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INTRODUCTION

The course, Mathematical Methods 111 is meant to provide essential
methods for solving mathematical problems.

In scientific problems, often times are discovers that a factor depends
upon several other related factors. For instance, the area of solid depends
on its length and breadth. Potential energy of a body depends on gravity,
density and height of the body e.t.c. Moreover, the strength of a material
depends on temperature, density, isotropy and softness e.t.c.

WHAT YOU WILL LEARN IN THIS COURSE

This is a 3-credit course, it is grouped into 4 modules i.e. modulel, 2, 3
and 4. Module 1 has 2 units; module 2 also has 2 units as well as module
3 with only one unit while module 4 has 3 units. In summary, the course
has 4 modules and 8 units in all.

The course guide gives a brief summary of the total contents contained
in the course material. Functions of several variables streamline the
relationship between function and variables, the application of Jacobian,
down to functional dependence and independence. Also discussed here
is the multiple, line, improper integrals and tensor calculus.

COURSE OBJECTIVES

At the end of this unit, you should be able to:

- identify functions of two or more variablesthe ideal of Jacobian
to be extended to three variables

- use of Jacobian to change variables in multiple integral and

- determine whether two or more functions are linearly depended
or independent respectively.

WORKING THROUGH THE COURSE

This course involves that you would be required to spend lot of time to
read. The content of this material is dense and requires that you spend
great time to study it. This accounts for the great effort put into its
development in the attempt to make it readable and comprehensible.
Nevertheless, the effort required of you is still tremendous.

| would advice that you avail yourself the opportunity of attending the
tutorial sessions where you would have the opportunity of comparing
knowledge with your peers.
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COURSE MATERIALS
You will be provided with the following materials:

1. Course Guide
2. Study Units

In addition, the course comes with a list of recommended textbooks,
which though are not compulsory for you to acquire or indeed read, but
are necessary as supplements to the course material.

STUDY UNITS

The following are the study units contained in this course. The units are
arranged into four identifiable but related modules.

Module1  Functions of Several VVariables

Unit 1 Some Basic Concepts

Unit 2 Vector Field Theory

Module 2

Unit 1 Functions of Complex Variables
Unit 2 Integration of Complex Plane
Module 3

Unit 1 Residue Integration Method
Module 4

Unit 1 Integral Transform

Unit 2 Fourier Series and its Application
Unit 3 The Laplace Transform

TEXTBOOK AND REFERENCES

The following editions of these books are recommended for further
reading.

Advance Engineering Mathematics by KREY SZIC.
Generalized Functions by R. F. Hoskins.

Complex Variables by Murray R. Spiegel.
Engineering Mathematics by K. A. Stroud.

Advance Calculus for Applications by F. B. Hildraban
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ASSESSMENT

There are two components of assessment for this course. The Tutor-
Marked Assignment (TMA), and the end of course examination.

TUTOR-MARKED ASSIGNMENT

The (TMA) is the continuous assessment component of your course. It
accounts for 30 per cent of the total score. You will be given four (4)
TMAS’ to answer. Three of these must be answered before you are
allowed to sit for the end of course examination. The TMASs’ would be
given to you by your facilitate and returned after you have done the
assignment.

FINAL EXAMINATIONS AND GRADING

This examination concludes the assessment for the course. It constitutes
70 per cent of the whole course. You will be informed of the time the
examination. It may or may not coincide with the University Semester
Examination.

SUMMARY

The students have been taught how to use Jacobian method to change
the variable — multiple integral, also to determine whether two functions
are linearly dependent or independent.

Solve line, multiple and improper integrals.

The use of Fourier transform to solve some differential equation,
boundary values problems and e.t.c. Also talked about is Laplace
transformation to solve some initial and boundary value problem, which
are difficult to handle. After which Convolution theory is applied. And
the result’s then retrains-formed back to physical or mechanical
problems.

So far, about three methods have been thoroughly dealt with in this
course. In Mathematical Methods 1V, we shall still talk about several
other methods to handle any category of problem, provided the problem
can be modeled into mathematical problems.

Vi
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MODULE 1 FUNCTIONS OF SEVERAL VARIABLES

Unit 1 Some Basic Concepts
Unit 2 Vector Field Theory

UNIT 1 SOME BASIC CONCEPTS

CONTENTS

1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1  Functions of Several Variables
3.2 Jacobian
3.3  Function Dependence and Independence
3.3.1 Testing for Linear Dependence or Otherwise
3.4  Multiple Integral and Improper Integrals
3.4.1 Double Integral
3.4.4.1 Evaluation of Double Integrals
3.4.4.2 Double Integral in Polar Coordinates
3.4.4.3 Triple Integral
4.0 Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In scientific problems, often times one discovers that a factor depends
upon several other related factors. For instance, the area of rectangle
depends on its length and breath, hence can say that area is the function
of two variables i.e. its length and breadth. Potential energy of a body
depends on gravity, density and height of the body, hence, we can also
say that potential energy is a function of three variables i.e gravity,
density and height etc. The strength of a material depends upon
temperature, density, isotropy softness etc., here we can say that the
strength of material is a function of many variables i.e. temperature,
density, isotropy softness etc.
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20 OBJECTIVES

At the end of this unit, you should be able to:

- use Jacobian change variables in multiple integral
- determine whether two or more functions are linearly dependent
or independent

- identify the functions of two or more variables.
3.0 MAINCONTENT
3.1 Functions of Several Variables

A function is composed of a domain set, a range set and a rule of
correspondence that assigns exactly one element of the range to each
element of the domain u, is called a function of two variables x and y if
u has one definite value for every pair of variables of x and vy.
Symbolically, it is written as

u="~f(xy).
The variables x and y are called independent variables while u is called
the dependent variable.

Similarly, we can define u as a function of more than two variables.
In summary, we have that

u(x) = a function of a single variable

u(x,, x,) = a function of two variables

U(X, Xy  Xgt 0 0 a function of several variables.
X,) =

Example 1

If f(x,y)=x*-3xy+6y, find: (a) f(-1,1) and f(2,3).
(@) f(x,y)=x*-3xy+6y

f(-11) = (-1)* -3(-1)(1) +6(1)

f(-11) =1+3+6 =10

(b) f(2,3)=2°-3(2)(3)+6(3)
f(2,3)=4-18+18=4
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3.2 Jacobian

Jacobian is a functional determinant (whose elements are functions)
which is very useful in transformation of variables from Cartesian to
polar, cylindrical and spherical coordinates in multiple integras. Let
u(x,y) and v(x,y) be two given functions of two independent variables x
and y.

The Jacobian of u and v with respect to X,y denoted by
JHU vmora(u,v)

O is a second order functional determinant defined as
X Yo 9(xy)

a
JDU V%_QUV ox oy
OX yooa(xy) | v

ox oy

Properties of Jacobians

If uand v are the functions of x and y, then

a(u,v) Xa(x,y) _1
a(xy) a(u,v)

If u,v are the functions of r,s where r,s are functions of x, y, then,
a(u,v) _ a(u,v) “ a(r,s)

a(x,y) a(r,s) a(x,y)

If functions u, v, w of three independent variables x,y,z are not
a(u,v,w) _

independent, then, =
a(x,y,2)

Example 2

Find the Jacobian auy) in each of the following:
a(x,y)

2 2
(1 U=X+y—,v:y—
X X

(i)  u=x"+y?* v=2xy
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Solution.
ou adu
2 2 - —
uox+ Y v=Y using 3-Y VLMY gX gy
X X oxoyooaxy) [ v
ox oy
Y, 2y
1-=) (—
gt v o) x; X
X a(X, 2
Ox yn o(xy) (_y_z) (73/)
_y 2y 2y 2y
x x X X
Solution
a o
W= 4y, v=2xy, using 31 VT =24 aax gy
OxX yp o(xy) | NV
ox oy
2x -2
J= y
2y  2X
= (2x)(2x)-(2y)(-2y)
= 4x* + 4y?
=4(x* +y°)
Example 3
= =24 y2 472 W= ; _ d(u,v,w)
If u=xyz, v=x*+y*+z°, w=x+y+z find J=—"""""
a(x,y,2)

Solution
Since u, v,w are explicitly given, so, first we evaluate

du ov ow

X X ox yz X Xy
_duvw) _jou voowl Loy oy g

a(x.y.z) |oy oy oy
du ov ow 11 1

o a a

= yz(2y-22)-zx(2x-22) +xy(2Xx-2Y)

=2[yz(y-2)-zx(X-Z)+Xy(X-Y)]
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= 2[x*y = X’z = xy® + xz° + y?z — yz?]

= 2x*(y - z) = x(y* +z*) + yz(y - )]

=2(y —2)[x* = x(y +2) + yz]
=2(y ~7)ly(z = x) = x(z = X)]

=2(y-2)(z-x)(y-x)

=-2(x-y)(y —z)(z - x) The idea can

several variables thus:

ou
oX

%Hu,v,v\DD _uyv) _jou

ﬁx,y,zm ax,y,2) |oy
du
o0z

Example 4

MODULE 1

be easily extended to three or

oz

Jacobian can be applied to polar coordinater and@, thus, x = rCos6 and

y =rSinb .
Then,
(2
_ oY) _lar o6
a(r.0) (9 9y
or 26
But 2(:0059, %:—rsine
or 20

r

Substituting equation (2) into (1) gives

Cos8 -rSinb
Sin@ rCos6

ﬂ =Sin@ and ﬂ =rCosO
0 0

=rCos’0 - (-rSin’0)
—r[Coc’® + Sin*0]=r

Since Cos® + Sin® =1

(1)

()
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oAy
a(r,0)

3.3  Function Dependence and Independence

Two functionsu(x) and v(x) defined on an interval 0 < x < 1are said to be

functionally (linearly) dependent on0< x <1if there exist ‘3’ two
constants k, and k, where not both zero, such that* 3°

k,u(x) + k,v(x) = 0 forx, Vx. 0]

However, the two functions u(x)and v(x)defined on interval

0 < x < lare said to be functionally (linearly) independenton 0<x <1, if
the only constantsk, andk,such that‘3” for allxin the interval where

both constantsk, andk,are zeros i.e, when u or v can not be expressed

as proportional to the other. Otherwise, u and v are linearly dependent if
(i) holds for some k, andk, not both zero.

Example 5

Show that the functionsv(x) = e* andu(x) = e are linearly dependent on
the interval. 0 < x <1.

Solution
Suppose ke® +k,e™ =0 ¥xin 0<x<1 (1)
Multiplying equation (1) bye ™, we obtain
ke¥e™ +k,e™e™ =0 (2)
k, +k,e®¥* =0 )
differentiating equation (3) we obtain
(b -a)k,e® " =0 (4
(b-a)e®?* #0 sinceb-a#0 then it implies that
b=0 (%)

Substituting (5) into (1), and differentiating w.r.t.x, we obtain
k,ae™ =0 (6)
= a=0,since e* = 0.
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Example 6

Show that the functionsv(x) = e*andu(x) = e™are linearly independent
on the interval. 0 < x <1.

