This use of & will not cause any difficulties, provided we exseccaution and
neverinterpreteo or —oo as being real numbers.
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Figure 4.3.3 Graph of Figure 4.3.4 Graph of
f(x) = 1K% (x# 0) g(x) = 1k (x £ 0)

4.3.5 Definition LetAOR, letf: A— X, and letc 0K be a cluster point ck.
() We say that tends towo asx — c,and write
limf=oo,
X—C
if for every a O there exist$ = () > 0 such that for ak e Awith 0 < | x - ¢| <3,
thenf(x) > a.

(i) We say thaf tends to < asx — ¢, and write
limf = -0

X—C

if for everypOZ there exist$ = 5(8) > 0 such that for ak JAwith 0 | x - c| <§, then
) <.

4.3.6 Examples (a)lim (1&%) = .
JFor, ifa > 0'is given, le := 1K a. It follows that if 0 <|x| <38, thenx’> 1/ so that
1/x°> a.

(b) Letg(x) := 1k for x# 0. (See Figure 4.3.4.)

The functiong doesnotto eitherwo or —oco asx — 0. For, ifa > 0 theng(x) < a for all x <
0, so thag does not tend te asx — 0. Similarly, if < 0 theng(x) >4 for all x> 0, so thag
does not tend tae asx — O. O

Where many of the results in Units 4.1 and 4.2hextensions to this limiting notion, not
all of them do sincetco are not real numbers. The following result is aalague of the
Squeeze Theorem 4.2.7. (See also Theorem 3.6.4.)

4.3.7 Theorem LetAOR, letf, g: A— X, and letc OR be a cluster point ok. Suppose
thatf(x) < g(x) for all x e A, X+ c.

(@) If lim f =0, then limg = co.

X—C X>C

(b) If lim g = o then limf = —oo.
X—C

X—C

proof. (a) If limf=c0 anda 0K is given, then there exisién) > 0 such that if 0 4 x - ¢

X—C
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<d(a) andx LA, therf(x)>a. But sincef(x) < g(x) for all x O A, x# c, it follows that if 0 < | X
-¢| <8(a) andx O A, theng(x) > a.. Therefore limg = co.
X—C

The proof of (b) is similar. Q.E.D.

The functiong(x) = 1kconsidered in Example 4.3.6 (b) suggests thatghtrbbe useful to
consider one-sided infinite limits. We will defioaly right-hand infinite limits.

4.3.8 Definition LetA OR and letf: A— R, If c DR is a cluster point of the sétN (c,
o) ={x O A: x> c}, then we say thattends tow [respectively—o] asx — c+,and we write

limf=o0 [respectively, linf = —oo],

X— C+ X— C+

if for everyo OR there is5 = §(a) > 0 such that for akk 0 Awith 0 <x — c< g, thenf(x) > a
[respectivelyf(x) < a].

4.3.9 Examples (a) Letg(x) := 1k # 0. We have noted in Example 4.3. 6 (b) thatdgm
does not exist. However, it is an easy exercightov that.

lim (15)=c0 and lim ()= <=

X — 0+

(b) It was seen Example 4.3.4 (b) that the fumctj(x) := e*for x # 0 is not bounded on
any interval (09), 6 > 0. Hence the right-hand limit af*asx — 0+ does not exist in the
sense of Definition 4.3.1 (i). However, since

1k< e for x>0,

It is readily seen that lire®= « in the sense of Definition 4.3.8 o

x— 0+

Limits at Infinity

It is also desirable to define the notion of thmifiof a function ax — o The definition as
X— —oois similar.

40 CONCLUSION

4.3.10 Definition Let A OR and letf : A— R, Suppose thai( «) OAfor somea OR, We
say thatl. OR jis a limit of f asx — o, and write

imf=L or limf(c) =L,
X— o0

X— 0

if given anye > 0 there exist& = K(¢) >a such that for any >K, then | f(x) -L | <e.

The reader should note the close resemblance eetd&.10 and the definition of a limit
of a sequence.
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We leave it to the reader to show that the limftasx — oo are unique whenever they
exist. We also have sequential criteria for theaéd; we shall only state the criterionxas»>
o. This uses the notion of the limit of a properiyaiigent sequence (see Definition 3.6.1).

4.3.11 Theorem LetA R, letf: A— K, and suppose that,() JA for somea OR,
Then the following statements are equivalent:

() L=limf,

X— 0

(i) For every sequenceay] in AN (a, «) such that limX,) = «, the sequencé(k,))
converges ta.

We leave it to the reader to prove this theoremtarfidrmulate and prove the companion
result concerning the limit as— —oo.

4.3.12 Examples (a) Letg(x) := 1ikfor x # 0.
It is an elementary exercise to show that lim(#0 = lim(1k). (See Figure 4.3.4.)

X— 0 X— -00

(b) Letf(x) := 14 for x £ 0.
The reader may show that lin{lL£ 0 = lim(14°) . (See Figure 4.3.3.) One way to do

X — o0 X— -00

this is to show that ik > 1 then 0< 1% < 1/x. In view of part (a), this implies that lim
(1K) =.0 Xz O

Just as it is convenient to be able to sayf(at-> +0 asx — cfor c OR, it is
convenient to have the corresponding notior as+w. We will treat the case whexe— .

