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Introduction

The course is purposely for students of mathies\gthysical sciences
at undergraduate level.

It is assumed that the students have gabugin mathematical
background at 100 level and therefore fairly faanilivith such topics as

simple differentiation and integration, the euf trigometry identities,
exponential and logarithmic functions.

The problems and worked examples in this rsmuare purely
mathematical to avoid the course being usefaly to a section of
scientists.

The course is a must for all students whdl like to make career in
mathematics and engineering.

Course Aims

The course aims at giving you a good understanadfimgrious methods
in advanced mathematics.

This could be achieved through the following measur

- Introducing you into limiting processes arwbntinuity and
differentiability.

- Introducing you to partial differentiation.

- Explaining the convergence of infinite series.

- Applying the knowledge in some special etymf series such as
Taylor and Maclaurin series.

- Cumulate the knowledge acquired in solvingmerical some
integration problems that cannot be solved analiic

Course Objectives

By the time you have successfully completed thige®, you should be
able to:

- Find limit define continuity and find deed functions of given
mathematical functions.

- Be able to define convergence of infinite seard apply to some
special series such as Taylor and Maclaurin series.

- Solve integration using material procedused apply solve
problems on mathematical methods correctly.
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Study Units

Module 1

Unit1 Limits, Continuity and Differentiability

Unit 2 Partial Differentiation

Unit 3 Convergence of Infinite Series
Unit4 Taylor and Maclaurin Series

Unit5 Numerical Integrations

While the first four units concentrate on thsamatical methods and
procedures the last units is on application ofrtieghod learn so far.

Assessment

There are graded exercises which are meant tonagiérstanding as you
progress in this course while the Tutor Markeignments are meant
to be part of your final assessment.

The final assessment is at the end of the coursenktitutes 70% of the
total grade for the course.

You are to read and master each unit cllyefbefore progressing to
other units.
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MODULE 1

Unit1 Limits, Continuity and Differentiability

Unit 2 Partial Differentiation

Unit 3 Convergence of Infinite Series
Unit4 Taylor and Maclaurin Series

Unit5 Numerical Integrations

UNIT 1 LIMITS, CONTINUITY AND
DIFFERENTIABILITY

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Limits
3.2 Continuous and Discontinuous Functions
3.3 Differentiability
3.4 Continuity and Differentiability
3.5 Rolle’s Theorem and the Mean-Value Theorem
3.6 Higher Derivatives and Leibnitz’'s Formula
3.7 Maxima and Minima

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Recall that in MTH 112, the idea of a limwas introduced. For

example, it was shown thatas q becomes smakh-egs— _
_ _ _ _ _ _ g approaches unity.
We will consider in this unit a more detailed amgbrous definition of

the limit of a function. We will also study the aapt of continuity and

state sit of conditions when a function wille #iscontinuous. The two
ideas of limit and continuity would be amoli to establish a more
rigorous definition of differentiability.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

 establish the limit of functions
» determine the continuity or otherwise of a fumact

 carry out the differentiation of a function
o apply the rolles and mean-value theorem smutions of some
problems

be able to obtain nth differentials coménts of some simple
functions by application of Leibnitz’s formula.

3.0 MAIN CONTENT

3.1 Limits

Suppose f(x) is a given function of x. then, if ean make f(x) as near
as we please to a given number | by clmgosk sufficiently near to a

number a, | is said to be the limit of f(x) as x @, and is written as

lim f(x) =1 (1)

®a

It is important to emphasise the following points:

(a) the independent variable x may approach ti& p either from

left to right (that is, from - ¥ to a) or fronghit to left (from a

to ¥ ). Inmany cases the limits of the functamained in these
two ways are different, and when this is theecawe write them

as
lim  f(x) = 11, lim  f(x) =12,

. ®a ®a
respectively.

For example the L functian when x

X tends to 2
approac@es ZEro (()m the positive side, dad - 2P when X
approaches zero from the negative side.

Consequently, we write

I|m taﬂ 1% )lm tan-1 =22
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Sometimes we are faced with a function, clwhibecomes
arbitrarily large when xis chosen sufficientlgiose to a number
a. when this happens we write

lim f(x)= ¥ 2)
F
. — 7
Fig.1.1

. 1 tendsto ¥ when x ® O from
For example, the functionry ="X

the positive side, and to - ¥ whenx ®
from the negative side (see fig 1.1). Accordingly

® () ®I().

In all cases when the limits as X ® a from both
directions are equal (say |) we simply write

lim f(x) =1 (3)

®a

(b) in proceeding to the limit of f(x) as x ® we have to exclude x
from becoming equal toa for two reasons.tlirsthe value of
. : sinX
the function may not be defined at x = a, as, kamneple.——

at x = 0. Secondly, if f(x) is defined at x = avisue may not be
equal tolim  f(x). For example, if f(x) is defineg b

(4)

®a .
] gforx 1,
) = :lZfor x_l,
2
)
(see Fig. 1.2) then

lim fx)= &-
®h
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1l vy |
— v
1 X
Fig. 1.2

This is not equal to the value of the functionat = 1, which by
(4) is equal to unity.

The functiony = cos (1/x) (see Fig. 1.3) is nolyaundefined

A
+1

\ WEL //,_,_

-1
Fig 1.3

At x = 0, but possesses no limit there eithegesias x ® 0 the
graph oscillates infinitely many times betweeil and -1. the
function therefore does not approach any partiotdue as x ®

1 (Fig. 1.4)
0. However, y = ces X

Fig 1.4

Although again oscillating infinitely many timesa ® 0 nevertheless
does posses a Ilimitin virtue ofthe factor ixfront of the cosine term

which decreases to zero in the limit. The limitlué functionasx ® 0
is therefore zero.
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A more rigorous definition of the limit of a funof is as follows: if f(x)

tends to a limit las x ® a, then for amumber e (however small) it
must be possible to find a number e such that:

In general the value of e depends on the valueofConsider f(x) =1 -

- . _ lim fx) = %
x2. According to (5) we are permitted &ay that g,

provided a value of e exists such that, for any e
‘ LN )—‘
+ )
when [x-1|<h (6)

Suppose we take e =10-3. Then
0.334> 1

x 2 >0.332 (to 3 decimals),

which gives 0.994 < x < 1.010.

For (6) to be satisfied we need therefore only take
(1.010-1)< h 7)

or h >0.010. Hence, since the conditions (5)masatisfied, the limit

of f(x) as x ® 1 exists and is equal to 3 2.

We now state without proofthree important teees on limits. If f(x)
and g(x) are two functions of x sygh ftkaand|jm g(x) exists,

then Ra ®a
Theorem 1:

lim  {fO) +im 9} =lim  f(X) Him  9(x),

®a Ra Ra a
Theorem 2:

lim {f09()} =1im f(X).lim 9(x),

®a Ra Ra
Theorem 3:

limf(x)
lim IH(X) - xa

ea TH(X) limf(x)

. X a®
provided |im g(x) * oO.
Ra
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These theorems maybe readily extended to #&nye number of
functions.

The following example illustrates the use of them®rems.

Example 1: Suppose we wish to evaluate
Ilm EL

where m is a positive integer. Dividing thdenominator into the
numerator, the limit maybe written as

im (1+x+x2+...... +xm — 1), (8)
X&
which by Theorem 1 is the same as

lim 14m X#m x2+ ...+ lim xm-1. (9)
XEL ®1 ®»1 ®1

The value of each of these limits is unity and sititere are m of them,
the sum is m. Similarly, if m is a negative integeay —k, where k is a
positive integer, then

lim 5T im - i 5%_ im Eadxk +
@ emd T pxl ~ px1 P8R 1x K
=- IimI 28 - (10)
o1 TBELX™ «

By Theorem 2, (10) may be written as

L =-k=m,
I|m ?L I|m @'T_ lim i m D

ﬂ(17®kx

(making use of the result for a positive integer).
Likewise, if m is fractional, say p/q, where p apdre integers, then

I|m ?L I|m

125X 1 (12)

Now putting x1/q =y so that x = yg we have
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im el nmg;j_ _ =l

By Theorem 3, therefore

lim 4!‘ . = q:

@ wE - @4_)_

as before. Hence for all rational values of m

lim a%m_q =
@ Emzm® (15)

SELF ASSESSMENT EXERCISE 1

Evaluate the following limits:

a) lim XL
oy X2
X 3+
b)  lim ——————
oy 2%84x 1
c) lim LCOSX
@ X
d) lim _S€C X Cos X
®0 sin x
e) 2 liews x
tan xp

(14)

3.2 Continuous and Discontinuous Functions

(13)

A single-valued function of x is said to be conbng at x — a if

(@ lim f(x) exists,
®a

MATHEMATICAL
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(b) the function is defined for the value x = agda

(€ if 1im f(x) =f(a).

Ba

When a function does not satisfy these domd it is said to be
discontinuous and x = a is called a point o€diginuity. In general, if

the graph of a function has a breakin it apadicular value of x it is
discontinuous at that point. For example, the fiomcy =1/x represented

in Fig. 1.1 is discontinuous at x = 0, whilst fhaction defined by 1.1

(3) and represented in Fig. 1.2 is discatus at x = 1. There s,
however, a slight difference between theseo texamples. The first
function (y =1/x) becomes infinite atthe pah discontinuity and is
said to have an infinite discontinuity at x 0; the second function
remains finite at the discontinuity and iseréfore said to have a finite
discontinuity at x = 1.

. . sin xand tan x are discontinuous at x = 0since they
Functions like—x —

are not defined there (see condition (b) above).

Itis an important result (and one that we shadd later on) that every
polynomial of any degree is continuous for all x.

To prove this consider a polynomial of degree n

Pn(x) = aOxn + alxn-1 + ... + an-1x + an (16)

and take as a function f(x) any typical term xm(nmm in the polynomial.

Then for nay arbitrary value of x, say x = a, #&m. Now by theorem
2,(3.1)

lim fX) =lim  XmimK)M =am = f(a). (17)
X& ®a X&

Hence the function xmis continuous at X = a, sinde a is arbitrary, it
must be continuous for all x. This resulpples to every term of the

polynomial, and hence every polynomial is towrous for all x. An
immediate consequence of this result is that exagrgnal function (see
Chapter 1, 1.3 (e)) is continuous everywhere excapthe points where

the denominator vanishes. For example,

— +
X4-x 2 (18)
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is continuous everywhere except at x = 1 and x Eh2. discontinuities
are shown graphically by the existence of asymptatehese values of
X.

In general, the sums, differences, products anobtients of continuous
functions (except, of course, at the zeros of #eodhinator in the case
of a quotients).

SELF ASSESSMENT EXERCISE 2

Find the points of discontinuity of the followingrfctions.

) 3 X 446
X%6-%-8

i) secx

iii) x M X

N
3.3 Differentiability

Consider a functiony = f(x) whose graph is repreed in fig. 3.5, and
let P be a typical point on the curve wittoordinates (x,y). The

coordinates of a neighbouring point Q can Wwetten as (x + dx, y +

d y), where the small change d x in x producesthall change dyiny.
The expression

f(XKYE(X)
dx =tan QPS (29)

is then the slope of the straight line joining geénts P and Q, and may
be thought of as the mean value of the gradietti@turve y = f(x) in

the range (x, x + d x). As the point Q approadPed 9) may approach a
limiting value given by

lim ag OxxJ F£X)
d@oﬁ 2 d =i(say) (20)

If this limit exists then geometrically thigmplies the existence of a

tangent such that | =tanq, where q is thdeabgtween the tangent at
P and the x-axis. We refer to (20) as the diffaatcbefficient of y with

: metimes, however, it i
respect to x and denote it by the symb%ﬁdxso etimes, however, S
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f K Dy or Df, where D is th
convenientto denota. % | ) Gk, or by Dy orDf, where D is - the

d.
operator —dx

A function y = f(x) is said to be diffetmmble if it possesses a
differential coefficient, and to be differentialdea point x = a if g%é (or

f'(x)) exists at that point.

From the definition of the differential coefént as a limit, we may
obtain the differential coefficient of nay functiof one variable. In the

same way, we may also derive the well-known gtde differentiating

the product and quotient of two functiond. i assumed here that the
reader is familiar with these ideas, and that dhlewing examples will

be sufficient to illustrate the technique differentiating from first
principles.

Example 2: The differential coefficient ofy = sin x is obtained by
evaluating
d(ei .
(sthx ) lim >§a%nn(ﬂcl}s;tnx
dx de0 €92 d (21)

(22)

(23)

(by Theorem 2, 3.1)

As dx ® 0, the first limit becomes equal totynand the second to cos
X. Hence

d (sin x) = cos x. (24)
dx
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Example 3: If f and g are two functions of x, the

d (fg) = fddg + gifix (25)
dx

f ..
and dxd_ée;(—-) _dxdx (26)
g= 2

Both of these well-known formulae can be provedifost principles,
and we illustrate this statement by deriving (26).

Fif (x>d) f(x)

dfeo lfﬁrg(m)g'(x) .
d_Xg@ = dlgr(; Jrll dx @7
D

= im :%ﬁwd* E (28)
d®0 ) g (x) g (x&kdx

= lim
Iéj_ﬂl_xmd;(%)-é (x) fOea ftxpg(x x) g(x) %u 09
Fal)g(x x é & i

which by using the theorems on limits stated in 8rid the definition of
the differential coefficient, reduces to

dg

. gt =

ifg_@ 9 ix dx (30)

dx @: 2 g

as required.

Example 4: The differential coefficients o the inverse circular

functions sin-1x, cos-1x, (sometimes writtes arc sin X, arc cos X)
maybe obtained as follows:

If y = sin-1x, then x = sin y.

dx = cos 31
Hence—dy Y (D)
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and Mx = ¥ = 1 = 1 (32)
Cos  (I-siny) J(dx) 2

It is usual to take the positive sign of the squard in (32) to define the

differential coefficient of the principal vau of sin-1x, the principal
value being such that -p/2£ sin-1x £.p ®hen principal values of

many-valued functions are implied it is usual tatevthe functions with
capital letters. For example,

d (Sin-1x) = 1 G'cl_&Cos-lx) =- 1
—_— —— ahn X —_
dx J1x)2 J@-x)?2

where the principal value of cos-1x is such th&t @os-1x£p .

