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Introduction  
  
The  course is purposely for  students of  mathematics, physical  sciences  
at undergraduate level.  
  
It  is  assumed  that  the  students  have  got  enough  mathematical  
background at 100 level and therefore fairly familiar with such topics as  
simple  differentiation  and  integration,  the  use  of  trigometry  identities,  
exponential and logarithmic functions.  
  
The  problems  and  worked  examples  in  this  course  are  purely  
mathematical  to  avoid  the  course  being  useful  only  to  a  section  of  
scientists.  
  
The  course  is  a  must  for  all  students  who  will  like  to  make  career  in  
mathematics and engineering.  
  

Course Aims  
  
The course aims at giving you a good understanding of various methods  
in advanced mathematics.  
  
This could be achieved through the following measures: -  
  
-  Introducing  you  into  limiting  processes  and  continuity  and  

differentiability.  
-  Introducing you to partial differentiation.  
-  Explaining the convergence of infinite series.  
-  Applying  the  knowledge  in  some  special  type  of  series  such  as  

Taylor and Maclaurin series.  
-  Cumulate  the  knowledge  acquired  in  solving  numerical  some  

integration problems that cannot be solved analytically.  
  

Course Objectives  
  
By the time you have successfully completed this course, you should be  
able to:  
  
-  Find  limit  define  continuity  and  find  derived  functions  of  given  

mathematical functions.  
-  Be able to define convergence of infinite series and apply to some  

special series such as Taylor and Maclaurin series.  
-  Solve  integration  using  material  procedure  and  apply  solve  

problems on mathematical methods correctly.  
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Study Units  
  
Module 1  
  
Unit 1   Limits, Continuity and Differentiability  
Unit 2   Partial Differentiation  
Unit 3   Convergence of Infinite Series  
Unit 4   Taylor and Maclaurin Series  
Unit 5   Numerical Integrations  
  
While  the  first  four  units  concentrate  on  mathematical  methods  and  
procedures the last units is on application of the method learn so far.  
  

Assessment  
  
There are graded exercises which are meant to aid understanding as you  
progress in  this course while  the  Tutor Marked Assignments are  meant  
to be part of your final assessment.  
  
The final assessment is at the end of the course. It constitutes 70% of the  
total grade for the course.  
  
You  are  to  read  and  master  each  unit  carefully  before  progressing  to  
other units.  
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MODULE 1  
  
Unit 1   Limits, Continuity and Differentiability  
Unit 2   Partial Differentiation  
Unit 3   Convergence of Infinite Series  
Unit 4   Taylor and Maclaurin Series  
Unit 5   Numerical Integrations  

  
  
UNIT 1  LIMITS, CONTINUITY AND  

DIFFERENTIABILITY  
  
CONTENTS  
  
1.0  Introduction  
2.0  Objectives  
3.0  Main Content  

3.1  Limits  
3.2  Continuous and Discontinuous Functions  
3.3  Differentiability  
3.4  Continuity and Differentiability  
3.5  Rolle’s Theorem and the Mean-Value Theorem  
3.6  Higher Derivatives and Leibnitz’s Formula  
3.7  Maxima and Minima  

4.0  Conclusion  
5.0  Summary  
6.0  Tutor-Marked Assignment   
7.0  References/Further Reading  
  

1.0  INTRODUCTION  
  
Recall  that  in  MTH  112,  the  idea  of  a  limit  was  introduced.  For  

example, it was shown that as  q  becomes small  s i n q 
q  approaches unity.  

We will  consider in this unit a more detailed and rigorous definition  of  
the limit of a function. We will also study the concept of continuity and  
state  sit  of conditions when a  function  will  be discontinuous.  The  two  
ideas  of  limit  and  continuity  would  be  applied  to  establish  a  more  
rigorous definition of differentiability.  
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2.0  OBJECTIVES  
  
At the end of this unit, you should be able to:   

  
•  establish the limit of functions  
•  determine the continuity or otherwise of a function  
•  carry out the differentiation of a function  
•  apply  the  rolles  and  mean-value  theorem  to  solutions  of  some  

problems  

•  be  able  to  obtain  nth  differentials  coefficients  of  some  simple  
functions by application of Leibnitz’s formula.  

  

3.0  MAIN CONTENT  
  
3.1  Limits  
  
Suppose f(x) is a given function of x. then, if we can make f(x) as near  
as  we  please  to  a  given  number  l  by  choosing  x  sufficiently  near  to  a  
number  a, l is said to be the limit of f(x) as x ®  a, and is written as  
  

 f(x) = l            (1)  lim 
 x a ® 

  
It is important to emphasise the following points:  
  
(a)  the independent variable x  may approach the point a either from  

left to right (that is, from -  ¥  to a) or from right to left (from   a  
to  ¥  ). In many cases  the limits of the function obtained in these  
two  ways are different,  and when this  is  the case  we write  them  
as  

lim  f(x) = l1,    lim  f(x) = l2,    
 x a ® -  x a ® + 

  respectively.  
  

 For  example,  the  function  y  
=  tan-1  ( ) 

1 p   when  x  
x   tends  to  2 

p   when  x  approaches  zero  from  the  positive  side,  and  to  - 2 

approaches zero from the negative side.  
  

 Consequently, we write  
  

 tan-1 ( ) 1 p ,  p .    lim lim  tan-1  = - 2 
x  =  2  x 0 ® +  x 0 ® - 
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 Sometimes  we  are  faced  with  a  function,  which  becomes  
arbitrarily large  when  x is  chosen sufficiently  close  to  a  number  
a. when this happens we write  
  
        lim  f(x) =  ¥        (2)  

 a x   
  
  
  
  
  
  
  
  
  
  

Fig.1.1  
  

  
1  tends to  ¥  when  x  ®   0 from  For example,  the  function y  =  x 

the positive side, and to - ¥  when x  ®    
from the negative side (see fig 1.1). Accordingly  
  

1 1 
® + ( ) ® - ( ) lim lim 

x  = ¥ ,  x  = - ¥ .  x 0  x 0 
  
In all cases when the limits as x ®  a from both             
directions are equal (say l) we simply write  
  

 f(x) = l            (3)  lim 
 x a ® 

  
(b)  in proceeding to the limit of f(x) as x  ®  a we have  to exclude x  

from  becoming equal  to a   for  two reasons. Firstly,  the  value  of  

x sin   
the function may not be defined at x = a, as, for example.  x 

at x = 0. Secondly, if f(x) is defined at x = a its value may not be  
equal to    f(x). For example, if f(x) is defined by  lim 

 x a ® 
1for x 1, ì ï £ ï ï            (4)  í f(x) =  1 ï > for x 1, ï ï 

î 
2 

  
 (see Fig. 1.2) then  

1 .  lim  f(x) =  2 
 x 1 ® + 
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   1  y  
  
  1    y = 2 
  
  0  1  x    

Fig. 1.2  
This is not equal  to the  value of the function at  x  = 1, which by  
(4) is equal to unity.  
The function y =  cos (1/x) (see Fig. 1.3) is not only undefined  

  

   
Fig 1.3  

  
 At x = 0, but possesses no limit there either, since as x  ®  0 the  
graph  oscillates  infinitely  many  times  between  +1  and  -1.  the  
function therefore does not approach any particular value as x  ®   

1  (Fig. 1.4)  
0. However, y = cos x 

  

   
          Fig 1.4  

  
Although again oscillating  infinitely many times as x  ®  0 nevertheless  
does posses  a  limit in  virtue  of the  factor  x  in front of  the  cosine  term  
which decreases to zero in the limit. The limit of this function as x  ®  0  
is therefore zero.  
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A more rigorous definition of the limit of a function is as follows: if f(x)  
tends  to  a  limit  l as  x  ®  a,  then  for  any  number  e   (however small) it  
must be possible to find a number  e  such that:   
  
In general the value of  e  depends on the value of  e . Consider f(x) = 1 -  

1 2   lim  f(x)  =  3 
x 2 + .  According  to  (5)  we  are  permitted  to  say  that   x 1 ® 

provided a value of  e  exists such that, for any e ,  
  

     ( ) 1 2 1 x 2 3 - - < e 
+ ,  

when          | x - 1| < h          (6)  
  
Suppose we take  e  = 10-3. Then  

    0.334>  1 
x 2 + >0.332 (to 3 decimals),  

  
which gives  0.994 < x < 1.010.  
  
For (6) to be satisfied we need therefore only take  
  
    (1.010 – 1) <  h             (7)  
  
or  h  > 0.010. Hence, since the conditions (5) can be satisfied, the limit  

2 .  of f(x) as x  ®  1 exists and is equal to 3 

We now state  without  proof three  important  theorems  on limits.  If  f(x)  
and  g(x)  are  two  functions  of  x  such  that   f(x) and   g(x) exists,  lim lim 

 x a ®  x a ® 
then  
  
Theorem 1:  
     {f(x) +   g(x)} =   f(x) +   g(x),  lim lim lim lim 

 x a ®  x a ®  x a ®  x a ® 
  
Theorem 2:  
     {f(x)g(x)} =   f(x).   g(x),  lim lim lim 

 x a ®  x a ®  x a ® 
  
Theorem 3:  

lim f ( x )  f ( x ) ì ü ï ï ï ï        ® lim   =  x a í ý 
ï ï g ( x ) lim f ( x ) ï ï î þ  x a ® 

x a  ® 
provided  lim  g(x)  ¹  0.  

 x a ® 
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These  theorems  maybe  readily  extended  to  any  finite  number  of  
functions.  
  
The following example illustrates the use of these theorems.  
  
Example 1:  Suppose we wish to evaluate  
  

 æ ö  m  x 1 - ÷ ç ÷ lim x 1 ç ÷ ÷ ç - è ø,  x 1 ® 
  

where  m  is  a  positive  integer.  Dividing  the  denominator  into  the  
numerator, the limit maybe written as  

  

lim   (1 + x + x2 + …… + xm – 1),      (8)  
x a ® 

  
which by Theorem 1 is the same as  
  

  1 +    x +  lim lim lim  x2 + … +  lim   xm – 1.          (9)  
x 1 ®  x 1 ®  x 1 ®  x 1 ® 
  
The value of each of these limits is unity and since there are m of them,  
the sum is m. Similarly, if m is a negative integer, say –k, where k is a  
positive integer, then  
  

æ ö æ ö æ ö æ ö  k -  k k ÷ x 1 - ÷ x 1 - ÷ 1 / x 1 - ÷ 1 x ç - ÷ ç ÷ ç ÷ ç ÷   ç ÷ lim lim lim lim    m ç ÷ ç ÷ ç ÷ ç ÷ ÷ ç - ÷ ç - ÷ ç - ç ÷ x 1 è ø= x 1 è ø = x 1 è ø= ® ( ) ç -  k x 1 x è ø x 1 ®  x 1 ®  x 1 ®  x 1 

ì æ ö ü  k ï ï x 1 1 - ï ï ÷       = - ç ÷  .               (10)  lim í ý ç ÷ ÷ ç ï ï x 1 x - è ø  k ï ï î þ  x 1 ® 
  
By Theorem 2, (10) may be written as  
  

1  = -k = m,                         (11)  æ ö æ ö  k x 1 - ÷ x 1 - ÷ ç ÷ ç ÷ lim lim lim    m ç ÷ ç ÷ ÷ ç - ÷ ç - x x 1 è ø = - x 1 è ø  ® k x 1 ®  x 1 ®  x 1 

  
(making use of the result for a positive integer).  
Likewise, if m is fractional, say p/q, where p and q are integers, then  
  

æ ö æ ö  p/ q x 1 - ÷ x 1 - ÷ ç ÷ ç ÷ lim lim    m ç ÷ ç ÷ ÷ ç - ÷ ç - x 1 è ø =  x 1 è ø                    (12)  x 1 ®  x 1 ® 

  
Now putting x1/q = y so that x = yq we have  
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ì æ öü  p ï ï y 1 - ÷ ç ï ï ÷ ç ï ï ÷ ç ï ï ÷ æ ö ÷ y 1 - ç  p ï ï æ ö è ø y 1 - ÷ x 1 - ÷ ç ÷ ï ï ç ÷ lim   =  lim     .              (13)  lim ç ÷    m í ý ç ÷ ç ÷ ÷ ç - ï ï x 1 è ø=   y 1 ® ÷ ç  y 1 ® æ ö q q y 1 è ø - y 1 - x 1 ® ï ï ÷ ç ï ï ÷ ç ÷ ï ï ç ÷ ï ï y 1 ÷ - ç è ø ï ï î þ 
  
By Theorem 3, therefore  
  

 æ ö  p  y 1 - ÷ ç ÷ lim y 1 ç ÷ ç ÷ ÷ - p  = m                  (14)  ç æ ö è ø y 1 ® x 1 - ÷ ç ÷   =  q lim    m ç ÷ ÷ ç - x 1 è ø =  æ ö  q y 1 - ÷ x 1 ® ç ÷ lim y 1 ç ÷ ç ÷ ÷ - ç è ø y 1 ® 

  
as before. Hence for all rational values of m  
  

æ ö x 1 - ÷ ç ÷ lim    m ç ÷ ÷ ç - x 1 è ø = m                       (15)  x 1 ® 

  
SELF ASSESSMENT EXERCISE 1  
  
Evaluate the following limits:  
  

 x 1 + a)  lim 
x 2 +    x ® ¥ 

  
 3 x 3 + b)     lim 

3 2x 4x 1 + +  x ® ¥ 

  
1 c o s x -   c)  lim 

x  x 0 ® 2 
  

 sec x cos x -   d)  lim 
sin x  x 0 ® 

  
1 c os x + p    e)  2 

tan x p 

  
3.2  Continuous and Discontinuous Functions  
  
A single-valued function of x is said to be continuous at x – a if  
  
(a)   f(x) exists,  lim 

 x a ® 
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(b)  the function is defined for the value x = a, and  
  
(c)  if   f(x) = f(a).  lim 

 x a ® 
  
When  a  function  does  not  satisfy  these  conditions  it  is  said  to  be  
discontinuous and x =  a  is called  a point of discontinuity. In general,  if  
the graph  of a function has a  break in  it  at  a particular  value of  x  it  is  
discontinuous at that point. For example, the function y =1/x represented  
in Fig. 1.1  is discontinuous at  x = 0, whilst the function  defined by 1.1  
(3)  and  represented  in  Fig.  1.2  is  discontinuous  at  x  =  1.  There  is,  
however,  a  slight  difference  between  these  two  examples.  The  first  
function  (y = 1/x)  becomes  infinite at the  point of  discontinuity and  is  
said  to  have  an  infinite  discontinuity  at  x  =  0;  the  second  function  
remains  finite  at  the  discontinuity and  is  therefore  said  to  have  a  finite  
discontinuity at x = 1.  
  

 x x tan   are discontinuous at  x  =  0 since  they  sin   and  x 
Functions  like  x 

are not defined there (see condition (b) above).  
  
It is an important  result (and one  that we shall need  later on) that  every  
polynomial of any degree is continuous for all x.  
  
To prove this consider a polynomial of degree n  
  
Pn(x) = a0xn + a1xn-1 + … + an-1x + an                 (16)  
  
and take as a function f(x) any typical term xm(m=  n) in the polynomial.  

Then for nay arbitrary value of x, say x = a, f(a) = am. Now by theorem  
2, (3.1)  
  

 f(x) =    xm = ( )m lim lim lim x   = am = f(a).               (17)  
x a ®  x a ® x a ® 
  
Hence the function  xm is  continuous at x = a, and since a is arbitrary, it  
must  be  continuous  for  all  x.  This  result  applies  to  every  term  of  the  
polynomial,  and  hence  every  polynomial  is  continuous  for  all  x.  An  
immediate consequence of this result is that every rational function (see  
Chapter 1, 1.3 (e)) is continuous everywhere  except  at the points where  
the denominator vanishes. For example,  
  

2 5x 3 + y =  ( )( ) 
x 1 x 2 - -                      (18)  
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is continuous everywhere except at x = 1 and x = 2. The discontinuities  
are shown graphically by the existence of asymptotes at these values of  
x.  
  
In general, the  sums,  differences,  products and  quotients  of continuous  
functions (except, of course, at the zeros of the denominator in the case  
of a quotients).  
  
SELF ASSESSMENT EXERCISE 2  
  
Find the points of discontinuity of the following functions.  
  

x 4 x 6 + +    i)  3 
2 x 6 x 8 - + 

  
ii)  sec x  
  

sin   x iii)  x 

  

3.3  Differentiability  
  
Consider a function y  = f(x) whose graph  is represented in fig. 3.5, and  
let  P  be  a  typical  point  on  the  curve  with  coordinates  (x,y).  The  
coordinates  of  a  neighbouring  point  Q  can  be  written  as  (x  +  d x,  y  +  
d y), where the small change d x in x produces the small change  d y in y.  
The expression  
  
f ( x x ) f ( x ) + d - 

x d  = tan QPS                   (19)  
  
is then the slope of the straight line joining the points P and Q, and may  
be thought of as the mean value of the gradient of the curve y = f(x) in  
the range (x, x +  d x). As the point Q approaches P, (19) may approach a  
limiting value given by  
  

 f ( x x ) f ( x )  æ ö + d - ÷ ç ÷ lim x ç ÷ ç è ø d  = i (say)                    (20)   x 0 d ® 
  
If  this  limit  exists  then  geometrically  this  implies  the  existence  of  a  
tangent such that  l = tan q , where  q  is the angle between the tangent at  
P and the x-axis. We refer to (20) as the differential coefficient of y with  

d y . Sometimes, however, it  is  
respect to x and denote  it by the symbol dx 
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dy  by f’(x), dx df , or  by Dy or Df, where D  is  the  
convenient to  denote  d x 

d .  
operator  dx 

  
A  function  y  =  f(x)  is  said  to  be  differentiable  if  it  possesses  a  

dy  (or  
differential coefficient, and to be differentiable at a point x = a if  dx 

f’(x)) exists at that point.  
  
From  the  definition  of  the  differential  coefficient  as  a  limit,  we  may  
obtain the differential coefficient of nay function of one variable. In the  
same way, we  may  also derive the well-known  rules for differentiating  
the  product  and  quotient  of  two  functions.  It  is  assumed  here  that  the  
reader is familiar with these ideas, and that the following examples will  
be  sufficient  to  illustrate  the  technique  of  differentiating  from  first  
principles.  
  
Example  2:    The  differential  coefficient  of  y  =  sin  x  is  obtained  by  
evaluating  
  
d  =   ) x (sin  æ ö  sin( x x ) sin x + d - ÷ ç ÷ lim x ç ÷ ç  dx è ø d                (21)   x 0 d ® 
  

 ( ) x x ì  ü d d ï  ï 2 sin cos x + ï  ï ï  ï 2 2 ï  ï =                        (22)  lim í  ý ï  ï x d  x 0 d ® ï  ï ï  ï ï  ï î  þ 
  

 x æ ö d ÷ sin 2 ç ÷ { } ç ÷ x d ç ÷ =      .  d ® ( ) lim ç ÷ lim cos x 2 +                (23)  ç ÷ x / 2 d ç ÷  x 0 d ®  x 0 ç ÷ ÷ ç è ø 
(by Theorem 2, 3.1)  
  
As  d x  ®  0, the first limit becomes equal to unity, and the second to cos  
x. Hence  
  
d (sin x) = cos x.                        (24)  

dx 
  
  
  
  



MTH 281                                                                                        MATHEMATICAL 
METHODS 1    

Example 3:   If f and g are two functions of x, then  
  

d (fg) = f dx dg  + g dx df ,                     (25)  

 dx 
  

 dg df g f - d f æ ö dx dx and  dx ÷  .                    (26)  ç ÷ ç ÷ ç g è ø =  2 g 
  
Both of these well-known formulae can be proved from first principles,  
and we illustrate this statement by deriving (26).  
  

ì ü  f ( x x ) f ( x ) + d ï ï ï ï - ï ï d f æ ö g ( x x ) g ( x ) ï ï + d ï ï ÷ ç ÷                      (27)  lim í ý ç ÷ ç dx è ø =  ï ï g x d  x 0 d ® ï ï ï ï ï ï ï ï î þ 
  

ì  ü + d - + d ï  ï ï  ï       =                (28)  lim    f ( x xg ( x ) f ( x ) g ( x x 
) 
í  ý 
ï  ï g ( x ) g ( x x ) x + d d ï  ï î  þ  x 0 d ® 

  
      =    lim 

 x 0 d ® 
 f (x x) f (x) g(x x) g(x) ì é  ùü + d - + d - ï  ï 1 x g(x). f (x) ï  ï ê  ú -              (29)  í  ý ï  ï ê  ú g(x)g(x x) x  x + d d  d ï  ï î ë  ûþ 

  
which by using the theorems on limits stated in 3.1, and the definition of  
the differential coefficient, reduces to  
  

 dg df g f - d f æ ö dx dx ÷ ç ÷                        (30)  ç ÷ ç dx g è ø =  2 g 
as required.  
  
Example  4:      The  differential  coefficients  of  the  inverse  circular  
functions  sin-1x,  cos-1x,  (sometimes  written  as  arc  sin  x,  arc  cos  x)  
maybe obtained as follows:  
  
If y = sin-1x, then x = sin y.  
  

dx  = cos y                        (31)  
Hence  dy 
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1  =  dy  =  y 1 1 and  dx   =                   (32)  
cos  2  2 (1 s i n y) - (1 x ) - 

  
It is usual to take the positive sign of the square root in (32) to define the  
differential  coefficient  of  the  principal  value  of  sin-1x,  the  principal  
value  being  such  that  - p /2 £   sin-1x  £ p /2.  When  principal  values  of  

many-valued functions are implied it is usual to write the functions with  
capital letters. For example,  
  

d  (Sin-1x) =  1 d  (Cos-1x) = - 1  ,    and  dx 
dx  2  2 (1 x ) - (1 x ) - 

where the principal value of cos-1x is such that 0 £  cos-1x £ p .  