Solution: If
ke™ +k,xe™ =0 (1)
(k, +k,x)e™ =0 2)
Sincee™ #0, = k +kx=0 (3)

Differentiating equation (3) we obtain
k, =0 4)

Substituting (5) into (1), however

ke*=0 = k,=0.Since e*#0 5)

3.3.1 Testing For Linear Dependence or Otherwise

A method called Wronskian of the function could also be used to test for
linear dependence or otherwise. Thus, consider the functions u(x)and

v(x) and the first derivatives u’(x) andv’(x), therefore we can define the
Wronski determinant or Wroskian.:

v(x) u(x)
V'(x) u'(x)

=v(x)u’(x) —u(x)v'(x)

Wronskian =W (v(x).u(x)) =

Results:
v(X), u(x) are linearly independent if W =0
Otherwise linearly dependent when W=0.

Example 7

Determine whether the following functions v(x) and u(x) are linearly
dependent or independent.

V(x) =cosbx, u(x) =sinbx with b =0
v(X) =e*, u(x)=e-* with a=0.
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Solution
v(x) = cosbx, V'(x) =-bsinbx, u(x) =sinbx and u’(x) = cosbx.

coshx  sinbx
-sinb bcosbx

v(x) u(x)

V() u'(x)

(@) W (v(x).u(x)) =

=h(cos?bx + sin? bx)
=b=0

So v(x) and u(x) are linearly independent.

v(x) =e™, V(x) =-ae®™, u(x) =e™™ and u’(x) = —ae™™.

(b) W(V(X)-U(X)) = \\j'(();)) 3'(())(()) - ai)ax —Ze'ax
= —a_eO - aeo
=-a(e’ +e%)

Witha = 0. So v(x) and u(x) are linearly dependent.
SELFASSESSMENT EXERCISE

Determine whether the following pair of functions are linearly
dependent as the case may be

i. (@ u(x)=x, v(x)=e*
(b)  u(x) =2Sinhx, Vv(x)=Cosx
()  ux)=x% v(x)=3x°

ii. (@) Show that the function u(x)and v(x) defined by are
linearly
u(x) = x2, Vv(x) = xx| Independent for the interval 0 < x <1.

Compute the Wronskian of these functions.

i, If f(x,y)=x*—2xy +4y?,
Find (a) f(1-1), (b) f(0,-3) and
©) f(x,y+k)-f(xy)
12

iv. If f(x y):—ix—+zi§’
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f(2+h3)-f(23)

Find (a) f(1,-3), (b)

h
V. If X =rsin@cosg, y=rsinBsing and z =rcosH.
Show that 3(xy.2) =r?sind.
a(r,e,cp)
vii  If u=xtv=y? find 24V
a(x,y)

3.4  Multiple Integral
3.4.1 Double Integral

Definition: In this case the integrand is a function f(x,y)that is given
for all (x,y)in a closed bounded regionR of the x— y plane.

Let f(x,y) be a single valued continuous function within a region
R bounded by a close curveC . Then the regionR is called

The region of integration. However, double integral can be defined thus:
d b
[ ], f(x, y)dxdy or ff f(x,y)dA @

3.4.4.1 Evaluation of Double Integrals

Considera<x<band g(x)=<y=<h(x)so thaty=g(x) andy=h(x)
represents the boundary of r . Then

i f(x,y)dxdy = I: %h;:i)f (X, y)%dx (2)

Similarly, if r can be described thus
c=y=d, v(y)=x=u(y)
So that x =v(y) and x=u(y). Then

f Ty = o O y)xdy 3)

In this case, one first calculates the integral within the square brackets.
Then further integration is then performed.
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Properties of Double Integrals

1. ff af (x,y)ds = aff f(x,y)ds, a=constant

D D

2. U[ f(x,y)+9g(xy)lds = ff f(x,y)ds + ff g(x,y)ds

D

3. g f(x,y)ds = gl f (X, y)dS+IDIZ f(x,y)ds

Were D is the union of disjointed domains D1 and D2
Example 5

Evaluate the integrals
11 2 2

IOIO(X + 'y )dydx
Solution

j;%g} € +y*)dy dx

X
=J01[X2y +3l yslldX

= [ [(x? +2)-0Jdx= [ (x* + L)
1
0

, 1 1 1
XT+—X . =—-+=
3 3 3

1
Jo
1
3
2
3

3442 Double Integral in Polar Coordinates

This is defined by

0,

L L” f(r,8)drde

Example 6

Evaluate the integrals

s 2C0s

r2drde.

—n

270

10
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Solution

I//@Q} “ridride = 1)
"/ 0 |3 DZCose
2 (2)

LATE,

% (2CosB)® 0

_J—/z 3

_I —Cos39d9 (3)

Using trigonometric identity to simplify Cos™®

Thus Cos30 =Cos(20 +6) = Cos20Cos6 - Sin20Sind
=(Cos’@ - Sin°0)CosB - (25inBCosH )Sind
=Cos% - Sin°6Cosb - 2Sin°0Coso

= Cos* - 3Sin?8Cos0
=Cos°0 - 3[1- Cos?0 JCosb
=Co0s°0 -3CosB + Cos’0
=4Cos%0 - 3CosB

Cos% = LCos3 + > Cosh 4)
4 4

Hence, substituting (4) into (3) we obtain

8I/chos%+ Cos6 Dde
3 4 0
%

1 =-2 1 Sin3® +3sin0

_U'

303 0.,

-—%Dign n+3SIHZD—D ép&( 3n)+3Sin(=, §D (5)

30 DS 003 00

But Sinym =-1, Sin74-=1
Similarly, Sin-%n~ =-1and Sin--4,=-1 (6)
Substituting (6) into (5)

1

3

01 oo
(-D)+30 - +3(-D1

w0 O
OO O

11
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0 o3 oDopo
=-— —+30-"+30
B (]
3g0 0O 03 Og
3

O

12
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Q—ED8+_8 :—E%i@]] :—_32

36334 3030 9
| =32
9

3443 Triple Integral
Definition: A function of three variables is involved in triple integral.

However, in triple integral, integration is carried out thrice. It is then
define as:

(f f (x,y,z)dxdydz over the region v

[ f(x,y,z)dv. This can also be used to find the volume of any

\

shape.
Example 7

Evaluate

1 z x+

[0, Z(x + Y + z)dydxdz
Solution
1 [ z

S (xy + 1 yzzy)xxfzZ dx%dz

{0 o
T

N

[ O 42 00+ 2) 20+ )] Ix(x =) 1,2 (k= 2)° + 2(x - 1)) et

I-ll Euij O(4xz + 222)d>t%dz

1 2 2
= I_l[2x 7+2X2 O] dz

13
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Example 8

Evaluate

I =g (sz +3y? +3zz)dvby changing to polar coordinate.

Thus x = rSinBCos¢ , y = rSinBCosp and z = rCos0 .

Solution

vy 4 oA .
=240 (" r2dr(rSinBdg)(rd@)

24 v o .
-6k a°Sin6dedg

_24 %
—?a [ ( Cose)0 do
S o s,
Tr —_—

5 2 5

40 CONCLUSION
In conclusion, the student should be able to use Jacobian method to
change the variable in multiple integral and to determine whether two

functions are linearly dependent or independent. Also to solve integral,
multiple.

50 SUMMARY
The following are discussed in the unit:

Functions of variable defined thus, u(x,x,,%; X,). Jacobian of
(uv)was discussed and extend it to three or several variables, thus

u vl a(u,v) Ju,v,w 9(u,v,w)
JUJ 0 and J =

oxy alxy) oxy,z  (0%Y,2)

[ [

Jacobian was also applied to polar coordinate thus

axy)
J= =r.
a(r.8)

14
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The functional dependence of two functionsu(x)and v(x)was discussed
thus:

ku(x) + k,v(x) =0,V where k,and k,are constants and are not zero.
X

While the functional independence of two functionsu(x)and v(x)was
also discussed thus:

ku(x) + k,v(x) = ¥x, where k,=k,=0.
0

Testing for linear (independence) dependent was discussed using
Wronskian method which involves the determinant thus

v(x) u(x)

v(x) u'(x)

W (V(x),u(x)) = v(x)u'(x) = u(x)v’(x) =

Lastly, multiple integral was discussed.

6.0 TUTOR-MARKED ASSIGNMENT

I. Evaluate the double integrals
n 1
@ g g xydxdy
(b) f J'_X e’ Coshxdydx

2 y2+l 2
() ff X ydxdy
ii. Evaluate the following triple integral

@ f f; Ix_ﬂ(x + Y+ z)d xdydz
O dexjgdzzz wherex® +y*> +z* = a
+ V" +

(c)  Compute the volume of the solid enclosed by
i 2iYiZ_1 x-0y=0z-0
a b c
(i) x*+y*-2ax=0, z=0, x*+y*=17°
iii.  Determine whether the following pair of functions are linearly
dependent or independent as the case may be.
@  u(x)=xv(x)=e*
(b)  u(x) = 2Sinhx,v(x) = Cosx
()  u(x)=x>v(x)=3x
iv. (@ show that the functions u(x)and v(x)defined by
u(x) = x*,u(x)=%x are linearly independent for the interval
O<x=<l.

(b)  Compute the Wronskian of the function in 4(a)
15
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V. Evalute ff (x + y)?dxdy, where R is a region bounded by the
R

parallelogram x+y=0, x+y=2, 3x-2y=0, and 3x-2y=3.
vi.  Bvalute (x> + y*)dxdy, where R is a region in the first
R

quadrant bounded by x*-y*=a, x*-y*=b, 2xy=d, 0<a<b,
O<c<d

7.0 REFERENCES/FURTHER READING
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UNIT 2 VECTOR FIELD THEORY

CONTENTS
1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1  Vector Field Theory
3.2 Relations between Vector Field and Functions
3.2.1 Example of Vector Field (Velocity Field)
3.2.2 Line Integrals
3.2.3 Evaluation of Line Integral
3.2.4 General Properties of Line Integral
3.2.5 Examples on Line Integrals
3.3  Integral Theorem: Line Integral, Gauss, Stokes and Greens
Theorems
3.3.1 Divergence Theorem of Gauss
3.3.2 Green’s Theorem
3.3.3 Stoke’s Theorem
3.3.4 Green’s Theorem in the Plane as a Special Case of
Stoke’s Theorem
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading
1.0 INTRODUCTION

Vector function represents vector fields which have various physical and
geometrical applications.

The basic concepts of differential calculus can be extended to vector
function in a simple and natural fashion.

Vector functions are useful for representing and investigating curves and
application in mechanics as path of moving bodies.

Integral theorems will be considered in the later path of this unit’s i.e
Line Integral, Gauss, Stokes and Greens theorems.