In the next chapter, we shall consider thperation of indefinite

MODPE 1

integration. This is the inverse operation differentiation in that the
differential coefficient of the indefinite ®edgral of a function is the

function itself.

SELF ASSESSMENT EXERCISE 3

1. Differentiate from the first principles.

1
a) ) -

X1 )
b) 22 4fax-

2. Differentiate

a) Ioge%os ()

b) 2 eJX

c) sin-1 X
X

d) esin2x

€) XCOSX
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3.4 Continuity and Differentiability

Continuity and differentiability are closelyelated in the sense that, if

. . df, exists at x = a, then f(x) is continuous at x
f(x) is a function of x and —d x )

= a. This follows since, if f(x) were not continat x =a,f(a+ dx ®
0, and consequently

jim § 2 (@) (33)
d 0 TfJ d

(which is the differential coefficient at x a) could not exist. Hence,
differentiability at a point implies continyjt whilst discontinuity
implies non-differentiability. The converse, wever, is not true;
continuity does not imply
y differentiability. This maybe easily
P(a,b) seen by considering the function
represented graphically in Fig. 1.6. At
the point P (a,b) the curve is continuous
despite the ‘kink’ since the function is
defined and the limit of the function as
x® a from either direction isequalto
0 x f(a). The differential coefficient,
Fig. 1.5 however, is not uniquely defined at P
(a,b) since a definite tangent to the
curve at this point does not exist. The cfiom is not differentiable
therefore at this point, although (as shownh)is differentiable

1,
everywhere else. Asan example, we mention thetifan f(x) =-sin x

f(0) = 0, which is continuous at x = 0 tbmot differentiable there.
Certain functions, moreover, are known to bentinuous for allx and
yet differentiable at none. Such functionse amsually termed

‘pathological’ (i.e. ill) and are not often of agyeat interest in physical
applications.

3.5 Rolle’s Theorem and the Mean-Value Theorem

i) Rolle’s Theorem

if f(x) is continuous in the interval a £ x £ ahd differentiable in a < x
< b, and if f(a) = f(b) = 0, then, provided f(x)nst identically zero for a
< X < b, there exists at least on value of x (sayc} such that f'(c) = 0,

where a < c¢< b.In words, there must exadt least one maximum or
minimum in the interval (a,b).
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The validity of this theorem may be easily illustéhgeometrically (see
Fig. 1.7).

max

0 acb

Fig. 1.6
i) First Mean-Value Theorem

If f(x) is a continuous functionof x in dhnterval a £ x £ b and is

differentiable in a < x < b then there exists asteone value of x (say x
= ¢) lying in the interval (a,b) such that

f(c) = Hb ) a)
(©) va (34)
In other words, considered graphically (see Fig),3here exists a value

X = ¢ such thatthe tangent to the curve tlas point is parallelto the
chord AB.

0 acb X

Fig. 1.7
We may prove this theorem geometrically ine tfollowing way: the

equation of the line AB is

V=) + (x+ 20 Hebytead- -

since BD =f(b) — f(a) and AD = b — a.

Hence the difference CE of the ordinates tbé curve AB and the
straight line AB is
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F() =1(x) -y =f(x) - f(a) - (x - a) f{—bg(;a—)—

Differentiating we have

(36)

F00 = 00— HebytHea)- an

which is a defined quantity ina < x <b.

Also F(a) = F(b) = 0 since the curve ABidathe straight line AB
intersect at these points. Hence the functiefx) satisfies Rolle’'s
Theorem and consequently there exists a valugsdyx = c¢) such that

F’(c) = 0. This implies (from (37)) that there esis value (x = c¢) such

that

fe) = EJaE ) (38)
which proves (34).

Example 5: If f(x) = sin 3x, and a = 0, b = p /& can be found from the
equation (see (34) or (38))

3cos3c= —sm@/—Z—)—sm—O—

(p6)0 (39)

This gives directlyc= 3 1 €0s-1(2/p).

The first Mean-Value Theorem is useful in manysyan particular in
establishing inequalities between functions.r Fexample, a typical

problem would be to show that in the interval 0 < xp /2
sin X> 2
—*— -

p. (40)

1>

This is an extension of the inequality relat already obtained
graphically in Chapter 2. Problems like thmeaybe conveniently dealt
with by using the following result:

If f(x) is continuous inthe range a £ x £ bdalifferentiable ina <x <

b,andiff(x) >0ina<x<b,thenfora<xIx <b
f(a) < f(x1) < f(x2) < f(b).

Similarly if f(x) <0ina<x<b, then
f(a) > f(x1) > f(x2) > f(b).
fora<xl<x2<b.
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These statements are obvious when represegtaghically (see Figs.
1.9 and 1.10), but we indicate an analytical piuat.

f(b)
f(x2)
f(x1)
f(a)
0 a x1 X2 b X
\ y =f(x), f(x) >0
f(a) Y ' Fig. 1.8

f(x1)
f(x2)

f(b) >~

0 a x1 X2 b X
y =1(x), f(x) <0
Fig. 1.9

Consider the case when f'(x) > 0. The first Meaaltd Theorem gives

f(x1) — f(a) = (x1 — a) f'(c), 41)

Where a < ¢ < x1. But if f'(x) > 0, then f(c) > 0. $d, by assumption, x1
> a. Hence

f(x1) > f(a) (42)

Similarly f(x2) > f(x1) and f(b) > f(x2), ral hence the statement is
proved. A similar proof exists when f'(x) < 0.

Example 6: Consider now the inequality relation (8). Here

f(x) = sin Xandf(x) ® lasx ® 0.

Differentiating we have

PX) = X COS % sin X (43)
X

which is negative in the range 0 < x </2p Hence according to the
results obtained above we have



MTH 281 MATHEMATICAL
METHODS 1

f(0) > f(x) > f( p /2), (44)

whih gives 1 SN 2
b, (45)

3.6 Higher Derivatives and Leibnitz’'s Formula

When a function y = f(x) is differentiated more thance with respect to
X, the higher differential coefficients are writtas

dzy: Cid +fj+ Qy: d)g 9— ndn_y: d%_n ;(? -
dXZ ‘_g;(_3 dX MZ +,“.’ dX dTXll- -

d yis the nth differential coefficient of with respect to x.
where n

dx
(These are sometimes abbreviated to either

f'(x), () ... f(n)(X)
or D2y, D3y .... Dny,

where D °© d/dx.)

We now give a few examples showing how th#n differential
coefficients of some simple functions maybe obtadine

Example 7: If y = sin x, then
dy =cosx=sin
Dy °© _d}(/ F21+ X ( )
D2y ° g-izg/—_ =-sinx=sin(p +X),
dx 27

d =-cos >§_ﬁ,5i” ()

and in general
d =sin () a9

Dny ° n dX
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Example 8: If y = loge x, then

Dy = 1/x,
D2y = 1/x2,
D3y = 2/x3,
(n1)! (47)
and Dny=(-1)n-1 n <

(Equation (47) is valid for all n, includingn = 1, if by 0! We mean
unity.)

In these two examples, the functions have beenlsiempugh to enable

the nth differential coefficient to be written downa few lines. When,

however, the nth differential coefficient & product of two functions
u(x) and v(x) is required it is better to procesd@lows:

We have shown earlier from first principles that

D(uv) =u Dv + v Du (48)

Differentiating (48) now gives

D2(uv) =u D2v + 2Du . Dv + v D2u. A

Similarly we obtain

D3(uv) =u D3v + 3Du . D2v + 3D2u . Dv + v D3u, (50)

D4(uv) = u D4v+4Du . D3v+6D2u .D2v+4D3u .Dv+Dv Ddu (51)
and so on.

By inspection of these results the followirfgrmula (due to Leibnitz)
may be written down for the nth differential coeiint of uv:

Dn(uv) =u Dnv + nC1Du . Dn-1v + nC2D2u . Dn-2v + ...
+ nCn-1Dn-1u.Dv + v Dnu, (52)

where nCr=-np1—
(n-r)tr!
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This maybe written more concisely as

Dn(uv)= na nCrDn-rv . Dnu. (53)
r9

Leibnitz’s formula (52) may be proved by inductias follows. Suppose
(52) is true for one value of n, say m; then byeddntiating we find

Dm+1(uv) = (u Dm+1v + Du . Dmv) + mC1(Du . Dmv + ©2Dm-1v)

+ mC2(D2u . Dm-1v + D3u . Dm-2v)+ .+ (Dv . Dmu + vDm+1u), (54)
= uDm+1v+(1+mC1)Du . Dmv+(mC1+mC2)D2u . Dm-1v+...+vBiu. (55)
Now mCr-1 + mCr = m+1Cr (56)

and hence (55) becomes

Dm+1(uv)= uDm+1v+m+1C1Du . Dmv+ m+1C2D2u . Dm-1v+.vBm+1u. (57)

This again is the Leibnitz’s formula (52) twim + 1 in place of m.
Hence if the formula is true for n = m, it is cémtg true for n = m + 1.

However, we know (from first principles) thatistrue for n=1, and
therefore it is true for n =2, 3, ..., ambnsequently for all positive
integral values of n.

Example 9:  To obtain the nth differential coefficient of y= (x2 + 1)e2x
we put x2 + 1 = u and e2x = v. Then by (52)

(x2 + 1)2ne2x + 2nx . 2n-1e2x + n(n — 1)2n-2e2x (58)
=2n-2 e2x (4x2 + 4nx + n2 —n + 4). (59)
Example 10: The nth differential coefficient of y = x logex may be
obtained by putting x = u and logex. Equation 2n gives
(n1)! (n2)!
Dny = Dn(uv) = x(-1)n-1 n X +nChn-ln X - (60)
(n2)!
=(Dn-2n1 . (22 (61)

Example 11: Leibnitz’s formula may also beppliedto a differential
equation to obtain a relation between successiterential coefficients.
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As this forms a step towards finding powseries solutions of certain
types of differential equations now considdre following problem.
Suppose Y satisfies the equation

d2 W X2y = sin Xx. (62)
dx.

Then differentiating each term n times (using Léits formula for the
product term x2y), we obtain (using (46))

Dn+2y + (x2Dny + 2nx Dn-]g++ n(n —63)Dn-2y)

= sin
which is g?elation between the (n- 2)th,—(nl)th, nth and (n + 2)th

differential coefficients of y forallx. If & now putx = 0 in (63)we
find
Dn+2y + n(n — 1)Dn-2y :l 0if nis even, (64)

'+ 1 ifnis odd .

~

|
Remark: Relations of the type of the expression i(63) and (64) at x =
0, are useful in developing power seriesutsmhs of differential
equations.

SELF ASSESSMENT EXERCISE 4

- d,
1) Ifyis a function of x, show by putting § =p that 2 - X
y
dy
dx 2
.
i
L dyt2dly + 2y
2) Ify= S|n;(+')gpggelhat4(x+1) 2 =2 "p°=o0.

3.7 Maxima and Minima

A particular important application of differentiati is to the problem of
finding the maxima and minima values of a givercfion f(x) in same
interval a £ x £ b. Purely on geometrioglounds we can see (Fig.

3.11) that provided f(x) is differentiable ithe range (a,b) then at a
maximum or minimum the tangent to the curve mugpdrallel to the x-
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axis. According a necessary condition for paint xO (say) to be a
maximum or a minimum is that

ge_ df(x) .0
f(x0)=0 El—.e-.—@-at—x X L
dx 0 . (65)

Such points are called critical points.

0 x=a X=b x
Fig. 1.10

Although at the end points x = a and x=b it wowddrs that the function
possesses larger and smaller values respgctilean at the maximum
point Q and the minimum point P, we do not coussthas true maxima
and minima but note that they are just the greatedtieast values of the

functionintherangea£ x£ b.

Now suppose f(x) > 0. Then the function 3 f(x) increases with
increasing x. if f’(x) > 0 then f(x) isalso increasing and hence the
curve is concave isupwards (as near the maximpoint Q). Hence if
f(x0) = 0 and ’(x0) > 0 the point x0 is a minimu point, whilst if f'(x0)

=0 and f’(x0) < 0 the point x0 is a maximum poiltmay happen that

both f'(x0) and f’(x0) vanish (for example, f(x) =x3 has a critical point

atx =x0 =0, and f’(0) = 0). Such points areledlpoints of inflection.
A more detailed theory based on Taylor sgges Unit4) enables the

nature of a critical point to be determinathen the first n (say)
derivatives vanish at the critical point. Howewee shall not deal with
this situation here.

Finally, we note that we have so far asslntbat the function is
continuous and has a continuous first dekeat If the function is not
differentiable then it may still possess maxi and minima but they
cannot be found by differentiation. For examghe, functiony = |[x| is
shown in Fig. 3.12. This is not a differentiabl@dtion for the range —a

£ X£ a(say). However, a true minimum does eatist= 0.
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Fig. 1.11

SELF ASSESSMENT EXERCISE 5

1. Determine the maxima and minima value (if aofy)

a) sin-1(x2 + 2)
b) 1 +x2/3

2. Find the critical point of y = x2e-x and detammnwhether they are
maxima or minima.

4.0 CONCLUSION

In this unit, we have dealt with limit, dowity and have established
some theorems, such as Rolle’s Theorem and Meamedadaheorem.

We have also established relationship betweentinuity and
differentiability.

The concept of differentiability allows us tdetermine, the minimum
and maximum point of a given function.

5.0 SUMMARY

Here you have learnt about limits, continuignd differentiability. You
have also learnt that differentiability at a pamplies continuity at that
point.

Some relevant theorems such as Rolles and Meaed/dheorem were
also studied.

You are to master these areas in orderb#& able to follow the
presentation in the next unit.
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6.0 TUTOR-MARKED ASSIGNMENT

1. Find the derivatives of

a 1

,’( axDh)
b) x4logex

2. Find the points of discontinuity of the follavg functions

46
a 2 —
X 6x48
b) secx
0 x sin x
,\/_
o dz y+ 2 dx( + _
3. Ify— Slngw@@that4(x+l) 2 dx - &y—O.
dy- xdx is
4. If y = sin-1x = (sin-1x)2, prove thatl (- x2) 2 W -

independent of x.
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1.0 INTRODUCTION

InUnit 1, we discussed the concepts of contyrand differentiability

of one real independent variable. In thisit,urwe shall consider and
extend the idea developed in Unit 1 to fiomc of more than one
variable.