  
In  the  next  chapter,  we  shall  consider  the  operation  of  indefinite  
integration.  This  is  the  inverse  operation  to  differentiation  in  that  the  
differential  coefficient  of  the  indefinite  integral  of  a  function  is  the  
function itself.  
  
SELF ASSESSMENT EXERCISE 3  
  
1.  Differentiate from the first principles.  
  

x 1 æ - a)  ) ç ç ) ç + x 1 è   
  

b)  2 2 a x -   
  
2.  Differentiate  

a)  logecos ( ) 1 
x   

e   x 3 b)  2 
  

 c)  sin-1  x 
x 1 +   

  
 d)  esin2x  

  
 e)  xcosx  
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3.4  Continuity and Differentiability  
  
Continuity  and  differentiability  are  closely  related  in  the  sense  that,  if  

df  exists at x = a, then f(x) is continuous at x  
f(x) is a function of x and  d x 

= a. This follows since, if f(x) were not continuous at x = a, f(a +  d x  ®   
0, and consequently  
  

 f ( a x ) f ( a )  ì ü + d - ï ï ï ï                        (33)  lim x í ý 
ï ï d ï ï î þ  x 0 d ® 

  
(which  is  the  differential  coefficient  at  x  =  a)  could  not  exist.  Hence,  
differentiability  at  a  point  implies  continuity,  whilst  discontinuity  
implies  non-differentiability.  The  converse,  however,  is  not  true;  

continuity  does  not  imply  
differentiability.  This  maybe  easily  y  
seen  by  considering  the  function   P(a,b)  
represented  graphically  in  Fig.  1.6.  At  
the point P (a,b) the curve is continuous  
despite  the  ‘kink’  since  the  function  is  
defined and the limit of the function  as  
x ®   a  from  either  direction  is equal to  
f(a).  The  differential  coefficient,  0   x  
however,  is  not  uniquely  defined  at  P  Fig. 1.5  
(a,b)  since  a  definite  tangent  to  the  

curve  at  this  point  does  not  exist.  The  function  is  not  differentiable  
therefore  at  this  point,  although  (as  shown)  it  is  differentiable  

1 ,  
everywhere  else. As an  example, we mention the function f(x) = sin x 

f(0)  =  0,  which  is  continuous  at  x  =  0  but  not    differentiable  there.  
Certain  functions, moreover,  are  known  to  be  continuous  for  all x  and  
yet  differentiable  at  none.  Such  functions  are  usually  termed  
‘pathological’ (i.e. ill) and are not often of any great interest in physical  
applications.  
  

3.5  Rolle’s Theorem and the Mean-Value Theorem  
  
i)  Rolle’s Theorem  
  

if f(x) is continuous in the interval a  £  x £  b and differentiable in a < x  

< b, and if f(a) = f(b) = 0, then, provided f(x) is not identically zero for a  
< x < b, there exists at least on value of x (say x = c) such that f’(c) = 0,  
where  a  <  c <  b. In  words,  there  must exist  at  least  one  maximum  or  
minimum in the interval (a,b).  
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The validity of this theorem may be easily illustrated geometrically (see  
Fig. 1.7).  

  
   y  
  
   max  
  

  
  
  

 a  c  b         x  0    
  Fig. 1.6  
ii)  First Mean-Value Theorem  
    
If  f(x)  is  a  continuous  function of  x  in  the interval  a  £   x  £   b  and  is  

differentiable in a < x < b then there exists at least one value of x (say x  
= c) lying in the interval (a,b) such that     

  
- 

f’(c) =  f ( b ) f ( a ) 
b a -                   (34)  

  
In other words, considered graphically (see Fig. 3.8), there exists a value  
x  =  c  such  that the  tangent  to  the curve  at  this  point  is  parallel to  the  
chord AB.  

  
 y    

 B   
 E    

D    A  
  
  
  

a  c  b          x  0    
  Fig. 1.7  

We  may  prove  this  theorem  geometrically  in  the  following  way:  the  
equation of the line AB is  

  
- 

Y = f(a) + (x + a0  f ( b ) f ( a ) 
b a - ,                  (35)  

  
since BD = f(b) – f(a) and AD = b – a.  
  

Hence  the  difference  CE  of  the  ordinates  of  the  curve  AB  and  the  
straight line AB is  
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- 
 F(x) = f(x) – y = f(x) – f(a) – (x – a)  f ( b ) f ( a ) 

b a -             (36)  
Differentiating we have  
  

- 
F(x) = f(x) –  f ( b ) f ( a ) 

b a -                     (37)  
which is a defined quantity in a < x < b.  
  

Also  F(a)  =  F(b)  =  0  since  the  curve  AB  and  the  straight  line  AB  
intersect  at  these  points.  Hence  the  function  F(x)  satisfies  Rolle’s  
Theorem and consequently there exists a value of x (say x = c) such that  
F’(c) = 0. This implies (from (37)) that there exists a value (x = c) such  
that  

   
- 

f’(c) =  f ( b ) f ( a ) 
b a -                      (38)  

which proves (34).  
  

Example 5:  If f(x) = sin 3x, and a = 0, b = p /6, c can be found from the  
equation (see (34) or (38))  
  

p - 
3 cos 3c =  sin( / 2 ) sin 0 

( / 6 ) 0 p - .                                      (39)  
1  cos-1 (2/ p ).  This gives directly c =  3 

  
The first  Mean-Value  Theorem is useful in many ways; in particular in  
establishing  inequalities  between  functions.  For  example,  a  typical  
problem would be to show that in the interval 0 < x <  p /2  

  

x sin  >  2 
1 >  x 

p .                                 (40)  
  
This  is  an  extension  of  the  inequality  relation  already  obtained  
graphically  in  Chapter  2.  Problems  like  this  maybe  conveniently  dealt  
with by using the following result:  
  

If f(x) is continuous in the range a  £  x  £  b, and differentiable in a < x <  

b, and if f’(x) > 0 in a < x < b, then for a < x1 < x2 < b  
f(a) < f(x1) < f(x2) < f(b).  

  
Similarly if f’(x) < 0 in a < x < b, then  
f(a) > f(x1) > f(x2) > f(b).  
for a < x1 < x2 < b.  
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These  statements  are  obvious  when  represented  graphically  (see  Figs.  
1.9 and 1.10), but we indicate an analytical proof here.  
  

 y    
f(b)    
    
    
f(x2)  

  
f(x1)    
f(a)    

   a      x1       x2        b     x  0  
   y = f(x), f’(x) > 0    

 y    Fig. 1.8    f(a)    
  

    
  f(x1)  
  

f(x2)  
  

f(b)    
  a      x1       x2        b     x  0  
     y = f(x), f’(x) < 0  
  

  Fig. 1.9  
  
Consider the case  when f’(x) > 0. The first Mean-Value Theorem gives  
  
f(x1) – f(a) = (x1 – a) f’(c),                    (41)  
  
Where a < c < x1. But if f’(x) > 0, then f’(c) > 0. Also, by assumption, x1  
> a. Hence  
  
f(x1) > f(a)                        (42)  
  
Similarly  f(x2)  >  f(x1)  and  f(b)  >  f(x2),  and  hence  the  statement  is  
proved. A similar proof exists when f’(x) < 0.  
  
Example 6:  Consider now the inequality relation (40). Here  
  

x sin , and f(x)  ®  1 as x  ®  0.  
f(x) =  x 

  
Differentiating we have  
  

x cos x sin x - ,                      (43)  
f’(x) =  2 

x 
which  is  negative  in  the  range  0  <  x  <  p /2.  Hence  according  to  the  
results obtained above we have  
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f(0) > f(x) > f( p /2),                        (44)  
  

x sin  >  2 
whih gives 1 >  x 

p .                              (45)  
  

3.6  Higher Derivatives and Leibnitz’s Formula  
  
When a function y = f(x) is differentiated more than once with respect to  
x, the higher differential coefficients are written as  
  
d  =  dx d  =  dx æ ö d  =  dx æ ö y y y - 2 d dy æ ö 3 d y n d n 1 d y d 2 ÷ ÷ ç ÷ ç ÷ ÷ ç ÷ ,  ç ÷ ç ÷ , …,  n ç ÷ ç ÷ ç ÷ ç dx dx dx dx ÷ ç ÷ ç  2 2 n 1  - dx è ø dx è ø è ø,  3 

  

d   is  the  nth  differential  coefficient  of  y  with  respect  to  x.  y n 
where  n 

dx 
(These are sometimes abbreviated to either  
  

 f’’(x), f’’’(x) … f(n)(x)  
  
or     D2y, D3y …. Dny,   
  
where D  º  d/dx.)  
  
We  now  give  a  few  examples  showing  how  the  nth  differential  
coefficients of some simple functions maybe obtained.  
  
Example 7:  If y = sin x, then  
  dy  = cos x = sin ( ) 

p + ,   Dy º   dx x 
2 

æ ö d y ÷ ç ÷ D2y  º   2 ç ÷  = -sin x = sin ( p  + x),  ç ÷ ÷ ç  2 dx è ø 
  

d  = -cos x = sin ( ) y 3 3 x p + ,  
 D3y  º   3 dx 2 

  
and in general  
    

d  = sin ( ) y n p + .                             (46)  x   Dny  º   n dx 2 
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Example 8:  If y = loge x, then  
  
  Dy = 1/x,  
  
  D2y = 1/x2,  
  
  D3y = 2/x3,  
  

( n 1) ! - .                    (47)  
and  Dny = (-1)n-1  n 

x 
  
(Equation  (47)  is  valid  for  all  n,  including  n  =  1,  if  by  0!  We  mean  
unity.)  
  
In these two examples, the functions have been simple enough to enable  
the nth differential coefficient to be written down in a few lines. When,  
however,  the  nth  differential  coefficient  of  a  product  of  two  functions  
u(x) and v(x) is required it is better to proceed as follows:  
  
We have shown earlier from first principles that  
  
D(uv) = u Dv + v Du                   (48)  
  
Differentiating (48) now gives  
  
D2(uv) = u D2v + 2Du . Dv + v D2u.               (49)  
  
Similarly we obtain  
  
D3(uv) = u D3v + 3Du . D2v + 3D2u . Dv + v D3u,           (50)  
  
D4(uv) = u D4v+4Du . D3v+6D2u .D2v+4D3u .Dv+Dv + v D4u      (51)  
and so on.  
  
By  inspection  of  these  results  the  following  formula  (due  to  Leibnitz)  
may be written down for the nth differential coefficient of uv:  
  
Dn(uv) = u Dnv + nC1Du . Dn-1v + nC2D2u . Dn-2v + …  
          + nCn-1Dn-1u.Dv + v Dnu,            (52)  
  

where nCr =  n ! 
( n r )! r ! - .  
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This maybe written more concisely as  
  

Dn(uv) =  n å  nCrDn-rv . Dnu.                    (53)  
r 0 = 

  
Leibnitz’s formula (52) may be proved by induction as follows. Suppose  
(52) is true for one value of n, say m; then by differentiating we find  
  
Dm+1(uv) = (u Dm+1v + Du . Dmv) + mC1(Du . Dmv + D2u . Dm-1v)  
  
+ mC2(D2u . Dm-1v + D3u . Dm-2v)+ … + (Dv . Dmu + vDm+1u),           (54)  
  
= uDm+1v+(1+mC1)Du . Dmv+(mC1+mC2)D2u . Dm-1v+…+vDm+1u.      (55)  
Now mCr-1 + mCr = m+1Cr                      (56)  
  
and hence (55) becomes  
  
Dm+1(uv)= uDm+1v+m+1C1Du . Dmv+ m+1C2D2u . Dm-1v+…+ vDm+1u.  (57)  
  
This  again  is  the  Leibnitz’s  formula  (52)  with  m  +  1  in  place  of  m.  
Hence if the formula is true for n = m, it is certainly true for n = m + 1.  
  
However, we know  (from  first  principles)  that it  is true for  n = 1,  and  
therefore  it  is  true  for  n  =2,  3,  …,  and  consequently  for  all  positive  
integral values of n.  
  
Example 9:   To obtain the nth differential coefficient of y = (x2 + 1)e2x  
we put x2 + 1 = u and e2x = v. Then by (52)  
  
 (x2 + 1)2ne2x + 2nx . 2n-1e2x + n(n – 1)2n-2e2x                     (58)  
  
    = 2n-2 e2x (4x2 + 4nx + n2 – n + 4).             (59)  
  
Example  10:    The  nth  differential  coefficient  of  y  =  x  logex  may  be  
obtained by putting x = u and logex. Equation (52) then gives  
  

( n 1)! - ( n 2) ! - 
                    (60)    + n(-1)n-1 n 1 x Dny = Dn(uv) = x(-1)n-1 n x - 

  
( n 2) ! - 

 , (n ³  2).                  (61)      = (-1)n-2 n 1 x - 

  
Example  11:   Leibnitz’s  formula  may  also  be applied to  a  differential  
equation to obtain a relation between successive differential coefficients.   
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As  this  forms  a  step  towards  finding  power  series  solutions  of  certain  
types  of  differential  equations  now  consider  the  following  problem.  
Suppose y satisfies the equation  
  

y 2 d  + x2y = sin x.                        (62)  

dx  2 

  
Then differentiating each term n times (using Leibnitz’s formula for the  
product term x2y), we obtain (using (46))  
  

Dn+2y + (x2Dny + 2nx Dn-1y + n(n – 1)Dn-2y) 
= sin ( ) 

n x p + ,            (63)  
2 

  
which is  a relation  between  the  (n –  2)th,  (n –  1)th,  nth  and  (n  + 2)th  
differential coefficients  of  y  for all x.  If  we  now  put x  =  0  in  (63) we  
find  
  

ì ï ï                   (64)  Dn+2y + n(n – 1)Dn-2y =  0 if n is even , í ï ± 1 if n is odd . ï 
î   

Remark:  Relations of the type of the expression in (63) and (64) at x =  
0,  are  useful  in  developing  power  series  solutions  of  differential  
equations.  
  
SELF ASSESSMENT EXERCISE 4  
  

d =   x dy  = p, that  2 2 1)  If y is a function of x, show by putting  dx 
dy 

 2 d y 

 2 dx   -  .  
3 æ ö dy ÷ ç ÷ ç ÷ ç dx è ø 

  
d  + 2 dx y 2 dy  +  2 y 

2)  If y = sin ( ) p  = 0.  ( x 1 ) p +  prove that 4(x + 1)  2 dx 
  
3.7  Maxima and Minima  
  
A particular important application of differentiation is to the problem of  
finding the maxima and minima values of a given function f(x) in same  
interval  a  £   x  £   b.  Purely  on  geometrical  grounds  we  can  see  (Fig.  

3.11)  that  provided  f(x)  is  differentiable  in  the  range  (a,b)  then  at  a  
maximum or minimum the tangent to the curve must be parallel to the x- 
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axis.  According  a  necessary  condition  for  a  point  x0  (say)  to  be  a  
maximum or a minimum is that  
  

df ( x ) æ  ö ÷ ç = = ÷ f’(x0) = 0  i .e . 0 at x x ç  ÷ ç  0 dx è  ø.                 (65)  
  
Such points are called critical points.  
  
   y  
  

y = f(X)    
Q    P  

  
  
  

x = a    x = b  x  0    Fig. 1.10  
  
Although at the end points x = a and x=b it would seem that the function  
possesses  larger  and  smaller  values  respectively  than  at  the  maximum  
point Q and the minimum point P, we do not count these as true maxima  
and minima but note that they are just the greatest and least values of the  
function in the range a £  x £  b.  

  
Now  suppose  f’(x)  >  0.  Then  the  function  y  =  f(x)  increases  with  
increasing  x.  if  f’’(x)  >  0  then  f’(x)  is  also  increasing  and  hence  the  
curve is  concave  is upwards  (as  near  the maximum  point  Q).  Hence  if  
f’(x0) = 0 and f’’(x0) > 0 the point x0 is a minimum point, whilst if f’(x0)  
= 0 and f’’(x0) < 0 the point x0 is a maximum point. It may happen that  
both f’(x0) and f’’(x0) vanish (for example, f(x) =  x3 has a critical point  
at x = x0 = 0, and f’’(0) = 0). Such points are called points of inflection.  
A  more  detailed theory  based  on  Taylor  series (see  Unit4)  enables  the  
nature  of  a  critical  point  to  be  determined  when  the  first  n  (say)  
derivatives vanish at  the critical point. However, we shall not deal with  
this situation here.  
  
Finally,  we  note  that  we  have  so  far  assumed  that  the  function  is  
continuous  and  has  a  continuous  first  derivative.  If  the  function  is  not  
differentiable  then  it  may  still  possess  maxima  and  minima  but  they  
cannot be  found by  differentiation.  For example, the function y  =  |x|  is  
shown in Fig. 3.12. This is not a differentiable function for the range –a  
£  x £  a (say). However, a true minimum does exist at x = 0.  
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 y    y =|x|    

  
  
   x  
   0  
  
  
  

Fig. 1.11    
  
SELF ASSESSMENT EXERCISE 5  
  
1.  Determine the maxima and minima value (if any) of  
    
a)  sin-1 (x2 + 2)  
b)  1 + x2/3  
  
2.  Find the critical point of y = x2e-x and determine whether they are  

maxima or minima.  
  

4.0  CONCLUSION  
  
In  this  unit,  we  have  dealt  with  limit,  continuity  and  have  established  
some theorems, such as Rolle’s Theorem and Mean-Valued theorem.  
  
We  have  also  established  relationship  between  continuity  and  
differentiability.  
  
The  concept  of  differentiability  allows  us  to  determine,  the  minimum  
and maximum point of a given function.  
  

5.0  SUMMARY  
  
Here  you  have  learnt  about limits, continuity  and  differentiability. You  
have also learnt that differentiability at a point implies continuity at that  
point.  
  
Some relevant theorems  such as Rolles and Mean-valued theorem were  
also studied.  
  
You  are  to  master  these  areas  in  order  to  be  able  to  follow  the  
presentation in the next unit.  
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6.0  TUTOR-MARKED ASSIGNMENT  
  
1.  Find the derivatives of   
  

a)  1    
( ax b ) + 

    
b)  x4logex  
  
2.  Find the points of discontinuity of the following functions  
  

 4x 6 +    a)  2 
x 6x 8 - + 

  
b)  sec x  

  
sin   x 

c)  x 

  

y d  + 2 dx 2 dy  +  2 
3.  If y = sin( ) p y = 0.  ( x 1) p +  prove that 4(x + 1)  2 dx 
  

y dy   is  d   -  x dx 2 

4.  If  y  =  sin-1x  =  (sin-1x)2,  prove  that  (1  –  x2)  2 dx 
independent of x.  
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1.0  INTRODUCTION  
  
In Unit  1, we  discussed the  concepts  of continuity and  differentiability  
of  one  real  independent  variable.  In  this  unit,  we  shall  consider  and  
extend  the  idea  developed  in  Unit  1  to  function  of  more  than  one  
variable.  

  
This is very  important because,  in scientific analysis of  a  problem,  one  
often find that a factor depends upon several other factors. For example,  
volume of a solid depends upon its length, breath and height. Strength of  
a material depends upon temperature, density, isotropy, softness etc.  
  
It  is  therefore  necessary  to  define  function  of  several  variables.  If  a  
variable  z  depends  for  its  value  upon  those  of  x  and  y,  we  say  z  is  a  
function of x and y, and write z = f(x,y).  
  
All  types  of  concepts  for  functions  of  one  variable  are  extend  to  
functions of several variables. For example the value of a function f(x,y)   
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at (x0, y0) is given by f(x0, y0). The domain and range of the function are  
defined as before.  
  

2.0  OBJECTIVES  
  
At the end of this unit, you should be able to:  
  
•  relate  the  concepts  of  limit  and  continuity  studied  in  unit  1  to  

function of several variables  
•  carry out partial differentiation of function of several variables  
•  apply  the  concept  of  Lagrange  multiplier  techniques  to  finding  

the minima and maxima of functions of several variables  
•  find higher derivatives of functions of several variables  
•  carry  out  Taylor  series  expansion  of  functions  of  several  

variables.  
  

3.0  MAIN CONTENT  
  
3.1  Functions of Several Independent Variables  
  
The concepts of continuity  and differentiability of  functions of one real  
independent  variable have  already been discussed  in Unit  1  and in  this  
section  we  extend  these  ideas  to  functions  of  two  or  more  real  
independent  variables  x,  y,  u, v …  (or  x1,  x2, x3  …).  We  first  discuss,  
however, some general properties of functions of this type.  
  
Consider, for example, a function of two variables x and y defined by  
  
f(x,y) = x2- 2y2.                      (1)  
  
Then the value of f(x,y) s determined by (1) for every number pair (x,y).  
For instance, if (x, y) = (0, 0) we have f(0,0) = 0 and if (x ,y) = (1, 0), f(1,  
0) = 1.  
  
In  general  we  may  represent  every  pair  
of numbers (x,y) by a point P in the (x,y)   z  
plane  of  a  rectangular  Cartesian  
coordinate  system  and  denote  the   P  
corresponding  value  of  f(x,y)  by  the  
length  of  the line PP’  drawn  parallel  to  

0  
the z=axis (see Fig 2.1). The locus of all   y  
points such as P’ is then a surface in the  

 P(x,y)  (x,  y,  z)  space  which  represents  the  
x  function  f(x,y).  However,  this  simple  

Fig. 2.1  geometrical  picture  is  impossible  to  
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visualise  when  dealing  with  functions  of  three  or  more  independent  
variables.  
  