17
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2.0 OBJECTIVES

At the end of the unit, you should be able to:

- appreciate vector field and vector function

- understand the vector field theory, using vector function to
investigate curves and their applications in mechanics and

- use integral theorem to solve some physical problems. Study of

Line Integral, Gauss, Stokes and Greens theorems and their
applications.

3.0 MAINCONTENT

3.1 Vector Field Theory

A scalar function is a function that is defined at each point of a certain
set of points in space and whose values are real numbers depending only
on the points in real space but not on the particular choice of the
coordinate system.

Furthermore, the distance of f(x,y,z)of any point p from a fixed point
p,in space is a scalar function whose domain of definitionDis the
whole space. f (x,y,z)defines a scalar field in space. Introducing a
Cartesian coordinate x,,y,,z,. Then the distance

(X Y,2) = (X= %) 2 + (Y~ ¥5) 2 +(2 - 2,)°

The temperature distribution in a heated body, density of a body and
potential due to gravity are the examples of a scalar point function.

3.2 Relations between Vector Field and Functions

A vector v(p)is a function that is defined on some point setD in space
i.e. the set of points of a curve, a surface or a three dimensional region
and associates with each point p in D a vectorv(p).

While a vector field is given in D. We introduce Cartesian coordinates

X, y, z then we may write our vector function in terms of compound
function.

V(X Y,2) = [V, (X, ¥,2),V, (X, Y, 2), V5 (X, Y, 2)]

orusing i, j,k,. Thus
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V(X Y,2) = Vi (X, Y, 2)i +V, (X, Y, 2) j + V5 (X, Y, 2)K

But we should keep in mind that v depends only on that points of its
domain of definition, and at the point defines the same vector for every
choice of the coordinate system. The velocity of a moving fluid,
gravitational force are the examples of vector point function.

Our notation in simple scalar and vector quantities in the pre-requisite
course mathematical methods | and Il are the same with that under
discussion. The only difference is that the components v,,v,,v, of vnow

becomes functions of x, y, zsincev s a function of x, y, z.

3.2.1 Example of Vector Field (Velocity Field)

At any instant, the velocity vectors v( p) of a rotating body B constitute a
vector field, the so called velocity field of the rotation. If we introduce a
Cartesian coordinate system having the origin on the axis of rotations
then

V(X,Y,2) = Wx [z,y,2] = W x (Xi+ Y]+
zk)

<\ €
—> ——> O —
Fig. 1 Field of Tangent Vectors of

a Curve Fig. 2: Gravitational

Field

£ e

Fig. 3: A Rotating Body and the
Corresponding Velocity
Field
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wherex,y,z are the coordinates of any point p of Bat the instant under
consideration. If the coordinates are such that the z-axis of rotation and
w points in the positive direction, then w = wk and

K
=w(=yi+x) =wl-y,x,0]

< O .

An example of a rotating body and the corresponding velocity field are
shown in Fig. 3.

Example of Vector Field (Field of Force)

a. If the velocity at any point (x,y,z) within a moving fluid is known
at a certain time, then a vector field is defined.

b. v(x,y,z) = xyi - yz°kj + x*zk defines a vector field. A vector field
which is independent of time is called a stationary steady-state
vector field.

C. Let a particle Aof massM be fixed at a point p,and let a particle

B of massM to be free to take up various positions pin space.
Then A attracts B. According to Newton’s Law of gravitation, the
corresponding gravitational force pis directed fromptop,, and

its magnitude is proportional to%zwhereris the distance
between p and p,say.

_ GM,M,

2

d. p|
r
where G is the gravitational constant.
Hence pdefines a vector field in space. If we introduce Cartesian

coordinate such that p,has the coordinates x,,y,,z,and phas the
coordinates x, y, z, then by Pythagoras theorem.

r= (=) +(y=yo)* + (2= 2,)° 0
Introducing the vector assuming r > 0then
F=(X=X)i+(y=Yo)i+(z-2,)k 3

we have |r| =rand (— %)is a unit vector in the direction of p; the minus
sign indicates that p is directed from p + p, .Fig. 2.
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Hence substituting (1) into (3) we obtain

_|pE 1IDD GM Mg

:_%[(X—XO)H(y—yo)j+(Z—Zo)k] (4)

Hence, this vector function describes the gravitational force acting on B.
Derivative of a Vector Function

A vector function v(t)is said to be differentiable at a point tif the limit
exists. The vector is called the derivative of v(t).

V() = lim v(t + At) = v(t)
AtaO At

V (t + pt)

V(1)
Partial Derivatives of a Vector Function

The way of introducing partial derivation to vector analysis is obvious.
Indeed, let the components of a vector function.

v=vi+V,j+v,k be differentiable functions of
nvariablest,,t,,t, t.. Then the partial derivative of v with respect to

tis denoted bya—:and is defined as the vector  function.
o
N _dv v
ot ot ot ot
Example 1

Let r(t,,t,) = aCot,i + aSint, j + 3tk

o - —aSint,+aCotii,
at,

O

at,
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3.2.2 Line Integrals

Definition: Let f(x)be a single real valued function in the
intervala < x <b . Thus, we can define line integral as

I; f ()dx
3.2.3 Evaluation of Line Integral

Evaluation of line integral J:f(x)dxcan be accomplished by two
methods. Thus:

a. A line integral of a vector function F(r) over a curvecis defined
by
[Fdr = [ F(r) ot (1)
dt
b. In term of components, withdr = dxi; +dy; + dz,

Then we obtain

[ F(r)dr = (Fdx + F,dy + F;dz)

=((Rx' +FRYy +Fz (2)
' )cdt
, _ dx , _dy dx
Where x'=—7, =2 == 3
dt Y dt : dt ®)

It is worth to mention that if the path of integrationC in equation (1)
above is a close curve that is

B A

e D

= then.

Then instead of [ Wecan also write?

3.2.4 General Properties of Line Integral

a. ICkF.dr =k LF.dr where k is a constant
b. I(F+G)- .dr=JF- .dr+J'G- dr
C. [F dr:LF' .dr+0LF- .ar

Where c=c, +¢c,
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3.2.5 Examples on Line Integrals

If A= (3x2 + 6y)i -14yzj +20xz°k , evaluate ICA..drfrom (0,0,0) to
(1L11) along the following parts C:

The straight lines from (0,0,0) to (1,0,0) then to (1,1,0) and then to
(1,1,2).

The straight line joining (0,0,0) and (1,1,1).
Solution:

[Adr = [[(3x® +6y)i - 14yzj + 20x2°Kk}(dxi + dyj + dzk)

= jc[(3x2 + 6y)dx -14yzdy + 20xz%dz]

If x=t,y=t*z=t>, points (0,0,0) and (1,1,1) correspond to t=0 and
t=1 respectively. Then

t=1

[Adr= [ lat? +6t2 bt - 1a(e? Je* Jae?) + 20t a )

t=0

= [ (ot* - 28t° + 60 it

=[3t° - 4t” +6t°], =5

Along the straight line from (0,0,0) to (1,0,0), y=0, z=0, dy=0 and dz=0
while x varies from 0 to 1. Then the integral over this point of the path is
t=1

[ (8% +6(0) Bx - 14(0)(0)(0) + 20x(0)* (0)

x=0

t=1
I3x2dx =[x°] =1

x=0

Along the straight line from (1,0,0) to (1,1,0) , x=1, z=0, dx=0 while
y varies from 0 to 1. Then the integral over this point of the path is

t=1

[ (8@? +6(y)Jo - 14y(0)dy + 201)(0)*(0) =0

y=0
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Along the straight line from (1,1,0) to (1,1,1) , x=1, y=1, dx=0, dy=0
while z varies from 0 to 1. Then the integral over this point of the path is

}1(3(1)2 +6(1) )0 ~14(1)2(0)dy + 20(1)(z)* dz

z=0

Adding [ A.dr :1+o+23—0: 23_3

The straight line joining (0,0,0) and (1,1,1) is giving in parametric form
by x=t, z=t. Then
t=1

[A.dr= J'(3t2 +6tHt —14()(t)d (t) + 20(t)(t?)dlt

= I (3t> + 6t -14t% + 20t° Jit

t=1 1
= [(6t-11t% + 20t° pit = ?3

t=0
3.3 Integral Theorem
3.3.1 Divergence Theorem of Gauss

For simplicity, divergence theorem of Gauss can be used to transform
triple integral into surface integral over the boundary surface of a
region in space. This is obvious because surface integral is simpler and
easier to handle compared to triple integral.

Therefore, let T be closed bounded in a region space whose boundary is
a piecewise smooth orient table surface S.

Let f(x,y,z) be a vector function that is continuous and has continuous
first partial derivative in some domain containing T. However, the
transformation is done by the so called divergence theorem which
involves the divergence of a vector function F.
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Where divergence of F

= divF = F a': Fr 4Pty = (j F-ndA (2)
gy oz ;
But 1 F. ndA =H(F1dydz + F,dxdz + Fsdxdy) (3)

Where 'n'is the outer unit normal vector of S.

but
F=Fi+F,j+Fk (4)

and n = Cosai + CosBj + Cosyk 5)

where a,B,and vy are the angle between'n'and the positive
X, Y, and z axes respectively.

Next, we substitute equation (3) and (4) into (2) so we can obtain

fif Eix W ; “dxydz = gy (E Cosai +  CosPj + £ Cosyk A (6)

But
Cosa = dzdy,Cosf3 = dzdx,Cosy = dxdy
1oF, oF, oF,[]
(=2 + =%+ =2 [lcdz = ([ F,dydz + F,dxdz + F,dydx 7
I7g "oy " Oy Ry, 5dy (7)
Example 2

Application of the Divergence Theorem
Harmonic Function

The theory of solution of Laplace gives thus:

DRSS UL L (8)
x oy 0z

and equation (1) is called potential theory.

Now, from the divergence theorem formula
(f divFdv = ff f ndA 9
T S

24



MTH 381 MODULE 1

Where F=Vf (10)
is gradient of scalar function.
divF =V?*f (11)
and F:- n=n- Vf
Hence,
of (12)
V2 =
T S
Where
e - ? dA (13)
gradf n
we denote the directional derivative of f in the outer normal direction of
of
S by —
ya n
However,
f-nzn: Ea_- (14)
vf f dA
an

3.3.2 Green’s Theorem

This theorem gives the relation between the integral over the boundary
surface which encloses the volume. IfF,F,, F;are three functions of

X,y,zand their derivatives%,%,%are continuous and single valued
0xX 0y dz

functions in a regionV bounded by a closed surface S, then
R[]
[ Tt e WV (PCosa +QCosp + RCosy WA
S

As in (6) above

Where Cosa ,Cosp and Cosy are the direction cosines normal to the
surface S.