This is very important because, in scientificlgsia of a problem, one
often find that a factor depends upon several ddwtors. For example,
volume of a solid depends upon its length, breathleeight. Strength of

a material depends upon temperature, density pigptisoftness etc.

It is therefore necessary to define functioh several variables. If a
variable z depends for its value upon thade x and y, we say z is a
function of x and y, and write z = f(x,y).

All types of concepts for functions of oneariable are extend to
functions of several variables. For example theealf a function f(x,y)
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at (x0, y0) is given by f(x0, y0). The domain aadge of the function are
defined as before.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

» relate the concepts of limit and contipuistudied in unit 1 to
function of several variables

» carry out partial differentiation of function eéveral variables

 apply the concept of Lagrange multiplieechniques to finding
the minima and maxima of functions of several \zga

 find higher derivatives of functions of sevevaliables

e carry out Taylor series expansion of fioes of several
variables.

3.0 MAIN CONTENT

3.1 Functions of Several Independent Variables

The concepts of continuity and differentiability dunctions of one real
independent variable have already been discudgsddnit 1 andin this
section we extend these ideas to functiofistwo or more real

independent variables x, y, u,v... (or x12,x3 ...). We first discuss,
however, some general properties of functions isftipe.

Consider, for example, a function of two variabteend y defined by

f(x,y) = x2- 2y2. Q)

Then the value of f(x,y) s determined by (1) foegvnumber pair (x,y).
For instance, if (x, y) = (0, 0) we have f(0,0) afd if (x ,y) = (1, 0), f(1,
0)=1.

In general we may represent every pair
of numbers (x,y) by a point P in the (x,y) 7
plane of a rectangular Cartesian

coordinate system and denote the P
corresponding value of f(x,y) by the
length of theline PP’ drawn parallel to
the z=axis (see Fig 2.1). The locus of all y
points such as P’ is then a surface in the

(X, y, z) space which represents the
function f(x,y). However, this simple X
geometrical picture is impossible to
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visualise when dealing with functions of #reor more independent
variables.

Returning now for simplicity to functions of twodapendent variables,
we notice that many functions are only defined imith certain region of
the (x,y) plane. (This is analogous to the onealdée case where f(x) is
defined in a certain interval of x).

For example, the real function.

f(x,y) = 24@ Xy (2)

is only defined within and on the boundary the circle x2 + y2 = a2;
outside this region it takes on imaginary valuesil@rly the function

f(x,y) = tan)(%)}(

is undefined along the line x = 0. The functionegivin (1), however, is
defined for all values of x and y. it igsual to denote the region of
definition of a function of several independentigbles by the letter.

If a function f(x,y) has just one real value foreey (x,y) value within its

region of definition R, we say that it ia single-valued function are
obtained for a given (x,y) value we callethunction two-valued or
many-valued. For instance, the function defined (@) is single-valued

over theregionR given by -¥ < x < ¥¥-< y < ¥ whereas the
function defined by (2) is two-valued over the regivgiven by x2 + y2

< a2 (since both signs of the square rowmay be taken) and single-
valued (equal to zero) on the boundary of the eir@ + y2 = a2.

Another important concept already defined intUdi, 3.2 for functions

of one independent variable is that of aumty. When discussing the
continuity of functions of two or more indament variables similar
considerations apply. Suppose f(x,y) is a reallsivglued function of x

and y. Then if f(x,y) approaches a valueas x approaches a and vy
approaches b, | is said to be a limit of f(x,y}laes point (x,y) approaches

the point (a,b) and is written as

im  fxy) =1 (4)
(x.yP(ab)

However, as we have already seen in one-varialke, gamay approach
a specified point x = a from either the negativie st ¥ ® a) or from
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the positive side (- ¥ ® a), and the values of the

two limits so obtained may be different. The
sameis true of (4); the way in which (X,® P(a,b)
(a,b) may determine the value of |. However,

there is now much more freedom than in the c
one-variable case since (see Fig. 9.2) the poinb Q(x.y)
Q(x,y) may approach the point P(a,b) along any X
of the infinity of curves, say c, which lie in the Fig. 2.2

(x,y) plane and which pass through P. If,
however, the Ilimit exists independently ofthe way in which Q
approaches P and is such that

lim f(x,y) = f(a,b), (5)
(x.y®(a.,b)

(assuming that f(a,b) exists), then f(x,y) s®id to be a continuous
function of x and y at the point (a,b). kéwise, if a function f(x,y) is
continuous at every point of a region R of the \phane it is said to be

continuous over that region.

3.2 First Partial Derivatives

Suppose f(x,y) is a real single-valued fiowc of two independent
variables x and y. Then the partial derivativef{xfy)  with respect to x
is defined as

Oy \
1 im I fOxd,y)f(x,y) E (6)
ix=" qgot dx

Similarly the partial derivative of f(x,y) with rpect to y is defined as

()X \
1 | LOCYIITCY) E e

ix=" g@o t dy

In other words the partial derivative of f(xwith respectto x may be
thought of a s the ordinary derivative of f(x,y)tlwrespect to x obtained

by treating y as a constant. Similarly, the padiiivative of f(x,y) with

respect toy may be found by treating x a s @misind evaluating the
ordinary derivative of f(x,y) with respect to yhd@ variable, whichisto

be held constant in the differentiation, denoted by a subscript as
shown in (6) and (7). Alternative notationepwever, exist for partial
derivatives and one of the more useful and compiatiese is to denote

(%lbéy fx, and E}L?F‘ Ry fy.
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The subscripts appearing in the f now denote #n@ables with respect
to which f(x,y) is to be differentiated.

The following examples illustrate the evaloati of first partial
derivatives.

Example 1. |If
f(x,y) = x2 — 2y2 (8)
(see (1)), then
_ gt - FI(xx)i22peR2y) 9
fX %{)Z dhg;l ™ E 9)
= im EROHAY 2 =y (10)
dgo 8@ K B
Similarly
we B }.I_[x%%%}(xzy) | an
W = deo T dy b
|in7rEeéQ"W2(y) 2_ = -4y (12)
dwo 8@ Oy +

Example 2: The last example illustrated thetechnique of partial
differentiation from first principles (i.e. by thevaluation of a limit). We

now differentiate partially by keeping certawvariables constant as
required. For example, if

X, (13)

f(x,y) =sin2xcosy+ 2 —

y

then keeping y constant we find

o = 1F 1. (14)
QXZSinxcosxcosy+2 y

Similarly, keeping x constant,

2% (15)

V=D, o v
=2sin2xsiny-3 y

Example 3: To obtain the partial derivativs of a function of n
independent variables any n -1 of these variablest be held constant
and the differentiation carried out with respectite remaining variable.
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There are therefore n first partial derivasiv of such a function. For

Example, if

f(x, y, z) = e2z cos xy (16)

SELF ASSESSMENT EXERCISE 1

Given that f(x,y) = x2y + sin-1x find

i) fx
i) fy
then
x= E(:)y-yeZZ sin xy, (17)
-
¥ xg3z sin xy, (18)
and
z %Szgzz coSs Xy (19)

3.3 Function of a Function

It is a well-known property of functions of one epkndent variable that
if fis a function of a variable u, and u is a ftion of a variable x, then

df =dflu. d_ldx (20)
dx

This result may be immediately extended to the vdsen f is a function

of two or more independent variables. Supposef(&) and u = u(x,y).

Then, by the definition of a partial derivative,

fx = fy_ ﬂ(ﬁ_}{

x°= du Tx (21)

£ df ae.g
_fne arand 22
“’ %a du &P | (#2)
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Example 4: If

f(x,y) = tan-lx X (23)

then putting u = y/x we have

— f i (tan'lbh)u( )y y 24
fx %)y: i T (24)
and

_ L"' d (tan-1u) ;" X o5
fy= %a du Eo22xy+ (25)

Example 5 Iffu)=sinuandu= 22 /(X ¥ then

fx:%f)y X - Zzostyy , (26)
X = (cos u) W W

and

fy:?;l-f;j‘ Ay 5'\AX)’)"P , (27)
T (cos u) \/7 W

3.4 Higher Partial Derivatives

Provided the first partial derivatives of a fuoatare differentiable, we
may differentiate them partially to obtain the setpartial derivatives.
The four second partial derivatives of f(x,y) dnerefore

RE
fxy‘%; i = xﬁﬁ 28)
AL | Lgf
fyy = y2 q = Wx g (29)
0 Lg_ff\
M Ty 2 Th= x OE (30)
and

szﬁs%z - jﬁ@ (31)
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Higher partial derivatives than the second eagbtained in a similar

way.

Example 6: We have already seen in Example 4 thét

f(x,y) = tan-lx X (32)
then
(%(-y Y gip_ _x (33)
= Jo 750 (<3P
Hence, differentiating these first derivatives fadist, we obtain
_O _— 2
VD SLERES Y S . Lo A (34)
x2 gq2RoxYy+ ~ (Xy9
and
f 9 = 2
fyyzjz_z :1y :X . =-777 &l (35)
Yo g28ey+ (xyd
Also
20 .
fxy = —g—f— T = X = XX (36)
TRY= %.®ay+ = (%39
and
0 - -
fyx = b ﬂ_f— LA (37)
TMX= w,Boxy+r * (Rp8
Since (36) and (37) are equal we have
1 2f |l
axy= 2Wlx (38)
which shows that the operators X I _
1 and ¥ arecommutative. We shall

return to this pointin the next section. Finallye note that if (34) and

(835) are added then f(x,y) satisfies the tiglardifferential equation

(Laplace’s equation in two variables)

12 LT —o (39)
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In general, any function satisfying this eijpa is called a harmonic
function.

3.3.1 Commutative Property of Partial Differentiaton

In Example 6 we have shown that the second paigiavatives fxy and

y areequal. Thisisin fact the case for
fyx of the function f(x,y) = tan-1 x—

most functions as can be verified by chapsia few functions at
random. It can be proved that a sufficient (butt mexessary) condition

that fxy = fyx at some point (a,b) is that both #yd fyx are continuous at N _
(a,b) and in all that follows it will be sasumed that this condition is

satisfied.

SELF ASSESSMENT EXERCISE 2
Show that fxy = fyx for the following functions
1. f(xX,y) =x2 —-xy +y2
2. f(x,y) =xsin (y — X)

3. f(x,y) = eyloge (x +vY)

Xy
Xy+

4. f(x,y)= 22

3.4 Total Derivatives

Suppose f(x,y) is a continuous function defined iegion R of the xy-

1
plane, and that b(%% aﬁ?jy () yire continuous in this region. We

now consider the change in the value of thetion brought about by
following small changes in x and y.

If & isthe changein due tochange dxang inxandy then
df=f(x+ dx,y+ dy)-1(xy) (40)

=fx+ dx, y+dy)-f(x,y+dy) +f(x,y + ¢ - f(xy). (41)

Now by definition (see (6) and (7))

1 lim I fOedyg)fax,yy) E (42)
ik, y+dy)= 4got dx '
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q im JLOORIITOY)
— im | .
1Y) = ggo t dy E
Consequently

] éP+d+ad
f(X-Xdy-)d)f‘(Bi,FYD(X,yy)X%T%', (44)

and

»
fx, y +dy) - f(x.y) = faigp,y)y +bd »

where a and b satisfy the conditions

im a =0and Im b =0.
d®0 d®0

Using (44) and (45) in (41) we

=é‘+d+ g_ﬂ]_
af %ﬂkﬁx#yﬁ%,y)y aey rbd

MATHEMATICAL

(43)

(45)

(46)

(47)

Furthermore, since all first derivatives are combias by assumption, the

first term of (47) may be written as

1 1
&, y+dy)= f(x,¥3+vy, (48)

where g satisfies the condition

im g =0 (49)
®

Hence, using (48), (47) now becomes

df= ﬂ

% "dx+ f(xf)MWy+(a+g)dx+ bdy.

The expression

l

1
e ‘H<’a>2+ FOx, 9%y

(50)

(51)
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obtained by neglecting the small terms (& d)dx and bdy in (50)

represents, to the first orderin dx and/,, dthe change in f(x,y) due to
changes dxanddyinxandy respectively.

It is easily seen that the first term of (51) reyamats the change in f(x,y)

due to a change d x in x keeping y constant; antgithe second term is

the change in f(x,y) due to a change dy )y keeping x constant. The
total differential is nothing more than thainrs of these two effects. In

the case of a function of n independent varialfek %2, ... xn) we have

fif ff ff . Af
ar @It If L Bl
Taxl+ Tox2+..+ daa=n 5 dxn (52)

The following examples illustrate the use of thessults.
Example 7: To find the change in
f(x,y) =xexy (53)

when the values of x and y are slightly changethfiloand 0to 1 + d x
and dy respectively. We first use (51) to obtain

df @ (xyexy +exy) dx+x2exydy. (54)
Hence putting x =1, y = 0 in (54) we have
df @dx+ dy. (55)
For example, ifd x=0.10 and dy = 0.05, therf @& 0.15.

We now return to the exact expression for d fgie(50). Suppose u =
f(x,y) and that both x and y are differentiabledtions of a variable t so

that

X =Xx(t),y =y (56)
and
u = u(t) (57)

Hence dividing (50) by dt and proceeding tiee limit dt ® O (which
implies dx® 0, dy® 0 and consequently a, b ® 0) we have

du =qf dx +qf dy. (58)
ot Tdt .dt
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This expression is called the total derivative @f with respecttot. It is
easily seen that if

u = f(x1, x2, x3 ... xn), (59)

Where x1, x2, x3 ... xn are all differentiable fulcts of a variable t, then
u = u(t) and

du =gqf dxl +qf dx2+.+qf dxn = poqr dxr. (60)
dt  Tx 1dt '[L(.zdt ] .ndt s {[r. d

Example 8: Suppose

u="f(x,y) =x2 +y2 (61)

and

X =sinht,y=t2. (62)

Then by direct substitution we have

u(t) = sinh2t + t4 (63)

and consequently

du =2sinh2tcosht+t4 (64)

dt

We now obtain this result using the expressiaorilfe total derivative.
Since

If 1

Tx=2x, ffy=2y, (65)

dx = cosh tdydt= 2t, (66)
dt

(58) gives

du =2xcosht+ 4yt (67)
dt
=2 sinh t cosh t + 4t3, (68)

as before.
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3.5 Implicit Differentiation

A special case of the total derivative (580ises when vy is itself a
function of x (i.e. t = x). Consequently u is a ¢tion of x only and

dx fx+ flydx

Example 9: Suppose

X (70)

u = f(x,y) = tan-1
and
y = sin X. (71)
Then by (69) we have
du =22y PP, COS X (72)
dx y+ Xy+
- SN X-X COS X

X st X (73)

This result could have been obtained by sightly more laborious
method of substituting (71) into (70) anderth differentiating with
respect to x in the usual way.