Returning now for simplicity to functions of two independent variables,  
we notice that many functions are only defined within a certain region of  
the (x,y) plane. (This is analogous to the one-variable case where f(x) is  
defined in a certain interval of x).  
For example, the real function.  
  

a x y - -                    (2)  f(x,y) =  2 2 2 

  
is  only  defined within  and  on  the  boundary  of  the circle  x2  +  y2  =  a2;  
outside this region it takes on imaginary values. Similarly the function  
  

y                       
(3)  f(x,y) = tan  x 

  
is undefined along the line x = 0. The function given in (1), however, is  
defined  for  all  values  of  x  and  y.  it  is  usual  to  denote  the  region  of  
definition of a function of several independent variables by the letter.  
  
If a function f(x,y) has just one real value for every (x,y) value within its  
region  of  definition  R,  we  say  that  it  is  a  single-valued  function  are  
obtained  for  a  given  (x,y)  value  we  call  the  function  two-valued  or  
many-valued. For  instance, the function defined by  (1) is single-valued  
over  the region R  given  by  - ¥  <  x  <  ¥ ,  - ¥   <  y  <  ¥ , whereas  the  
function defined by (2) is two-valued over the region R given by x2 + y2  

<  a2  (since  both  signs  of  the  square    root  may  be  taken)  and  single- 
valued (equal to zero) on the boundary of the circle x2 + y2 = a2.  
  
Another  important concept already  defined  in Unit  1, 3.2 for  functions  
of  one  independent  variable  is  that  of  continuity.  When discussing the  
continuity  of  functions  of  two  or  more  independent  variables  similar  
considerations apply. Suppose f(x,y) is a real single-valued  function of x  
and  y.  Then  if  f(x,y)  approaches  a  value  l  as  x  approaches  a  and  y  
approaches b, l is said to be a limit of f(x,y) as the point (x,y) approaches  
the point (a,b) and is written as   
  

lim   f(x,y) = l.                        (4)  
( x ,y ) ( a ,b ) ® 

  
However, as we have already seen in one-variable case, x may approach  
a specified point x = a from either the negative side (- ¥ ® a) or from   
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the positive side (- ¥ ® a), and the values of the   y  
two  limits  so  obtained  may  be  different.  The  

 P(a,b)  same is  true  of  (4);  the  way  in  which  (x,y)  ®   
(a,b)  may  determine  the  value  of  l.  However,  

 c  there  is  now  much  more  freedom  than  in  the  
 Q(x,y)  one-variable case since  (see Fig. 9.2) the point  

0   x  Q(x,y) may approach the point P(a,b) along any  
of the infinity of curves, say c, which lie in the  Fig. 2.2  
(x,y)  plane  and  which  pass  through  P.  If,  
however,  the  limit  exists  independently  of    the  way  in  which  Q  
approaches P and is such that  
  

lim   f(x,y) = f(a,b),                       (5)  
( x ,y ) ( a ,b ) ® 

  
(assuming  that  f(a,b)  exists),  then  f(x,y)  is  said    to  be  a  continuous   
function  of  x  and  y  at  the  point  (a,b).  Likewise,  if  a  function  f(x,y)  is  
continuous at every point of a region R of the (x,y) plane it is said  to be  
continuous over that region.  
  

3.2  First Partial Derivatives  
  
Suppose  f(x,y)  is  a  real  single-valued    function  of  two  independent  
variables x and y. Then the partial derivatives of f(x,y)   with respect to x  
is defined as   
 ( )y 

ì  ü  f ( x x , y ) f ( x , y ) + d - ï  ï f ¶ ï  ï                      (6)  lim í  ý 
ï  ï x ¶  =  x d ï  ï î  þ  x 0 d ® 

  
Similarly the partial derivative of f(x,y) with respect to y is defined as  
 ( )x 

 f ( x , y y ) f ( x , y ) ì  ü + d - ï  ï f ¶ ï  ï                     (7)  lim í  ý 
ï  ï x ¶  =  y d ï  ï î  þ  x 0 d ® 

  
In other  words  the  partial derivative  of f(x,y) with  respect to  x may be  
thought of a s the ordinary derivative of f(x,y) with respect to x obtained  
by treating y as a constant. Similarly, the partial derivative of f(x,y) with  
respect to y may  be found  by treating x a s constant and evaluating the   
ordinary derivative of f(x,y) with respect  to y. The variable,  which is to  
be  held  constant  in  the  differentiation,  is  denoted  by  a  subscript  as  
shown  in  (6)  and  (7).  Alternative  notations,  however,  exist  for  partial  
derivatives and one of the more useful and compact of these is to denote  

æ ö f ¶ ÷ f ¶ ç ÷ ( )y ç ÷ ç è ø y x ¶  by fx, and  ¶  by fy.   x 
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The subscripts  appearing in the f now denote the variables with respect  
to which f(x,y) is to be differentiated.  
  
The  following  examples  illustrate  the  evaluation  of  first  partial  
derivatives.  
  
Example 1:   If  
      f(x,y) = x2 – 2y2                    (8)  
(see (1)), then  

ì  ü  2 2 2 2 ï  ï [( x x ) 2 y ] ( x 2 y ) + d - - - f ¶ ï  ï fx = ( )y                 (9)  lim í  ý ï  ï x ¶  =  x d  x 0 d ® ï  ï î  þ 
  

æ ö  2 2 x x ( x ) d + d ÷ ç ÷            =    = 2x                  (10)  lim ç ÷ ç ÷ ÷ x d ç è ø  x 0 d ® 

Similarly  
 2 2 2 2 ì  ü ï  ï æ ö [ x 2( y y ) ] (x 2 y ) - + d - - ï  ï f ¶ ÷ ï  ï ç ÷                (11)  í  ý ç ÷ fx =  lim ç è ø ï  ï y ¶  =  y d ï  ï  x  x 0 d ® ï  ï î  þ 

  
æ ö  2 4 y y 2 ( y ) - d - d ÷ ç ÷          =   = -4y                (12)  lim ç ÷ ç ÷ ÷ y d ç è ø  x 0 d ® 

  
Example  2:    The  last  example  illustrated  the  technique  of  partial  
differentiation from first principles (i.e. by the evaluation of a limit). We  
now  differentiate  partially  by  keeping  certain  variables  constant  as  
required. For example, if  
  

x ,                      (13)  
f(x,y) = sin2 x cos y +  2 

y 
  
then keeping y constant we find  
  

1 .                  (14)  f ¶ fx = ( )y 
y x ¶  = 2 sin x cos x cos y + 2 

  
Similarly, keeping x constant,  
  

x 2 .                            (15)  f ¶ fy = ( )x 
y x ¶  = 2 sin2 x sin y - 3 

  
Example  3:    To  obtain  the  partial  derivatives  of  a  function  of  n  
independent  variables  any n -1 of these variables must be held constant  
and the differentiation carried out with respect to the remaining variable.  
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There  are  therefore  n  first  partial  derivatives  of  such  a  function.  For  
Example, if   
  
f(x, y, z) = e2z cos xy                      (16)  
  
SELF ASSESSMENT EXERCISE 1  
  
Given that f(x,y) = x2y + sin-1x find  
  
i)  fx  

  
ii)  fy  
  
then  

f ¶ fx = ( )y 
x ¶ = -ye2z sin xy,                      (17)  

  
æ ö f ¶ ÷ ç ÷ fy =  ç ÷ ç y è ø ¶ = xe2z sin xy,                      (18)   x. z 

  
and  

fz = ( ) f ¶ 
z ¶ = 2e2z cos xy                      (19)  

x ,y 
  

3.3  Function of a Function  
  
It is a well-known property of functions of one independent variable that  
if f is a function of a variable u, and u is a function of a variable x, then  
  

du .                        (20)  df  =  du df  .  dx 

dx 
  
This result may be immediately extended to the case when f is a function  
of two or more independent variables.  Suppose f =  f(u) and  u = u(x,y).  
Then, by the definition of a partial derivative,  
  

df ( )y f ¶ u ¶ fx = ( )y 
¶  =  du x x ¶ ,                                (21)  

  
æ ö df æ ö f ¶ ÷ u ¶ ÷ ç ÷ ç ÷            (22)  ç ÷ ç ÷ fy =  ç ç è ø è ø y y ¶ .                     ¶  =  du  x  x 
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Example 4:   If  
  

y                        
f(x,y) = tan-1  x            (23)  

  
then putting u = y/x we have  
  

d  (tan-1u) ( )y y f ¶ u ¶ fx = ( )y                           (24)  
¶  =  du x x x y + ¶  =  2 2 

  
and  

æ ö æ ö f ¶ ÷ d (tan-1u)  u ¶ ÷ x ç ÷ ç ÷                           (25)  ç ÷ ç ÷ fy =  ç ç è ø è ø y y ¶  =  du ¶  =  2 2 x y +  x  x 

  

( x y ) +  then  Example 5:  If f(u) = sin u and u =  2 2 

  

x x cos ( x y ) + f ¶ fx = ( )y  ,                       (26)    =  2 2 
x ¶  = (cos u)   2 2 ( x y ) + 2 2 ( x y ) + 

  
and  

æ ö f ¶ ÷ y y cos ( x y ) + ç ÷  ,            (27)  fy =  ç ÷   =  2 2 ç è ø y ¶ = (cos u)   x  2 2 2 2 ( x y ) + ( x y ) + 
  

3.4  Higher  Partial Derivatives  
  
Provided the first partial derivatives  of  a function are differentiable, we  
may differentiate them partially to obtain the second partial derivatives.  
The four second partial derivatives of f(x,y) are therefore  

f ¶ ¶ ¶ f ¶ 
¶ ( )   =  x fxy =  2 

¶ fx =  x x ¶ ,                    (28)   2 x ¶ y 
  

æ ö f ¶ f ¶ ÷ ¶ ¶ ç ÷   =  y ç ÷ fyy =  2 ç y è ø ¶ ,                    (29)   2 y ¶ ¶ fy =  y ¶ x 

  
æ ö f ¶ f ¶ ÷ ¶ ¶ ç ÷   =  x ç ÷ fxy =  2 ç y è ø ¶ ,                             (30)   2 x y ¶ ¶ ¶ fy =  x ¶ x 

and  

f ¶ ¶ ¶ f ¶ 
¶ ( )   =  y fyx =  2 

 2 y x ¶ ¶ ¶ fx =  y x ¶ ,                             (31)  
y 
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Higher  partial  derivatives than  the  second  maybe obtained  in  a similar  
way.  
  
Example 6:  We  have already seen in Example 4 that if  
  

y                         (32)  
f(x,y) = tan-1  x 

  
then  

æ ö y f ¶ ÷ x f ¶ ç ÷  ,   .                (33)  ( )y ç ÷ ç è ø y ¶  =  x ¶  =  -  2 2 ( x y ) +  x  2 2 ( x y ) + 
  
Hence, differentiating these first derivatives partially, we obtain  
  

æ ö y 2 xy f ¶ ÷ ¶ ç ÷                  (34)    =  x ç- ÷ fxy =  2   =  2 2 2 ç ÷ ÷ ç  2 è ø x ¶ x y + ( x y ) + ¶ 2 2 

  
and  

æ ö f ¶ 2 xy x ÷ ¶ ç ÷                  (35)    =  y ç ÷ fyy =  2   = - 2 2 2 ç ÷  2 ÷ y ¶ ç è ø x y + ( x y ) + ¶ 2 2 

  
Also  

æ ö ¶ y x + ¶ x ÷ ç ÷                  (36)  fxy =  2 f ç ÷   =  2 2 ç ÷ x y ¶ ¶  =  x ÷ ç 2 2 2 x y è ø + ( x y ) + ¶ 2 2 

  

and  
æ ö ¶ y y x - ÷ ¶ ç ÷                  (37)  ç- ÷ fyx =  2 f   =  2 2 ç ÷ y x ¶ ¶  =  y ÷ ç 2 2 2 è ø x y + ( x y ) + ¶ 2 2 

  
Since (36) and (37) are equal we have  
  

 2 f ¶ ¶ 
x y y x ¶ ¶ ,                        (38)  ¶ ¶  =  2 f 

  

¶ ¶ which shows that the operators  x 
¶   and  y ¶  are commutative.  We shall  

return to  this point in  the next section. Finally  we note that if (34)  and  
(35)  are  added  then  f(x,y)  satisfies  the  partial  differential  equation  
(Laplace’s equation in two variables)  
  

f ¶  2 f ¶   = 0.                        (39)    +  2 
2 y ¶ 2 x ¶ 
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In  general,  any  function  satisfying  this  equation  is  called  a  harmonic  
function.  
  

3.3.1  Commutative Property of Partial Differentiation  
  
In Example 6 we have shown  that the second partial derivatives fxy and  

y  are equal. This is in  fact  the  case for  
fyx of the function f(x,y) = tan-1 x 

most  functions  as  can  be  verified  by  choosing  a  few  functions  at  
random. It can be proved that a sufficient (but  not necessary) condition  
that fxy = fyx at some point (a,b) is that both fxy and fyx are continuous at  
(a,b)  and  in  all  that  follows  it  will  be  assumed  that  this  condition  is  
satisfied.  
  
 SELF ASSESSMENT EXERCISE 2  
  
Show that fxy = fyx for the following functions  
  
1.  f(x,y) = x2 – xy + y2  
  
2.  f(x,y) = x sin (y – x)  
  
3.  f(x,y) = eyloge (x + y)  
  

xy    4.  f(x,y) =  2 2 
x y + 

  

3.4  Total Derivatives  
  
Suppose f(x,y) is a continuous  function defined in a region R of the xy- 

f ¶ f ¶ plane, and that both  ( )y 
¶  and  ( )y x x ¶  are continuous in this region. We  

now  consider the  change in  the value  of the function brought about by  
following small changes in x and y.  
  
If  f d  is the change in  due  to change  d x and  d y in x and y then  
  
d f = f(x +  d x, y +  d y) – f(x,y)                    (40)  
  
= f(x +  d x, y + d y) – f(x, y + d y) + f(x, y + d y) – f(x,y).            (41)  
  
Now by definition (see  (6) and (7))  
  

 f ( x x , y y ) f ( x , y y ) ì  ü + d + d - + d ï  ï ¶ ï  ï              (42)  lim í  ý 
ï  ï  x ¶ f(x, y + d y) =  x d ï  ï î  þ  x 0 d ® 
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and  
  

 f ( x , y y ) f ( x , y ) ì  ü + d - ï  ï ¶ ï  ï                                   (43)  lim í  ý 
ï  ï  y ¶ f(x,y) =  y d ï  ï î  þ  x 0 d ® 

  
Consequently  
  

é ù ¶ + d + a d f ( x x , y y ) f ( x , y y ) + d + d - + d  =  f ( x , y y ) x ê ú 
x ¶ ë û ,            (44)  

  
and  

é ù ¶  ,                           (45)  ê ú f(x, y + d y) – f(x,y) =  f ( x , y ) y + b d 
ê ú y ¶ ë û 

  

where  a  and  b  satisfy the conditions  
  

lim  a  = 0 and  lim   b  = 0.                              (46)  
 x 0 d ®  x 0 d ® 
  
Using (44) and (45) in (41) we  
  

é ù é ù ¶ + d + a d ¶  .              (47)  ê ú d f =  f ( x , y y ) x + b d ê ú ê ú x ¶ ë û  +  f ( x , y ) y y ¶ ë û 
  
Furthermore, since all first derivatives are continuous by assumption, the  
first term of (47) may be written as  
  

¶ ¶ 
 x ¶ f(x, y + d y) =  f ( x , y ) x  ¶  + y,                    (48)  

  
where  g  satisfies the condition  

lim    g  = 0                          (49)  
x 0 d ® 
  
Hence, using (48), (47) now becomes  
  

¶ ¶ 
d f =  f ( x , y ) 

x  ¶   d x +  f ( x , y ) y  ¶  d y + ( a + g ) d x +  b d y.                       (50)  
  
The expression  
  

¶ ¶ 
d f  @  f ( x , y ) 

x  ¶  d x +  f ( x , y ) y  ¶ d y                            (51)  
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obtained  by  neglecting  the  small  terms  ( a   +  d )d x  and  b d y  in  (50)  

represents,  to  the  first  order in  d x  and  d y,  the  change  in  f(x,y)  due  to  
changes  d x and d y in x and y respectively.  
  
It is easily seen that the first term of (51) represents the change in f(x,y)  
due to a change  d x in x keeping y constant; similarly the second term is  
the  change  in  f(x,y)  due  to  a  change  d y  in  y  keeping  x  constant.  The  
total  differential is  nothing  more  than  the  sum  of  these  two  effects.  In  
the case of a function of n independent variables f(x1, x2, … xn) we have  
  

f ¶ f ¶ f ¶ f ¶ d f  @ å 
x ¶ d x1 +  x ¶ d x2 + … +  x ¶ d xn =  n x ¶ d xr.           (52)  r 1 =  1  2  n  r 

  
The following examples illustrate the use of these results.  
  
Example 7:  To find the change  in  
  
f(x,y)  = xexy                         (53)  
  
when the values of x and y are slightly changed from 1 and 0 to 1 +  d x  
and  d y respectively. We first use (51) to obtain  
  

d f  @ (xyexy + exy)  d x + x2exy d y.                   (54)  
  
Hence putting x =1, y = 0 in (54) we have  

d f  @ d x +  d y.                        (55)  
  

For example, if d x = 0.10 and  d y = 0.05, then  d f  @ 0.15.  
  
We now return to the exact expression for  d f given in (50). Suppose u =  
f(x,y) and that both x and y are differentiable functions of a variable t so  
that  
  
x = x(t), y = y(t)                        (56)  
  
and  
  
u = u(t)                          (57)  
  
Hence  dividing  (50)  by  d t  and  proceeding  to  the  limit  d t  ® 0 (which  
implies  d x® 0,  d y ® 0 and consequently a , b ,  d ® 0) we have  
  

dy .                      (58)  du  =  f dx  +  f ¶ ¶ 
¶ . dt ¶ . dt dt x y 
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This expression is called the total derivative of u(t) with respect to t. It is  
easily seen that if  
  
u = f(x1, x2, x3 … xn),                     (59)  
  
Where x1, x2, x3 … xn are all differentiable functions of a variable t, then  
u = u(t) and  
  
du  =  dx1  +  dx 2 +…+ dx n  =  n dx r .        (60)  f ¶ f ¶ f ¶ f ¶ å ¶ . dt ¶ . dt ¶ . dt ¶ . dt dt x x x x 

r 1 =  1  2  n  r 
  
Example 8:  Suppose  
  
u = f(x,y) = x2 + y2                        (61)  
  
and  
  
x = sinh t, y = t2.                        (62)  
  
Then by direct substitution we have  
  
u(t) = sinh2t + t4                        (63)  
  
and consequently  
  

du  = 2 sinh2 t cosh t + t4                             (64)  

dt 
  
We now obtain this  result using  the expression for the  total derivative.  
Since  
  

 f ¶ ¶ 
x ¶  = 2x,  f y ¶  = 2y,                        (65)  

  
dx  = cosh t,  dt dy  = 2t,                      (66)  

dt 
(58) gives  
du  = 2x cosh t + 4yt                      (67)  

dt 
  
= 2 sinh t cosh t + 4t3,                      (68)  
as before.  
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3.5  Implicit Differentiation  
  
A  special  case  of  the  total  derivative  (580  arises  when  y  is  itself  a  
function of x (i.e. t = x). Consequently u is a function of x only and  
  

dy .                      (69)  du  =  f ¶ ¶ 
¶ . d x dx x ¶  +  f y 

  
Example 9:  Suppose  
  

x                         (70)  
u = f(x,y) = tan-1 y 

  
and  
  
y = sin x.                          (71)  
  
Then by (69) we have  
  

x du  =  2 2 y   cos x                   (72)    -  2 2 
dx x y + x y + 
  

sin x x cos x -                          
(73)  

= 2 2 

x sin x + 
  
This  result  could  have  been  obtained  by  the  slightly  more  laborious  
method  of  substituting  (71)  into  (70)  and  then  differentiating  with  
respect to x in the usual way.  
  