Example 3

Evaluate the surface integral

= (x3dydz + X2 ydzdx + xzzdxdy)
S
25
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where is the surface bounded byz =0,z =b,x* + y* =a®,
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Solution

Using Green’s theorem

I =1 (3x2 + X+ xz)ixdydz
\

_ a[]a?-x? (]
=40 [ b@if %ﬁyDSXde

00 o U 0
a[ ] va?-x? 0
=, ij'o (b)dyﬁ 5% dx
= 20bJ'Oa x%4/a’® = x?dx
Substituting x = aSin@ or x = aCos6 we have dx = aCos8d6
= ZObIOa(aZSinze va? -a’Sin’@ )Dosede
= 20a4bjoa(8in291/1— Sin’g ):osede

but +/1-Sin20 =4/Cos%® = Cos8
_ 4 ar 2 _ 2
| =20ba” (Sln 6 -Cos G}je
= —20ba* [ cos20d0
fo

3.3.3 Stoke’s Theorem

This is the transformation between surface integrals and line integrals.
Stoke’s theorem involves the curl.

ik
Curl F = AXF = %x %y %z (1)
Fl FZ F3

Let S be a piecewise smooth oriented surface in space and let the
boundary of S be a piecewise smooth simple close curve C.

LetF(x,y,z)be a continuous vector function that has continuous first
partial derivatives in a domain in space containing S. Then
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d
i (AxF)ndA=fF£ @)

wherenis a unit normal vector of S and, also z—ris the unit tangent vector
S

and S the arc length of C.

n
dr
GACRER
dr n
ds
uo OE. U 0 [] o [ [
Sy 4—iD1+ 1—1—%DN +£—£D\I3Ddudv
oU oz N X
WJD 0 o 0 o Yoo
= p(Fdx + F,dy + Fdz) (3)
Cc

3.3.4 Green’s Theorem in the Plane as a Special Case of
Stoke’s Theorem

Let F=Fi+F,j+Fkbe a vector function that is continuously
differentiable in a domain in the x-yplane containing a simply
connected bounded closed region S whose boundary C is a piecewise
smooth simple close curve.

Then from equation (1)

Cn- k=0F _0F
(AxF)- n=(AxF) k= 5%

Then the formula in Stoke’s theorem now takes the form

- OF, oF,
L 0 dA =of (Fydx + Fyd
5o o —:j(l dy)

Hence, Green’s theorem in space is s special case of Stoke’s theorem.
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Example 4

Evaluation of line integral by Stoke’s theorem.

Evaluate 19': d—;[&ds,where C is the circlek +% =4, z=-3,oriented

y S
O 0
counterclockwise as seen by a person standing at the origin, and with

respect to right-handed Cartesian coordinates F = yi + xz° j — zy°k.

Solution

As a surface S bounded by C we can take the plane circular
discx’ + y* =4 in the planez =-3.Then n in Stoke’s theorem points in
the positive z-direction; thusn=k,. Hence (AxF) nis simply the
component of curl(axF)in the positive z-direction. Since F
withz =-3has the components F, =y,F, =-27xand F, =3y°, we thus

obtain

(A xF) ndF R

1
ax 0JXx

=17-1=128

Hence, the integral over S in Stoke’s theorem equals 128times the area
4n of the disk S.

[(AxF): =-28- =-112n

Nnl4n 4
= -352

4.0 CONCLUSION

In conclusion, the students must have understood vector field theory and
also be able to relate vector field and vector function together
respectively.

However, the Line Integral, Gauss’s, Stoke’s, and Green’s theorem were
discussed using the knowledge acquired from vector field theory.

5.0 SUMMARY

In summary, double integrals over a region in the plane can be
transformed into line integrals over the boundary C of R by Green’s
theorem in the plane using

DoF, O,
T~ xdy =op (Fydx+ Fyd
e o y—:j(l ay)
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Also Triple integrals taken over a region T in space can be transformed
into surface integrals over the boundary surface S of T by the divergence
theorem of Gauss using,

fff didev=H f -ndA

where nis the outer unit normal vector to S which implies Green’s
formulas.

Likewise, surface integrals over a surface with boundary curve ¢ can be
transformed into line integrals over C by Stokes’s theorem.

AnF -ndA:oDF .d_deS
(] Il
jsj( ) [0 gt

6.0 TUTOR-MARKED ASSIGNMENT

I. Compute LF(r) ~dr where
(@ F=y%i-x"j, cir=ti+t™?, for 1<t<3
(b) F=x%-y%j, c:y=1-x*, for -1<xs1
ii. Find the work done by the force F =xi—zj +2yk in the
displacement;
(@  Along the y axisfrom0to 1
(@)  Alongthecurve z =y*, x=1, from(1,0,1) to (1,1,1).
iii.  Evaluate IC(XZ +y?) ds
(@  Overthe path y=2x from (0,0) to (1,2)
(@  Overthe path y=-x from (1,-1) to (2,-2)
iv. Evaluate the relations between vector fields and vector functions.

V. State one example of a rotating body and the corresponding
velocity field.
Vi. Let the components of a vector function

r(t,,t,) = aCost,i + aSint, j+3t,k be differentiable functions on
variables t andt,. Then find the partial derivatives of r(t,,t,) with

respect to t, andt, denoted by o and 2"
ot, at,

Vil. Evaluate the surface integral
= (xsdydz + X2 ydzdx + xzzdxdy)
S

where is the surface bounded byz =0,z = b, x* + y* = a°
viii.  State and prove Stoke’s theorem.
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xiv. Evaluate f %F OI—;DDds,where Cisthecirclex +?=4,
S

y
<0 0

z = -3, oriented counterclockwise as seen by a person standing at
the origin, and with respect to right-handed Cartesian
coordinates F = yi + xz° j — zy’k.

X. Show that vector function
F= (x2 + yz)i + (y2 - zx)j + (z2 - xy)k is irrotational. Find the scalar
potential

xi.  Verify divergence theorem for the function

F=4xzi-y’j+yz
over the unitcube x=0,x=1,y=1andz=0and z=1.
xii.  Prove that div(uxv)=v Curlu—uCurly
Xiil. Evaluatej ® dr,where ® = xyi+ yzj+zxk and curve L
L

r=ti+t’j+t’k where-1<t<1.
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1.0 INTRODUCTION
CONCEPTS OF SETS IN THE COMPLEX PLANE

Definition: The term set of points in the complex plane is the collection
of finite or infinite points. Examples: the points on a line, the solution of
quadratic equation and the points in the interior of a circle made up of
sets respectively.

A set is called open if every point of S has a neighbourhood consisting
entirely of points that belongs to S. that is the points in the interior of a
circle or a square from an open set, and so do the points of the “right
half — plane”Rez =0>0.

An open set S is to be connected if any two of its points can be joined
by a broken line of finitely many straight line segments all of where
points belong to S.

Likewise, an open connected set is called a domain. Thus, an open disk
annulus is domain. An open square with a diagonal removed is not a
domain since this set is not connected.

The complement of a set S in the complex plane is defined to be the set
of all points of the complex plane that do not belong to S. A set is said to
be closed if its complements is open. Example: the point on and inside
the unit circle form a closed set.

A boundary point of a set S is a point every neighbourhood of which
contains both points that belong to S and points that do not belong to S.

Example: if a set S is open, then no boundary point belongs to S, if S is
closed, then every boundary point belongs to S.

A region is a set consisting of a domain plus, perhaps, some or all of its
boundary points.

Next we shall consider functions of complex variables but before this we
introduce complex functions first.

Complex functions
Definition: A real function F defined on a set S of real numbers is a

rule that assigns to every X in S a real number f(x), called the value of
fat x. Now in complex, S is a set of complex numbers and a function f

32



MTH 381 MATHEMATICAL 111

defined on S is a rule that assigns to every Z in p a complex number w,

called the value of f at z. we write
w=f (2)

Here z varies in S and is called a Complex Variable. The set S is called
the domain of definition of f.

Example 1

w=f(2)=z*+3z is a complex function defined for all z; that is, its
domain S is the whole complex plane.

The set of all values of a function f is called the range of f. w is a
complex, and we write w=u+iv,where u and v are the real and the

imaginary parts, respectively. Now w is depends on z-=x+iy.Hence, u
becomes a real function of x and y. and so does v. we may thus write:

w=f(2)=u(x, y)+iv(x,y).

This shows that a complex function f(z) is equivalent to a pair of real
functions u(x,y) and v(x,y), each depending on the two real variables x
and y.

Example 2

Function of a complex variable.

Let w=z%+3z. Find u and v and calculate the values of f at z = 1 + 3i
and
zZ=2-1.

Let the real part of w be defined thus u=x*-y?®+3xand the imaginary
part of wi.e. v=2xy+3y.

Cf (L43i)=(1+30)* +3(1+3i)=-5+15i
Recall that i* = -1.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
- complex numbers

- complex analytical function
- Cauchy — Riemann equation
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- Cauchy’s theorem and inequality
- integral transforms vis a vis: Fourier and Laplace transforms
- convolution theory and their applications.

3.0 MAINCONTENT

3.1 Complex Numbers

It was observed early in history that there are equations which are not
satisfied by any real number. Examples are:

x*=-3 or x*-10x+40=0

This led to the invention of complex numbers.

Definition

A complex number z is an ordered pair (X, y) of real numbers x, y and
we write

z=(x,Y).

We call x the real part of z and y the imaginary part of z and write
Rez=x, Imz=y

Example 3

Re (4, -3) = 4 and Im (4, -3) = -3, furthermore, we defined two complex
numbers z; = (X, 1) and z, = (X, y») to be equal if and only if their real
parts are equal and their imaginary parts are equal.

z:=2zyifandonly if X, = x, and y;, = y.

Addition of complex numbers z; = (X4, y1) and z, = (X», ¥») is defined by

1. 21+Zz=(X1’Y1)+(X2’y2)=(X1+X2’y1+y2)

Multiplication of complex numbers z; = (Xq, Y1) and z, = (X, Vo) IS
defined by

2. 2,2, =(Xy, yl)(XZ' Y2) :(X1X2 T VYo XYo +X2Y1)
We shall say more about these arithmetic operations and discuss

examples below, but we first want to introduce a much more convenient
form of writing them as points in the plane.
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3.1.1 Representationinthe Formz=x+1y

A complex number whose imaginary part is zero is of the form (x, 0).
For such numbers we simply have

(Xl’ 0)+ (Xz ' 0)= (Xl + Xy, 0)
and

(Xl’ 0)(X2 ' 0): (X1X2 '0)
as for the real numbers. This suggests that we identify (x, 0) with the
real number Xx. hence the complex number system is an extension of the
real number system.

The complex number (0,1) is denoted by i.
i—(0,)

and is called the imaginary unit. We show that it has the property.
3. iZ=-1
Indeed, from (2) we have
i2=(0.1)(0.1) =(-1,0) =-1futheremore, for everyreal ywe obtain from(2)
iy=(0,2)(y.0)=(0,y)
Combining this with the above x = (x, 0) and using (1), that is,
(x y)=(x,0)+(0.y),

We see that we can write every complex number z = (X, y) in the form

Z=X+1y
or z = x + yi. This is done in practice almost exclusively.