When vy is defined as a function of x by the equatio

u=f(x,y)=0 074

y is called an implicit function of x. sincesiidentically zero its total
derivative must vanish, and consequently from (69)

dy =g0)y pae
dx  Tx g (75)

Example 10: The gradient of the tangent at any pot (x,y) of the conic

f(x,y) = ax2 + 2hxy + by2 + 2gx + 2fy + ¢ = 0, (76)

(where a, h, b, g, fand c are constants) is, by, (7
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dy =-2ax2thy2g
dx 2 by#2+hx 2 f (77)

Example 11: The pair of equations
F(x,y,2z)=0,G(x,y, z) =0, (78)

Where F and G are differentiable functiont§ > y and z define, for
example, y and z as functions of x. Hence, sineddtal derivatives of
F(x, y, z) and G(x, vy, z) are identically zero, sve

1MFFdzdy
1\ dx=z0dx (79)

and

165 Gdzdy
Ty dxz0ix (80)

dy”

_ﬁ_ﬂ( _ AGfS
dx TIAAX

T Ay (81)

and

dz =ofpRG _ _ MAGFS
dx gww 9wy (82)

For example, if
F(X,y,2)=x2 +y2 + 22,

G(X,y,2)=x2-y2+ 222, 38

then

1F T T
Ix=2x, | y=2y, K z=2z, (84)

16 A T
Ix=2x, @ y=-2y, & z=4z, (85)

and hence, by (81) and (82),

dy =xy, dx =2X

dx 3 (86)
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3.6 Higher Total Derivatives

We have already seen that if u = f(x,y)danx and y are differentiable
functions of t then

du =qf dx +qf dy
dt Tedt  F. &)

d, ywe note from (87) that the operatgr cgh be written as

Tofind 2 d
4 8y o 1
dt 1 + dt
(88)
Hence
4w d_dQ QP E ;91 dy
dt dt éwtyxdtytﬂ’t T T
(89)
. %ﬂ @Lﬂf% g dXf g doy  (90)
Tb((z)git+22f % alt- 2 7y2 +f g% dt gy dt
where we have assumed that fxy = fyx. Higtetal derivative may be

obtained in similar way.

A special case of (90) which will be needed lasevhen
dx = hdydt = K,
ot ©D

where h and k are constants. We then have

cﬂhzz u +2hk%_p M
dt Mx 2 X ¥k22 ﬂyz

(92)
which, if we define the differential operator *D by

sD=hxl L
T +kyf :
(93)
may be written symbolically as

do g9+ 2
dt. & &X Y= Do2r. (94)
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Similarly we find

dott 3334 shepl f .
dt: 1608y 33 T%yy3 (95)
_ ":Tl’+ B 3

94X = *D3f, (96)

assuming the commutative property of partial déferation. In general,

dh 9.9+ n
dt, © X yf=Dnf, ©@7)

g+
where the operator Er‘a‘l}(ﬂ/is_to be expanded by means of the
binomial theorem.

3.7 Homogeneous Functions

A function f(x,y) is said to be homogeneous of @éegm if

f(kx, ky) = kmf(x,y), (98)

where kisa constant. A similar definition a@ppl to a function of any
number of independent variables. For example,

f(x,y) = x3 + 4xy2 — 3y3 (99)

is homogeneous of degree 3 since

(kx)3 + 4(kx)(ky)2 — 3 (ky)3 = k3 [X3 + 4xy2 — 3y3] (100)
Similarly
2 + X . 3}
fxy) = * y ysin %0
2 ¥ (101)

is homogeneous of degree 0 since

(o fyy kx by smg. hoywx o (102)
4 exy Ik 221 4 XY XY
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3.8 Euler's Theorem

Theorem 1: If u = f(x1, x2, ... xn) isa homogeneous differentiable
function of degree m in the independent variablesx®, ... xn, then

1f 1f

where k is a constant. Then since u is homogeneous x1
1 x+1x2 I x 42-

Lexn A
x = mf. (103)
To prove this theorem we define a new set of Wemyl, y2, ... yn by

the relations.
x1, = ylk, x2,=y2k...xn=yn of degree m (104)

u = f(y1k, y2k ... ynk) = kmf(y1, y2, ... yn). (105)

Differentiating (105) with respect to k e find

d_U: qf dx1+ qf dx2 ot qf d_xn =mkm-1f(y1, y2, .yn) (106)
dk Thdk dk % dk
1 2 n
or
du =y1qf  qf it
dk fixty2  fix+..+yn  fx=mkm-1f. (107)

Hence multiplying the last two expression of (1By)k we have

w1 1f 1 f
ﬂx+1x2 ﬂx+2... +Xn x = mf, (108)
n

which proves the theorem.

Example 12: The function

f(x,y) = x3 + 4xy2 — 3y3 (109)
is homogeneous of degree 3 and hence, by Eulegsréim,

X Al
Ix+yfy3f. (110)
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This is easily verified since

1t I
Tx=3x2 +4y2, § y 8xy—9y2. (111)

Hence

1l
X —_—
Ix+yfqy =x(3x2 + 4y2) + y(8xy — 9y2)
= 3(x3 + 4xy2 — 3y3) = 3f. (112)

3.9 Change of Variables

We have seen earlier on in this chapter that i£d(x,y) is a continuous
and differentiable function of the independent &ales x, y and if x and
y are differentiable functions of a variable then

du = qf dx +qf dy. (113)
dt ﬂx dt TIydt

MATHEMATICAL

Suppose now that x and y are functions notgtisbne variable but of

two, say s and t, such that

X=X(s, 1), y=y(s,t). (D14

Clearly since u is a function of x and y it is aksfunction of s and t and

necessarily has the two partial é%nvatlve% {,

ence

keeping t a constant and differentiating witkspect to s, we have

(fo(O)ving (113))
‘ITS— fjﬁ @ fwéw (115)

Sir(\iljlrly, keeping s a constant and differentiativith respect to t

‘Ht— fﬁi@l fﬂh’g (116)

Example 13:  Given that u = f(x,y) and

X=82-12, y=2st, (117)

prove that
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s 1T 1
Ts-tuf t=2(s2 +t2) F.x (118)

From (115), (116) and (117) we have

Tu 179x Ty T
Is= fix s+ My gs=2sf1 x=2fTy (119)
Tu 79x T Ty T AR
= Ix 7t+ Ty qt=-2tf) x+ 25y (120)

Hence multiplying (119) by s and (120) by t anfitsacting we obtain
(118) as required.

Example 14: Given u = f(x,y) and

X=rcosq, y=rsin q, 20
prove that

r . T

Ir =xfx=yfly (122)
and

T T 1

g =xW-yfx (123)

These results are easily obtained since from (MEShave

\l

1
r= fixcosqg + ¥ sing, (124)

which, on multiplying through by r, gives (122)nfarly from (116)

fu 1 Al
19 =Y1k(-rsinqg)+ f¥rcosq %12
=xf L

TY-yfix (126)

which is (123).

Example 15: If x and y are rectangular Cartesiarcoordinates and if u =
f(x,y) satisfies Laplace’s equation
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f2f +%2/21 =0, (127)
I x2

obtain the form of this equation in polar coordesafr, q), where x=r
cosqg,y=rsin q.

Frtn)(115) and (116) we have

‘ﬂrq= fﬁia f'ﬂygﬂ? (129)

_ )l
- 08 OI'IEITY+ sinq Ty (130)
and
gy  Lix 1 o
11% = X()1a + 1V EWq (131)

=-rsji L ﬂ_

PN+ cos q fly (132)
Solving (130) and (132) for fﬂ 1

9 and Yy we find

If r _ q%
fIx=cosqUu r sim 19q (133)
it 1 _ du
TY=sinqul r+ cos 1q. (134)

Hence the operators J(— T i _
1 and W in polar coordinates are

1 T _q (135)
1 xcosqr § - sim

Al 1 a1

‘ﬂ)bsmqr‘ﬂ + cos Tq 3Q)L
Consequently

12f g$inu_
e ¥ Geosar T vra
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- Si— F —_—
4 (137)
= cos2q?2 T U _osh®osy 1 sin a% u 2 sin_q%
qr2 r fla= 2 p qe g Tr +
2singces 1
2 fq. (138)
Similarly
UK T 9.9 1.9 fos u q I
— = AL LLrull | - —
Ty yﬂ gy = sinr ﬁTf%ﬂq +  cos r Tq
ngpaz
119 (139)
= sinng2l Y+ _2sifi®au T cos g u , gos qfu
qr2 r fiffia + 2 p T4q r M-
2sinces 1
r2 g (140)

Finally, adding (138) and (140), we have Lapla@gjgation in two
dimensions

12 1f g Y% 13 u g (141)

r=

e Y2 qr fir+ 2r qq2
SELF ASSESSMENT EXERCISES 3

Given that

z= g/ZY+,x=rcosq.
Find & T

91z and show that & =00.

MODPE 1

3.10 Taylor's Theorem for Functions of Two ndependent

Variables

Theorem 2: (Taylor’'s theorem). If f(x,y) is definal in a region R of the
xy-plane and Il its partial derivatives of ordegsto and including the (n
+ 1)th are continuous in R, then for any point Yalthis region
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1 *D2f R
f(a+h, b+k)=f(a,b)=*Df(a,b)=1- (@,b)+ +i_ Df(a,b)+En9
2 n

Where *D is the differential operator defined b2)9- (97) as

D = T 1

D= T, (143)
and

*Drf(a,b) mearrns%ﬁﬁrf(xE 144

evaluated at the point (a,b). the Lagrange erron &n is given by

BN = ChDDn+lf@+ qh b+ qk) (145)
Where0< q <1.

To prove this theorem we let

x=a+ht, y=b+Kkt, (146)

where a, b, h k are constant and t is a varialiienTputting
f(x,y) =f(a + ht, b + kt) = u(t), (147)

where u(t) is a continuous function of t, we hayg%r)

dn U *Dnf. (148)
dt,

Since by assumption all partial derivatives di,\f) up to and including

(142)

MATHEMATICAL

the (n + 1)th order are continuous in R also are the ordinary
derivatives of u with respect to t. Hencét) umay be expanded by

Maclaurin’s series (see Chapter 6, 6.1 (6) andd3))

t__ﬂ u(n)(0) + En9 (149)
n

u(t) = u(0) + ty'(0) +

where

t+
o R Ddn+1)(qt, 0< q <1. (150)



MTH 281 MODPE 1

Hence using (146) and (147) we have

fa+ ht, b+ kt) = f(a,b) + t*Df(a,b) +t_2! Df(a,b) + ..... +t_d
2

n
*Df(a,b) + En9 (151)
where now
t +
En =
{ nIbn+lfa+hgt, b+kqt),0< q <1. (152)

Putting t = 1 in (151) and (152) we fiyallobtain Taylor's expansion
(142) with the error term (145).

Theorem 3: |If

lim En=0, (153)
n® ¥

then

f(a +ht, b+ kt) = f(a’b) + *Df(a,b) jﬂa,b) + ...
n

¥g 1 *Drf(a,b). (154)
0 r

In all that follows we shall assume that (153)atssgied.
An alternative form of Taylor’s series (154) maydig#ained by putting
h=x-a, k=y-b. (155)

Then

fxy) = f(a,b) + [(x — a)fx(a,b) + (y — b) fy(ap)

1{{x-2a)2
E- fxy(a,b) + 2(x — a)(y — b)fxy(a,b)
+(y—-bBy(a,b)}+..., (156)

which is Taylor’s expansion of f(x,y) about the piofa ,b). When there
is no dependence on vy, (156) reduces to Taylorisséor a function of
one variable (6.1 (8)).
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Example 16: Expand the function

(157)

by) = sin xy
a Out thﬁép@h{a{n{ )erms of degree three and higher

Here

(9 -5
fx(x,y) =y cosxy; fx()

fy(x,y) = x cois X3, fy()

fxy(x,y) = —yz,gm%fxy( (158)

)
fxy(x,y) = -Xy Sinixy- zﬁa_fdsl_xy,

fxy()
fyy(xy) = x2:8n 8 fyxy (

IZence substituting these results in (156) we have

Sinxy=[$ {xl—}y%gj 15 3(])}52 _g g_f_

Ol 3. -, !
+2{.x+1}3(-)% ?;f; 3y y_P' gl (159)

+ terms of degree 3 and higher

3.11 Maxima and Minima of Function of Two Variables

A function f(x,y) is said to have a maximum vahtea point (x,y) = (a,
b) if

f(a + h, b +k) —f(a,b) < 0, o)
where h and k are small arbitrary quantities.
Similarly f(x,y) is said to have a minimum at (x;y)Xa,b) if

fa+ h, b +k) — f(a,b) > 0, (161)
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These results may be interpreted geometricgfige Fig. 9.3) by
noticing (in the manner of 9.1) that the surfacefgx,y) is higher

max z
@ min
0 0
y y
X X @,
(a) Maximum (b) Minimum
Fig. 2.3

at (x,y) = (a,b) than at any neighbouring@inp when (160) is satisfied
(thus corresponding to a maximum), and is lowera @,b) than at any
neighbouring point when (161) is satisfi¢thus corresponding to a

minimum).
Now if a maximum or minimum occurs at (a,b)e tturves lying in the
two planes x = a and y = b must also ehanaxima and minima or

minima at (a,b) (see Fig. 9.4). Consequentlg ttangents T1 and T2to
these curves at (a,b) must be parallel to the @xGnaxes respectively.