When y is defined as a function of x by the equation  
  
u = f(x,y) = 0                                  (74)  
  
y  is  called an implicit function  of x. since u is identically  zero its total  
derivative must vanish, and consequently from (69)  
  

dy  = -( )y æ ö f ¶ ÷ f ¶ ç ÷ ç ÷ ç è ø y ¶ .                      (75)  dx x ¶      x 
  
Example 10:   The gradient of the tangent at any point (x,y) of the conic  
  
f(x,y) = ax2 + 2hxy + by2 + 2gx + 2fy + c = 0,                (76)  
  
(where a, h, b, g, f and c are constants) is, by (75),  
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dy  = - 2 ax 2 hy 2 g + + 

dx 2 by 2 hx 2 f + + .                      (77)  
  
Example 11:  The pair of equations  
  
F(x, y, z) = 0, G(x, y, z) = 0,                    (78)  
  
Where  F  and  G  are  differentiable  functions  of  x,  y  and  z  define,  for  
example, y and z as functions of x. Hence, since the total derivatives of  
F(x, y, z) and G(x, y, z) are identically zero, we have  
  

 dy F F F dz ¶ ¶ ¶ . . + + 
x y dx z dx ¶ ¶ ¶  = 0                      (79)  

  
and  

 dy G G G dz ¶ ¶ ¶ . . + + 
x y dx z dx ¶ ¶ ¶  = 0,                   (80)  

  
whence  
dy  = -( )  1  - æ ö F G F G ¶ ¶ ¶ ¶ ÷ F G F G ¶ ¶ ¶ ¶ ç - ÷ . . . . - ç ÷ ç è ø y z z y ¶ ¶ ¶ ¶                 (81)  dx x z z x ¶ ¶ ¶ ¶ 

  
and  

 1  - æ ö æ ö F G F G ¶ ¶ ¶ ¶ ÷ dz  =  F G F G ¶ ¶ ¶ ¶ ÷ ç - ÷ . . ç - ÷ . . ç ÷ ç ÷ ç y z z y è ø ¶ ¶ ¶ ¶                          (82)  ç dx x y y x è ø ¶ ¶ ¶ ¶ 
  
For example, if  
  
F(x, y, z) = x2 + y2 + z2,  
  
G(x, y, z) = x2 - y2 + 2z2,                      (83)  
  
then  

F ¶ ¶ ¶ 
x ¶  = 2x,  F y ¶  = 2y,  F z ¶  = 2z,                     (84)  

  
 G ¶ ¶ ¶ 
x ¶  = 2x,  G y ¶  = -2y,  G z ¶  = 4z,                     (85)  

  
and hence, by (81) and (82),  
  
dy  =  y dz  = - z x x ,  dx 2                        

(86)  3 3 dx 
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3.6  Higher Total Derivatives  
  
We  have  already  seen  that  if  u  =  f(x,y)  and   x  and  y  are  differentiable  
functions of t then  
  

du  =  f dx  +  f dy .                      
(87)  

¶ ¶ 
¶ . dt ¶ . dt  dt x y 

  
d  we note from (87) that the operator  dt u 2 d  can be written as  

To find  2 d t 
d   º dt dx . x dy . y ¶ ¶ 

¶  +  dt dt ¶                               
(88)    

Hence  d ( ) d  =  dt u 2 æ öæ ö  dy du dx f dx f ¶ ¶ ¶ ¶ ÷ ÷ ç ç . . . . + + ÷ ÷ ç ç ÷ ÷ ç ç dt dt  =  dy dt x dt y x dt y dt è øè ø ¶ ¶ ¶ ¶                          
(89)  

2 

  
 2 dy æ ö x y ¶  dy æ ö f ¶ 2 d + f 2 d         (90)  ¶ ¶ ( ) ÷ f ¶ dx dx ç ÷ ¶ ¶ ÷ ç ÷ ç ÷ = 2 ç ÷ ç x y ç dt 2 dt dt ¶ ( )2 dt +2 2 f dt dt y ¶ è ø + f x y è ø + 2  2 x ¶ . 2 ¶ 2 

  
where  we  have  assumed  that  fxy  =  fyx.  Higher  total  derivative  may  be  
obtained in similar way.  
  
A special case of (90) which will be needed later is when  
dx  = h,  dt dy  = k,                         

(91)  dt 
  
where h and k are constants. We then have  
  

u 2 ¶ f ¶ f ¶ d  = h2 2   + 2hk 2 f x y 2 dt ¶ ¶  + k2 2 y  2  2 x ¶ ¶ ,                   
(92)    

which, if we define the differential operator *D by  
  

¶ ¶ *D = h x 
¶  + k y ¶ ,                         

(93)    
may be written symbolically as  
  

 2 æ ö u 2 d  =  ¶ ¶ ÷ ç + ÷ h k ç ÷ ç x y è ø dt ¶ ¶  f= *D2f.                     (94)   2 
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Similarly we find  
  

u 3 d  =  3 3 f ¶ ¶ f f ¶ ¶ 3 2 2 3 h 3h k + 3hk k + 
3 2 2 3 dt x x y x y y  3 ¶ ¶ ¶  +  3 3 ¶ ¶ ¶               (95)  

  
 3 æ ö ¶ ¶ ÷ ç + ÷ h k ç ÷ =  ç è ø x y ¶ ¶ f = *D3f,                      (96)  

  
assuming the commutative property of partial differentiation. In general,  
  

 n æ ö u n d  =  ¶ ¶ ÷ ç + ÷ h k ç ÷ ç x y è ø dt ¶ ¶  f = *Dnf,                    (97)   n 

æ ö ¶ ¶ ÷ ç + ÷ h k ç ÷ where  the  operator  n ç x y è ø ¶ ¶ is  to  be  expanded  by  means  of  the  
binomial theorem.  
  

3.7  Homogeneous Functions  
  
A function f(x,y) is said to be homogeneous of degree m if  
  
f(kx, ky) = kmf(x,y),                                 (98)  
  
where k is a  constant.  A  similar definition applies  to a  function of  any  
number of independent variables. For example,  
f(x,y) = x3 + 4xy2 – 3y3                      (99)  
  
is homogeneous of degree 3 since  
  
(kx)3 + 4(kx)(ky)2 – 3 (ky)3 = k3 [x3 + 4xy2 – 3y3].            (100)  
  
Similarly  

2  +  x 
 y y sin  x æ ö x 2 f(x,y) =  xy ÷ ç ÷ ç ÷ ç 4 y è ø                             (101)  

  
is homogeneous of degree 0 since  
  

ì ü  2 2 +  +  kx ï ï ky  sin  kx æ ö ( kx ) ( ky ) x y y x + ï ï ÷  .          (102)  ç ÷ sin + í ý ç ÷ ç ï ï ky 4 xy x y 2 4 k xy è ø = k0  2 2 ï ï î þ 
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3.8  Euler’s Theorem  
  
Theorem  1:      If  u  =  f(x1,  x2,  …  xn)  is  a  homogeneous  differentiable  
function of degree m in the independent variables x1, x2, … xn, then   
  

f ¶ f ¶ where k is a constant. Then since u is homogeneous x1 
x ¶  + x2 x ¶  +  

 1  2 
f ¶ 

… + xn 
x ¶  = mf.                                                 (103)  

 n 
  
To prove this theorem we define a  new set of variables y1, y2, …  yn by  
the relations.  
  
x1, =  y1k,  x2, = y2k … xn = yn of degree m                                      (104)  
  

             (105)  u = f(y1k, y2k … ynk) = kmf(y1, y2, … yn).  
  
Differentiating (105) with respect to k e find  
  
du = dx 2 +...+ dx n =mkm-1f(y1, y2, … yn)       (106)  dx1 + f ¶ f ¶ f ¶ 

¶ dk ¶ dk ¶ dk dk x x x 
 1  2  n 

  
or  

du  = y1 f ¶ f ¶ f ¶ 

dk x ¶  + y2 x ¶  + … + yn x ¶  = mkm-1f.             (107)  
 1  2  n 

  
Hence multiplying the last two expression of (107) by k we have  
  

f ¶ f ¶ f ¶ x1 
x ¶  + x2 x ¶  + … + xn x ¶  = mf,                (108)  

 1  2  n 
  
which proves the theorem.  
  
Example 12:  The function  
  
f(x,y) = x3 + 4xy2 – 3y3                    (109)  
is homogeneous of degree 3 and hence, by Euler’s Theorem,  
  

¶ ¶ x f 
x ¶  + y f y ¶  3f.                      (110)  
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This is easily verified since  
  

 f ¶ ¶ 
x ¶  = 3x2 + 4y2,  f y ¶  = 8xy – 9y2.                  (111)  

  
Hence  

¶ ¶ x f y x ¶  + y f ¶  = x(3x2 + 4y2) + y(8xy – 9y2)  

= 3(x3 + 4xy2 – 3y3) = 3f.                    (112)  
  

3.9  Change of Variables  
  
We have seen earlier on in this chapter that if u  = f(x,y) is a continuous  
and differentiable function of the independent variables x, y and if x and  
y are differentiable functions of a variable  then  
  

dx  +  f dy .                    (113)  du  =  f ¶ ¶ 
¶ . dt y ¶ . dt dt x 

  
Suppose now that x and  y  are functions  not just of  one variable  but  of  
two, say s and t, such that  
  
x = x(s, t),   y = y(s, t).                    (114)  
  
Clearly since u is a function of x and y it is also a function of s and t and  

u ¶ u ¶ necessarily  has  the  two  partial  derivatives  ( )t 
¶   and  ( )s s t ¶ .  Hence  

keeping  t  a  constant  and  differentiating  with  respect  to  s,  we  have  
(following (113))   ( ) 

æ ö y ¶ ÷ ¶ u ¶ ¶ x ¶ ç ÷ 
¶ ( ) ç ÷ ç è ø y s ¶ .                  (115)  s ¶  =  f s ¶  +  f x ¶ t t t 

  
Similarly, keeping s a constant and differentiating with respect to t   ( ) 

æ ö y ¶ ÷ ¶ u ¶ ¶ x ¶ ç ÷ ¶ ( ) ç ÷ ç y t è ø ¶ .                  (116)  t ¶  =  f x t ¶  +  f ¶ s 
s s 

  
Example 13:   Given that u = f(x,y) and  
  
x = s2 – t2,  y = 2st,                     (117)  
  
prove that  
  



MTH 281                                                 MODULE 1  

  

¶ ¶ ¶ s u 
s ¶  - t u t ¶  = 2(s2 + t2)  f x ¶ .                            (118)  

  
From (115), (116) and (117) we have  
  

¶  y ¶ ¶  u ¶ ¶  x ¶ ¶ 
y ¶ y ¶ ,               (119)  s ¶  =  f x ¶ s ¶  +  f s ¶  = 2s f x ¶  = 2 f 

  
¶ ¶  y ¶  u ¶ ¶  x ¶ ¶ 

y ¶ y ¶ .              (120)  t ¶  =  f x ¶ t ¶  +  f t ¶  = -2t f x ¶  + 2s f 
  
Hence  multiplying (119) by s and  (120) by t and subtracting we  obtain  
(118) as required.  
  
Example 14:   Given u = f(x,y) and  
  
x = r cos q ,  y = r sin  q ,                    (121)  
  
prove that  
  

¶ ¶ ¶ r u 
y ¶                       (122)  r ¶  = x f x ¶  = y f 

  
and  
  

¶  u ¶ ¶ 
y ¶ q  = x f ¶  - y f x ¶ .                      (123)  

  
These  results are easily obtained since from (115) we have  
  

¶  u ¶ ¶ 
y r ¶  =  f x ¶  cos q  +  f ¶  sin q ,                  (124)  

  
which, on multiplying through by r,  gives (122). Similarly from (116)  
  

¶  u ¶ ¶ 
y ¶ q  =  f x ¶  (-r sin q ) +  f ¶ r cos q                   (125)  

  
¶ ¶ = x f 
y ¶  - y f x ¶ ,                      (126)  

which is (123).   
  
Example 15:   If x and y are rectangular Cartesian coordinates and if u =  
f(x,y) satisfies Laplace’s equation  
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f ¶ 2 f ¶   = 0,                      (127)    +  2 
2 y ¶ 2 x ¶ 

  
obtain the form of this equation in polar coordinates (r,  q ),  where x = r  
cos q , y = r sin  q .  
  
From (115) and (116) we have   ( ) 

 y æ ö ¶ ÷ ¶ u ¶ ¶ x ¶ ç ÷ 
¶ ( ) ç ÷ ç è ø y ¶ ¶                   (129)  r q ¶  =  f x r q ¶  +  f r q 

  
¶ ¶ = cos q f y ¶ ,                    (130)  x ¶  + sin q f 

  
and  

y æ ö ¶ ÷ ¶ u ¶ ¶ x ¶ ç ÷ ( )r ç ÷ ç ¶ ( )r y è ø ¶ q                   (131)  ¶ q  =  f x ¶ q  +  f ¶ r 

  
¶ ¶ = -r sin q f y ¶ .                    (132)  x ¶  + r cos q f 

  
¶ ¶ Solving (130) and (132) for  f y ¶  we find  x ¶  and  f 

  
 f ¶ ¶  q u ¶ 
x ¶  = cos q u r ¶  -  sin r ¶ q                     (133)  

  
 f ¶ ¶  q u ¶ 
y ¶  = sin q u r ¶  +  cos r ¶ q .                            (134)  

  
¶ ¶ Hence the operators  x 
¶  and  y ¶  in polar coordinates are  

  
¶ ¶  q                     (135)  
 x ¶  = cos q r ¶  -  sin r 

  
¶  q ¶ ¶ 
 y ¶  = sin q r ¶  +  cos r ¶ q                     (136)  

  
Consequently  

2 f ¶ f ¶ u sin u ¶ q ¶ ¶ ¶ 
¶ ( ) ¶ ( )   =  x cos r r q - 

x ¶  cos q r ¶ ¶ q   2 x ¶ 
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 q ¶ u sin u ¶ q ¶ 
¶ q ( ) - sin cos r r q - 

r ¶ ¶ q                   (137)  
  

u ¶ ¶ sin  q 2 u ¶ sin  q u ¶ q q  2 u  - 2sin cos =  cos2 q 2    +  2 r r ¶ ¶ q =  2 r ¶   +  2 2  2 2 r ¶ r ¶ q r 
2sin cos q q u ¶ 

2 r ¶ q .              (138)  
  
  
Similarly  
  

 2 f ¶ æ ö ¶  f ¶ ÷ ¶ u cos u ¶ q ¶  q   ¶ ç ÷ ¶ ( )    =  y sin r r q - ç ÷ ç 2 y ¶ ¶ y è ø ¶   =  sin r ¶ ¶ q   +    cos r ¶ q   

( ) u cos u ¶ q ¶ sin r r q - 
¶ ¶ q                        (139)  

  

u ¶ ¶ cos  q   2 u ¶ cos  q   u ¶ q q   2 u    +  2sin cos =  sin2 q 2    +  2 r r ¶ ¶ q   +  2 r r ¶ - 2 2 2 r ¶ r ¶ q 
2sin cos q q u ¶ 

2 r ¶ q                         (140)  
  
Finally, adding (138) and (140), we have Laplace’s equation in two  
dimensions  
  

1 u f ¶ 1 2  2 f ¶ u ¶ ¶ u ¶   = 0.              (141)    +  r   +  2   =  2 
2 r y ¶ r ¶  +  2 2 2  2 x ¶ r ¶ ¶ q 

  
SELF ASSESSMENT EXERCISES 3  
  
Given that  
  

x y z =  2 2 + , x = r cos q .  
  

¶ ¶ Find  z 
z ¶  and show that  z 0 ¶  = 0.  

  

3.10  Taylor’s  Theorem  for  Functions  of  Two  Independent  
Variables  

Theorem 2:  (Taylor’s theorem). If f(x,y) is defined in a region R of the  
xy-plane and ll its partial derivatives of orders up to and including the (n  
+ 1)th are continuous in R, then for any point (a,b) in this region  
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1 *D2f(a,b)+…+ ! 1 *Df(a,b)+En9     (142)  f(a+h, b+k)=f(a,b)=*Df(a,b)= ! 
2 n 

  
Where *D is the differential operator defined by (92) – (97) as  
  

¶ ¶ *D = h x ¶ ,                      (143)  ¶  + k y 
  
and  

¶ ¶ *Drf(a,b) means ( )r h k + 
x k ¶ ¶  f(x,y)                (144)  

  
evaluated at the point (a,b). the Lagrange error term En is given by  
  

En =  1 
( n 1) ! + *Dn+1f(a +  q h, b +  q k)               (145)  

  
Where 0 <  q  < 1.  
  
To prove this theorem we let  
  
x = a + ht,  y = b + kt,                   (146)  
  
where a, b, h k are constant and t is a variable. Then putting  
  
f(x,y) = f(a + ht,  b + kt) = u(t),                  (147)  
  
where u(t) is a continuous function of t, we have by (97)  
  

u n d  = *Dnf.                        (148)  

dt  n 

  
Since by assumption  all partial derivatives  of  f(x,y) up to and including  
the  (n  +  1)th  order  are  continuous  in  R  so  also  are  the  ordinary  
derivatives  of  u  with  respect  to  t.  Hence  u(t)  may  be  expanded  by  
Maclaurin’s series (see Chapter 6, 6.1 (6) and (7)) as  
  

t n u(n)(0) + En9              (149)  u(t) = u(0) + ty’(0) +  ! 
n 

  
where  

+ t 
En =  n 1 

( n 1) ! +  u(n+1)( q t),   0 <  q  < 1.               (150)  
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Hence using (146) and (147) we have  
t 2 *Df(a,b) + ….. +  ! t n    f(a + ht,  b + kt) = f(a,b) + t*Df(a,b) +  ! 
2 n 

*Df(a,b) + En9            (151)  
  
where now  

+ t 
En =  n 1 

( n 1) ! +  *Dn+1f(a + h q t,  b + k q t), 0 <  q  < 1.            (152)  
  
Putting  t  =  1  in  (151)  and  (152)  we  finally  obtain  Taylor’s  expansion  
(142) with the error term (145).  
  
Theorem 3:  If  
  

lim   En = 0,                        (153)  
n ® ¥ 
  
then  
  

D * 2 f(a,b) + …  f(a + ht,  b + kt) = f(a,b) + *Df(a,b) +  ! 
n 

1 *Drf(a,b).                    (154)  ¥     =  å ! 
r  r 0 = 

  
In all that follows we shall assume that (153) is satisfied.  
  
An alternative form of Taylor’s series (154) may be obtained by putting  
  
h = x – a,    k = y – b.                    (155)  
  
Then  
  
f(x,y) = f(a,b) + [(x – a)fx(a,b) + (y – b) fy(a,b)]   

1 {(x – a)2    +  ! fxy(a,b) + 2(x – a)(y – b)fxy(a,b)  
2 

        + (y – b)2 fyy(a,b)} +…,                (156)  
  
which is Taylor’s expansion of f(x,y) about the point (a ,b). When there  
is no dependence on y, (156) reduces to Taylor’s series for a function of  
one variable (6.1 (8)).  
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Example 16:   Expand the function  
  
  f(x,y) = sin xy                      (157)  

about the point ( ) p  neglecting  terms of degree three and higher  1, 3 

Here  
  

f( ) 3 ,  p  =  2 
1, 3 

fx(x,y) = y cos xy, fx( ) p  =  6 p ,  1, 3 

  
1 ,  fy(x,y) = x cos xy, fy( ) p  =  2 

1, 3 

fxy(x,y) = -y2 sin xy, fxy( 
) 

p ,                (158)  p  = - 2 3 1, 3 
18 

  
1 ,  fxy(x,y) = -xy sin xy = cos xy, 

fxy( ) 

p  +  2 p  = - 2 3 1, 3 
6 

  

3 .  fyy(x,y) = -x2 sin xy, fyxy ( 
) 

p  = - 2 
1, 3 

  
Hence substituting these results in (156) we have  
  

3  +  ( ) ( 
) 

{ ì æ ö ï p 1 1 3 p p ï ÷    Sin xy =  2 ç  ( )} 2 2 ( x 1) y ( x 1) - + - + - - ÷ í ç ÷ ÷ ç ï è ø 6 3 2 2! 18 ï 
î  ü æ ö æ öï 3 1 3 p p  p ï ÷ ÷             (159)  ç  ç ( ) ( )2 2 ( x 1) y  y + - - - + + - - ÷ ÷ý ç  ç ÷ ÷ ç  ç ï è ø è øï 3 6 2 3 2 þ 

+ terms of degree 3  and higher  
  

3.11  Maxima and Minima of Function of Two Variables  
  
A function f(x,y) is said  to have a maximum value at a point (x,y) = (a,  
b) if  
  
f(a + h, b +k) – f(a,b) < 0,                     (160)  
  
where h and k are small arbitrary quantities.  
  
Similarly f(x,y) is said to have a minimum at (x,y) = (a,b) if  
  
f(a + h, b +k) – f(a,b) > 0,                            (161)  
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These  results  may  be  interpreted  geometrically  (see  Fig.  9.3)  by   
noticing (in the manner of 9.1) that the surface z = f(x,y) is higher  
  
  

 z     max z  
  
  
   min 
  0  0  
   y   y  
  
   (a,b)   (a,b)  

x  x    
(a)  Maximum  (b)  Minimum    

  Fig. 2.3  
  
at  (x,y)  =  (a,b)  than  at  any  neighbouring  point  when (160)  is  satisfied  
(thus corresponding to a maximum), and is  lower  at a (a,b) than at any  
neighbouring  point  when  (161)    is  satisfied  (thus  corresponding  to  a  
minimum).  
Now  if a maximum  or minimum  occurs at  (a,b)  the curves lying in  the  
two  planes  x  =  a  and  y  =  b  must  also  have  maxima  and  minima  or  
minima at (a,b)  (see  Fig.  9.4). Consequently  the  tangents  T1  and T2 to  
these curves at (a,b) must be parallel to the Ox and Oy axes respectively.  
  
This requires  
  

 f ¶ ¶ 
x ¶  = 0,  f y ¶  = 0                      (162)  

  
at  all  maxima  and  minima.  The  solution  of  these  equations  gives  the  
coordinates of points of possible maxima and minima, and also of points  
called saddle points which will be defined later. In general we speak of  
the solution of (162) as giving the stationary or critical  
  
  z  
  
  

T1    
 T2    

  
  
  0  

 y    
(a,b)    x  

   Fig. 2.4  
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Points  of  f(x,y).  To  decide  whether  a  particular  stationary  point  is  a  
maximum, minimum or neither we now use the Taylor expansion of fx,  
y) in the form given by (142), namely  

1 *Df(a,b) + …,          (163)  
f(a + h, b + k) = f(a,b) + *Df(a,b) +  ! 

2 
Where *D = ( ) ¶ ¶ h k + 

x k ¶ ¶ .  
  