4.3.13 Definition Let AR and letf : A— R, Suppose thas(«) CA for somea O A.We
say thaf tends tow [respectively, »] asx — oo, and write

Limf=o0 [respectively, linf = -oo]
X—> 0

X— 0

if given anya O there exist& = K(a) >a such that for any >K, thenf(x) > o [respectively,
f(x) < a].

As before there is a sequential criterion for timst.

4.3.14 Theorem LetAOR, letf: A— K, and suppose that, (o) JA for somea OR,
Then the following statements are equivalent:

(i) lim f=o0 [respectively, limf = —oo].
X— o0

X — o0

(i) For every sequenceay in (a, ) such that lim§,) = o, then limf(x,)) = « [respectively,
lim(f(x,)) = —co].
The next result is an analogue of Theorem 3.6.5.

5.0 SUMMARY
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4.3.15 Theorem LetAOR, letf, g: A—XR, and suppose tha,() OA for somea OR,
Suppose further tha(x) > 0 for allx >a and that for some OX, L # 0, we have

lim® = |
g(x)

X— 0

(i) If L>0,then limf =0 if and only if limg = .

X — 0 X— 0

(i) If L< O, then limf = -0 if and only if limg = co.

X— 0 X— 0

Proof. (i) SinceL > 0, the hypothesis implies that there exéstsasuch that

&) s
0 <12L < 7 (x)<5L for X >a.

Therefore we hav1)g(x) <f(x) <(2£)g(x) for all x >ay, from which the conclusion follows
readily.
The proof of (ii) is similar. Q.E.D.

We leave it to reader to formulate the analogosslt@sx — —oo.

4.3.16 Examples (a) limx"= oo for n OA”

X — 0

Let ) :=X'for x O (0, ). Givena OR, letK := sup{l,a}. Then for allx > K, we have
g(x) =x"<x > a. Sincea OXA js arbitrary, it follows that ling = oo.

X — o0

(b) limx"=oo for n O, n even, and linx"= o for n O, n odd.

X — -0 %> -00

We will treat the caseodd, sayn = 2k + 1 withk =0, 1,---. Givena OR, letK := inf{a,
-1}. For anyx < K, then sincex)’> 1, we haved'= ()" x <x < a.
Sincea ORA s arbitrary, it follows that linx" = -co.

(c) Letp: R — R be the polynomial function
P(X) := aX™+ ap . 1X" " -+ agx + ag.
Then limp = w0 if a,> 0, and limp = —oo if ay<0.
X — o0 X— o0

Indeed, leg(x) := x"and apply Theorem 4.3.15. Since

1€9)
g(x)

=t ana(3) + +aulm)+ al3),

It follows that limp(x) / g(x)) = an. Since ling = o, the assertion follows from Theorem
4.3.15. X X—e
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(d) Letp be the polynomial function in part (c) Then ljpr= oo [respectively, =] if nis
even [respectively, odd] arsl> 0. .
We leave the details to the reader.

6.0 TUTOR MARKED ASSIGNMENT

1. Prove Theorem 4.3.2.

2. Give an example of a function that has a figinid limit but not a left-hand limit at a
point.

3. Letf(x) := | x| Y forx# 0. Show that linf(x) = lim (x) = +oc
X— 0+ X— 0-

4. Letc UK and letf be defined fox 0(c, «) andf(x) > 0 for allx O (c, »). Show
lim f =co if and only if lim 1f=0
X—C X—C

5. Evaluate the following limits, or show thaeyhdo not exist.

(@ lim=  (x#1), (b) lm=  &#1),
© limx+2) 1V (x>0) (@), lim &+2) WE (<> 0),
(€) Iir%(\/x F1)/x (x> -1), M Jim ¢z + D /x  (x>0),
@ Jm = x>0, (), im== (<> 0).

6. Prove Theorem 4.3.11.

7. Suppose thdtandg have limits inR asx — o and thaf(x) < g(x) for all x O (a, ).
Prove that linf < Xlim g
X—00 — 00

8. Letf be defined on (0p) to K, Prove that linf(x) = L if and only if limf(1/x) = L.

X— X— 0+

9. Show that if : (a, ) — K_is such that linx f(x) = L whereL O, then limf(x) = 0.

X— 0 X— o

10. Prove Theorem 4.3.14.
11. Suppose thxait)(ljimox) =L whereL >0, and thza)(t_ljgg(x) = o0, Show tha;[(ﬂ)r(r;f(x) g(X) =o.

If L = 0, show by example that this conclusion may fail.

12. Find functiorf andg defined on (Oy) such thz%(t Iiorlf =0 an(gl< Iiror;g = o0, anc)l< Iirorg -9
= 0. Can you find such functions, witx) > 0 for allx (I (0, «), such the;(t Iicr);f /g=0?

13. Letf andg be defined ong, «) and suppose lirh=L and limg = c«. Prove that linfo g

_L X— 0 X — o0 X— 0
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