This requires

1
Tx=0, fly=0 (162)

at all maxima and minima. The solution diede equations gives the
coordinates of points of possible maxima and miniamal also of points

called saddle points which will be defined latergeneral we speak of

the solution of (162) as giving the stationary otical

(a,b)

Fig. 2.4
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Points of f(x,y). To decide whether a paidc stationary point is a
maximum, minimum or neither we now use the Taylgamsion of fx,
y) in the form given by (142), namely

1*Df(a,b) + ..., (163)
f(a+h,b+K =fab) + Difap)3

Where *p,= ()

Tk

If (a,b) is a stationary point then (162) gives

*Df(a,b) = 0. (164)

Hence, neglecting terms of order h3, k3 and higerhave
fa+rhb+k-f@ab)= 2  LM2500 04 onkixyab) +k2  fyy(a,b)), (165)

Tf(xy)
ﬁZ

at a stationary point where, for example, fxy(arbgans 2

evaluate at (a,b). We now see that (165) may bettewas either

B 2(a,b) -
fa + h, b + k) - f(a’b)T()]f:-\,—b {Infxy(a,b)]2 - k2[fxy (@.b)

fxy(a,b)fyy(a,b)l}, " (166)

or

_ 1
fa+ h, b + k) - f(a,b) = m {Ifxy(a,b) + Kfyy(@,b)2 - h2[ f 2y (4 p)

yy

—fxy(a,b)iyy(a,b)]}, 16€7)

Clearly the signof fla+h,b +k)- f(a,bhich by (160)and (161) is
crucial in deciding whether a particular stationpoynt is a maximum or
minimum, is now, by (166) and (167), dependentrmnvalues of h and

k. However, if

D°T2 yy (a,b) - fxy(a,b)fyy(a,b) < 0 (168)

then the terms in curly brackets in (166) and (1&@)positive for all h
and k.

Consequently, with D <0, the sign of fla /b + k)- f(a,b) depends

entirely on the signs of fxy(a,b) and fyya, From (160) and (161) we
deduce therefore that (a,b) is a maximum if
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D <0, fxy(a,b) <0, (169)
and a minimum if
D <0, fxy(a,b) > 0, (170)

We note that D <0, and fxy(a,bx® simply fxy(a,b) x= 0.

When D > 0 the signs of the curly brackets in j1&&d (167) depend on
the values of h and k. In this case the statiopaigt (a, bO is called a

saddle point. Such a pointis neither a maximumanminimum, but is

such that the point P is a maximum for the curvea@d a minimum for
the curve C2 (see fig. 9.5).

When D =0 a more refined test is required to meitee the nature of a
given stationary point.

Example 17:  Consider the function

f(X,y) = x4 + 4x2y2 — 2x2 + 2y2 — 1. (171)
The conditions 1%(6: o, f 1?_3/: 0 give the two equations
4x(x2 + 2y2 — 1) = 0, (172)

and

4y(1 + 2x2) =0, 373

respectively.

Hence solving (172) and (173) we have

y =0, (174)
giving the stationary points of (171) as (0, 0),@Land (-1, 0). We now

test each f these points separately for axifnan, minimum or saddle
point. To do this we first differentiate (171) twito get

fxy = 12x2 + 8y2 — 4,
fyy =8x2 + 4,

fxy = 16xy. (175)
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Point (0, 0). Using (175) we now have

fxy(0, 0) = -4, fyy(0, 0) =4, fxy(0, 0) =0, (176)
whence
D = 14 (0, 0) - fxy(0, 0)fyy(0, 0) = 16 > 0. (177)

This point is therefore a saddle point.
Point (1, 0). Here

fxy(1,0) =8, fyy(1,0) =12, fxy(1,0)=0 (178)
and
D = 1% (1, 0) - fxy(1, 0)fyy(1, 0) = -96 < 0. (179)

By (170) this point is therefore a minimum.

Point (-1, 0). Since the values of fxy(-D), fyy(-1, 0) and fxy(-1, 0) are
identical with those given in (178), this pointilso a minimum.

The function f(x,y) defined in (171) therefore ha® minima (at (1, 0),

(-1, 0)),and one saddle point (at (0, Opinallyitis easily found that
f(x,y) = -2 at both minima, and f(x,y) = -1 at teaddle point. The reader

should now attempt o sketch the surface z = f(agfined by (171).

Example 18: To find the maximum value of

f(x, y, z) = x2y2z2 (180)

subject to the condition

X2 +y2 + 22 =c2, (181)

where c is a constant. Problems of thisetywhere some constraint is
applied (which effectively means that not dle variables are
independent) are best dealt with by the method_agfange multipliers

(see next section). However, in this paréiculexample we can easily
reduce the problem to one in two-independeniades by eliminating

z to get

f(x,y) = x2y2(c2 — x2 — y2) (182

and proceeding as in Example 17.

The stationary points are easily found to @& 0, c)
Q- -

andgcges" — — . N :
zj/(?\y@ejé alf possible combinations of sigre
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allowed. This second point is, in fact, eight syrmally placed points
in the form of a cube centred at the origof the Oxyz- coordinate
system. It is at these points that the functiorOjt8kes on its maximum

g&% +
value g==—:
@27~

3.12 Lagrange Multipliers

In the last example, a problem of maximisiag function of three
independent variables subject to a constraint wesessfully dealt with

by eliminating one of the variables. Howeveahis approach may not
always be possible. For example, if insteadthef constraint (181), we
had the relation e-yzsin2(x +z)+1 =0, it wounlst be possible to solve

explicitly for z. Lagrange developed an altdive method of dealing
with maxima and minima problems which are subjéc constraint and
which overcomes this difficulty. We indicatthis method here for the
case of functions of two variables only, btite technigue maybe
extended to any number of variables.

Suppose f(x,y) is to be examined for stargn points subject to the
constraint

a(x,y) =0. (183)

Now for f(x, y) to be stationary we must have tbel differential

df = fil_ I
Txix + fIgy=0 (184)

This would normally lead to the usual equations

qx0, fTy=0 (185)

for the stationary points. However, dx and dye notnow independent
but are related via the total differential of g{x,y

oo | 1
97 flax+ gTgy =0 (186)
(using (183)).

Hence multiplying (186) by a parameter | damadding to (184), we
have

_af. T gy T
d(r+ 'g_gﬁkdxrg gﬂ?ﬂwy?o. (187)
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We now choose | such that

LI
Ix+ 1g¥ x=0, (188)

whence if follows from (187) that

11
1Y+ 197 x=0. (189)

Equations (188), (189) and (183) are together @efit to determine the
stationary points and the value of the multiplier |

Example 19 To find the maximum distance fronthe origin (0, O0)to
the curve
3x2 +3y2 +4xy -2 =0. (190)

Here we have to find the maximum value of the distal, where

2 =f(x,y) =x2 +y2 (191)

subject to the constraint

g(x,y) =3x2 + 3y2 +4xy -2 =0. (192)
Now the Lagrange equations (1880 and (189) give
2x + | (6x + 4y) =0, (193)

2y + | (6x + 4y) =0, 194)

which must be solved together with (192). From {1&2& (194) we find
41 (y2 —x2)=0whencey= =x. Withy=x, ()9fves 10x2 — 2 = 0 of
+§_; with y = -x, (192) gives 2x2 — 2 =0 or x = =The stationary

points are therefore g&-_—}

54/“1 éerdé(b 4!7(1 1).

2 , whilst for the last
From (191) we find that fro the first two points42

two 12 = 2. Hence the maximum distance from thgiorto5 the curves is

B
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SELF ASSESSMENT EXERCISES 4

1. Prove that the volume of greatest rectargubarallelepiped that

can be inscribed in the ellipsoid
x2+ 2y2+ 222 = 1is8ghc

az b C F

2. Find the stationary points of f(x,y) =2 x+ y2 subject to the
constraint 3x + 2y = 6.

4.0 CONCLUSION

In this unit, we have considered and disedssnto detail important
mathematical concepts. The Partial Differerdigt we have also
considered concepts like Lagrange Multiplieeciiniques, which is a
useful tool in determining the maxima and minjpaént in calculus of
several variables.

The concepts developed will be wuseful inviegf problems in more
advanced mathematics as we progress in our studies.

5.0 SUMMARY

Here in this unit you have learnt about functiohseveral independent
variables and various methods of performing deirregton them.

You have also learnt about different type fouinctions that can be

encountered in the process of performing task of finding the
derivatives of functions of several variables.

6.0 TUTOR-MARKED ASSIGNMENT

_ f
1. Find 3f(WT: (x.y.2) when

a) f(x,y,z) = exyz

b) f(X,y,2) = s&0— I
) fxy.2) 2 x# and verify in each case that fxyz = fxyixyz.

2. Ifx=u2-v2,y=u2+v2
show that

ixf_ g T jRavay
Tuyfv- §wyqu=38uv=TPIVIVIX
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3. Find the stationary points of the function

V=X2+Yy2+2z2
subject to the condition

X2-z2 =1.

4. In determining the specific gravity byethformula S = ﬁw—

where A is the weight in air, and W is weight water. A can be
read within 0.0lgm and W can be read witlirD2gm. Find

approximately the maximum error in S, if the regdiare

A=1.1gm and

W = 0.6gm. Find the maximum relative error S D.
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1.0 INTRODUCTION

In this unit, we shall study convergence of seaied sequences which is
very useful in the subsequent development of thisse.

2.0 OBJECTIVES

At the end of this unit, should be able to:

 test for convergence of series
* test for conditional convergence of series
» provide answers to the exercises at the enki®imit.

3.0 MAIN CONTENT
3.1 Definition

If al, a2, a3 ...is a given sequence of numbers, the sumthe first n
numbers is called the nth partial sum and is remtesl by

Sn=al+a2+a3+..+an= n Qar. (1)
ri
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If the partial sums S1, S2, S3, ... converge to igefimmit S, where
S= lim Sn,
®¥ (2)

Then S is defined as the sum of the infinite series

¥,
al+a2+...+= a ar,

(S)

and the series is said to be convergent.elWhhe sequence of partial
sums tends to an infinite limit, or oscillatether finitely or infinitely,
the series is said to be divergent.

Example 1: The series
¥ 1 + 3 +..., (4)

i __
o r(r)= 31. 2.

has partial sums S1= 2 & $2=3-2,83,=4-3,54= 5 4,55= SR which with

increasing n tend to unity. Hence the series iveqent with a sum S =
1. This result can also be obtained by using thiénaakeof differences to

sum the finite series

o

Sn=al
r4

r(rd) (5)

and then lettingn ® ¥ in the result. For writithg rth term as

rt, (6)

.,

which, on adding, give

Sn=mM ar= 41— —_—
4 o r(r)=1- 1nt. (8)
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Hence S =|im Sn =1, as before.
® ¥

Example 2:  The geometric series

5 oakrzal+k+k2+...) ©)
r4

(where a is a constant) has an nth partial sumivi&m dpy
1k

Sh=an—m—r—-—
1k

(10)
Hence if |K| < 1,
S=lim Sn=—a
oy 1% (11)

and series is convergent.

The series is divergent, however, when |k| 3 tesithe partial sum Sn

either increases without limit as n ® ¥, or ostédk either finitely (k =
-1) of infinitely (k < -1).

3.2 Theorems on Series

Theorem 1:  The serie§ ar cannot converge unless lim an=0. This

may be proved by consialering the (n -1)th and waitiagd %tﬁms given by

Sn-1=al+a2+ .tan-1, (12)
and
Sn=al+a2+...+an, (13)

Subtracting (12) from (13) we have

Sn-Sn-1=an. (24)

Now if the series converges to a sum S then

S= Sn= lim Sn-1, (15)
® ¥
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and hence, from (14) and (15),
lim an=0. (16)
n® ¥

This condition is necessary but not suffitiefor convergence in that
there are many series satisfying (16) whicavertheless do not
converge. The harmonic series

1+ 2+ & +--:§r£ (17)

¥l

is a good example of this since, although
1 =0,

lim an=Ilim —

z%g) ®¥n

the sum of the series isinfinite (see nextctise). However, the series

55 oS pr_,for example, cannot converge since im  cos—n pt O.
r 4 ® ¥
. ¥ ¥, . .

Theorem 2: If 34 ar=S,then & kar = kS, where k is a consTanis

1, . : 1
follows from the Gbvious |denﬁty
& kar=k nd ar (19)
r r4

and proceeding to the limitn ® ¥ .

Theorem 3: If4 ar=Sand *& br=T, then
£l ¥l

a (ar+br)=S+T.
r4

Again this theorem is proved by considering thenidy

n o
& (ar+br)= n &ar+ @br (20)
r4 ri =1

and lettingn ® ¥ .
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Theorem 4: Iffar=S then ' &ar=S + a0, where a0 is nay aumb
1 1

Writing nS = &arand Sn n&ar,
_ o4 rt
we have S = Sn + a0. (21)

Hence, letting n ® ¥ in (21), the theorem is pravEads theorem shows
that nay new term may be introduced at the beggnafra series without

affecting the convergence of the series. A simgteresion of this result
shows that the removal or insertion of aitéi number of terms
anywhere in the series does not affect its converge

SELF ASSESSMENT EXERCISES 1

Examine the following series for convergence.

1. 31—
.1 21 (r1)
y I
2. ir 19
rl
¥+
3.2 artd
ri+
4. r &l
ri

1/ (F+

3.3 Series of Positive Terms

When a serie§ ar consists only of positive terms (ar 3 O fall r) it

£l
must either converge, or diverge to + ¥; ciearly cannot oscillate.
Numerous tests of convergence are known deries of this type, and

four such tests are given below:
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a) Comparison Test

a aris a series of positive terms, and if aibr a series of positive
£l 1l

terms that is known to converge, theB ar is convergent if ar £ br for all
rl

sufficiently large r. Similarly, If % br is known to diverge then ¥ aaris

£l ¥l
divergent if ar 3 br for all sufficiently large .

Since, by Theorem 4, the removal or insartiof a finite number of
terms does not affect the convergence of aseriecan be assumed in

the proof that follows that the condition ar £ &ng ar 2 br) holds for all

r.