If (a,b) is a stationary point then (162) gives  
  
*Df(a,b) = 0.                      (164)  
  
Hence, neglecting terms of order h3, k3 and higher, we have  
  

1 {h2 f(a + h, b + k) - f(a,b) =  2 fxy(a,b) + 2hkfxy(a,b) + k2 fyy(a,b)},  (165)  
  

f ( x,y ) ¶ 
   at  a  stationary  point  where,  for  example,  fxy(a,b)  means  2 

 2 x  ¶ 
evaluate at (a,b). We now see that (165) may be rewritten as either  
  

 1 2(a,b)  -  f(a  +  h,  b  +  k)  -  f(a,b)  =  ) 
   {[hfxy(a,b)]2  -  k2[fxy b , a ( f 2 

xx 

fxy(a,b)fyy(a,b)]},                      (166)  
  
or  

 1 f(a + h, b + k) - f(a,b) =  )   {[hfxy(a,b) + kfyy(a,b)]2 – h2[ f 2 xy (a,b)  b , a ( f 2 
yy 

– fxy(a,b)fyy(a,b)]},                             (167)  
  
Clearly the  sign of  f(a + h, b  + k) -  f(a,b),  which  by (160) and (161) is  
crucial in deciding whether a particular stationary point is a maximum or  
minimum, is now, by (166) and (167), dependent on the values of h and  
k. However, if  
  

D º f 2 xy (a,b) – fxy(a,b)fyy(a,b) < 0                          (168)  
  
then the terms in curly brackets in (166) and (167) are positive for all h  
and k.  
  
Consequently, with  D < 0,  the  sign  of  f(a  +  h, b  +  k) -  f(a,b)  depends  
entirely  on  the  signs  of  fxy(a,b)  and  fyy(a,b).  From  (160)  and  (161)  we  
deduce therefore that (a,b) is a maximum if  
  



MTH 281                                                 MODULE 1  

  

D < 0, fxy(a,b) < 0,                      (169)  
  
and a minimum if  
  
D < 0, fxy(a,b) > 0,                      (170)  
  

We note that  D < 0, and fxy(a,b) > < 0 simply fxy(a,b)  > < 0.   
  
When  D > 0 the signs of the curly brackets in (166) and (167) depend on  
the values of h and k. In this case the stationary point (a, b0  is called  a  
saddle point. Such a point is  neither a maximum nor a minimum, but is  
such that the point P is a maximum for the curve C1 and a minimum for  
the curve C2 (see fig. 9.5).  
  
When  D = 0 a more refined test is required to determine the nature of a  
given stationary point.  
  
Example 17:   Consider the function  
  
f(x,y) = x4 + 4x2y2 – 2x2 + 2y2 – 1.                          (171)  
  

¶ ¶ The conditions  f x 
x ¶  = 0,  f y ¶  = 0 give the two equations  

  
4x(x2 + 2y2 – 1) = 0,                     (172)  
  
and   
  
4y(1 + 2x2) = 0,                               (173)  
respectively.  
  
Hence solving (172) and (173) we have  
  
x = 0,  ± 1,  
  
y = 0,                          (174)  
  
giving the stationary points of (171) as (0, 0), (1, 0) and (-1, 0). We now  
test  each  f  these points  separately  for  a  maximum,  minimum  or saddle  
point. To do this we first differentiate (171) twice to get  
  

fxy = 12x2 + 8y2 – 4,  
  

fyy = 8x2 + 4,  
  
fxy = 16xy.                        (175)  



MTH 281                                                                                        MATHEMATICAL 
METHODS 1    

Point (0, 0). Using (175) we now have  

fxy(0, 0) = -4,  fyy(0, 0) = 4,  fxy(0, 0) = 0,                (176)  
  
whence  

D  =  f 2 xy (0, 0) – fxy(0, 0)fyy(0, 0) = 16 > 0.                      (177)  
  
 This point is therefore a saddle point.  
Point (1, 0). Here  
  

fxy(1, 0) = 8,  fyy(1, 0) = 12,  fxy(1, 0) = 0               (178)  
  
and  
  

D  =  f 2 xy (1, 0) – fxy(1, 0)fyy(1, 0) = -96 < 0.              (179)  
  
By (170) this point is therefore a minimum.  
Point  (-1,  0).  Since  the  values  of  fxy(-1,  0),  fyy(-1,  0)  and  fxy(-1,  0)  are  
identical with those given in (178), this point is also a minimum.  
  
The function f(x,y) defined in (171) therefore has two minima (at (1, 0),  
(-1,  0)), and  one  saddle  point  (at  (0,  0)).  Finally it is  easily  found  that  
f(x,y) = -2 at both minima, and f(x,y) = -1 at the saddle point. The reader  
should now attempt o sketch the surface z = f(x,y) defined by (171).  
  
Example 18:   To find the maximum value of  
  
f(x, y, z) = x2y2z2                    (180)  
  
subject to the condition  
  
x2 + y2 + z2 = c2,                    (181)  
  
where  c  is  a  constant.  Problems  of  this  type  where  some  constraint  is  
applied  (which  effectively  means  that  not  all  the  variables  are  
independent) are best dealt with by the  method  of Lagrange multipliers  
(see  next  section).  However,  in  this  particular  example  we  can  easily  
reduce  the  problem to one in two-independent variables by eliminating  
z to get  
  
f(x,y) = x2y2(c2 – x2 – y2)                    (182)  
  
and proceeding as in Example 17.  
The  stationary  points  are  easily  found  to  be  (0,  0,  c)  

æ ö ÷ ç± ± ± ÷ and c c c , , ç ÷ ç è ø ,  where  all  possible  combinations  of  sign  are  3 3 3 
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allowed. This second point is, in fact, eight symmetrically placed points  
in  the  form  of  a  cube  centred  at  the  origin  of  the  0xyz-  coordinate  
system. It is at these points that the function (180) takes on its maximum  

æ ö c ÷ ç= ÷ value 6 ç ÷ ÷ ç 27 è ø.  
  

3.12  Lagrange Multipliers  
  
In  the  last  example,  a  problem  of  maximising  a  function  of  three  
independent variables subject to a constraint was successfully dealt with  
by  eliminating  one  of  the  variables.  However,  this  approach  may  not  
always  be possible.  For  example,  if instead  of the  constraint (181), we  
had the relation e-yzsin2(x  + z)+1  = 0, it would not be  possible  to solve  
explicitly  for  z.  Lagrange  developed  an  alternative  method  of  dealing  
with maxima and  minima  problems which are  subject  to constraint  and  
which  overcomes  this  difficulty.  We  indicate  this  method  here  for  the  
case  of  functions  of  two  variables  only,  but  the  technique  maybe  
extended to any number of variables.  
  
Suppose  f(x,y)  is  to  be  examined  for  stationary  points  subject  to  the  
constraint  
  
g(x, y) = 0.                        (183)  
  
Now for f(x, y) to be stationary we must have the total differential  
  

¶ ¶ df = f 
x ¶ dx +  f y ¶ dy = 0                    (184)  

  
This would normally lead to the usual equations  
  

¶  f ¶ 
y ¶  = 0                     (185)  x ¶ = 0,  f 

  
for  the stationary  points. However,  dx and  dy  are  not now  independent  
but are related via the total differential of g(x,y)  
  

¶ ¶ 
dg =  g 

x ¶ dx + g y ¶ dy = 0                    (186)  
(using (183)).  
  
Hence  multiplying  (186)  by  a  parameter  l   and  adding  to  (184),  we   
have  

æ ö ¶ æ ö ¶ f ¶ ÷ f ¶ ÷ ç + l ÷ ç + l ÷ d(f +  l g =  g ç ÷ ç ÷ ç ç x x è ø ¶ ¶ dx +  g y y è ø ¶ ¶ dy = 0.                     (187)  
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We now choose  l  such that  
¶ f ¶ 

x ¶  +  l g x ¶  = 0,                      (188)  
  
whence if follows from (187) that  
  

 f ¶ ¶ 
y ¶  +  l g x ¶  = 0.                      (189)  

  
Equations (188), (189) and (183) are together sufficient to determine the  
stationary points and the value of the multiplier l .  
  
Example  19     To find  the maximum distance  from the  origin (0,  0) to  
the curve  
  
3x2 + 3y2 + 4xy – 2 = 0.                    (190)  
  
Here we have to find the maximum value of the distance l, where  
  
l2 = f(x,y) = x2 + y2                      (191)  
  
subject to the constraint  
  
g(x,y) = 3x2 + 3y2 + 4xy – 2 = 0.                  (192)  
  
Now the Lagrange equations (1880 and (189) give  
  
2x +  l (6x + 4y) = 0,                    (193)  
  
2y +  l (6x + 4y) = 0,                            (194)  
  
which must be solved together with (192). From (193) and (194) we find  
4 l (y2 – x2) = 0 whence y =  ± x. With y = x, (192) gives 10x2 – 2 = 0 of  

1 ; with y = -x, (192) gives 2x2 – 2 =0 or x =  ± 1. The stationary  x =  ± 5 

æ ö æ ö ÷ ÷ ç ÷ ç- - ÷ points are therefore  1 1 , , ç ÷ ç ÷ ç ç è ø,  1 1 è ø, (1, -1), (-1, 1).  5 5 5 5 
  

2 , whilst for the last  
From (191) we find that fro the first two points l2 =  

 5 
two l2 = 2. Hence the maximum distance from the origin to the curves is  
l =  2 .  
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SELF ASSESSMENT EXERCISES 4  
  
1.  Prove  that  the volume  of greatest  rectangular  parallelepiped  that  

can be inscribed in the ellipsoid  
2 2 2 z  =  1 is  3 8 .  abc x  +  2 y  +  2 

  
 2 a b c 3 

  
2.  Find  the  stationary  points  of  f(x,y)  =  x2  +  y2  subject  to  the  

constraint 3x + 2y = 6.  
  

4.0  CONCLUSION  
  
In  this  unit,  we  have  considered  and  discussed  into  detail  important  
mathematical  concepts.  The  Partial  Differentiation,  we  have  also  
considered  concepts  like  Lagrange  Multiplier  Techniques,  which  is  a  
useful tool  in determining the  maxima  and minima point in  calculus  of  
several variables.  
  
The  concepts  developed  will  be  useful  in  solving  problems  in  more  
advanced mathematics as we progress in our studies.  
  

5.0  SUMMARY  
  
Here in this unit you have learnt about functions of several independent  
variables and various methods of performing derivatives on them.  
  
You  have  also  learnt  about  different  type  of  functions  that  can  be  
encountered  in  the  process  of  performing  the  task  of  finding  the  
derivatives of functions of several variables.  
  

6.0  TUTOR-MARKED ASSIGNMENT  
  

¶ 
1.  Find  3 f ( x , y , z ) 

x y z  ¶ ¶ ¶  f = (x,y,z) when  
  
a)  f(x,y,z) = exyz  

b)  f(x,y,z) =  xy 
2 x z +  and verify in each case that fxyz = fxyz = fxyz.  

  
2.  If x = u2 – v2, y = u2 + v2  
  show that  
  

 1  - ì ü ï ï ¶ ¶ u v u v ¶ ¶ ¶ ¶ ï ï  x ¶ ¶ . . - í ý 
ï ï x y y x ¶ ¶ ¶ ¶ ï ï î þ .  u ¶ . y v ¶  -  x v ¶ . y u ¶  = 8uv = 



MTH 281                                                                                        MATHEMATICAL 
METHODS 1    

3.  Find the stationary points of the function  
  
  v = x2 + y2 + z2  
  subject to the condition  
  

 x2 - z2  = 1.  
  

4.  In  determining  the  specific  gravity  by  the  formula  S  =  A 
A W - ,  

where A is the weight in air, and W is  weight in  water. A can be  
read  within  0.01gm  and  W  can  be  read  within  0.02gm.  Find  
approximately the maximum error in S, if the readings are  

  
  A = 1.1gm and   

D .    W = 0.6gm. Find the maximum relative error S 
S 
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1.0  INTRODUCTION  
  
In this unit, we shall study convergence of series and sequences which is   
very useful in the subsequent development of this course.  
  

2.0  OBJECTIVES  
  
At the end of this unit,  should be able to:  
  
•  test for convergence of series  
•  test for conditional convergence of series  
•  provide answers to the exercises at the end of this unit.  
  

3.0  MAIN CONTENT  
  

3.1  Definition  
  
If  a1,  a2,  a3  …  is  a  given  sequence  of  numbers,  the  sum  of  the  first  n  
numbers is called the nth partial sum and is represented by  

Sn = a1 + a2 + a3 + … + an =  n å ar.            (1)  
r 1 = 
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If the partial sums S1, S2, S3, … converge to a finite limit S, where  
S =  lim  Sn,                  

(2)   n ® ¥ 
  
Then S is defined as the sum of the infinite series  
  

¥ 
a1 + a2 + … + =  å ar,              

(3)   r 1 = 
  
and  the  series  is  said  to  be  convergent.  When  the  sequence  of  partial  
sums tends to  an infinite  limit,  or oscillates either finitely or infinitely,  
the series is said to be divergent.  
  
Example 1:  The series  

1  +  3 1  + … ,            (4)  ¥ 
å   1 

. 1 . 2 r ( r 1) +  =  3 r 1 = 
  

5 , … which with  1 , S2 = 3 2 , S3, = 4 3 , S4 =  5 4 , S5 =  6 has partial sums  S1 =  2 

increasing n tend to unity. Hence the series is convergent with a sum S =  
1. This result can also be obtained by using the method of differences to  
sum the finite series  
  

Sn =  n å 1 
r ( r 1) +                 (5)  r 1 = 

  
and then letting n  ® ¥  in the result. For writing the rth term as   
  

1  - 1 
ar = r 

r 1 + ,                 (6)  
  

1  - 1 
we have an = n 

n 1 + ,    
1 ,                
(7)  an-1 =  1 

n 1 - - n 
M M M   

1 ,  1  -  3 
a2 =  2 

1 ,  
a1 = 1 -  2 

  
which, on adding, give  
  

Sn =  n å  ar =  n å 1 
r ( r 1) +  = 1 -  1 n 1 + .          (8)  r 1 = r 1 = 
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Hence S =  lim   Sn = 1, as before.  
 n ® ¥ 

  
Example 2:   The geometric series  
  

¥ 
å  akr = a(1 + k + k2 + … )             (9)  
r 1 = 
  
(where a is a constant) has an nth partial sum Sn given by  

1 k - Sn = a n 
1 k - .                         (10)  

  
Hence if |k| < 1,  
  

S =  lim   Sn =  a 
1 k -                        (11)   n ® ¥ 

  
and series is convergent.  
  

The series is divergent,  however,  when |k|  ³ 1, since  the  partial sum Sn  

either increases without limit as n ® ¥ , or oscillates either finitely (k =  
-1) of infinitely (k < -1).  
  

3.2  Theorems on Series  
  

¥ Theorem 1:   The series å ar cannot converge unless  lim   an = 0. This  
 n ® ¥  r 1 = 

may be proved by considering the (n -1)th and nth partial sums given by  
  
Sn-1 = a1 + a2 + … + an-1,                               (12)  
  
and  
  
 Sn = a1 + a2 + … + an,                               (13)  
  
Subtracting (12) from (13) we have  
  
Sn - Sn-1 = an.                         (14)  
  
Now if the series converges to a sum S then  
  

S =  Sn =  lim   Sn-1,                                 (15)  
 n ® ¥ 
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and hence, from (14) and (15),  
lim  an = 0.                          (16)  

n ® ¥ 
  
This  condition  is  necessary  but  not  sufficient  for  convergence  in  that  
there  are  many  series  satisfying  (16)  which  nevertheless  do  not  
converge. The harmonic series  
  

1                       (17)  ¥ 1  + .. =  1  +  3 1 +  2 å r 
 r 1 = 

  
is a good example of this since, although  
  

1  = 0,                         
lim  an =  lim 

® ¥ n n ® ¥  n 
(18)  
  
the sum  of the  series  is infinite (see  next  section).  However, the  series  

¥ p , for example, cannot converge since  p ¹  0.  å  cos  r lim   cos  n 
4 4  n ® ¥ r 1 = 

¥ ¥ Theorem 2:  If  å  ar = S, then  å  kar = kS, where k is a constant. This  
 r 1 =  r 1 = 

follows from the obvious  identity  

n 
å  kar = k  n å  ar                                                 (19)  
r 1 = r 1 = 
  
and proceeding to the limit n ® ¥ .  
  

¥ ¥ Theorem 3:  If  å  ar = S and  å  br = T, then  
 r 1 =  r 1 = 

  

¥ 
å  (ar + br) = S + T.  
r 1 = 
  
Again this theorem is proved  by considering the identity  
  

 n 
å  (ar + br) =  n å ar +  n å br                     (20)  
r 1 = r 1 = r 1 = 
  
and letting n ® ¥ .  
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¥ ¥ Theorem 4:  If  å ar = S, then  å ar = S + a0, where a0 is nay number.  
 r 1 =  r 1 = 

  

Writing  n S  =  n å ar and Sn  n å ar,  
r 1 = r 1 = 

we have  n S  = Sn + a0.                     (21)  
  
Hence, letting n ® ¥ in (21), the theorem is proved. This theorem shows  
that nay new term may be introduced at the beginning of a series without  
affecting the convergence of the series. A simple extension of this result  
shows  that  the  removal  or  insertion  of  a  finite  number  of  terms  
anywhere in the series does not affect its convergence.  
  
SELF ASSESSMENT EXERCISES 1  
  
Examine the following series for convergence.  
  

¥ 1.  å 1 
2 r ( r 1) +    r 1 = 

  
! r   ¥ 2.  

å r 10 
 r 1 = 

  
  

¥ + r 1    r å 3.  2 
 r 1  + 

  

r å   4.  r 
1 r 

  
1 5.  Z    
 r  ( r r + 

  

3.3  Series of Positive Terms  
  

¥ When a  series  å ar consists  only of positive terms (ar  ³  0 for  all r) it  
 r 1 = 

must  either  converge,  or  diverge  to  +  ¥ ;  it  clearly  cannot  oscillate.  
Numerous  tests  of  convergence  are  known  for  series  of  this  type,  and  
four such tests are given below:  
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a)  Comparison Test  
  

¥ ¥ If  å  ar is a series of positive terms,  and  if  å br  is  a  series of positive  
 r 1 =  r 1 = 

¥ terms that is known to converge, then  å ar is convergent if ar £ br for all  
 r 1 = 

¥ ¥ sufficiently large r. Similarly, If  å br  is known to diverge then  å ar is  
 r 1 =  r 1 = 

divergent if ar ³ br for all sufficiently large r.  

  
Since,  by  Theorem  4,  the  removal  or  insertion  of  a  finite  number  of  
terms does not affect  the  convergence  of a series,  it can  be assumed in  
the proof that follows that the condition ar £ br (and ar ³ br) holds for all  

r.  
  
The  proof  of  this  test  may  easily  be  seen  by  a  graphical  argument.  
Suppose each term of a series represents the area of a rectangle of base  
equal  to  unity  and  height  equal  to  the  magnitude of  the  term  (see  Fig.  
5.1). Then the sum of the series is represented by the sum of the  
  
  
  
  
  

b1  b2  b3    
  
   Fig. 3.1  
  

¥ areas of  the rectangles.  If now  å br  converges  to  a sum  then  the total  
 r 1 = 

area of the rectangles must be finite, and  if ar  £  br for all r, the area of  

¥ 
the rectangles  representing the series ar must also be finite.  Hence  å ar  

 r 1 = 

¥ converges if  å br converges.  
 r 1 = 

  
A  similar  argument  applies  to  the  second  part  of  the  test.  An  analytic  
proof of the test may be obtained by considering the partial sums  
  

¥ 
Sn = å ar, Tr =  n å br.                             (22)  

 r 1 = r 1 = 
  

Then ar £  br implies Sn £  Tn, and hence  



MTH 281                                                 MODULE 1  

  

  
lim  Sn  £   lim  Tn = T,                                        (23)  

n ® ¥  n ® ¥ 
¥ where T is the sum of the convergent series å br. Now since ar ³   
 r 1 = 

0, Sn  
never decreases and therefore  

lim  Sn = S £ T.                               (24)  
n ® ¥ 

  
Hence,  by  (23), the  first  part of  the test  is proved.  A  similar argument  
exists for the second part of the test.  
  
Example 3:   The harmonic series  
  

1 + 3 1 + 4 1 + … =  1                                (25)  ¥ 1 +  2 å r 
 r 1 = 

  
may be shown to be divergent by writing it as  
  

1 +( 3 1 + 4 1 )+( 5 1 + 6 1 + 7 1 + 8 1 + …                  (26)  
1 +  2 

  
1 ;  by  grouping  terms  The  terms  in  brackets  are  now  greater  than 2 

together in this way throughout the series so that the value of each group  
1  we see, by comparison with the divergent series  exceeds  2 

  
1 + 2 1 + 2 1 + …,                        (27)  

1 +  2 

  
that  (26)  is  divergent.  It  should  be  noted,  however,  that  bracketing  of  
terms in series (as in (26)) is in general not possible without altering the  
character of the series (see 5.8).  
  