Example 4

Complex Numbers, their Real and Imaginary Parts

z=(4,-3)=4-3i, Re(4-3i) =4, lim(4-3i)=-3
-1 0-1 O 0-10 -1 0D-10
ZZE 000 = +0i Re+—1 =—, lim— =0
0— g — 0, 2o 2 O
2 ][] 2 [ 0
2=(0,m) =0+mi, Re(mi) =0, lim(mi) =n
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3.1.2 Complex Plane

This is a geometric representation of complex numbers as points in the
plane. It is of great importance in applications. This idea is quite simple
and natural. We choose two perpendicular coordinate axes, the
horizontal x — axis, called the real axis, and the vertical y — axis called
the imaginary axis. On both axes we choose the same unit of length (Fig.
4). This is called a Cartesian coordinate system. We now plot z = (X,
y) = X + iy as the point P with coordinates X, y. The xy — plane in
which the complex numbers are represented in this way is called the
complex plane or Argand diagram. Figure 5 shows an example.

Instead of staying “the point represented by z in the complex plane” we
say briefly and simply “the point z in the complex plane” this will cause
no misunderstandings.

Im_aginary A Y
axis —
y4 5 1 o1,
Z=X+iy | 5 X
|
-1 — |
|
-1 -2 :
|
| (Real -3 — N | 4_3;
" Xis -l
1 X
Fig.4 295: The Complex Plane Fig. 5: The number 4 - 3i in the

Complex Plane
3.1.3 Arithmetic Operations

We can make use of the notations z = x + iy and of the complex plane.
Addition of the sum of z, =x, +iy,and z, =x, + iy, can now be written

4. 4,12, =(X1 +iy1)+ (Xz + iyz)'
z,+2,=(x + %)+ (iy, +iy,)=(x +%,)+i(y, +y,)

Example 5
(5+i)+(1+3i)=(5+1)+ (i + 3i) =6+ 4i.

We see that addition of complex numbers is in accordance with the
“parallelogram law” by which forces are added in mechanics.
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Subtraction is defined to be the inverse operation of addition. That is the
difference z=z, - z,.

5. zl—zzz(x1 —x2)+i(y1—y2).

Example 6

(5+i)-(1+3i) =(5-1) + (i - 3i) = 4- 2i

Multiplication: The Product z;z, in (2) can now be written

6. 2,7, :(Xl + iY1)(X2 + iyz) =X (Xz + iyz) +1y, (Xz + iY2)

:(X1X2 _ylyz) + i(X1Y2 + Xzyl)
This is easy to remember since it is obtained formally by the rules of
arithmetic for real numbers and using (3), that is i* =-1

Example 7
(5+i)1+3i) =5+15i + i+3i° =2+16i

Division is defined to be the inverse operation of multiplication. That is,
the quotient z = z;, z, is the complex number z = x + iy for which

7. 2, =12z, =(x+iy)(x, +iy,) (z, = 0)

We show that for z, = Othequtotientz = x + iy = z,/z, is given by

8. Z CR, iy, — (X1+iy1 )(Xz B iYZ)

=
Z, X tiy, (X1+iYZ )(Xz - iyz)
where (x, —iy,) is the conjugate of

(Xz + iY2)

XX T VY, | i XY ~ XY,
2 2 2 2
X2 T Y3 X, T Y,

Example 8

If zz,=9-8iand z, =5 + 2i, then
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_45-18i - 40i -16 _ 29-58i
25 + 4 29
The reader may check this result by showing that

=1-2i.

2z, = L -2)5+2) =9-8 =z.
3.1.4 Properties of the Arithmetic Operations

From the familiar laws for real numbers we obtain for any complex
numbers z3, z,, Z3, Z the following laws (where z = x +iy):

Zy + Zy = Zy+ Zjeueannnenn commutative law of addition
2,Z, = 2,7 cereeeennenn...... COMmutative law of multiplication

3.1.5 Complex Conjugate Numbers

Let z = x + iy be any complex number. Then x — iy is called the
conjugate of z and is denoted by z , thus,

z= X+iy, z =X - iy.
Example 9

The conjugate of z=5+2i isz = 5 -2i.

y
* Z=X+1y =5+ 2i
=X+ =0+
2 —_—
| _X
5
-2 T Z=Xx-iy=5-2i
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Fig. 6: Complex Conjugate Numbers
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Conjugates are useful since zz = x> + y2is real, a property we have
used in the above division. Moreover, addition and subtraction yields
z +7=2x, z -z =2iy,s0 that we can express the real part and the
imaginary part of z by the important formulas.

10. Rez :x:%(z +E), Imz:y:%(z—g)

Example 10

If z = 6 - 5i, then we have z = 6 + 5i and from (10) we obtain
:%(6—5i +6+5i)=6 and

=i_(6—5i ~6-5i) :%(0—100
—lOI

2
z is real if and only if y = 0, hence z =z by (10).
z is said to be pure imaginary if and only if x = 0, hence z = -z. Then
working with conjugates is easy, since we have

11.

(2122) =

In this section we were mainly concerned with complex numbers, their
arithmetic operations and their representation as points in the complex
plane. The next section we shall discuss the use of polar coordinates in
the complex plane and situations in which polar coordinates are
advantageous.

3.2 Polar Form of Complex Number Powers and Roots

It is often practical to express complex numbers z = x + iy in terms of
polar coordinates r, 8, these are defined by:

1. X =rcosB, y=rsind
By substituting this we obtain the polar form of z,

2. z =rcos® +irsin® =r(cos® + isind)
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r is called the absolute value or modulus of z and is denoted by
|z] Hence

3. 2| =1 =X +y2=1/§
Geometrically, |z| is the distance of the point z from the origin (Fig. 7).

Similarly, [z, - z,|is the distance between z, and z, (Fig. 301).

0 is called the argument of z and is denoted by arg z. thus (Fig. 7).

4. B _argz-arctant (z2=0).
X

Geometrically, 6 is the directed angle from the positive x — axis to OP in
fig. 7. Here, as in calculus, all angles are measured in radians and
positive in the counterclockwise series.

2] =r
Imaginary axis
Z3
t y 4 2, -~z y 4 1+i
Y- P
: Z=X+1iy 11T
| m
o | R o Il o 4
X Real axis 1
Fig. 7: Complex Fig. 8: Distance between .
Plane, Polar Form of a  two points Complex Fig. 9: Example 1
Complex Number Number

For z = 0 this angle © is undefined. (Why?) For given z # 0 it is
determined only up to integer multiples of 2. The value of 8 that lies
in the interval — m < 8 < 1 is called the principal value of the argument of
z (# 0) and is denoted by Arg. z. Thus 8 = Arg z satisfies by definition.

-n <Argzsm.
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Polar Form of Complex Numbers Principal Value
Example 11

Letz=1+1(cf. Fig. 9). Then

z:ﬁgcos}ﬂsin %HH =J2, argz="+2nn (N=01, ........ 0.)

m
4

The principal value of the argument is arg z = m/4, other values are -
/4, 9m/4, etc.

Example 12

Let z = 3 +3i, thenz:6Dco% + isin%%, the absolute value of z is| 7 = 6,
0 0

and the principal value of arg z is Arg z = 11/3.

Caution! In using (4), we must pay attention to the quadrant in which z
lies, since tan 8 has period m, so that the arguments of z and —z have
the same tangent. Example: for 6, = arg (1+i) and 6, = arg (-1 — i)
we havetan©,= tan6,=1.

Triangle Inequality

For any complex numbers we have the importance triangle inequality
5. |z, + z,] = |z + |z, (Fig. 303)
Which we shall use quite frequently, this inequality follows by nothing

that

Yy A
21+ 2>

/ 4

v

Fig 10: Triangle Inequality
The three points 0, z; and z; + z, are the vertices of a triangle (fig. 10)

with sides |z,|, |z,| and |z, + z,|, and the side cannot exceed the sum of the
other two sides. A formal proof is left to the reader (Prob.45).
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Example 13

Ifz,=1+1iandz,=-2+ 3i, then

|2, + z,| =|-1+4i|=417 = 412322 + V13 = 5.020.

By induction the triangle inequality can be extended to arbitrary sums:

6. ‘zl+z2 + ot 2

s|21| +|22| + ot |Zn|;

That is, the absolute value of a sum cannot exceed the sum of the
absolute values of the terms.

3.2.1 Multiplication and Division in Polar Form
This will give us a better understanding of multiplication and division.

Let:
z, = r,(cos®, +ising, and  z, =r,(cosB, +ising,)

)
Then, by (6), sec. 12.1, the product is at first
2,2, =rr,[(cos®, cosB, —sind,sind,) + i(sind, cosd, + cosl,sinB2)].
The addition rules for the sine and cosine (6) in appendix 3.1) now yield
7. 2,2, = rrylcos(8, +8,) +isin(®, +6,)l

Taking absolute values and arguments on both sides, we thus obtain the
important rules

8. |2z =[2 [z
and
9. arg(z,z,)=argz, +argz, (uptomultiplesof 2n).

We now turn to division. The quotient z = 21 s the number z satisfying
ZZ
22, = 71. Hence |2z,| = |7| |z,| = |z,|.arg(zz,) =argz+ arg z, = arg z,.

This yield
10. % = Zz—l (z, #0)
2 2
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and

11. arg% =arg z, - arg z, (uptomultiples of 2r).
2

By combining these two formulas (10) and (11) we also have

12. & =:—1[cos(91 - 9,) +isin(6,-8,)l

ZZ 2
Example 13
Illustration of Formulas (8) — (11)

Let zz = -2+2i and z, = 3i.Then z,z,
=-6-6i,2,/2, =2/3+(2i/3)
and for the arguments we obtain Arg z; = 3n/4, Arg z, =T/2.

Arg z,z, = % = Argz, + Arg z, — 2n

Arg (zl/zz) :14 = Argz, - Arg z,
Integer power of z

From (7) and (12) we have
2> =r’(cos28 + isin28),
27 =r?[cos (-20) + isin(-20)]

and more generally, for any integer n,
13. 2" =r"(cosn® =+ isinng).
Example 14

Formula of De Moivre

For |z|=r = 1, formula (3) yields the so — called formula of De Moivre

(13*) (cosB +isin@)" = cosnB + isinnd.

This formula is useful for expressing cos n@ in terms of cos 8 and sin 6.
For instance when n = 2 and we take the real and imaginary parts on
both sides of (13*), we get the familiar formulas.
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cos28 =cos?’0 -sin%, sin20 = 2cosHsind.
3.2.2 Roots

If z=w" (n=1,2,...) then to each value of w there corresponds one value

of z, we shall immediately see that to a given z # O there correspond
precisely n distinct values of w. each of these values is called an nth root
of z, and we write:

14.  w=Yz.