The proof of this test may easily be seleyw a graphical argument.
Suppose each term of a series represents thefangadangle of base

equal to unity and height equal to the nitage of the term (see Fig.
5.1). Then the sum of the series is representdddogum of the

-

—

b1 [bz| b D__

Fig. 3.1

areas of the rectangles. If n@r converges to asum then the total

F1
area of the rectangles must be finite, and iffar br for all r, the area of

the rectangles representing the series ar musbaléinite. Hence far

i£¥%
converges if3 br converges.
rl

A similar argument applies to the secondt paf the test. An analytic
proof of the test may be obtained by considerimgpartial sums

Sn zég ar, Tr= n 4 br. (22)
£ r=

Thenar £ brimplies Sn£ Tn, and hence
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im Sn £1lim Tn=T, (23)
n® ¥ T ®Y¥
where T is the sum of the convergent ser&sr_ Now since ar 3
rl o
0, Sn
never decreases and therefore
im Sn=SET. (24)
n® ¥ -

Hence, by (23),the first part of the testprigved. A similar argument
exists for the second part of the test.

Example 3:  The harmonic series

1 [

+32+i{;+_4+...=¥a 1 (25)
Fl

may be shown to be divergent by writing it as

1+32+(§+_4)+(_5i6:1_+8+"' (26)

The terms in brackets are now greater than 2 1; by grouping terms

together in this way throughout the series sottatalue of each group
exceeds 2L We see, by comparison with the divergent series

R R R (27)

that (26) is divergent. It should be notedowever, that bracketing of
terms in series (as in (26)) is in general not fssvithout altering the
character of the series (see 5.8).

Example 4: The p-series

1+p 1+pl+...=

v 1 (28)
1+ 0 —
3 4 ap r

El

converges if p > 1, and diverges if p £. We can prove these

statements by taking the three casesp < 1 separately:
>
a) if p =1, (28) becomes the harmonicieser(25) and i
consequently divergent;
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b) if p <1, each term of (28) (apart from thestijris greater than the
corresponding term of the harmonic series. Thesesitherefore
divergent; by comparison

c) ifp>1, wewritethe series as
: .0
1+§ e
R-Bpppp 567 Bt (29)

and continue grouping the terms throughout theesenito brackets such
that every brackets is less than the corresportdimg of the series

1+ 2 + p4 + ... (30)
> 7
Now (30) is a geometric series with a commmtio k =21-p which is

known to be convergent for |k| < 1. Consequentdy (dnverges for p >
1.

b) Ratio Comparison Test

¥ ¥, , "
If aarand a br are two series of positive terms and
£l rl

-
-

.. ¥
for all sufficiently large r, g‘&nconverge when & br converges.

1 rl
a s b +
Similarly, ifr1 —3r1 ___*
a — b
r r
¥ . ¥ .
then 3 ar diverges when = & br diverges.
£l rl
a b
To prove these results we assume first that r 1 —+=r1 bLfor all r (see the
a
. e r r
remarks in (5.3 (a)). Then writing
a a a aaler b b b.al (32)
ar= — 1+ 2 .. _
a- a a a —b- b B
ri 2 r-3 ) rir2 )
we have
ba (32)

ar £
_ BI
1
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Since (32) is true for all r, the companisdest shows that
rl

converges wher converges. The second part of the tesly be

. 1
proved in the same way.

Example 5: The seffego 1 is convergent since, using the

ar3
rl rl
convergent serief pr °© 1, we have
F1 F1
af =(N3 b+ =()2
a  Td< 1D T (33)
r r

for all r.

c) d’Alembert’s Ratio Test

. . a _
The series of positive tef@Bconverges i fim -t -~ K <1, and
z1 ey &
. . a — a _ . .
diverges ifiim # = k> LIf lim i = 1, the series may heit
¥ & ey &

converge or diverge.

To prove the first part of this test we assume that

lim 2 =k<1 (34)

ey &

and choose a number h suchthatk < h <I. nThHer some sufficiently
large value of r, say s, we have

a
ag<nos? ey (35)

a &4 A,

S
and so on.

Therefore
as+1 < ash,

as+2 <as_1lh <ash?

as+3 <as_2h <ash:?f (36)

MODPE 1
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which give, on adding,
astl+ast2+as+3+...<as(h+h2+h3+..). (37)

The series on the right-hand side of (37) is a eogent geometric series
since, by assumption, h < 1. Hence, the serieb@teft-hand side (37)

also converges. F|na”y therefore, if k < Ié aris convergent.
1

The case of k> 1 maybe proved in the same wag.rato test clearly
gives no information whenk=1 as can bendsgy consideringthe p-
series for which

LA =
e (r+1) 5 BB 9

for all ;r)

Example 6: The series

T (39)
7 7 7 ar 7

converges since

n i wibiT Seehs

d) Cauchy’s Integral Test

(40)

If %aar is a series of positive decreasing serand if there exists, for
F1
x 3 1, a positive, monotonic decreasing integrélnetion f(x) such that

fry=arforr=1, 2,3 ... n, then

0< Dy r1plol*x S1(x)) (41)

r4

It may be further proved that

lim §?( %) d¥ + (42)

n® ¥
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is finite. A direct consequence of (42) is tha Heries % ar converges

r1

when o% gdmisbges (in the sense of Chapter 4), 4and
1

diverges wheng ¥ diexge.
1

A simple proof of (41) maybe easily obtained udimg type of graphical
argument given in proving the comparison te€bnsider first the area

ABCD shown in Fig. 5.2. Then, since AB = al and-AD we have that
area ABCD = al

B
Q
»

al

P

F

R

a2

an

A D

Fig

.

.5.2

The area under curve f(x) between AandDis 2 ¢ f(x)dx

Consequently

1

al- 2 = areBCP < area BCPQ. (43)
1

Similarly, considering the next rectangle of lig2

a2- 3 = &4rEPFR < area PFRS = area QPST. (44)

1

After n such expressions we have, on adding,

0 <(@al+a2 +a3+..+an)-

(45) which proves the basic inclequality (41) of imegral test.

Example 7: The s&n

ni

follows from the integral test since

| = lim o) lé&
w¥ 2 X (logx)p
Converges only if p > 1.

0

< drew)dBCD = (1),

1 converges only if p > 1. This
es—
., (logr)
lim g'°9® _du (46)
wy log2 up
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Example 8: Using the divergent harmonic series ithe integral test we
have (from (41))

0 ﬁzw()igrl] loge¢n + 1) < 1. (47)

Furthermore by (42)

n|i® i—té%ﬁ-ml)= 9, } (48)

where 0 < g < 1. The constant g idleda Euler's constant and is
approximately equal to 0.5772.

SELF ASSESSMENT EXERCISE 2

Examine the following series for convergence

1. -
Fl2r(|=+1)

r!

2. 2
T 15

¥l

3. ] r2xr(x > 0)
1

3.4 Alternating Series

If ¥aar isa series of term which are altetpatpositive and negative,

1 . . .
ané If the terms continually decrease in magni@n® |im an =0, then

. ® ¥
the series converges.

Suppose

i’f\ar=a1-a2+a3—a4+a5..., (49)
r4

where al a2 a3 .are positive decreasing terms. Plotting the vatiddke

first few partial sums S1, S2, S3 ... along the li@x (see Fig. 5.3)itis
clear that these partial sums approach manel more closely to a

definite value S. Hence, the series converges.

0 S2 S4 S5 S3 S1 X
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Example 9: The series

1 r4
f 50
1
satisfies all the conditions stated above aherefore converges. The
sum of this series is loge 2.
3.5 Absolute Convergence and Conditional Convergen

1- d4-1...=
234

Suppose

éar=a1+a2+a3+... (51)
r4

is a sries of positive and negative terms. Then

& lar| = |al| + [a2| + |a3| = ... 52) (
r4

isa series of positive terms which are jube dbsolute values of ar. If
(52) is convergent, (51) is said to be absolutelyvergent, and it can be

proved that any absolutely convergent sernigsalso convergent. If,

. ¥ ¥ o .
hOWGVGf,§|ar| diverges, but aarconverges, then r &&aid to be

. 1 ¥l .
cond|t|onaTIy convergent. For example, the series

v, (1) ™ (53)
- M= a

34 rl r

discussed in Example 9 is conditionally cogeat since the series
formed from the absolute values of its terms

1 54
1+ anar = ¢ 3" (4)
234 £1 r
is the divergent harmonic series.
On the other hand, the series
111 _ y (1™ (55)
2_2_2+ —_— a 2
234 r1 r

is absolutely convergent since
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% (D) ™ (56)

1+ 2}_L++_ =
rl P

is convergent (p-series with p = 2).

SELF ASSESSMENT EXERCISE 3

1. Examine the following for convergence:

gCG&R,J for =0p/2and23)y.

¥l

2. Show that if the conditionally convergence eri

1- 1;17;»+-4= ~s rearranged as the series

gﬁtﬁé«ﬁ‘ é@i?w‘ /

MATHEMATICAL

where two positive terms always alternatethwone negative

term the series diverges.

3.6 Absolute Convergence Tests

Since 3 |ar| is series of positive terms its convergenag be discussed

1 ) . .
using gny of the tests given in 5.3. For exampglklagnbert’s ratio test
for absolute convergence now takes the form: thesef positive and

negative terms ar is absolutely convergent (and hence convergent

R1

Ap1l=k <1, (57)

A

and is divergent if

lim
® ¥

Apq

A

im =k>1. (58)
r® ¥

As before, thetest does not decide betwadsolute convergence and

divergence when k = 1.

Example 10: |If

Bar=1+2x+3x2+.., (59)
r4



MTH 281 MODPE 1

then

a _
im o2 im R i@ %(‘)"' (60)
re ¥ r ®¥ RxF1 r

Hence, when |x| < 1, (59) is absolutely convergamd, when |x| > 1, it is
divergent. The question of what happens when Ixjray be answered
by taking the two possible cases x = +1 and x seydarately. When x =
+1, (59) becomes

1+2+3+4+ ..., (61)

which is divergent; similarly when x = -1 the serl@comes
1+2+3-4.., (62)

which is divergent sincelim art 0.

® ¥
Hence (59) is absolutely convergent for [x| 3 1.

Example 11: The series

sin X2 sin2X2 SIN3&...= y sin rx (63)
1, 2 3 if

is absolutely convergent for all x, since, using tomparison test,

1
£2{64)

sin rx
r2

1 is known to converge.

forallr,and¥ . —
az2 r

¥l

3.7 The Product of Two Series

¥ ¥ : ¥
f sarand @ brare two absolutely convergent series, the — r, atere
£1 F1 £1

cr=albr +a2br-1+ ... +arbl 5)(6

is called the Cauchy producti gfand *abr, and is itself absolutely
rl rl

convergent. Furthermore, ¥ ar converges to a sum S, andl br
£l 1l

converges to a sum T, theficr converges to a sum ST. A similar result
£l
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has already been given earlier for the s(@amd difference) of two
convergent series.

Example 12: The product of e2x and e-x may be witgn, using (65), as

(2x)(2x)x  ;0®0 .
e2xe-x = §+g-|x++'+2'!é! ol %é — i (66)
ey X2 K3lri=ex (67)
2 3

3.8 Rearrangement of Series

Any series formed frong 5 by taking its terms in a different order is
1

called a rearrangement of ar. For example,
¥l

1+1+21+21+21-1|2... (68)
3 2 5 7 %

is a rearrangement of the absolutely convergemsser

1+ 21 + 21 + 21 - 21 +1>- ... (69)
3 4 5 6 7

such that two positive terms alternate with oneatigg term throughout
the series. Similarly, two possible rearrangets of the conditionally
convergent series

+ +
1513414 70
e 14 % -12+15+17-14.. (71)
and 14+ & t1512-14+17 . (72)

In (71) two positive terms alternate with eomegative term; both of
these are different from the original seri€8) in which one positive
term alternates with one negative term. Since jnraarrangement of an

infinite series the pattern of N positive term&alating with M negative

terms can be chosen at will and can be continusdiginout the series,
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it would be surprising if the sum of a rearrangedes were equal to the

sum of the original series. It can be pdhvenowever, that provided
either we restrict ourselves to series of positarens or to series that are
convergent, the term may be rearranged in any wtnout affecting the

sums of the series. This result is not true folesahat are conditionally

convergent, and any rearrangement of terms imi@ssef this type will

usually lead to a series with a different sum. &ample, (68) will have

the same sum as (69), since (69) is comverg(p-series, p = 2). The
series (70), however, is only conditionallyoneergent since the series
formed from the absolute values ofits terahe divergent harmonic
series. Hence, we must expect that the sums diviheearranged series

(71) and (72) will be different from eachther and different from the
sum of (70). By way of justifying this wa&ow show how to find the
sums of (70) and (71) so verifying that they aféedent.

Consider (70) first: then by 5.1 (2) we have then sidefined by

S=lim Sn=lim S2n =y ¥+%+§+;—n —  (73)

® ¥ ® ¥
=@ ¥y~ - - - @
r|]® %3 +2 +n_+_ (7R)
Now from 5.3, Example 8, we have

Ii®) i—hé%ﬁ—wﬂ)= -, }

where is Euler’'s constant. Hence

()e

1+.+.11<%an-5 ni) — e, (75)
where B® asn®¥.
S = lim [{en2 +loge(2n + 1)} —{n e +loge(n + 1)}] = loge 2, (76)

® ¥

since B and ne bothtendto asn ®¥.
Similarly the series (71) may be written as

SEUESOR S RN SO L ——

n34nl2n
S A S S )1 1£.+.12+1

354n1 3

31'-'—‘
I
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s, — $Hers()an o

2344 232n

Using (75), (77) becomes

{ Q4 +loge(4n + 1)} - 2 H ”e;- loge(2n + 1)} - 2 +{re + loge(n + 1)},

whichtendsto 2 2 loge2 as n® ¥, since n e, ne and n€ all tend to as

n ®¥. Hence, the sum of (71) differs fraie sum of (70) by a
factor 23 -

3.9 Power Series

An important type of series is the power seriesneef by

g arxr = a0 + alx + a2x2 ..., (78)
ro

where a0, al, a2, ... are constants. The evadfi x for which (78)
converges may be found using d’Alembert’'sioratest given in 5.6.