Example 4:  The p-series  
  

1 + … =  1                    (28)  1 + p 1 + p ¥ 
1 +  p å p 2 3 4 r 

 r 1 = 
  

converges  if  p  >  1,  and  diverges  if  p  £   1.  We  can  prove    these  

  1 separately:  statements by taking the three cases p  < 
> 

a)  if  p  =1,  (28)    becomes  the  harmonic  series  (25)  and  i  
consequently divergent;  
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b)  if p < 1, each term of (28) (apart from the first) is greater than the  
corresponding term of the harmonic series. The series is therefore  
divergent; by comparison  
  

c)  if p > 1, we write the series as   
æ ö æ  ö 1 1 1 1 1 1 ÷ ÷ ç + ÷ ç + + + ÷ 1 +  p p ç ÷ ç  ÷ ÷ ÷ ç ç è  ø + …              (29)  2 3 4 5 6 7 è ø +  p p p p 

  
and continue grouping the terms throughout the series into brackets such  
that every brackets is less than the corresponding term of the series  

  
4  + ….                     (30)  2  +  p 

1 +  p 
2 4 

  
Now  (30)  is  a  geometric  series  with  a  common  ratio  k  =21-p  which  is  
known to be convergent for |k| < 1. Consequently (29) converges for p >  
1.  
  
b)  Ratio Comparison Test  

¥ ¥   If  å ar and  å br are two series of positive terms and  
 r 1 =  r 1 = 

    
a b +    r 1 + £ r 1 

a b 
r r 

¥ ¥ for  all  sufficiently  large  r,  then å ar  converge  when  å br  converges.  
 r 1 =  r 1 = 

a b + ,  + ³ r 1 Similarly, if r 1 
a b 

r r 
¥ ¥ then  å ar diverges when  å br diverges.  
 r 1 =  r 1 = 

a b +  for all r (see the  + = r 1 To prove these results we assume first that  r 1 
a b 

r r 
remarks in (5.3 (a)). Then writing  

a a a b b a .a1£ r b .a1            (31)   …  .  -  -  - ar =  r  . r 1  . r 2  . r 1 2 2 a b a - a a b - b 
r 1 r 2 - r 3 - r 1 r 2 - 

 1  1   
we have  

a b .                        (32)  
ar £    1 r b 

 1   
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¥ Since  (32)  is  true  for  all  r,  the  comparison  test  shows  that  å ar  
 r 1 = 

¥ converges  when  å br  converges.  The  second  part  of  the  test  may  be  
 r 1 = 

proved in the same way.  
1   is  convergent  since,  using  the  ¥ ¥ Example  5:    The  series  å ar º å r 3 

 r 1 =  r 1 = 
1 , we have  ¥ ¥ convergent series  å br  º   å  r 2 

 r 1 =  r 1 = 

+  = ( )3 +  = ( )2 a b r r r 1 
r 1 r 1 +                   (33)  a + <  r 1 b 

r r 
for all r.  

  
c)  d’Alembert’s Ratio Test  

a ¥ +   =  k  < 1,  and  The  series  of positive  terms   r 1 lim å ar converges  if   
a  r ® ¥  r 1 = r 

a a +   =  k >  1. If  +   =  1,  the  series  may  either  diverges  if   r 1  r 1 lim lim 
a a  r ® ¥  r ® ¥ r r 

converge or diverge.  
  

To prove the first part of this test we assume that  
  

a +  = k < 1                     (34)   r 1 lim 
a r ® ¥ r 

  
and choose  a  number h such that k <  h  < l.  Then  for some sufficiently  
large value of r, say s, we have  

a a a +  < h,  s 2  +  + s 1   < h, …                (35)    < h,  s 3 
a a a s 1 + s 2 + s 

and so on.  
  
Therefore  
  
as+1 < ash,  
  
as+2 < as_1h <ash2,  
  
as+3 < as_2h <ash3,                     (36)  

. . .   

. . .   

. . .   
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 which give, on adding,  
as+1 + as+2 + as+3 + … < as(h + h2 + h3 + …).              (37)  
  

The series on the right-hand side of (37) is a convergent geometric series  
since, by assumption, h < 1. Hence, the series on the left-hand side (37)  

¥ also converges. Finally therefore, if k < 1,  å ar is convergent.  
 r 1 = 

  
The case  of k > 1 maybe proved in the same way. The ratio test clearly  
gives  no  information  when k = 1  as  can  be  seen by  considering the  p- 
series for which  

  
 p a r  - +  =  1  r 1   =  lim lim lim 1 r +  = 1                       (38)  

® ¥ ( ) p  p a ( r 1) + r ® ¥  r ® ¥  r r 
for all p.  
  

Example 6:   The series  
  

3  = … =  r                            (39)  1  +  2 2  +  3 ¥ 
å r 2 2 2 2 
 r 1 = 

  
converges since  

1 1 .           (40)  a ì æ öü r 1 2 ï ï + +  =  1 ï ï ÷ ç ÷   =  2  r 1 ® ¥ ( ) lim lim lim 1 r +  =  2 í ý ç ÷ ® ¥ ( ) r ÷ ç ï ï a r 2 + è ø r 1 ï ï r ® ¥  r î þ  r r 
  
d)  Cauchy’s Integral Test  
  

¥ If  å ar  is  a  series  of  positive  decreasing  terms  and  if  there  exists,  for  
 r 1 = 

x ³ 1, a positive, monotonic decreasing integrable function f(x) such that  

f(r) = ar for r = 1, 2, 3 … n, then  

+ 
 f ( x ) 0 <  n ò dx < f(1).                (41)  å ar -  n 1 

1 r 1 = 
  

It may be further proved that  
  

æ ö  n 1 + ÷ ç - ÷ lim S f ( x ) dx ò                    (42)  ç ÷ ç n 1 è ø 
n ® ¥ 
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¥ is finite. A direct consequence of  (42) is that the series  å ar converges  
 r 1 = 

¥ when   f ( x )dx ò   converges  (in  the  sense  of  Chapter  4,  4.8),  and  
 1 

¥ diverges when   f ( x )dx ò  diverges.  
 1 

  
A simple proof of (41) maybe easily obtained using the type of graphical  
argument  given in proving  the  comparison  test.  Consider first  the  area  
ABCD shown in Fig. 5.2. Then, since AB = a1 and AD = 1, we have that  

area ABCD = a1  

  

  
  

B  C      P  F  Q    S  R  T    
  

a1   a2   an     
 A  D    

Fig. 5.2    

 f ( x )dx The area under curve f(x) between A and D is  2 ò    
1 

  
Consequently  
  

 a1 -  2  f ( x )dx ò  = area BCP < area BCPQ.            (43)  
1 

  
Similarly,  considering the  next rectangle of height a2   

a2 -  2  f ( x )dx ò  = area PFR < area PFRS = area QPST.         (44)  
1 

  
After n such expressions we have, on adding,  

  

+ 
 f ( x )dx ò  < area ABCD =  f(1),  0  < (a1 + a2  + a3 + … + an) -  n 1 

1 
(45) which proves the basic inequality (41) of the integral test.  
  

 1   converges  only  if  p  >  1.  This  ¥ Example  7:      The  series  å p 
) r (log r  r 2 = 

follows from the integral test since  

 dx  du  b log b I =   e lim lim ò  =  ò                  (46)  
 p  p 2 log 2 x (log x ) u  b ® ¥  b ® ¥ 

e 

Converges only if p > 1.  
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Example 8: Using the  divergent harmonic series in the integral test we  
have (from (41))  

  

0 < ( ) 1 1 1 2 ... + + + +  - loge(n + 1) < 1.                           (47)  
3 n 

  
Furthermore by (42)  

{  } 1 1 1 
® ¥ ( ) lim 1 ... log ( n 1) + + + + - +  =  g ,                         (48)  

e 2 3 n n 
where  0  <  g   <  1.  The  constant  g     is  called  Euler’s  constant  and  is  
approximately equal to 0.5772.  

  
SELF ASSESSMENT EXERCISE 2  

  
Examine the following series for convergence  
  

¥  1.  å 1 
2 r ( r 1) +   

 r 1 = 
  

! r   ¥ 2.  å r 
10 

 r 1 = 
  

¥ 3.  å r2xr(x > 0)   
 r 1 = 

  

3.4  Alternating Series  
  

¥ If  å ar  is a  series  of  term  which  are  alternately  positive  and  negative,  
 r 1 = 

and if the terms continually decrease in magnitude and  lim  an = 0, then  
 n ® ¥ 

the series converges.  
  
Suppose  

¥ 
å ar = a1 - a2 + a3 – a4 + a5 … ,                    (49)  
r 1 = 
  
where a1 a2 a3 … are positive decreasing terms. Plotting the values of the  
first few partial sums S1, S2, S3 … along the line  Ox  (see Fig.  5.3) it is  
clear  that  these  partial  sums  approach  more  and  more  closely  to  a  
definite value S. Hence, the series converges.  
  
  
  

 0       S2       S4        S5        S3       S1          x  
  

S  
Fig. 5.3  
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Example 9:  The series  
  

 r 1  + ( 1) -                    ¥           (50)  1-  1 1 1 + - …. =  å r 2 3 4  r 1 = 
satisfies  all  the  conditions  stated  above  and  therefore  converges.  The  
sum of this series is loge 2.  

3.5  Absolute Convergence and Conditional Convergence  
  
Suppose  
  

¥ 
å ar = a1 + a2 + a3 + …                     (51)  
r 1 = 
  
is a sries of positive and negative terms. Then  
  

¥ 
å |ar| = |a1| + |a2| + |a3| = …                   (52)  
r 1 = 
  
is a  series  of positive  terms which  are just  the absolute values  of ar.  If  
(52) is convergent, (51) is said to be absolutely convergent, and it can be  
proved  that  any  absolutely  convergent  series  is  also  convergent.  If,  

¥ ¥ ¥ however,  å |ar|   diverges,  but  å ar converges,  then  å ar  is said  to be  
 r 1 =  r 1 =  r 1 = 

conditionally convergent. For example, the series  
  

 r 1  + ( 1) -                              (53)  ¥ 
1-  1 1 1 + - +. =  å r 2 3 4  r 1 = 
  
discussed  in  Example  9  is  conditionally  convergent  since  the  series  
formed from the absolute values of its terms  
  

 + ( 1 ) -                     (54)  ¥ 
1+  1 1 1 + + +… =  å r 1 

2 3 4 r  r 1 = 

  
is the divergent harmonic series.  
  
On the other hand, the series  

 r 1  + ( 1) -                    (55)  ¥ 1 1 1 + - … =  å 1-  2 2 2 2 r 2 3 4  r 1 = 
  
is absolutely convergent since  
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 r 1  + ( 1) -                     (56)  ¥ 1 1 1+  2 2 + + … =  å 
2 2 3 r  r 1 = 

is convergent (p-series with p = 2).  
  
SELF ASSESSMENT EXERCISE 3  
  
1.  Examine the following for convergence:  
  

¥  ¶  for ¶  = 0,  2   p  and 2 3 p .  å cos r 
R  r 1 = 

  
2.  Show that if the conditionally convergence series  

1-  1 1 1 + - +  …  is  rearranged  as  the  series  
2 3 4 

æ ö æ ö 1 1 ÷ ÷ ç + - ÷ ç + - ÷ 1 ç ÷ ç ÷ ç ç è ø+ 1 1 1 4 è ø+   3 2 5 7 
where  two  positive  terms  always  alternate,  with  one  negative  
term the series diverges.  

  

3.6  Absolute Convergence Tests  
  

¥ Since  å |ar| is series of positive terms its convergence may be discussed  
 r 1 = 

using any of the tests given in 5.3. For example, d’Alambert’s ratio test  
for absolute convergence now takes the form: the series of positive and  

¥ negative terms  å ar is absolutely convergent (and hence convergent) if  
 R 1 = 

a  r 1 +  = k < 1,                        (57)  
lim A r r ® ¥ 

  
and is divergent if  
  

a  r 1 +  = k > 1.                        (58)  
lim A r r ® ¥ 

  
As  before,  the test  does  not  decide  between  absolute  convergence  and  
divergence when k = 1.  
  
Example 10:  If  
  

¥ 
å ar = 1 + 2x + 3x2 + …,                     (59)  
r 1 = 
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then  
a  r ( r 1 ) x +  = |x|  r 1 +  =  ® ¥ ( ) r 1 +  = |x|.             (60)  

lim lim lim A R r 1 r Rx - r ® ¥  r ® ¥  r 

  
Hence, when |x| < 1, (59) is absolutely convergent, and when |x| > 1, it is  
divergent. The question of what happens when |x| = 1 may be answered  
by taking the two possible cases x = +1 and x = -1 separately. When x =  
+1, (59) becomes  
1 + 2 + 3 + 4 + …,                     (61)  
  
which is divergent; similarly when x = -1 the series becomes  
  
1 + 2 + 3 – 4 …,                     (62)  
  
which is divergent since  lim  ar ¹  0.  

 r ® ¥ 

Hence (59) is absolutely convergent for |x| ³  1.  
  
Example 11:  The series  
  

 x  x 2  x 3 sin  + … =   rx sin                 (63)  sin  +  2 sin  +  2 ¥ 
å 2 1 2 3 r  2  r 1 = 

  
is absolutely convergent for all x, since, using the comparison test,  
  

1                           
(64)  

sin rx 
 £ 2 r  2 r 

  
1  is known to converge.  ¥ for all r, and  

å 2 r 
 r 1 = 

  

3.7  The Product of Two Series  
  

¥ ¥ ¥ If  å br are two absolutely convergent series, the  å cr, where  å ar and  
 r 1 =  r 1 =  r 1 = 

  
cr = a1br + a2br-1 + … + arb1                    (65)  

¥ ¥ is called the  Cauchy  product  of  å ar and  å br,  and  is  itself absolutely  
 r 1 =  r 1 = 

¥ ¥ convergent.  Furthermore,  if  å ar  converges  to  a  sum  S,  and  å br  
 r 1 =  r 1 = 

¥ converges to a sum T, then å cr converges to a sum ST. A similar result  
 r 1 = 
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has  already  been  given  earlier  for  the  sum  (and  difference)  of  two  
convergent series.  
  
Example 12:  The product of e2x and e-x may be written, using (65), as   
  

æ  öæ ö ( 2 x ) ( 2 x ) x ÷ ç  ÷ ç                (66)  ÷ ç + + + + - + - ÷ 1 2 X  ... 1 x ... ç ÷ e2xe-x =  2 3 2 ç  ÷ ÷ ÷ç 2! 3! 2! ÷ ç  è ø è  ø 
  

x 2  +  ! x3  + … = ex.                    (67)  = 1 + x +  ! 
2 3 

  

3.8  Rearrangement of Series  
  

¥ Any  series formed from  å ar by taking its  terms  in a different order is  
 r 1 = 

¥ called a rearrangement of  å ar. For example,  
 r 1 = 

  
1  …                   (68)  1  +  2 1  +  2 1  +  2 1  -  2 

1 +  2 
3 2 5 7 4 

  
is a rearrangement of the absolutely convergent series  
  

1 - …                  (69)  1 +  2 1  +  2 1  +  2 1  -  2 1  +  2 
1 -   2 

2 3 4 5 6 7 
  
such that two positive terms alternate with one negative term throughout  
the  series.  Similarly,  two  possible  rearrangements  of  the  conditionally  
convergent series  
  

1 +  3 1  +  4 1  …                     (70)  
 1 -   2 

  
1  -  2 1  +  5 1  +  7 1  -  4 1  …                 (71)  

are  1 +  3 

  
1  +  5 1 -  2 1  -  4 1  +  7 1   …                 (72)  

and  1 +  3 

  
In  (71)  two  positive  terms  alternate  with  one  negative  term;  both  of  
these  are  different  from  the  original  series  (70)  in  which  one  positive  
term alternates with one negative term. Since in any rearrangement of an  
infinite series the pattern of N positive terms alternating with M negative  
terms can be chosen at will and can be continued throughout the series,  
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it would be surprising if the sum of a rearranged series were equal to the  
sum  of  the  original  series.  It  can  be  proved,  however,  that  provided  
either we restrict ourselves to series of positive terms or to series that are  
convergent, the term may be rearranged in any way without affecting the  
sums of the series. This result is not true for series that are conditionally  
convergent, and any  rearrangement of terms in a series of this type will  
usually lead to a series with a different sum. For example, (68) will have  
the  same  sum  as  (69),  since  (69)  is  convergent  (p-series,  p  =  2).  The  
series  (70),  however,  is  only  conditionally  convergent  since  the  series  
formed  from  the absolute  values  of its  terms is the  divergent harmonic  
series. Hence, we must expect that the sums of the two rearranged series  
(71)  and  (72)  will  be  different  from  each  other  and  different  from  the  
sum  of  (70).  By  way  of  justifying  this  we  now  show  how  to  find  the  
sums of (70) and (71) so verifying that they are different.  
  
Consider (70) first: then by 5.1 (2) we have the sum S defined by  
  

1 1 1 S =  ® ¥ ( ) lim   Sn =  lim   S2n =  lim 1 ... - + + +               (73)  
2 3 2 n  n ® ¥  n ® ¥  n 

  

{  } ® ¥ ( ) ( ) 1 1 1 1 1 1 =  lim 1 ... 1 ... + + + + - + + + + .                       (74)  
2 3 2 n 2 3 n  n 

  
Now from 5.3, Example 8, we have  
  

{  } 1 1 1 
® ¥ ( ) lim 1 ... log ( n 1) + + + + - +  =   ,  

e 2 3 n n 
  
where    is Euler’s constant. Hence  

 ( ) e 
1 1 1 e ,                  (75)  1 ... log ( n 1) + + + + - +  =  n 2 3 n 

  
where  n e ®    as n ® ¥ .  
S =  lim   [{ n e  + loge(n + 1)}] = loge 2,           (76)  e  + loge(2n + 1)} – { n 

2  n ® ¥ 
  
since  n e  and  n e  both tend to    as n  ® ¥ .  

2 Similarly the series (71) may be written as   
  

 ) S3n = ( ) + -  +( ) + -  + … + ( 1 1 1 1 1 1 1 1 1 3 2 + - 
5 7 4 4 n 3 4 n 1 2 n - -   

  
1 ( )  ) = ( 1 1 1 1 1 1 1 ... + + + + -  -  2 1 ... + + + +   

3 5 4 n 1 2 3 n 
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1 ( )  ) + + + + -( ) =( 1 1 1 1 1 1 1 1 1 1 1 ... + + + + + - 2 1 ... 1 ... + + + +     (77)  
2 3 4 4 n 2 3 2 n 2 3 n 

  
Using (75), (77) becomes  

1 { n 1 { n { n e + loge(n + 1)},  e  + loge(4n + 1)} -  2 e + loge(2n + 1)} -  2 
4 2   

e  all tend to     as  which tends to  2 3  loge2 as n® ¥ , since  n e ,  n e  and  n 
4 2 

n  ® ¥ .  Hence,  the  sum  of  (71)  differs  from  the  sum  of  (70)  by  a  
3 .  factor 2 

  

3.9  Power Series  
  
An important type of series is the power series defined by  
  
¥ 
å arxr = a0 + a1x + a2x2 …,                                  (78)  

r 0 = 
  
where  a0,  a1,  a2,  …  are  constants.  The  value  of  x  for  which  (78)  
converges  may  be  found  using  d’Alembert’s  ratio  test  given  in  5.6.  
Hence  for  the  series  to  be  absolutely  convergent  we  must  have  (from  
(57))  
  

 r 1  + a x a r 1 +  =  x  r 1 +  = k < 1.                           (79)  
lim lim a  r a x r r ® ¥  r ® ¥ r 

  
This condition may be more conveniently expressed as  
  
x  < R,                                   
(80)    

where R, the radius of convergence, is defined by  
  

a  r R =   ,                                 
(81)  

lim 
a + r 1  r ® ¥ 

  
provided the limit exists.  
  
Writing (80) in full as  
  
-R < x < R,                                   (82)  
  
We see that the series converges absolutely provided  x lies in  the open  
interval (see Chapter 1, 1.2)  –R to R. This interval is called  the interval  
(or  range)  of  convergence.  When  k  =  1,  the  ratio  test  gives  no  
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information  and  consequently  the  series  may converge or diverge  at  x   

=  R  (that  is,  at  x  =  ± R).  However,  as  we  shall  see  in  the  following  
examples,  we  may  test  the  convergence  of  the  series  for  these  two  
particular values of x by direct substitution into the series.  
  
Finally, by the ratio test, a power series obviously diverges for any value  
of x, which lies outside the interval of convergence.  
  
Example 13:    The exponential series (see 6.2 (40))  
  

xr  + …                   (83)  x x 1 + x +  2 3 +  +…+ ! 
2! 3! r 

  
is a absolutely convergent for all x, since by (79)  
  

a  r 1 +  =  x  r ! x lim lim 
a ( r 1) ! +  = 0                 (84)  r  r ® ¥  r ® ¥ 

  
irrespective  of  the  value  of  x.  Similarly,  by  (81),  the  radius  of  
convergence  is  infinite  and,  by  (82),  the  interval  of  convergence  is  
therefore  
  

 x - ¥ < < ¥ .                                 (85)  
  
Hence the series (83) represents the function ex for all x.  
  
Example 14:   The series  
  

+ x x x 
x -  3 5 + -…+ (-1)r  2 r 1 

( 2 r 1) + +…                                    (86)  3 5 
  
is convergent for  x  < 1, since by (81)  

  
a  2 r 1 +  r R =    =                   (87)  lim lim 

2 r 1 -  = 1.  a + r 1  r ® ¥  r ® ¥ 

  
The interval of convergence is therefore  
  
-1 < x < 1.                          (88)  
  
At the end points x =  ± 1, the series may converge or diverge. Putting x  
= 1 in (86), the series becomes  
  



MTH 281                                                                                        MATHEMATICAL 
METHODS 1    

+ - + …,                                        (89)  1 -  1 1 1 
3 5 7 

  
which converges by 5.4 since the terms alternate in sign and continually  
decrease in magnitude. At x = -1, the series behaves like the series  
  

+ + + …,                        (90)  1 +  1 1 1 
3 5 7 

  
which diverges by the integral test.  
Hence (86) converges if, and only if,  
  

-1 < x  £  1.                                  (91)  
  

3.10  Operation with Power Series  
  
a)  The sum difference or product of two power series with common  

intervals of convergence leads  to a third  series, which  converges  
for  the  common  interval  of  convergence  of  the  first  two  series.  
(This result follows from the general properties of series given in  
5.2 and 5.7)  

  
b)  The  series  obtained  by  term-by-term  differentiation  (or  

integration) of a  given  convergent power series is a power series  
with the same interval of convergence.  