Hence this symbol is multivalued, namely, n — valued, in contrast to the
usual conventions made in real calculus. The n value of.f z can easily be
determined as follows. In terms of polar forms for z and
w = R(cos ¢ +ising),
The equation w" = z becomes
w" = R"(cosng + isinng)=z=r(cose + isind)
By equating the absolute values on both sides we have
R" —r, thus R =¥/r
Where the root is real positive and thus uniquely determined. By
equating the arguments we obtain
6  2km

ng =06 + 2km, thus ¢ =— + —
n n

Where Kk is an integer. For k = 0,1, ..., n — 1 we get n distinct values of
w. further integers of k would give values already obtained. For
instance, k = n gives 2km/n = 2, hence the w corresponding to k =

0, etc. consequently, ¥z , for z # 0, has the n distinct values

+ 2k
15 n/ :”,/r[Dcose—Tr+isine+—2kTr% k:0,1,...n—1-
[ n n U

These n values lie on a circle of radius %r with center at the origin and
constitute the vertices of a regular polygon of n sides.

The value of %/z obtained by taking the principal value of arg z and
k = 0in (15) is called the principal value of w = %/z
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Example 15

Square Root

From (15) it follows that w =~/z has the two values

16a. w, = Jrico +isin2H
o2 2]
and
16b. W, :\/Fgcosm—e o+ isin:—e+nDD: - W,
0 0 0
0 02 o 02 “op

Which lie symmetric with respect to the origin. For instance, the square

root of 4i has the values /4i J_r2[cosiT + Isi :i(ﬁ +iﬁ)
0

%L‘I

4

From (16) we can obtain the much more practical formula

0g | O / [
17. NI F: lQZ|)+ x@+(sign y)i lQZ|—X)D
012 2 [

N

O
Where signy = 1 if y 20, signy = - 1 if y <0, and all square toots of

positive numbers are taken with the positive sign. This follows from
(16) if we use the trigonometric identities.

cos=0 = 1(1+cose)n sin19 = 1(1—cose).
2 2 2 2

Multiply them by +/r.

\/?cosie = 1 rrcoso ) \/?sinie = 1 r-rcoso )
2 2 2 2

Use r cos 8 = x, and finally choose the sign of 1m +/z so that sign

[(Re \/E)(lm \/?)] = sign y (why?).
Example 16

Complex Quadratic Equation
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Solve z* -(5+i)z+8 -i =0
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Solution

=%(5+i)¢l/%(5 +i) -8 —i :%(5+ i)il/—2+%i

B RN N IR
_2(5+|)i|/2é—2+( 2)) L +1|/2é—2 ( 2)%
Lgi)e 11,340
_2(5+|)i%2+2lﬁ

[3+2|

[Z—I

Example 17

Cube Root of a Positive Real Number

If z is positive real, then w =3/z has the real value ¥/r and the complex
values

, 2, . NEE
\/FDHCOSS— isin— deJZ I@

and Q/?Ecos?ﬂsm—% -J_E_l \/—
0

For instance ?{/izl,_—zl i%\/ﬁ (fig.304). These are the roots of the

equation w®=1.
Example 18

nth Root of Unity

Solve the equation z" = 1.
Solution

From (15) we obtain

18. {1 =c032—k7T + isinz—knzez“"”n k=01...,n-1.
n n
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If w denotes the value corresponding to k = 1, then the n values of

A can be written as 1, w, w?, ..., w"~ ', These values are the vertices of
a regular polygon of n sides inscribed in the unit circle, with one vertex
at the point 1. Each of these n values is called an nth root of unity. For

instance, 41 has the values 1, i, -1 and —i (Fig. 12 showsy 1). If w; is
any nth root of an  arbitrary complex number z, then the n values of
\z are Wy, WyW Wiwe L wpwtt

Multiplying w; by w* corresponds to increasing the argument of w; by

2km/n.
Y A
y 4 y a4

///—_§\\\ /// \\\

/ \ \
/ \ I \
) \ | \
| | | |
f ) > X » X f t
\\ 11 1 \\k\ /I 1
\ / /

\\\_-/// \\\ //
Fig 11. 31 Fig 12. 41 Fig 13. 31

The student should be familiar with the problems related to the polar
representation with particular care, since we shall need this
representation quite often in our  work. In the next section, we discuss
some curves and regions inthe ~ complex plane which we shall also
need in the chapters on complex analysis.

3.3 Curves on Regions in the Complex Plane

In this section we consider some important curves and regions and some
related concepts we shall frequently need. This will also help us to
become more familiar with the complex plane.

The distance between two points z and a is|z - 4 . Hence a circle C of
radius p and center at a (fig. 14) can be represented by;

1. z-a =p.

In particular, the so-called unit, that is the circle of radius 1 and center at
the origin a = 0 (fig. 308), is given by;

|z|:1.

Furthermore, the inequality

48



MTH 381 MATHEMATICAL 111

2. lz-al<p

holds for every point z inside C: that is, (2) represents the interior of C.
Such a region is called a circular disk or, more precisely, an open
circular disk, in contrast to the closed circular disk.

|z -4 <p.

This consists of the interior of C and C itself. The open disk (2) is also
called a neighborhood of the point a. Obviously, a has infinitely many
such neighborhoods, each of which corresponds to a certain value of p
(> 0); and a belong to each of these neighborhoods, that is a, is a point

of each of them.
Yy A

Yy A

1

»
o

X : .
i i i Fig 15. Unit Circl
Fig 14. Circle in the Complex Plane '9 nitLircle

Similarly, the inequality
lz-a| p.
represents the exterior of the circle C. Furthermore, the region between

two concentric circles of radii p; and p, (> p1) can be represented in the
form

3. p1<|z-a <p.

Where a is the center of the circles. Such a region is called an open
circular ring or open annulus (Fig. 16).

Yy 4 P2
o =~
Ve
AN
// — pl N\
/ / N \
/ \ \
\ [ l ]
/
\\ \\ a , /
\ ~N__7" /
N e -
\\\ _ - > X
Fig 16. Annulus in the Complex Plane
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Example 19

lar Disk

Determine the region in the complex plane given by |z -3+ i| <4.

Solution: the inequality is valid precisely for all z whose distance from a
= 3 — 1 does not exceed 4. Hence this is a closed circular disk of
radius 4 with center at 3 —1.

Example 20
Unit Circle and Unit Disk
Determine each of the regions

(@ |7<1 (b) |7 =1 (©)|z > 1.

Solution

(@)  The interior of the unit circle. This called the open unit disk.
(b)  Theunitcircle and its interior. This is called the closed ad disk.
(c)  The exterior of the unit circle.

By the (open) upper half we mean the set of all points z = x + iy such
that y > 0. Similarly, the condition y < 0 defines the lower half — plane,
x >0 the right half — plane and x < 0 the left half — plane.

3.3.1 Some Concepts Related to Sets in the Complex Plane

We finally list a few concepts that are of general interest and will be
used in our further work.

The term set of points in the complex plane means any sort of collection
of a quadratic equation. The points on a line and the points in the interior
of a circle are sets.

A set S is called open, if every point of S has a neighborhood consisting
entirely of points that belong to S. for example, the neighborhood
consisting entirely of points that belong to S. For example, the points in
the interior of a circle or a square form an open set, and so do the points
of the “right half — plane” Rez =x > 0.
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An open set S is said to be connected if any two of its points can be
joined by a broken line of finitely many straight line segments all of
whose points belong to S. an open connected set is called a domain.
Thus an open disk  (2) and an open annulus (3) are domains. An open
square with a diagonal removed is not a domain since this set is not
connected. (Why?).

The complement of a set S in the complex plane is defined to be the set
of all points of the complex plane that do not belong to S. A set is called
closed if its complement is open. For example, the points on and inside
the unit circle form a closed set (“closed unit disk™ cf. example 2) since
its complement  |z| > is open.

A boundary point of a set S is points every neighbourhood of which
contains both points that belong to S and points that do not belong to S.
For example; the boundary points of an annulus are the points on the
two bounding circles.

Clearly, if a set S is open, then no boundary point belongs to S; is
closed, and then every boundary point belongs to S.

A region is a set of a domain plus, perhaps, some or all of its boundary
points. (The reader is warned that some authors use the term “region”
for what we call a domain (following the modern standard terminology)
and others make no distinction between the two terms.)

So far, we have been concerned with complex numbers and the complex
plane (just as at the beginning of calculus, one talks about real numbers
and the real line). In the next section, we start doing complex calculus:
we introduce complex functions and derivatives. This will generalise
familiar concepts of calculus.

SELF ASSESSMENT EXERCISE 1

Determine and sketch the sets represented by

1. |z-2i|=2 2. 1s|z+1-i[s3
3. Re(?)s1 4. |argz|<"Z
5. -n<Imzsn 6. 1 <1
z
7. ”1:1‘ 8. “3" -1
z-1 Z -l
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22 +1S
47 -4

1 10.  zz+(+2i)z+@1-2i)z +1 =0.

3.4 Limit, Derivative and Analytic Functions
The functions with which complex is concerned are complex functions
that  are differentiable. Hence, we should first say what we mean by a

complex function and then define the concepts of limit and derivative in
complex. This discussion will be quite similar to that in calculus.

3.4.1 Complex Function

Recall from the calculus that a real function f defined on a set S of real
numbers (usually an interval) is a rule that assigns to every x in S a real
number f(x) called the value of f at x.

Now in complex, S is a set of complex numbers. And a function f
defined on S is a rule that assigns to every z in S a complex number w,
called the value of f at z. write

w= f(z2)

Here z varies in S and is called a complex variable. The set S is called
the domain of definition of f.

Example 21

w= f(z)= z* + 3z is a complex function defined for all z; that is, its
domain S is the whole complex plane.

The set of all values of a function f is called the range of f.
W is complex, and we write w = u + iv, where u and v are the real and

imaginary parts, respectively. Now w depends on z = x + iy. Hence u
becomes a real function; of x and y, and so does v. We may thus write:

w= f(z) =u(xy) + iv(xy)

This shows that a complex function f(z) is equivalent to a pair of real
functions u(x,y) and depending on the two real variables x and y.
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Example 22

Function of a Complex Variable

Letw =f(z) = z* +3z. Finduandvandz =2 -i.
Solution

u=Re f(z) =x* +y>+3xandv=2xy + 3y, also,
fA+3i) = L+ 3i) +301+3i)=1-9+6i +3+09i =-5+15i

This shows that u(1,3) =-5 and v (1,3) = 15, similarly.
f2-i)= (2-i) +3@2 -i)=4i +6 -3 =9 -7i.

Example 23

Function of a Complex Variable

Let w= f(z) = 2iz +6z..Find u and v and the value for fat z =% + 4i

Solution f (2) = 2i(x +iy) + 6(x—iy)
gives
u(x,y)=6x-2y andv(x,y) = 2x — 6Y.
Also

] []
(A2 +4PT2iB—l + 411 +6- -4 =i-8+3-24i =-5-23i

O
02 O 02 O p2

Limit, Continuity

A function f(z) is said to be limit | as z approaches a point z, written

L lim(f @-=1

1—17y

YA A vV

—_————
- —-——

X
Fig 17: Limit
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If f is defined in a neighborhood of 7 (except itself) and if the values of
f are “close” to | for all z “close™ to z ; that is, in precise terms, for every
positive real € we can find a positive real 9 such that for z=z,in the
disk |z-z, | < & (Fig.310) we have

2. |ft@ -l<g

That is, for every z=z, in that the value of f lies in the disk (2).