Hence for the series to be absolutely cayerer we must have (from

(57))
r4
%—‘ | | lim
ax'’ ®¥
This condition may be more conveniently expressed a

|2(£0) < R,

where R, the radius of convergence, is defined by

1l=k<1. (79)

lim
® ¥

a,

art

R = lim
®Y

(81)

provided the limit exists.

Writing (80) in full as

-R<x<R, (82)

We see that the series converges absolutely prdvigdies in the open

interval (see Chapter 1, 1.2) —R to R. This indéis called the interval
(or range) of convergence. When k = 1, fttetio test gives no
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information and consequently the series mayweme ordivergﬂat X

= R (that is, at x = %£R). However, as vehall see in the following
examples, we may test the convergence of skdes for these two

particular values of x by direct substitution it series.

Finally, by the ratio test, a power series obvigulierges for any value
of x, which lies outside the interval of convergenc

Example 13: The exponential series (see 6.2 (#0)

1ax+ 2% 41 L (83)
2! 3! r

is a absolutely convergent for all x, since by (79)

ayq

r!

q lim
(rd) E

®¥

= |lim

®¥

0 (84)
irrespective of the value of x. Similarly,y b(81), the radius of

convergence is infinite and, by (82), theteimal of convergence is
therefore

-¥ << XK, (85)
Hence the series (83) represents the function realffa.

Example 14: The series

+

‘. ééég'#(_l)r 2r1l m (86)

IS convergent for| |x < 1, since by (81)

R = |im
®¥

a'I’ .
im
art ®Y¥

2rd 1.

The interval of convergence is therefore
-l<x< 1. (88)

At the end points x = + 1, the series may convergéiverge. Putting x
=1in (86), the series becomes
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+ —t =, 39
- 5L ¢

which converges by 5.4 since the terms alternasggimand continually
decrease in magnitude. At x = -1, the series behbike the series

1+ ]3_1;-]74=+ - (90)

which diverges by the integral test.
Hence (86) converges if, and only if,

-1<x £ 1. (92)

3.10 Operation with Power Series

a) The sum difference or product of two poweresewith common
intervals of convergence leads to athird sevigdch converges
for the common interval of convergence ofe thirst two series.
(This result follows from the general propertiesefies given in
5.2 and 5.7)

b) The series obtained by term-by-term défdiation (or

integration) of a given convergent power serses power series
with the same interval of convergence.

Consider the power series

S=%arxr= a0 +alx +a2x2 + ... (92)

.70 .
which converges if

a
M <im |—| =R. (93)
¥ [
Then
ds ~&rana-1=al + 2a2x + 3a3x2 + .. (94)
dx .o

converges if

ra,

- - =R 95
(rhHhazq (59)

lim
® ¥

q <lim

® ¥

_rL lim
rt ® ¥
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Similarly,

Sq y ax*l ax
0 X = a ‘LT——
0 "d-aox+ 23 23

Q

X
+ —— (96)

F

converges if

=R. (97)

Hence, the differentiated and integrated serieg lia& same intervals of
convergence as the series from which they are eleridowever, it does

not follow that if the series converges at oneb@th) of the end points

(x =xR) of the interval of convergence tththe differentiated or
integrated series necessarily also convergesthase points. As before,
the convergence of these series at the @mos must be considered
separately. Furthermore, we may prove that diffe@éng or integrating

a power series term-by-term within its inedrvof convergence is the
same as differentiating or integrating the funciiorepresents.

c) If two power series converge for a commaterval of
convergence then one series may be substitinéalthe other to
give a third series which converges in that commaerval. For

example, the series for ee-x may be obtained byngry = e-x and
using the series

y3
ey=1l+y+ 3Jr,. L . (98)
Hence
e-x=
&0 . . o . . &0 . .
O L¥eg-=2 = ig::;xg.:.fi :
g+2 21 T 218d+3 = 31dlp +..(99)

4.0 CONCLUSION

In thisunit, we have considered series amhvergence of series. We
have examined the condition under which a givesries will converge
conditionally. We also studied differentiatioand integration of series
and pointed out that this will always possibfor infinite series of
arbitrary functions, example of the case in npowas considered in the
unit.
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5.0 SUMMARY

This wunit is on the convergence of infinikeries. It has a lot of
application in higher mathematics. The uniill woe of immense
importance in the subsequent course in mathemainzdysis.

6.0 TUTOR-MARKED ASSIGNMENT

1. Prove that the binomial series
- X2+ m( m 1)( m X3...+converges if - <x <1

1+mx+ m ( m-L)
2! 3!

2. Find the values of x for which the series
1-2(x—=1)+3(x—-1)2+ ... +r(-1)r-1(x — 1)+1.. converges

3. Show by integrating the series

S= ég rxr-1

termft%y-term and summing and then differentiatestna that
S = (1-x)-2 for what value **** is this valued.
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UNIT 4 TAYLOR AND MACLAURIN SERIES
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4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment
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1.0 INTRODUCTION

In this unit, we shall consider two speciplpes of series expansion,
namely Taylor and Maclaurin series.

Clearly, both Taylor series and Maclaurin ieer only represent the
function f(x) in their interval of convergence.

When functions are expanded at x = a (say) we hay#r's expansion
and when functions are expanded or x = hentwe have Maclaurin
expansion.

We have devoted a whole unitto these importdmeorems because of
their usefulness in the study of analyticndions, and calculus in
general.

Ready carefully and pay attention to every details.
2.0 OBJECTIVES
After studying this unit, you should be able to:

 carry out expansion using Taylor’'s and Maclaumiethods
» evaluate limit of the function given
» apply the theorem to solution of some mathermbpooblems.
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3.0 MAIN CONTENT

3.1 Taylor's Theorem

We now state an important theorem, which bksga functions to be
expanded in power series in x in a givenerval. (Examples of the
series representation of a few functions have d{réaen given in Unit

3.

Theorem 1. (Taylor's Theorem). If f(x) is a conthuous, single-valued
function of x with continuous derivatives Xj( f’'(x) ... up to and

including f(n)(x) in a given intervala £ x £ dnd if f(n+1)-(x) exists in a <
X < b, then

f)=f(a)+

) 2 _on(n)
(XE;!VI%%M f (a) E () )
where
E(x)]&()M (M)
n (nd)! (2)

and a < < X.

The term En is a remainder term and repteseéhe error involved in
approximating to f(x) by the polynomial

x-a)(xa) n(n)

f(ap gy, 1(d) 3)

An alternative form of (1) may be obtained by chiagg to a + x.
Then

; (an) o)+t a) s —

Where now, from (2),
ol 29 5 ( n+%) (5)

and0< <1
A special case of (1) and (2) (or (4) and (5)) lewa = 0. Then

. (n
Lr(zxrff@)%fO)f(’(gh--!)f(O)EH
and 0 < < 1.
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Theorem 2: If hmE (x) = 0, then f(x) may be represented by the

®
power series (sene (%L))

f(xrrfa%f:@%(-g_xa%).ﬁ?&&_z Y- T

r!

EDr its equivalent .form (see (4))

f(an3d be) F@aS¥a) —He (9 = —

120yt o

These two series are Taylor’s series for f(x).

The special case a = 0 gives, with n limE(x) =0,
n® ¥

¥

f(x)=ff@)=>é‘,(0)f)—(2a;):)rl)...f(0 (16)-

Frl o
\)/vhich is known a Maclaurin’s series.
Clearly, both the Taylor series andthe Magtauseries only represent
the function f(x) in their intervals of converg®. The Taylor series is
often referred to as a series expansion of f(xuabwe point x = a, and
the Maclaurin series as an expansion abd@ point x = 0 (later we
shall meet functions which have no Maclaugeries but which
nevertheless can be expanded about some othengoiata  0).
The form of Taylor’'s series maybe verified in tlildwing way:

Let

F(x AR (X A (x a) A (x a) (11) 23

where AO, Al, A2 ... are constants. Then differemterm-by-term we
have

f'(x):A+2iét§->¢a)3A(xa) . (12) 2
f"(x)=2-|A—32:§£A(xa)4.3A((a3))... 2
f"'(x)rsiAAgﬁ(xa) (14)

and in general,

f(0)nIA(ALYIA(XR) ... | (15)
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Putting x = a in (11)-(15) now gives
f(a)Aasfi(a)A,

f'(aj2tA f"(a)3lA,  (16)
f(ra ) n EA

Hence using these values for the constant AO, Aih, (11) we obtain the
Taylor’s series (8).

3.2 Standard Expansion

Before listing the Maclaurin series for some of siraple functions, we
illustrate the use ofthe Taylor's and Maclawseries by the following
examples.

Example 1. Suppose we want to expand the functid(x) = e3x about x
= 0 using Maclaurin’s series.

Then since 3f FXDBe3kakd) e 0 .)f:ﬁX )3e =,
f "(0) 9=.f @B)Pve from (6)

SI3x% + + + 9342( P(3x)3 ( SX)...
213 n!

E(x) (17)

where, by (7)

E(x) e 4L sx1. (18)
n (n1)!
For any given finite value of x, say x = c, it isar that

lim E (nc) 0 =. (29)
n® ¥

Hence by (10), e3x may be represented by the iafgeries

(3 P€8) (3%)

¥
213! - PO

r

18%x++

Using the d’Alembert ratio testwe find thaRO] converges absolutely

for all x. the possible error involved in approxiing to e3x (for a given
value of x) by a finite number of terms of (20) niay/found using (18)
as follows.
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Suppose x = 0.02 and n = 3. Then, since (0 < 1, En must satisfy the
inequality relation

(0.06Y(0.08) 006 (21)
ZAp B

which gives (approximately)

5 x 10-7<En<6 x 10-7 22)

In other words, by taking only four terms (n = 3)20), the value of the
resulting finite series for x = 0.02 differs from theact value of €3(0.02)
by a small number of the order of 5 x 10-7.

On the other hand, with the same number of termsviih x = 3 1, (18)
gives

leg _ 23)

4141 n

or 0.042 < En < 0.133. (24)

Taking four terms of the Maclaurin serieserdfore is not a good

1 and more terms should be taken if the
approximationto e3x forx= 3 -

error is to be reduced.

Example 2: As an example of Taylor's expamn we expand the

: _ p . Differentiating we have f'(x)
function f(x) = cos x about the point x =3 —

= -si( >) f’(x) = -cos X, and in general
(XPDIxap. — (25)

Hence

G- -
g3 -
f"(%gﬂz-:,— - 126

ey L
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and so on. Using these results in (1) we find

COS 393 AYEy o

232212312

(x ()

= +pto COS E(x) (27)
wher, ) and (25),
01

- . 28
E(x)soxe—&-—pﬂ)T (28)

H ence),;oéj nfgl,‘ (2£ may be written as

N
[E (x) [ (29)

Again (as in Example 1) for any given value of gay x = ¢, En(c) may
be made as small as we please by choosing sutficiange values of n.

Hence, since nimE = 0, cos x may be represented by thenitefi

. N®¥
Taylor’s series (8) as:

COS %13 Q (¥ _

232322'3

() @0 e

cos — —
rt32
which, by the ratio test converges for all x.

This series is useful in evaluating the cosines awfgles without the use

of tables. For example, cos 610 may be evaluateuitiing 180 61p radians

in (30) which then gives

const 2 248808 LG L e

The error involved by taking a finite number ofrsr of this series may
easi(y)be estimated from (29). For example, witb tarms (n =1)

cos 67 @%—18@&48%9 (32)
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correct to four decimal places, with a possibleregiven by

() ()2

‘E1186&1£18@ 0-0001 (33)

to the same number of decimal places. Tladuev of cos 610 obtained
from tables is found to be 0.4848 (againrrexted to four decimal
places).

We now give the first few terms of the Néacin series for some
elementary functions

: a a(-)aat 1 -
i) (13 BAx + 2 x3+ for X|<1,
213!
where a is any real number, (34)

i) 357 SINXX=# —3+— )1"0|7'—'all X— (35)

W 357 tan X+ ﬁlsfé% — . -2 - @

V) log (1 % )m- + - + —ﬁzfﬁL—cx g1, .. (38)

vi) ()i%é x+++ for-1<x<1, (39)

35

vii) 23e]?§x++++—fo:r)’au—x (40)
viii) x x 34nh XX %?r all o — (41)
iX) Xx2 QQSh x—]__&qi‘. f'06 i - (42)--

The series for functions, which are simplembination of these
elementary functions, maybe obtained using treperties of power
series treated in Unit 3. For example, substigutire series for sin x in

the exponential series we have as in Unit 3, egnéit0.

SPXXB¥8X 2% (a3
21415l
for all x.

Similarly (using 5.10 (a)).
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cosh x sin xx =, 22> __ (44)

330
for all x.

-, e
Finally, it should be noted that functions like x €*~ oglx and cos x have

no Maclaurin expansions since they are nefindd at x = 0.
Nevertheless, we may expand such functionsutabsome other point

using Taylor's series. For example, expanding e log x about x = 1 we find

Iogexz(saz-l) {x1) k1) (x4A34 (45 -—
forO<x£ 2.

In deriving the Maclaurin series for certafnctions it is sometimes
convenient to use Leibnitz’s formula given @hapter 3, 3.6,to obtain
the higher differential coefficients. We ilttete this method by an
example.