  
 Consider the power series  

¥ S = å arxr = a0 + a1x + a2x2 + …                (92)  
 r 0 = 

which converges if  
  

a  r x  <    = R.                    (93)  lim 
a +  r ® ¥ r 1 

  
Then  

dS  =  ¥ 
å rarxr-1 = a1 + 2a2x + 3a3x2 + …              (94)  

dx  r 0 = 
  
converges if  
  

ra a  r  r  r x  <    = R           (95)  lim lim lim +  =  r 1 +  +  ( r 1) a + a +  r 1 r 1  r ® ¥  r ® ¥  r ® ¥ 
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Similarly,  
 r 1 + a x a x a x ¥ 

r 1 1 S å +  + …           (96)  ò  dx =   
r 1 2 3 +  = a0x +  2 3  r 0 = 

  
converges if  
  

( r 2) a + a  r 2 +  r  r x  <    = R.          (97)  lim lim lim +  =  r 1 + r ( r 1) a + a + r 1 r 1  r ® ¥  r ® ¥ ® ¥ 

  
Hence, the differentiated and integrated series have the same intervals of  
convergence as the series from which they are derived. However, it does  
not follow that if the series converges at one (or both) of the end points  
(x  = ± R)  of  the  interval  of  convergence  that  the  differentiated  or  
integrated  series  necessarily  also  converges  at  these  points.  As  before,  
the  convergence  of  these  series  at  the  two  ends  must  be  considered  
separately. Furthermore, we may prove that differentiating or integrating  
a  power  series  term-by-term  within  its  interval  of  convergence  is  the  
same as differentiating or integrating the function it represents.  
  
c)  If  two  power  series  converge  for  a  common  interval  of  

convergence then  one  series  may be  substituted  into the other to  
give a third series which converges in that common interval. For  
example, the series for ee-x may be obtained by writing y = e-x and  
using the series  

  

y 3 
 ey = 1 + y +  2 2! +  + …                                  (98)  
  
Hence  
e-x=  

æ ö æ ö æ ö 2 2 x 1 x 1 x ÷ ÷ ÷ ç - + ÷ ç - + - ÷ ç - + - ÷ 1 x ... 1 x ... 1 x ... 1+ 2 ç ÷ ç ÷ ç ÷ ÷ ÷ ÷ ç ç ç 2! è ø+ 2 2! 2 ! è ø + 3 3! 2! è ø +…(99)  
  

4.0  CONCLUSION  
  
In  this unit,  we  have  considered  series  and  convergence  of  series.  We  
have  examined the  condition under which  a given  series  will  converge  
conditionally.  We  also  studied  differentiation  and  integration  of  series  
and  pointed  out  that  this  will  always  possible  for  infinite  series  of  
arbitrary functions, example of  the  case  in  point  was  considered  in  the  
unit.  
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5.0  SUMMARY  
  
This  unit  is  on  the  convergence  of  infinite  series.  It  has  a  lot  of  
application  in  higher  mathematics.  The  unit  will  be  of  immense  
importance in the subsequent course in mathematical analysis.  

  
6.0  TUTOR-MARKED ASSIGNMENT  
  
1.  Prove that the binomial series  

- - x3…+converges if –l <x <1  - x2+ m( m 1)( m 2 ) 
  1+mx+ m ( m 1) 

2! 3! 
  
2.  Find the values of x for which the series  
  1 – 2(x – 1) + 3(x – 1)2 + … + r(-1)r-1(x – 1)r-1 +… converges  
  
3.  Show by integrating the series  

¥   S =  å rxr-1  
 r 1 = 

term-by-term and summing and then differentiate the sum that   
S = (1–x)-2 for what value **** is this valued.  
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UNIT 4  TAYLOR AND MACLAURIN SERIES  
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5.0  Summary  
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1.0  INTRODUCTION  
  
In  this  unit,  we  shall  consider  two  special  types  of  series  expansion,  
namely Taylor and Maclaurin series.  
  
Clearly,  both  Taylor  series  and  Maclaurin  series  only  represent  the  
function f(x) in their interval of convergence.  
  
When functions are expanded at x = a (say) we have Taylor’s expansion  
and  when  functions  are  expanded  or  x  =  0  then  we  have  Maclaurin  
expansion.  
  
We  have  devoted  a  whole unit to  these important  theorems  because  of  
their  usefulness  in  the  study  of  analytic  functions,  and  calculus  in  
general.  
  
Ready carefully and pay attention to every details.  
  

2.0  OBJECTIVES  
  
After studying this unit, you should be able to:  
  
•  carry out expansion using Taylor’s and Maclaurin methods  
•  evaluate limit of the function given  
•  apply the theorem to solution of some mathematical problems.  
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3.0  MAIN CONTENT  
  
3.1  Taylor’s Theorem  
  
We  now  state  an  important  theorem,  which  enables  functions  to  be  
expanded  in  power  series  in  x  in  a  given  interval.  (Examples  of  the  
series representation of a few functions have already been given in Unit  
3.  
  
Theorem 1:   (Taylor’s Theorem). If f(x) is a continuous, single-valued  
function  of  x  with  continuous  derivatives  f’(x),  f’’(x)  …  up  to  and  
including f(n)(x) in a given interval a £  x £  b, and if f(n+1)-(x) exists in a <  

x < b, then  
  
f(x)=f(a)+ 

 2  n ( n ) ( x a ) ( x a ) ( x a ) + -  - 
f '( a ) f ''( a ) ... ... f ( a ) E ( x ) + + + + + ,(1)   n 1! 2!  n! 

  
where  

 n 1 +  ( x a ) - 
 ( n 1)  + E ( x ) f ( ) =  x 

n ( n 1 )! +                       (2)  
  
and a <    < x.  
  
The  term  En  is  a  remainder  term  and  represents  the  error  involved  in  
approximating to f(x) by the polynomial  
  

 n ( n ) ( x a ) ( x a ) - - 
f ( a) f '( a ) ... f ( a ) + + + .                           (3)  

1! n! 
  
An alternative form of (1) may be obtained by changing x to a + x.  
Then  

 2 2 ( n ) x x x f ( a x ) f ( a ) f '( a ) f ''( a ) ... f ( a) E ( x 
) 

+ = + + + + + ,  (4)  
 n 1! 2! n 

  
Where now, from (2),  

+ +  x E ( x) f ( a x ) = + q   n 1 ( n 1) n ( n 1) +             (5)  
  
and 0 <    < 1.  
A special case of (1) and (2) (or (4) and (5)) is when a = 0. Then  

2 n ( n ) x x f ( x ) f ( 0 ) xf '( 0 ) f ''( 0 ) ... f ( 0 ) E ( 
x ) 

= + + + + + ,    (7)  
 n 2 ! n ! 

and 0 <    < 1.  
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   =  0,  then  f(x)  may  be  represented  by  the  lim E ( x ) Theorem  2:    If  n 
n ® ¥ 

power series (see (1))  
  

 2  r ( x a) ( x a ) ( x a ) ¥ - -  - 
 ( r ) f ( x ) f ( a ) f '( a ) f ''( a ) ... f ( a 

) 
= + + + = å , (8)  

1! 2 !  r ! r 0 = 
Or its equivalent form (see (4))  
  

 2 r ( r ) ¥ x x x f ( a x ) f ( a ) f '( a ) f ''( a ) ... f ( a) + = + + + = å .                     (9)  
1! 2! r ! r 0 = 

  
These two series are Taylor’s series for f(x).  

  = 0,  lim E ( x ) The special case a = 0 gives, with  n 
n ® ¥ 

¥ 2 r ( r ) x x f ( x ) f ( 0 ) xf '( 0 ) f ''( 0 ) ... f ( 0 
) 

= + + = å ,                       (10)  
2 ! r ! 

r 0 = 
which is known a Maclaurin’s series.  
  
Clearly,  both  the Taylor  series  and the  Maclaurin  series  only  represent  
the function f(x)  in  their intervals of  convergence. The Taylor series  is  
often referred to as a series expansion of f(x) about the point x = a, and  
the  Maclaurin  series  as  an  expansion  about  the  point  x  =  0  (later  we  
shall  meet  functions  which  have  no  Maclaurin  series  but  which  
nevertheless can be expanded about some other point x = a, a    0).  
  
The form of Taylor’s series maybe verified in the following way:  
  
Let  
  

 2 3 f ( x ) A A ( x a ) A ( x a) A ( x a ) ... = + + - + - + - + ,            (11)  
0 1 2 3 

  
where A0, A1, A2 … are constants. Then differentiating term-by-term we  
have  
  

 2 f '( x ) A 2 A ( x a) 3 A ( x a ) ... = + - + - +                 (12)  
1 2 3 

2 f ''( x ) 2 A 3.2 A ( x a ) 4.3 A ( x a ) ... = + - + - +               (13)  
2 3 4 

f '''( x ) 3!A 4! A ( x a ) ... = + - +                     (14)  
3 4 

  
and in general,  
  

 ( n ) f ( x ) n ! A ( n 1) !A ( x a ) ... = + + - +                 (15)  
 n n 1 + 
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Putting x = a in (11)-(15) now gives  
  
f ( a) A , f '( a ) A , = =   

 0 1 
f ''( a ) 2! A , f '''( a ) 3! A , = =                     (16)  

2 3 

( n ) f ( a ) n ! A =   
 n 

  
Hence using these values for the constant A0, A1, …in (11) we obtain the  
Taylor’s series (8).  
  

3.2  Standard Expansion  
  
Before listing the Maclaurin series for some of the simple functions, we  
illustrate  the use  of the  Taylor’s  and Maclaurin series by the  following  
examples.  
  
Example 1:   Suppose we want to expand the function f(x) = e3x about x  
=  0 using Maclaurin’s series.  
  

f '(x ) 3e ,f ''(x) 9e ,...f (x ) 3 e Then  since  3x 3x (n ) n 3 x = = = and  f '( 0 ) 3 = ,  
( n ) n f ''(0) 9,...f ( 0) 3 = = , we have from (6)  

  
 2  n ( 3x ) ( 3x )3 ( 3x) 3 x e 1 3x  ... E ( x ) = + + + + + + ,                       (17)  

 n 2! 3! n! 
  
where, by (7)  
  

 n 1 +  ( 3 x ) 
 3 x  q E ( x ) e = + , (0 <    < 1.                            (18)  

n ( n 1) ! 
  
For any given finite value of x, say x = c, it is clear that  
  
lim E ( c) 0  = .                        (19)  

 n 
n ® ¥ 
  
Hence by (10), e3x may be represented by the infinite series  
  

 2 3 r ( 3 x ) ( 3 x ) ( 3 x ) ¥ 
1 3 x  ... + + + + = å .                  (20)  

2! 3! r ! 
r 0 = 

  
Using  the d’Alembert  ratio  test we find  that  (20)  converges  absolutely  
for all x. the possible error involved in approximating to e3x (for a given  
value of x) by a finite number of terms of (20) may be found using (18)  
as follows.  
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Suppose x = 0.02 and n = 3. Then, since (0 <     < 1, En must satisfy the  
inequality relation  
  

 4 4 ( 0.06) ( 0.06 )  0.06 E e < < ,                    (21)  n 4! 4! 
  
which gives (approximately)  
  
5  ×  10-7 < En < 6  ×  10-7                      (22)  
  
In other words, by taking only four terms (n = 3) of (20), the value of the  
resulting finite series for x = 0.02 differs from the exact value of e3(0.02)  

by a small number of the order of 5  × 10-7.  
  

1 , (18)  On the other hand, with the same number of terms but with x = 3 

gives  
  

1 e E < <                          (23)  
 n 4! 4 ! 

or 0.042 < En < 0.133.                      (24)  
  
Taking  four  terms  of  the  Maclaurin  series  therefore  is  not  a  good  

1   and  more terms should  be taken if the  
approximation to  e3x  for x =    3 
error is to be reduced.  
  
Example  2:    As  an  example  of  Taylor’s  expansion  we  expand  the  

p . Differentiating we have f’(x)  
function f(x) = cos x about the point x = 3 

= -sin x, f’’(x) = -cos x, and in general  
  ( ) 

+ + ( n 1) n 1 f ( x ) cos x 2 = + p .                             (25)  

  
Hence  

p p ( ) 1 f cos = = ,  
3 3 2 

p p ( ) 3 f ' sin = - = - ,  
3 3 2 
p p ( ) 1 f '' cos = - = - ,                              (26)  
3 3 2 

p p ( ) 3 f ''' sin = = - ,  
3 3 2 
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and so on. Using these results in (1) we find  
  

2 3 p p 

cos x  =  ( ) ( ) 
( ) 

x x - - 
3 3 1 3 1 3 p x  ... - - - + +   

2 3 2 2! 2 3! 2 

( ) ( ) n p x 3 n - p 
cos E ( x ) = + p + ,                                                        (27)  

 n n! 3 2 
  

  ( ) ( ) where, from (2) and (25),  

n 1 + p  x n 1 - + 
3  .                  (28)  E ( x ) cos = x + p 

n ( n 1)! 2 + 
  

Hence, since  ( 
) 

n 1 + cos 2 x + p £  1, (28) may be written as   

+ p ( )n 1  x 3 - 

E ( x ) ( n 1) ! < +                       (29)  
n 

  
Again (as in Example 1) for any given value of x,  say x = c, En(c) may  
be made as small as we please by choosing sufficiently large values of n.  

 =  0,  cos  x  may  be  represented  by  the  infinite  lim E Hence,  since  n 
n ® ¥ 

Taylor’s series (8) as:  
  

cos x  =  ( ) ( ) 
( ) 

2 3 1 3 1 3 p p p x x x - - - - + -   
2 3 2 3 2.2 ! 3 2.3! 

 ( ) ( ) p x 3 r - p + +… ,            (30)  
+…+  cos 

r ! 3 2 
which, by the ratio test converges for all x.  

  
This series is useful in evaluating the cosines  of  angles without the use  

61p  radians  
of tables. For example, cos 610 may be evaluated by putting  180 

in (30) which then gives  
  

 ( ) ( ) ( ) 2 3 p p p p 0 61 1 3 1 3 1 cos 61 cos  . .... = = - - + +      (31)  
180 2 2 180 2.2! 180 2 3! 180 

  
The error involved by taking a finite number of terms of this series may  
easily be estimated from (29). For example, with two terms (n =1)  
  ( ) 

p 0 1 3 cos 61 2 2 180 @ -  = 0.4849                    (32)  
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correct to four decimal places, with a possible error given by  
  ( ) ( )2 

 61 1 p p E 180 2 ! 180 £  = 0.0001                             (33)  
1 

  
to  the  same  number  of  decimal  places.  The  value  of  cos  610  obtained  
from  tables  is  found  to  be  0.4848  (again  corrected  to  four  decimal  
places).  
  
We  now  give  the  first  few  terms  of  the  Maclaurin  series  for  some  
elementary functions  
  

 ( ) ( )( ) 1 1 2 a a - a a - a - 
i)  a  2  3 (1 x ) 1 x x  x ... + = + a + +  +  for  x  < 1,  

2 ! 3! 
where a  is any real number,                           (34)  

x x x sin x x ... = - + - +  for all x,                         (35)  ii)  3 5 7 3! 5! 7! 

x 2 x 6 x cos x 1  ... = - + - +  for all x,                         (36)  iii)  2 4 6 2! 4! 6 ! 

x 2 x 17 x p p tan x x  ... = + + + +  for  x - < < ,            (37)  iv)  3 5 7 3 15 315 2 2 
 2 3 4  x x x v)  log (1 x ) x  ... + = - + - +  for -1 < x £  1,            (38)  

e 2 3 4 

 1 x + = + + + 1 x x   for -1 < x < 1,              (39)  vi)  ( ) 3 5 log x ... 
e 2 1 x 3 5 - 

x x x vii)  2 3 e 1 x ... = + + + +  for all x,                (40)  
2 ! 3! 

- e e x x - sinh x x ... = = + + +  for all x,              (41)  viii)  x x 3 5 2 3! 5! 
- e e x x x + 

cosh x 1  ... = = + + + +  for all x.            (42)  ix)  x x 2 4 6 2 2 ! 4 ! 6 ! 
  
The  series  for  functions,  which  are  simple  combination  of  these  
elementary  functions,  maybe  obtained  using  the  properties  of  power  
series treated in Unit 3.  For example, substituting the series for sin x in  
the exponential series we have as in Unit 3, equation 10.  
  

 2 4 5 sin x x 3 x 8 x e 1 x  ... = + + - - +                   (43)  
2 ! 4! 5! 

for all x.  
  
Similarly (using 5.10 (a)).  
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 3 5 x x cosh x sin x x ... = + -                               (44)  
3 30 

for all x.  
- ,  e 

e x Finally, it should be noted that functions like x log x and  cos x have  

no  Maclaurin  expansions  since  they  are  not  defined  at  x  =  0.  
Nevertheless,  we  may  expand  such  functions  about  some  other  point  
using Taylor’s series. For example, expanding  e log x about x = 1 we find  
  

 2 3 4 1 1 1 log x ( x 1) ( x 1) ( x 1) ( x 1) ... = - - - + - - - +               (45)  
e 2 3 4 

for 0 < x £  2.  

  
In  deriving  the  Maclaurin  series  for  certain  functions  it  is  sometimes  
convenient to use  Leibnitz’s  formula  given  in  Chapter 3, 3.6, to  obtain  
the  higher  differential  coefficients.  We  illustrate  this  method  by  an  
example.  
  
Example  3:    If  y  =  sin  (m  sin-1x),  where  m  is  a  constant,  then  
differentiating twice we find that y satisfies the differential equation  
  

 2 d y dy 2 2 (1 x ) x m y 0 - - + = .                             (46)  
2 dx dx 

  
Using Leibnitz’s formula, we have (for n > 0)  
  

 n 2 n 1 n + + d y d y d y 2  2 2 (1 x ) ( 2 n 1) x ( m n ) 0 - - + + - = ,              (47)  
n 2 n 1 n + + dx dx dx 

  
which gives, with x =  0,  
  

 n 2 n + d y d y 2 2 ( n m ) 
n 2 n + = -                       (48)  dx dx 

  
Hence  (48)  is  a  relation  between  the  values  of  all  the  differential  
coefficients of  y  evaluated at x  = 0;  this is  exactly  what  is required in  
developing the Maclaurin series for y. Since y(0) = 0, y(0) = m it can be  
easily verified using (48) that  
  

 2 3 2 2 5 m (1 m ) x m (1 m )( 9 m ) x - - - 
y mx  .... = + +  +              (49)  

3! 5! 
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3.3  Evaluation of Limits  
  
Suppose we  have two  functions  f(x) and g(x)  which  are zero when  x  =   

f   is  an  undefined  
quantity( ) 

 ) (  a 0 a.  Then  although  the  ratio  ) 
( a g 0 ,  

æ ö ÷ ®  may exist. An example of this  ç ÷ nevertheless the limit  of  f ( x ) ç ÷ ç g ( x ) è øas  x a 
type of ratio has already been met in Chapter 2, 2.4 where it was shown  

by a geometrical argument that  
( ) 

 sin x   = 1.                         (50)  lim x 
x 0 ® 

  
We  now  show  how  to  proceed  analytically  with  limits  of  this  type.  
Consider  the ratio  of  f(x)  and  g(x) and  let  both  functions be  expanded  
about the point x = a using Taylor’s theorem. Then  
  

 2 ( x a ) - 
f ( a ) ( x a ) f '( a) f ''( a ) ... + - + + 

 ) (  x f  =  2!                 (51)  
 ) (  x g 2 ( x a) - 

g ( a ) ( x a ) g '( a ) g ''( a ) ... + - + + 
2 ! 

  
Now by assumption f(a) = g(a) = 0.   Hence  

 ( x a ) - 
f '( a ) f ''( a ) ... + + 

 ) (  x f  =  2 !                               (52)  
) (  x g ( x a ) - 

g '( a ) g ''( a ) ... + + 
2 ! 

  
and consequently  
  

 ) (  x f  =  )  ) ( '  a f ,                        (53)  
lim 
® ) (  x g ( '  a g x a 

  
provided g’(a) is non-zero. Equation (53) states that the limit of the ratio  
of  two  functions  as  x a ®   where  both  functions  are  zero  at  x  =  a  is  
given by the ratio of the derivatives of the functions each evaluated at x  
=  a.  If,  however,  f’(a)  =  g’(a)  =  0  then  the  same  procedure  must  be  

 ) ( '  x f .  Consequently  if f(a) =  g(a)  =  0  and  f’(a)  =  
applied  to the  ratio  ) 

( '  x g 
g’(a) = 0, we have  
  

 ) (  x f  = )  ) ( ' '  a f ,                        (54)  
lim 
® ) (  x g ( ' '  a g x a 

  
provided  g’’(a)  is  non-zero.  Provided  the  limit  exists  it  is  usually  
possible to find a value of n such that  
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n f ( a )  ) (  x f  =  ( )  .                      (55)  lim 
( ) ® ) (  x g n g ( a ) x a 

  
This  method  of  evaluating  limits  is  sometimes  more  conveniently  
expressed by writing (53) as  
  

 ) (  x f  =   ) ( '  x f ,                      (56)  
lim lim 
® ) (  x g ® ) ( '  x g x a  x a 

  
which is usually known as l’Hospital’s rule.  
We illustrate these results by the following examples.  
  