Formally, this definition is similar to that in calculus, but there is a big
difference. Whereas in the real line, here, by definition, z may approach
zo from any direction in the complex plane. This will be quite essential
in what follows.

If a limit exists, it is unique. (Cf. Prob. 30)
A function f(z) is said to be continuous at z = z, if f(z,) is defined and

3. lim f(z) = f(z,).

77

Note that by the definition of a limit this implies that f(z) is defined in
some neighbourhood of z,.

f(z) is said to be continuous in a domain if it is continuous at each point
of this domain.

3.4.3 Derivative

The derivative of a complex function f at a point z, is written f (z,)
and is defined by

f(z, + A7) - f(z,)
Az

4. f'(zy) = AIzirﬁn0

provided this limit exists. Then f is said to be differentiable at z,. if we
write Az =z - z,we also have

@) f(2)= lim 1@ - 1z)

Z—»ZO Z—ZO

Remember that this definition of a limit implies that f(z) is defined (at
least) in a neighborhood of z,. Also by that definition, z may approach z,
from any direction. Hence differentially at z, means that, along whatever
path z approaches zy, the quotient in (4’) always approaches a certain
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value and all these values are equal. This is important and should be
kept in mind.

Example 24
Differentiability Derivatives

The function f(z) = z° is differentiate for all z and has the derivative
f'(z) =2z Dbecause

2 —
f=lim 7T "2y,

Az

The differentiation rules are the same as in real calculus, since their
proofs are literally the same. Thus,
of = (f4g) =1 +g () =fg+fg, | =19 1
: g
R gf

As well as the chain rule and power rule (z") =nz"* (n integer) hold.
Also, if f (z) is differentiable at zq. It is continues s at z,. (Cf. Prob. 34).

Example 25
z not differentiable

It is important to note that there are many simple functions that do not
have a derivative at any point. For instance, f (z) =z =x —iyis such a
function? Indeed, we write Az = Ax + iAy,wehave

; f+ar)- () _(r+ae)-z_ Az _ Mx-iny
' Az Az A7 AX + iAy.

but -1 along path I11. Hence, by equation of (5) at Az — 0does not exit at
any z.

This example may be surprising, but it merely illustrates that
differentiability of a complex function is a rather serve requirement.

The idea of proof approach form different directions is based and will be
discussed again in the next section.
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Z +l1z

XV

Fig. 18: Pathsin (5)

3.4.1 Analytic Functions

These are the functions that are differentiable in some domain, so that
we can do “calculus in complex.” They are the main concern of complex
analysis. Their introduction is our main goal in this section;

Definition (Analyticity)

A function f(z) is said to be analytical in a domain D if f(z) is defined
and differentiable at all points of D. The function f(z) is said to be
analyticata pointz =z, in D if f(z) is analytic in a neighbourhood (cf.
sec. 12.3) of z,.

Also, by analytical function we mean a function that is analytical in

some domain.

Hence, analytical of f(z) at z, means that f (z) has a derivative at every
point in some neighbourhood of z, (including z, itself since, by
definition, z, is a point of all its neighbourhood). This concept is
motivated by the fact that it is of no practical interest when a function is
differentiable merely at a single point z, but not throughout some
neighbourhood of z,. Problem 28 gives an example.

An older term for analytical in D is regular in D, and a more modern

term is holomorphicin D.

Example 26
Polynomids Rational Functions

The integer power 1, z, Z% ... and more generally, polynomials, that is
function of the form

f(z)=c,+C,z+C,z° +...C 2"

Where ¢; and i=1,2,3.... are complex constants, are analytical in the
entire complex plane. The quotient of two polynomials g(z) and h(z).
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t(2)-92)
h(z)
is called a rational function. This f is analytic except at the points where
h(z)= 0 here we assume that common factors of g and h have been
cancelled partial fractions

_°
(z- Zo)m
(c and z, complex, m is a positive integer) are special rational functions,
they are analytic except at z,. It is in algebra that every rational function

can be written as a sum of a polynomial (which may be 0) and finitely
partial fractions.

(c#0)

The concepts discussed in this section extend familiar concepts of
calculus. Most important is the concept of an analytic function. Indeed,
complex analysis is concerned exclusively with analytic functions and
although many will yield a branch of mathematics, that is most beautiful
from the theoretical point of view and most useful for practical
purposes.

Before we consider special analytic functions (exponential functions,
cosine, sine etc.) let us give equations by means of which we can readily
decide whether a function is analytic or not. These are the famous
Cauchy-Riemann equation, which we shall discuss in the next section.

3.5 Cauchy - Riemann Equations

We shall now derive a very important criterion (a test) for the analyticity
of a complex function.

w=f(z)=u(x,y)+i(x,y).

Roughly, f is analytic in a domain D if and only if the first partial
derivatives of u and v satisfy the two equations

1. u, =u, u, = -Vv,.

Everywhere in D, here u, =94/, u, :3%y and similarly for u and

u,which are the usual notations for partial derivatives. The precise

formulation of this statement is given in Theorem 1 and 2 below. The
equation (1) is called the Cauchy - Riemann equations. They
are the most important equations in the whole unit.
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Example 27
f(z) =z* = x* - y® + 2ixy is analytic for all z, and
u=x* -y?and v=2xy

Satisfy (1), namely, u, =2x=v, and u, = -2y=-v, more examples will
follow.

3.5.1 Theorem 1 (Cauchy Riemann Equations)

Let f(z) = u(x,y) + iv(x,y) be defined and continuous in some
neighbourhood of a point z = x + 1y and differentiable at z itself. Then at
the point, the first — order partial derivatives of u and v exist and satisfy
the Cauchy Riemann equations (1).

Hence if f(z) is analytic in a domain f (z) at z exists. It is given by (1) at
all points of D.

Proof
By assumption, the derivative f’ (z) at z exists. It given by

2 1= lim 122210

Az—0 Az
The idea of the proof is very simple, by the definition of a limit in
complex (cf. sec. 12.4) we can let L1z approaches zero along any path in
a neighbourhood of z. Thus, we may choose the two paths | and 11 in fig.
312 and equate the results. By comparing the real parts we shall obtain
the first Cauchy Riemann equation and by comparing the imaginary
parts we shall obtain the other equation in (1). The technical details are
as follows.

We write L1z = LIx +illy. In terms of u and v, the derivative in (2)
becomes

3 () = [l (x+Ax, y+Ay) +iv(x+Ax, y+ Ay - [u (x,y) +iv(x y)]
: (z) = lim el
= X +IAy

We first choose path I in fig. 312. Thus we let
Ay —0 first and then Ax —0.
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Z +l1z

Fig. 19: Paths in (2)

After Lly becomes zero, L1z = LIx. then (3) becomes, if we first write the
two u — terms and then two v-terms.

£ ()= lim YO AR Y)mu(xy) e VXA y)-v(x y)
AXx—0 AX AX—0 AX

Since f°(z) exists, the two real limits on the right exist. By definition,
they are the partial derivatives of u and v with respect to x. hence the
derivative f* (z) of f(z) can be written

4. f'(z) =u +iv,

Similarly, if we choose path Il in fig 312, we let Ax—Ofirst and
then Ay —0. After LIx becomes zero, L1z = iLly, so that from (3) we now
obtain

u(x,y+Ay)—u(x,y) - v(x,y+Ay)—v(x,y)
IAy Ay—0 IAy

r@=lm,

Since f’(z) exists, the limits on the right exist and yield partial
derivatives with respect to y; noting that 1/i = -i, we obtain:

5. f'(z) ==iu, +v,

The existence of the derivatives f (z) thus implies the existence of the
four partial derivatives in (4) and (5). By equating the real parts u, and
vy in (4) and (5) we obtain the first Cauchy — Riemann equation (1).
Equating the imaginary part yields the other. This proves the first
statements of the theorem and implies the second because of the
definition of analyticity.

Formulas (4) and (5) are also quite practical for calculating derivatives
f (), as we shall see.
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Examples 28
Cauchy — Riemann Equations

f (z)=z%is analytic for all z. it follows that the Cauchy — Riemann
equations must be satisfied (as we have verified above).

For f(z)=z =x-iy we have u = X, v = -y and see that the second
Cauchy-Riemann equation is satisfied, u,= - v, = 0, but the first is not:
u, =1#v,=-1.We conclude that f (z)=zis not analytic, confirming
example 4 of sec. 12.4. Note the savings in calculation!

The Cauchy — Riemann equations are fundamental because they are not
only necessary but also sufficient for a function to be analytic. More
precisely, the following holds.

Theorem 2 (Cauchy — Riemann Equations)
If two real — valued continuous functions u(x,y) and v(x,y) of two real
variables x and y have continuous first partial derivatives that satisfy the

Cauchy — Riemann equations in some domain D, then the complex
function f(z) =u(x,y) + iv(x, y)isanalytic in D.

The proof of this theorem is more involved than the previous proof;
Theorems 1 and 2 are of great practical importance, since by using the
Cauchy — Riemann equations we can now easily find out whether or not
a given complex function is analytic.

Example 29

Cauchy — Riemann Equations

Is f(z) = Z° analytic?

Solution

We find u = x* - 3xy and v = 3x?y and v = 3x?y — y°. next we calculate
Uy = 3X, — 3y, v, = 3x° - 3y

Uy = -6XY, Vy = BXY

We see that the Cauchy — Riemann equations are satisfied for every z,
hence f (z) = Z° is analytic for every z, by theorem 2.
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Example 30
Determination of an Analytic Function with given Real Part

We illustrate another class of practical; that can be solved by the Cauchy
— Riemann equations.

Find the most general analytic function f(z) whose real part is
3
u=x" -y —x.

Solution

We have u, = 2x — 1 = v, by the first Cauchy — Riemann equation. This
we integrate with respect to y;

v=2xy =y +k(x).
As an important point, since we integrated a partial derivative with
respect to y, the “constant” of integration k may depend on the other

variable, X. (To understand this, calculate v, from the v.) and the second
Cauchy — Riemann equation.

u, =-Vv, =-2y + —
’ dx

On the other hand, from the given u = x> — y* — x we have u, = -2y. By
comparison, dk/dx = 0. Hence k = constant, which must be real. (Why?).

The result is

f(z) =u+iv=x®-y?-x+i(2xy - y+Kk).

We can express in terms of z, namely, f(z) = 22 - z + ik.

Example 31

An Analytic Function of Constant Absolute Value is Constant

The Cauchy - Riemann equations also help to establish general
properties of analytic functions.

For example, show that if f (z) is analytic in a domain D and |f (z)|=k=
constant in D, then f(z) = constant in D.
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Solution

By assumption, u® +v? =k’ by differentiation.
uu, - vu, =0. uu, +w, =0.