Example 3: If y = sin (m sin-1x), wherem is a constant, then
differentiating twice we find that y satisfies tti#ferential equation

d3 d
(1-% )?-ch])?z o = (46)

Using Leibnitz’s formula, we have (for n > 0)

axFEE I nyo @ 22
BT X

which gives, with x = 0,

a9y ey
0% - (48)

Hence (48) is a relation between the valuwds all the differential
coefficients of y evaluated atx =0; thisexactly what isrequired in
developing the Maclaurin series for y. Since y(®,y(0) = m it can be
easily verified using (48) that

m@EmPAEd m)(9m)x

y#m* 375

+ ... (49)
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3.3 Evaluation of Limits

Suppose we have two functions f(x) and g(x) ohhlare zero whe f_(
% rﬂe Inel

a. Then although the ratio )—

spuantity( )

nevertheless the limit of gfé(—x—) xa ® may exist. An example of this

type of ratio has already been met in Chapter2where it was shown

y a geometrical _argument th (50)

() “
We now show how to proceed analytically witimits of this type.
Consider theratio of f(x) and g(x) and lébth functions be expanded

about the point x = a using Taylor’s theorem. Then

. L (xa) 2
£ (%0 f(apxa) () f (35—
: (51)

g( %) ]

g (ayewa)g'(a)g ™
Now by assumption f(a) = g(a) = 0. Hence

. (xa)

f(%0 f(a)rfk@azj}ﬁ )

9( X g'(a)-ggéag;(' -a!

and consequently

() f.(a (53)

provided g’(a) is non-zero. Equation (53) states the limit of the ratio

of two functions a® x where both functions are zero at x =isa
given by the ratio of the derivatives of the funos each evaluated at x

= a. If, however, f(a) = g'(@ = 0 thenthe same procedure must be

applied to the ratloﬁ_ﬁ)onsequently iff@)= g@ = 0 and f(a=

g’'(a) = 0, we have

f(x) f'(a (54)

provided g”(a) is non-zero. Provided the itimexists it is usually
possible to find a value of n such that
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) g( x  gida)

This method of evaluating limits is sometim@sore conveniently
expressed by writing (53) as

im X iy DX (56)
&) gl x @) g'( x

which is usually known as I'Hospital’s rule.
We illustrate these results by the following exaespl

Example 4: Using (56)

\_ bg X
lim E;L ?n@{—} l ®7)
X& ' 2

Example 5: To evaluate

lim (cos x)1/x 58)
x®

we put y = (cos x )1/x and consider the behavadur
loge y = I9ge cos X (59)

Then by (56)

_ g Ccos X (60)
I I =1 =1
@ M ®ET

Hence, since as x® 0, loge y ® 0, we have
= (cosx)1/x® 1. (61)

Example 6: This example illustrates the regated use of [I'Hospital's
rule. For (by (56))

. tanXx x Bex 1- +
li I|m E :
« 6® ;‘s;)r_x Dcosx ~ (62)
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Secx1- 0 when x = 0. Hence, we apply

1cosx of the form O
I'Hospital’s rule again which gives

But

lim poeex L5 Z@Becxtanx i (rsec3x) = 2, (63)

@ Sdeogx T €g=inx T g

The second application of L'Hospital’s rule coulavie been avoided by
rewriting the right-hand side of (62) as

B+ Ee 1ok sec

lim &= - : =Ilim {(1 + cos x)sec2x} =
x@ €PCO8X T gy E5  ECOSX ®0
lim sec2 x +lim SeCXx= 2, (64)

?%»sing Theof%om 1, Unit 1).

Example 7: If f(x) and g(x) both tend to infinity as® x\&e may still
apply I'Hospital’s rule by writing

im 9 iy JRI9CO (65)
x@) (X ®aT /f(X)

it tx= a.
where the ration Irlz—%;((exe) is of the fornoq % X a

Similarly if f ( ecomes either 09 or ¥

g(x ¥ as x®¥ we may write
(putting x = 1/y

2P
im F€X jim 22 SHimii Him (66)

«®¥)g( x wo ? @Ol 17 &0 90

Hence, I'Hospital’s rule applies when a ® ¥ .
For example,

ovo nlp wff S

3 i }EL =0 (67)
®¥21‘ X&

MODPE 1
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Similarly, if n > 0, it follows that
lim &&*)=0, (68)
X® ¥

and (by putting x = 1/y) that

lim 802 =0 (69)
Yo gy

Example 8: The use of I'Hospital’s rule may ofterbe avoided by using
series expansions. For example,

2 Q 2+ X &5 -
XT —_— —_— .
® ‘lli lim E: 35 Sim @ X ¢
®OEE X . w0 823315 t70)
@

as found earlier.

4.0 CONCLUSION

In this unit, you have studied Taylor and Maclais@nies expressions;

you have studied the important theorem tlemables us to carry out
series expansion. We have also used theesseexpansion in the
determination of limit of some functions.

5.0 SUMMARY

In this unit, you studied:

» Taylor and Maclaurin expansion
* Applied the technique to determine the itlinof some difficult
functions.

 That with clever application of Taylor'sxpansion, the use of
I'Hospital’s rules can be avoided in some functions

6.0 TUTOR-MARKED ASSIGNMENT

sin x dyxddy -y=0.
e - prove that (1 - x2) 2 dx -

1. Ify= 1
Hence verify the Maclaurin expansion

1 eslnle_'_ L9 Xi+ §+ 25X4

4
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2. Prove that

sinx =x+ |

and that

2 e-X1+x2+ z)i-'- ﬂ;zeQZ

00|a,<

+ X+ XL(cosx)
5 7

7.0 REFERENCES/FURTHER READING

G. Gstephenson(1977). Mathematical Methods &wmience Students.
London and New York: Longman.

K. A Stroud and Dexter J. Booth (2001). EngmegMathematics 5th
Edition. Palgrave.



MTH 281 MATHEMATICAL
METHODS 1

UNIT 5 NUMERICAL INTEGRATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Trapezium Rule
3.2 Simpson’s Rule
3.3 Application of Simpson’s Rule
3.4 Series Expansion Method
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

To evaluate an integral in terms of known functiengften impossible.
o/ dg

For example the elliptic integral of the form | 2 60
-Si q

easy to evaluate directly without recourse to nucaémtegration.

In this unit, we shall apply the techniqu# trapezoidal rules and
Simpson integration methods to solve numericaliggral problems, we
cannot evaluate quantitatively.

2.0 OBJECTIVES

By the end of this study, you should belealto perform numerical
integration using the following techniques.

» trapezoidal rule
e simpson’s rules.

3.0 MAIN CONTENT

3.1 Trapezium Rule

As mentioned in earlier units the evaluatiah an integral in terms of
known functions is often impossible. Furtherejoin some cases the
integrand may only be defined by a set of tabulatddes. To meet the

difficulties, some numerical procedure is rieeg, which will give a
good approximation to the value of the inékg Clearly one of the
simplest methods of doing this is to intetprthe integral
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0 agf?%ig)@lly as the area between the curvex)the x-axis,

and the lines x = a, x = b, and to estanthis area as accurately as
possible. Consider, for example, the curve y = &§xshown in Fig. 3.1.
Then to obtain an approximation

y

MB; Y=
A C

A C B
acb x
Fig. 3.1

to the required area we may draw in the straigiasliA’C and C'B and
evaluate the sum of the areas of the twapeziums ACCA’ and
‘CBB’C’. If now the point C is chosen to be theimaint of the range
(a, b) such that AC = CB = h, then

area ACC'A’ = gQAZA e f (&) 1{) } a;l(i)

nd

a
area CBB'C’ = ggczc +BB+).ff (b é)gx—)

Hence by adding (1) and (2) we have

C‘)bf(x)dx_g—fza)%ﬂf(b?)é) } (3)

This formula, usually known as the trapeziumle, gives a good
approximation to the value of the integralhem the curve y = f(X)
deviate only slightly from the straight lines A'C;B’. When deviations

occur, however, the accuracy may usually be imvguio by dividing the

area under the curve into a larger (even) numbeapézium of smaller

width and applying (3) to each pair. As axample of the trapezium
rule, we now consider the numerical evaluatiof a simple integral
whose value is known exactly.
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Example 1: If

1= p _fgx)dx o, -2 4)
a 1X2

then dividing the range of integral into two rggaeach of width h(= 1),
we have by (3)

|:+é(1)_pf(_|2)f(:°,)}( le_gg#wm. 5)

Thig is to be compared with the exact valok 2/3. A Dbetter
approximation may be obtained by dividing the areder the curve into

four parts each of width h(= 2 1) and applying (3) to each pair.In this
way we find

|_{+11f.192+(15ga‘)(2)} (f(2}21(2)f(

SAME e -

—070

3.2 Simpson’s Rule

A better approximation to the area indicated in Bid maybe obtained

in the following way. Suppose x = c is thmordinate of the point C
such that a = c- h,b =c +h. Then wgtix = c + vy, expanding by
Taylor’s series, and integrating term-by-term wéaob

o ZTR) B 5 2 pfOX)Ox O T(oYBHY

a

= (Pf((zé)%e FHC) 2 (D) dy  — E ©
- h% Irl F
hf(c hf(c)hf(c)
= 3(*}{% )lTZ r |5|(2r1)|— —+ Ey (10)
d fatx= c.
where, in general, f(r)(c) is the value of r dT

Now, since by Taylor’'s series

Rf(2)(c)+...+ hrf(r)(c)+... (12)
2 r

f(c+h) = f(c)+hf(1)(c)+ !
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f(c-h) = f(c)-hf(1)(c)+ !?2)(c)+.._+ e 10;)*0!0)+... (12)
we also have

fc + h) =f(c - h) =

21f c )4(%?%(.4.)1’(@@}... — E (13)

127!

Hence neglecting terms involving h4 and higher pgwef h in (10) an
(13), and eliminating f(2)(c), we finally obtainr§pson’s formula

h2
O "f(x)dx?h f(c) %}Cf(z ( ”
-2 o yaling (S FECH) 21(C) Z%u (15)
T 5 2 :
=hitgem)at@fceny o
FRida)atf(ahp
SR L

The error involved here by approximating to thiegral in this way is
such that if

Orod)fener Jag

then

4 a
- _h- (19)
E-——1fo®) fe
Tl te® fe )
3 =
where, as before, f(3)(b) and f(3)(a) mean theeslf 3 dd_fat X b and
X

X = a respectively.

As with the trapezium rule it is usually ssible to obtain a more
accurate result by first dividing the area undher tcurve between x =a
and x = b into a larger (even) number of strips @uath applying (17) to

each successive pair. In this way, if fO, f1, ., f fn-1, fn are the values of
f(x)atx=a, a+ h, a+ 2h, ...a+(n + 1)h, a + M), where n is an
even integer, then
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h {fO+ fn+4(f1,+ f3+...+fn-1,)+2(f2,+ f4 +...+ fn-2,)}. 20
033(X)d&_{ ( )+2( )} (20)
a

For example, Simpson’s rule with five ordinates.(four strips) is

5 b 8(x) dx h {fO+ f4 + 4(f1,+ 13) + 2f2} (21)
a

(see Fig. 14.2).

0 a b x
Fig. 3.2

3.3 Application of Simpson’s Rule

Example 2:  We now consider the numerical evaluain of the integral

1= o' P—d (22)
0z J(Lsin)
2
using Simpson’s rule with five ordinates. Timtegral is the complete

elliptic integral of the first kind K(1/,2) whosebulated value is 1.854.
To apply Simpson’s rule we now divide thange of integration (O,

p)2into four parts such that h =% and evaluate the integrand
f(g(;siq)-%t the %:f_ive points =0, 8 p, 4p/ 8 3p/ and
PrL2

The values are given below:

0 8 p/ 4 p/ 8 3p/ 2 P/
f( ) 1.000 1.0387 1.1547 1.3206 1.4142

Hence using (21) we have

P
0/9 d

02 \[(L-sip)

2
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1. B {1+1.4142+4(1.0387+1.3206) +2 (1.1547)} (23)
=B 14.1608,
= 1.854. (24)

Example 3: Given the following nine pairs of (xy) values

x 1 2 3 456 7 8

9
y 2.061 2312 2.819 3.106 3.670 4.721 8.10.950 9 .942

we may easily estimate using (20). Since h =1 axesh

0 1{2.061 + 9.942 + 4(2.312 + 3.106 + 4.721 + 7.950)

o ~ dx
1
2(2.819 + 3.670 + 6.103)} = 36.514

3.4 Series Expansion Method

MODPE 1

When a function f(x) can be expanded as a poweries in X, term-by-

term integration is permissible (see Chapter %10) and the evaluation

of &( 9 eeduced to the summation of a series. TFhitustrated
by the following examples.

Example 4:  To evaluate

| g0 LSInX (26)
o X

we use the Maclaurin expansion

sin x :x-ﬁ_-l- &"' X_7+ 27)
3 5 7
and write
1% - 3 + —ﬁ)é ﬁ_ . —_O (28)
o€ 3157 B
= §- X ___ Y (29)
g 18600 35280 EI
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g‘”ﬁﬁ@mﬁ - (30)

Greater accuracy maybe obtained by summing momestef the series.
Example 5: To evaluate

| 8 1 (31)

we egpand the integrand by the binomial theoregive

()3
122 4fdg?

O

o de (33)

Hence integrating term-by-term we have

A ) 2
l2axfod XX (34)
& H 64 3584

1

1
~06235. - (35)

= p ekl

(¢
ceNC

Example 6: The elliptic integral discussed in Exaiple 2 may be also be
evaluated by the series expansion method. dbo this we expand the
integrand by the binomial theorem to give

=0 24 (36)
02/ (1s;m)
2
T seo 00000 st - - -
_ (%/3{;%%g'g”! = 22222@ S| EL
' & Bige a4, 4 37)
E“b'l’Z - b

Hence, integrating term-by-term, and using Wallisisnula

.28 -~ = 0
0, =PI FBEYET) 42
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where n is an even integer, we have

R ...(}a)
2'8 256 2048

Taking the first four terms only, we find~I1.843, which is in close
agreement with the exact value of 1.845 (to thteegs of decimals).

In this example, the term-by-term integrationwdto really be justified
since the series in (37) is not a poweriesein . However, as this
requires the concept of uniform convergence Unit 3 we shall accept

the validity of it here without proof.

4.0 CONCLUSION

Numerical application to integration has madelculation to be very
easy. More of these methods will be congdern the course on
Numerical analysis.

5.0 SUMMARY

You have studied the application of trapezadd Simpson’s rule to
numerical integration of functions. Of particuianportance is solution

of elliptic equation, which proved to be yedifficult to be integrated
analytically.

The method should be learn and demonstrdigd anybody who is
interested in further research in mathematics.

6.0 TUTOR-MARKED ASSIGNMENT

1. Evaluate the following integrals

P
a) 2 (‘)/q,;sin)d

0

b) 22 /S'fqr%=

. dx
c) 3 021_)( 7}

d) (‘)p:/i!%cos)d
0
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2. Using Simpson’s rule estimate

2 O Yydx
0
from the pair of (X, y) values

X 0 025 050 0.75 1.00 1.25 1.50 1.7®02.
Y 131 241 3.04 297 2.76 1.80 .075 0481
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