Example 4:  Using (56)  
  

log x ì ü ï ï 1 .                    (57)  1 / x ï ï   =   e ® { } lim lim í ý 
ï ï 2 x  =  2 2 x 1 - ï ï î þ x 1 ®  x 1 

  
Example 5:  To evaluate  
  
lim   (cos x )1/x                                 (58)  
x 0 ® 
  
we put  y = (cos x )1/x and consider the behaviour of  
  

 x log .                        (59)  e cos loge y =  x 

  
Then by (56)  
  

log cos x ì ü ï ï tan x -  = 0.              (60)  ï ï   =   e ® { } lim   loge y =  lim lim í ý ï ï x 1 ï ï x 0 ®  x 0 ® î þ  x 0 

  
Hence, since as  x ® 0, loge y ® 0, we have  
  
y = (cos x )1/x ® 1.                        (61)  
  
Example  6:    This  example  illustrates  the  repeated  use  of  l’Hospital’s  
rule. For (by (56))  
  

æ ö  2 tan x x - sec x 1 - ÷ ç ÷ ® ( ) lim lim ç ÷ ÷ ç - x sin x -  =  1 c os x è ø.                   (62)  x 0  x 0 ® 
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0   when  x  =  0.  Hence,  we  apply  sec x 1 - But  2 
1 cos x -   is  of  the  form  0 

l’Hospital’s rule again which gives  
  

æ ö æ ö  2 sec x 1 - ÷ 2 sec x tan x ÷ ç ÷ ç ÷ lim lim  (2sec3 x) = 2.              (63)  ç ÷ ç ÷ ÷ ÷ ç - ç 1 cos x è ø =  2 s in x è ø =  x 0 ®  x 0 ® 

  
The second application of L’Hospital’s rule could have been avoided by  
rewriting the right-hand side of (62) as  
  

 ( ) æ ö 2 x 2 1 cos sec x - ÷ æ ö ç ÷  2 sec x 1 - ÷ ç ÷ ç ÷  =  lim lim ç ÷ lim  {(1  +  cos  x ) sec2 x}  =  ç ÷ ç ÷ ÷ ç - 1 cos x è ø  =  1 cos x - ç ÷ x 0 ®  x 0 ® ç  x 0 ® è ø 
 sec x =  2,                     (64)  lim  sec2 x +  lim 

x 0 ®  x 0 ® 
(using Theorem 1, Unit 1).  
  
Example 7:    If f(x) and g(x) both tend to infinity as  x a ® , we may still  
apply l’Hospital’s rule by writing  
  

 1 / g ( x ) ì ü  ) (  x f  =  ï ï ï ï  ,                     (65)  lim lim í ý 
ï ï ® ) (  x g 1 / f ( x ) ï ï î þ x a  x a ® 

  
ì ü 0  at x =  a.  ï ï ï ï where the ration 1 / g ( x )   is of the form  0 í ý 
ï ï 1 / f ( x ) ï ï î þ 
 ) (  x f   becomes  either  0 0   or  ¥ 

Similarly  if  ) 
( x g ¥   as  x ® ¥   we  may  write  

(putting x = 1/y)  
  

ì æ öü æ ö 1 1 ï ï  1 ÷ ç ï ï ÷ f ' y - ÷ ç ÷ f y ç ï ï ç ÷ ÷ ç ç è ø ï ï  2 è ø y  ) (  x f = ï ï ï ï lim  = lim  = lim                 (66)  lim í ý 
æ ö ï ï æ ö ® ¥ ) (  x g  y 0 ®  y 0 ®  y 0 ® 1 1 1 x ï ï ÷ ÷ ç ÷ ç g y g ' y - ï ï ÷ ç ÷ ç ÷ ç ï ï ç è ø è ø 2 ï ï y ï ï î þ 

  
Hence, l’Hospital’s rule applies when a º ¥ .  
For example,  
  

ì ü ì ü ì ü ï ï ï ï ï ï 3 2 3 x 3 x x ï ï ï ï ï ï 2 ® ¥ ( )  =    3 x lim lim lim  = 2 lim x e- = í ý í ý í ý 
ï ï ï ï ï ï ® ¥ 2 ® ¥ 2 ® ¥ 2 x  x x ï ï  x x ï ï  x x ï ï e î þ 2 xe î þ e î þ 

ì ü ï ï 3 1 ï ï  =0              (67)  = 2 lim í ý 
ï ï ® ¥ 2  x x ï ï 2 xe î þ 
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Similarly, if n > 0, it follows that  
  

n x 
lim   ( 2 x e- ) = 0,                        (68)  

x ® ¥ 
  
and (by putting x =  1/y) that  
  

é ù  2 1/y - e ê ú lim  = 0.                       (69)  
ê ú y 0 ® n  y ê ú ë û 

  
Example 8:   The use of l’Hospital’s rule may often be avoided by using  
series expansions. For example,  
  

æ ö  3 5 x x ÷ ç - + - ÷ x ... ç ÷ æ ö ç ÷  2 4 sin x 3! 5! x x ÷ ç ÷  = ç - + - ÷ ® ( ) lim lim lim 1 ... ç ÷ ç ÷ ç ÷ ÷ ç x = x 3! 5! è ø = 1,         (70)  ç ÷ x 0  x 0 ®  x 0 ® ÷ ç ÷ ç è ø 
as found earlier.  
  

4.0  CONCLUSION  
  
In this unit, you have studied Taylor and Maclaurin series expressions;  
you  have  studied  the  important  theorem  that  enables  us  to  carry  out  
series  expansion.  We  have  also  used  the  series  expansion  in  the  
determination of limit of some functions.  
  

5.0  SUMMARY  
  
In this unit, you studied:  
  
•  Taylor and Maclaurin expansion  
•  Applied  the  technique  to  determine  the  limit  of  some  difficult  

functions.  
•  That  with  clever  application  of  Taylor’s  expansion,  the  use  of  

l’Hospital’s rules can be avoided in some functions.  
  

6.0  TUTOR-MARKED ASSIGNMENT  
  

y d  - x dx dy  - y = 0.  2 sin x 
1.  If y =  1 e - prove that (1 – x2)  2 dx 
  Hence verify the Maclaurin expansion  

x  +  3 x  +  5 x4…  2 3 sin x 
  1 e - = 1 + x +  2 

2 
 4   
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2.  Prove that  

3 x  +  ! 5 x  +  ! 7 x  (cos x   )    sin x  = x +  ! 
3 5 7 

  and that  
4 6 x  +  6 x   2 x 0 2 -   e x   2 e- = 1 + x2 +  2 
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1.0  INTRODUCTION  
  
To evaluate an integral in terms of known functions is often impossible.  

d p q 
For example the elliptic integral of the form I =  2 ò  is not  0 2 1  q 1 sin - 2 
easy to evaluate directly without recourse to numerical integration.  
  
In  this  unit,  we  shall  apply  the  technique  of  trapezoidal  rules  and  
Simpson integration methods to solve numerically integral problems, we  
cannot evaluate quantitatively.  
  

2.0  OBJECTIVES  
  
By  the  end  of  this  study,  you  should  be  able  to  perform  numerical  
integration using the following techniques.  
  
•  trapezoidal rule  
•  simpson’s rules.  
  

3.0  MAIN CONTENT  
  
3.1  Trapezium Rule  
  
As  mentioned  in  earlier  units  the  evaluation  of  an  integral  in  terms  of  
known  functions  is  often  impossible.  Furthermore,  in  some  cases  the  
integrand may only be defined by a set of tabulated values. To meet the  
difficulties,  some  numerical  procedure  is  required,  which  will  give  a  
good  approximation  to  the  value  of  the  integral.  Clearly  one  of  the  
simplest  methods  of  doing  this  is  to  interpret  the  integral  
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ò graphically  as  the area  between the curve y =f(x), the x-axis,  a f ( x) dx 
and  the  lines  x  =  a,  x  =  b,  and  to  estimate  this  area  as  accurately  as  
possible. Consider, for example, the curve y = f(x) as shown in Fig. 3.1.  
Then to obtain an approximation  
  
   y  
  
   B’  y = f(x)  
  A’  C’  
  
   A  C  B  
  0  a  c  b  x  
  Fig. 3.1  
  
to the required area we may draw in the straight lines A’C  and C’B and  
evaluate  the  sum  of  the  areas  of  the  two  trapeziums  ACC’A’  and  
‘CBB’C’.  If now the point C is chosen  to be the mid-point  of the  range  
(a, b) such that AC = CB = h, then  
  

 ( ) { } a b + h h area ACC’A’ =  ( AA ' CC ') f ( a ) f + = +       (1)  
2 2 2 

  
  
and  

 ( ) { } a b + h h area CBB’C’ =  ( CC ' BB ') f f ( b ) + = + .      (2)  
2 2 2 

  
Hence by adding (1) and (2) we have  
  

 ( ) {  }  a b + b h ò  .         (3)  f ( x ) dx ~ f ( a ) 2 f f ( b ) + + 
2 2 a 

  
This  formula,  usually  known  as  the  trapezium  rule,  gives  a  good  
approximation  to  the  value  of  the  integral  when  the  curve  y  =  f(x)  
deviate only slightly from the straight lines A’C, C’B’. When deviations  
occur, however,  the accuracy may usually be  improved  by dividing  the  
area under the curve into a larger (even) number of trapezium of smaller  
width  and  applying  (3)  to  each  pair.  As  an  example  of  the  trapezium  
rule,  we  now  consider  the  numerical  evaluation  of  a  simple  integral  
whose value is known exactly.  
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Example 1:   If  
  

 dx  f ( x ) dx I =  b ò ,            (4)  ò  =  3 
 2 a 1 x 

  
then  dividing the  range of integral into  two  parts each  of width h(= 1),  
we have by (3)  
  

 1 1 2 1 
2 + +  =  ( 
) 

I ~ {f (1) 2 f ( 2 ) f ( 3 )} 1 + +  = 0.81.      (5)  
2 4 9 

  
This  is  to  be  compared  with  the  exact  value  of  2/3.  A  better  
approximation may be obtained by dividing the area under the curve into  

1 )    and  applying  (3)  to  each  pair. In  this  four parts each  of width h(=  2 

way we find  
  

 1 1  1 1 I . { f (1) 2 f (1.5 ) f ( 2 )} . { f ( 2 ) 2 f ( 2.5) f ( 
3)} 
= + + + + +     (6)  

2 2  2 2 = { } { } 1 2 1 1 1 2 1 1 + + + + + ,          (7)  
4 2.25 4 4 4 6.25 9 

= 0.70.  
  

3.2  Simpson’s Rule  
  
A better approximation to the area indicated in Fig. 3.1 maybe obtained  
in  the  following  way.  Suppose  x  =  c  is  the  coordinate  of  the  point  C  
such  that  a  =  c-  h, b  = c  + h.  Then  writing  x  =  c  +  y, expanding by  
Taylor’s series, and integrating term-by-term we obtain  
  

 b +  f ( x ) dx  f ( x ) dx  f ( c y ) dy  + ò         (8)  ò  =  c h ò  =  h 
a c h - h - 

  
 ì  ü  2 r ï  ï  y y h (1) ( 2 ) ( r ) ï  ï ò =       (9)  f ( c) yf ( c ) f ( c ) ... f ( c) ... dy + + + + + í  ý ï  ï 2 ! r ! h - ï  ï î  þ 

  
ì  ü ï  ï h f ( c) h f ( c) h f ( c) ï  ï  ,             (10)  2 h f ( c)  ... ... + + + + + í  ý =   2 ( 2 ) 4 ( 4 ) 2 ( 2 r ) ï  ï 3! 5! ( 2 r 1)! + ï  ï î  þ 

  

r f d  at x =  c.  
where, in general, f(r)(c) is the value of  r dx 
Now, since by Taylor’s series  

2 h f(2)(c)+…+  ! h r f(r)(c)+…                       (11)  
f(c+h) = f(c)+hf(1)(c)+ ! 

2 r 
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( 1) h - f(r)(c)+…                      (12)  2 h f(2)(c)+…+  r r 
f(c-h) = f(c)-hf(1)(c)+ ! r ! 2 
we also have  
  
f(c + h) = f(c - h) =  

ì  ü 2 4 2 r ï  ï h h h ï  ï                        (13)  ( 2 ) ( 4 ) ( 2 r ) 2 f (c ) f ( c) f (c) ... f ( c) ... + + + + + í  ý 
ï  ï 2! 4! ( 2 r )! ï  ï î  þ 

  
Hence neglecting terms involving h4 and higher powers  of h  in (10) an  
(13), and eliminating f(2)(c), we finally obtain Simpson’s formula  
  

2 c h  b ò  + ) ( ) ( 2 2 ( f c f h                     (14)   f ( x ) dx ~ ) 
! 3 a 

  
ì æ  öü f ( c h ) f ( c h ) 2 f ( c ) + + - - ï  ï h ï  ï ÷ ç  ,            (15)  ~ 2 h f ( c ) 3! h +  ÷       2 í  ý ç  ÷ ÷ ç ï  ï è  ø  2 ï  ï î  þ 

  

      = h {f ( c h ) 4 f ( c) f ( c h )} 
3 - + + + ,                (16)  

  

{  }      =  ( 
) 

a b h f ( a ) 4 f f ( b ) + + + .                  (17)  
3 2 

  
The error involved here  by approximating to  the integral in  this  way  is  
such that if  
  

{  } ò =  ( ) a b h f ( a ) 4 f f ( b ) +  b  f ( x ) dx + + +E,                (18)  
3 2 a 

  
then  
  

4 a 
h - ,                      (19)  E ~ - 3 ( ) 3 (  )] ( ) ( [ f b f 

180 ) 

  
3 f d  at x =  b and  

where, as before, f(3)(b) and f(3)(a) mean the values of  3 
dx 

x =  a respectively.  
  
As  with  the  trapezium  rule  it  is  usually  possible  to  obtain  a  more  
accurate result by first  dividing the area under the  curve  between x = a  
and x = b into a larger (even) number of strips and then applying (17) to  
each successive pair. In this way, if f0, f1, f2, f3 … fn-1, fn are the values of  
f(x) at x = a, a + h, a+ 2h, …a +(n + 1)h, a  + nh(= b), where n is an  
even integer, then  



MTH 281                                                                                        MATHEMATICAL 
METHODS 1    

h {f0+ fn+4(f1,+ f3+…+fn-1,)+2(f2,+ f4 +…+ fn-2,)}.      (20)  b 
 f ( x ) dx ò ~ 3 

a 
  
For example, Simpson’s rule with five ordinates (i.e. four strips) is  

h {f0+ f4 + 4( f1,+ f3) + 2f2}                (21)  b  f ( x ) dx ò ~ 3 
a 

  
(see Fig. 14.2).  
  

 y    
  
   y = f(x)  
  
  f0   f1   f2  f3   f4   

  h  h  h  h  
0  a  b  x    

  Fig. 3.2  
  
  

3.3  Application of Simpson’s Rule  
  
Example 2:   We now consider the numerical evaluation of the integral  
  

p q d  /2 ò                       (22)  I = 
0 2 1  (1 sin )  - q 

2 
  
using  Simpson’s rule with  five  ordinates.  This integral  is  the  complete  
elliptic integral of the first kind K(1/ 2 ) whose tabulated value is 1.854.  
To  apply  Simpson’s  rule  we  now  divide  the  range  of  integration  (0,  

p   and  evaluate  the  integrand  2 / p )  into  four  parts  such  that  h  = 8 / 
1 2 1 
2 q = - q   at  the  five  points      =  0,  8 / p ,  4 / p ,  8 / 3p   and  f ( ) (1 sin )- 2 

p .  2 / 
  
The values are given below:  
  

p        0  8 / p   4 / p   8 / 3p   2 / 

f(  )  1.000  1.0387  1.1547  1.3206  1.4142  
  
Hence using (21) we have  

p q d /2 ò    
0 2 1 (1 sin ) - q 

2 
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p {1+1.4142+4(1.0387+1.3206) +2 (1.1547)}              (23)  1 . 8 
~ 3 

  
p  ×  14.1608,  

=  24 

  
= 1.854.                                   (24)  
  
Example 3:    Given the following nine pairs of (x, y) values  
  

 x  1  2  3  4  5  6  7  8  
9  
y  2.061  2.312  2.819  3.106  3.67 0  4.721  6.10 3  7.950  9 .942  

  
we may easily estimate  using (20). Since h =1 we have   

1 {2.061 + 9.942 + 4(2.312 + 3.106 + 4.721 + 7.950) +  9 
 ydx ò ~ 3 

1 
2(2.819 + 3.670 + 6.103)} = 36.514          (25)  

  

3.4  Series Expansion Method  
  
When a  function f(x)  can be expanded as  a  power  series  in  x, term-by- 
term integration  is  permissible (see Chapter  5,  5,10) and the evaluation  

of  f ( x ) dx ò  is reduced to the summation of a series.  This is illustrated  
by the following examples.  
  
Example 4:   To evaluate  
  

 sin x  1 = ò                         (26)  I dx 
x 0 

  
we use the Maclaurin expansion  
  

3 x  +  ! 5 x  +  ! 7 x  + …                             (27)  
sin x  = x -  ! 

3 5 7 
  
and write  

æ  ö  2 4 6  x x x 1 ÷ ò ç                      (28)  I 1 ... dx = - + - + ÷ ç  ÷ ÷ ç 3! 5! 7 ! è  ø 0 

  
 1 é  ù 3 5 7 x x x =                       (29)  ê  ú x  ... - + - + 

ê  ú 18 600 35280 ë  û  0 
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é ù =  1 1 1 ... - + ê ú 
18 600 ë û~ 0.946.                      (30)  

  
Greater accuracy maybe obtained by summing more terms of the series.  
  
Example 5:  To evaluate  
  

 2 3 
I (8 x ) dx = + ò                        (31)  

0 
we expand the integrand by the binomial  theorem to give  
  ( )3 

ì ü ï ï 2  x ï ï I 2 2 1 dx = + í ý ò                       (32)  ï ï 2   ( ) ( ) ( ) 0 ï ï î þ 

ì  ü 3 5 ï  ï 2  1 x 1 1 1 x ï  ï ò  .                (33)  2 2 1  ... dx = + + - + í  ý 
ï  ï 2 2 2 2 2! 2 0 ï  ï î  þ 

  
Hence integrating term-by-term we have  
  

 2 é ù 4 7 x x                               (34)  ê ú I 2 2 x ... = + - + 
ê ú 64 3584 ë û  0 

  
 1 1 é ù 2 2 2 ... = + - + ê ú 
4 28 ë û~ 6.25.                             (35)  

  
Example 6:  The elliptic integral discussed in Example 2 may be also be  
evaluated  by  the  series  expansion  method.  To  do  this  we  expand  the  
integrand by the binomial theorem to give  
  

p q  /2 d ò                        (36)  I = 
0 2 1  (1 sin )  - q 

2 
  

ï  ( )( ) ( )( )( )  - - - - - 2 p ì æ ö æ ö 2  2 ï q /2 1 sin  sin  q ï ÷  ÷ ò ç  ç     2 2 2 2 2 1 2 2 2 ! 2 3! + - - + - + ÷  ÷ í ç  ç =  ( ) 1 3 1 3 5 ÷  ÷ ÷  ÷ ç  ç ï è ø è ø 0 ï ï 
î  ü ï æ ö 2 sin ... d q ï ï ÷ ç- + q  .              (37)  ÷ ý           3 ç ÷ ÷ ç ï 2 è ø ï ï þ 

  
Hence, integrating term-by-term, and using Wallis’s formula  
  

p ,                         (38)  - - -  2 n  sin dx ò  =  ( n 1)( n 3)( n 5)...3.1 n ( n 2 )( n 4 )...4.2 - - . 2 0 
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where n is an even integer, we have  
  { 

 } 1 9 25 p I 1  ... = + + + + .                    (39)  
2 8 256 2048 

  
Taking  the  first  four  terms  only,  we  find  I ~ 1.843,  which  is  in  close  
agreement with the exact value of 1.845 (to three places of decimals).  
  
In this  example,  the term-by-term integration should  really  be  justified  
since  the  series  in  (37)  is  not  a  power  series  in  .  However,  as  this  
requires the  concept  of uniform  convergence  in  Unit 3 we shall accept  
the validity of it here without proof.  
  

4.0  CONCLUSION  
  
Numerical  application  to  integration  has  made  calculation  to  be  very  
easy.  More  of  these  methods  will  be  considered  in  the  course  on  
Numerical analysis.  
  

5.0  SUMMARY  
  
You  have  studied  the  application  of  trapezoid  and  Simpson’s  rule  to  
numerical integration of  functions.  Of particular importance is solution  
of  elliptic  equation,  which  proved  to  be  very  difficult  to  be  integrated  
analytically.  
  
The  method  should  be  learn  and  demonstrated  by  anybody  who  is  
interested in further research in mathematics.  
  

6.0  TUTOR-MARKED ASSIGNMENT  
  
1.  Evaluate the following integrals  
  

p q q 
a)  2  sin ) d ò   

0 
  

p + q q 
1 4 sin d 

b)  2 2 p ò   0 
  

 dx 
ò   c)  3 

 4 2 1 x + 
  

p + q q d)   ( 3 cos ) d ò   
 0 
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2.  Using Simpson’s rule estimate  
  

 ydx   2 ò   
0 

  from the pair of (x, y) values  
  

 X  0  0.25  0.50  0.75  1.00  1.25  1.50  1.75  2.00  

Y  1.31  2.41  3.04  2.97  2.76  1.80  .075  0.13  0.01  
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