From this and the Cauchy — Riemann equations.
6. @ uu, —uu, =0. (b) uu, +uu, =0

To get rid of uy, multiply (6a) by u and (6b) by v and add. Similarly to
eliminate uy, multiply (6a) by — v and (6b) by u and add. This yield.

(u2 +V2)JX =0. (u2 +V2)Jy =0.

If K> =u®+Vv? =0, then u = v, hence f = 0. if k » 0, thenu, =u, =0,
hence by the Cauchy — Riemann equations, also v, =v, = 0.together,
u = constant and v = constant, hence f = constant.

If we use polar form z = r(cos 0 + isin 8) and set
f(z) = u(r, 8), then the Cauchy — Riemann equations are

1 -1
=2, and v, =—u,
r r

The derivative can then be calculated from

8a.  f'(2)=(u, +iv, )(cosB —isin@)
or from

8b. ' (2)=(v, —iu, )(cosd —isin®)/r.
Example 32 Cauchy — Riemann equations in polar form

let f (z)=2°=r>(cos30 +isin3)

Thenu=r®cos30,v=r®sin30

By definition,
u, =3r?cos30, V, =3r®cos30,
v, 3r’sin30, Uy =3r’sin30

We see that (7) holds for all z =0.this confirms that z* is analytic for all
z =0.(and we know that it is also analytic at (z = 0). From (8b) we
obtain the derivative as expected.
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f " (2)=3r?(cos38 +isin39)(cosO —isinB)=3z2.
Laplace’s Equation: Harmonic functions

One of the main reasons for the great practical importance of complex
analysis in engineering mathematics results form the fact that the real
part of an analytic function f = u + iv satisfies the so — called
Laplace’s equation.

2,0 —
9. Viu=u,, +tu, =0.

(V % read “nabla squared”) and the same holds fort the imaginary part

10. Viv=v, +v, =0.
y

Laplace’s equation is one of the most equations in physics, occurring in
gravitation, electrostatics, fluid flow, etc. (cf. chaps. 11, 17) let us
discover why this equation arises in complex analysis.

Theorem 3 (Laplace’s Equation)

If f(z) = u(x,y) + iv(x,y) is analytic in a domain d, then u and v satisfy
Laplace’s equation (9) and (10) in d and have continuous second partial
derivatives in D.

Proof:

Differentiating ux = vy with respect to x and u, = v, with respect to y,
we obtain

11. Uy =V Uy, ==Yy,

Now the derivative of an analytic function is itself analytic, as we shall
prove later (in sec. 13.6). This implies that u and v have continuous
partial derivatives of all orders; in particular, the mixed second
derivatives are equal; vyx = Vy,. By adding (11) we thus obtain (9).
Similarly, (10), is obtained by differentiating uy = v, with respect to y
and uy = -v, with respect to x and subtracting, using Uy, = Uyx.

Solutions of Laplace’s equation having continuous second — order
partial derivatives are called harmonic functions and their theory is
called potential theory (cf. also sec. 11.11). Hence the real and
imaginary parts of an analytic function are harmonic functions.
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If two harmonic functions u and v satisfy the Cauchy — Riemann
equations in a domain d, they are the real and imaginary parts of an
analytic function f in d. Then v is said to be a conjugate harmonic
function of u in d. (of course this use of the word “conjugate” has
nothing to do with that employed in definingz, the conjugate of a
complex number z).

A conjugate of a given harmonic function can be obtained from the
Cauchy — Riemann equations, as may be illustrated by the following
example.

Example 33
Conjugate Harmonic Function

Verify that u=x*-y?-yis harmonic in the complex plane and find a
conjugate harmonic function of v of u.

Solution

Veu=0 by direct calculation. Now u, =2xandu, ==2y-1.hence a
conjugate v of u must satisfy

X

V=u, =2X, v, =-u, =2y +1.

Integrating the first equation with respect to y and differentiating the
result with respect to x, we obtain.

v=2Xxy +h(x), V, =2y +—

A comparison with the second shows that dh/dx = 1. This gives h(x) = x
+ C. hence v=2xy+x+c(canyreal constant) is the most general conjugate
harmonic of the given u.

The corresponding analytic function is
f(z)=u+iv=x?-y?—y+i(2xy +x+c)=z% +iz +ic.

The Cauchy — Riemann equations are the most important equations in
this  chapter. Their relation to Laplace’s equation opens wide ranges
of engineering and physical applications, as we shown in chapter 17. In
the remainder of this chapter we discuss elementary functions, one after

the other, beginning with e* in the next section. Without knowing these

functions and their properties we would not be able to do any useful

practical work. This is just as in calculus.
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3.6 Exponential Function

The remaining sections of this chapter will be devoted to the most
important elementary complex function, logarithm, trigonometric
functions, etc we shall see that these complex functions can easily be
defined in such a way that, for real values of the independent variable,
the functions become identical with the familiar real functions. Some of
the complex functions have interesting properties. Which do not show
when the independent variable is restricted to real values. The student
should follow the consideration with great care, because these
elementary functions will be frequently needed in applications.

We begin with the complex exponential function also written as one of
most important analytic functions. The definition of e” in terms of the
real functions €* cos y and sin y is €= e*(cos y + sin y). This definition
is motivated by requirement that make e” a natural extension of the real
exponential function e*, namely.

(@) e’ should reduce to the latter when z = X s real;
(b) € should be an entire function, that is analytic for all z, and
resembling calculus, its derivative should be

2. (e)'=¢

from (1) we see that (a) holds, since cos 0 = 1 and sin 0 = 0. that e is
easily verified by the Cauchy-Riemann equations. Formula (2) then
follows from (4) that

(€)' = (e’ cos y), + i(e* sin y), = e* cos y + ie* siny=e”

e” has further interesting properties. Let us first show that, as in real, we
have the functional relations

3 ell+22 _ eZIZZ

For any

Zy =X +1y; and z, = x, +iy,, indeed, by (1).

= exl(cos y, +isiny,)e*(cosy, +isin yz)

Since e*e* =e™ +e™ for these real functions, by an application of the

addition formulas for the cosine and sine functions (similar to that in
sec. 12.2) we find that this equals

31, 7, +12,

e —e*(cos(y, +y,)+isin(y, +y,))=e
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As asserted. An

4, ‘e‘y‘=|cosy+isin y|=]/cos2 y+sin®y=1.

That is, for pure imaginary exponents the exponential function has
absolute value one, a result the student should remember. From (7) and

),

5. e’| =e*.Hence arg e’ = y+2nn (n=012, )
since |e*|=e”*.shows that (1) is actuallye*in polar form.
Example 34

Illustration of Some Properties of the Exponential Function

Computation of values from (1) provides no problem. For instance,
verify that

e"470% = ¢'*(c0s 0.6 ~ i 5in 0.6) = 4.055(0.825 - 0.565i) = 3.347 — 2.290),
"4 0% =€ =4.055,  Arge** =-0.6.

Since cos 2n =1and sin2n = 0, we have from (5)

6. e’ =1

Furthermore use (1), (5) or (6) to verify these important special values:
7. eP_ji, e'=-1, e"P=-j, e =-1

To illustrate (3), take the product of

e?' =e?(cosi +isin1) =e*"e*(cosl-isinl)
and verify that equals

e?e*(cos?1+sin?1) =eb =040,

eZ

Finally, conclude frome*|=e* = 0in (8)that

8. e* =0forall z

So here we have an entire function that never vanishes, in contrast to
(non-constant) polynomials, which are also entire (Example 5 in
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Sec.2.4) but always have zero, as is proved in algebra. [Can you obtain
(11) from (3) ?]

Periodicity of e¢*with period 2ni,

9. e’ —e* allz

Is a basic property that follows from (1) and the periodicity of cosy and
siny. It also follows from (3) and (9).] Hence all the values that w =¢*
can assume are already assumed in the horizontal strip of width 2n .
10, -n<ysn

This infinite strip is called a fundamental region of e*.

Example 35

Solution of an Equation

Find all solution of e* =3+ 4i

Solution

e*|=e*=5x=1In5=1.609is a real part of all solutions. Furthermore,

sincee* =5,

e*cosy=3 e*siny=4, cosy = 0.6, siny = 0.8, y =0.927.

Fig. 20: Fundamental Region of the Exponential Function e* |
in the z-plane

Ans.z=1.609 +0.927i £ 2nni  (n=0.2, ). These are infinitely many

solutions (due to the periodicity ofe?). They lie on the vertical line
x=1.609 at a distance 2n from their neighbours.

To summarise: many properties of e* =expz parallel to those of e*; an

exception is the periodicity of e*with 2#i, which suggested the concept
of a fundamental region and causes the periodicity of cosz and sinz with
the real period 2n , as we shall see in the next section. Keep in mind that

e’ is an entire function. (Do you still remember what that means?)
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3.7 Trigonometric Functions, Hyperbolic Functions

Just as e‘extendse*to complex, we want the complex trigonometric
functions to extend the familiar real trigonometric functions. The idea of
making the connection is the use of the Euler formulae.

eX =cosx+isinx, e ™ =cosx-isinXx.
By addition and subtraction we obtain

cosx:%(eiZ +e7™), sinx:%(eiZ -e™) x real
i

This suggests the following definitions for complex values z = x + iy

1. cos z =£(eiZ +e7?), Sinz=i_(eiz —e).
2 2i

Furthermore, in agreement with the definition from the real calculus we
define

' oS z
2. tan2=&, COtZZ_—
oS 7 sinz
and
1 1
3. secz=——, cosecz = ——,
oS z sin z

Sincee’is entire, cosz and sinz are entire functions. Tanz and secz are
not entire; they are analytic except at the point where cosz is zero; and
cotzand csczare analytic except, where sinz=0. Formulas for the
derivatives follows readily from (e*)'=e*and (1)-(3); as in calculus,

4, (cosz)' =-sinz, (sinz)"=cos z, (tan z)" =sec? z,
etc. Equation (1) also shows that Euler’s formula is valid in complex:

5. e”? —cosz+isinz for all z.

Real and imaginary parts of cosz and sinz are needed in computing
values, and they also help in displaying properties of our functions. We
illustrate this by typical example.
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Example 36
Real and Imaginary Parts. Absolute VValue. Periodicity
Show that

(@  cosz=cosxcoshy—isinxsinhy

6. (b)  sinz=sinxcoshy+icosxsinhy
and
7. (@  |coshz|” = cos? x+sinh? y

(b)  |sinhz|” =sin? x+sinh? y
And give some application of these formulas.

Solution

From (1)

cosz =%(e‘0x+iy L eT1em)y
_1. . " N
_Ee (cosx+|smy)+Ee (cosx - isiny)

:l(ey +e77)cos x —li(ey -e”’)sinx.
2 2
This yields (6a) since, as is known from calculus,
1 - . 1 ;
8. coshy=—2(ey +e™), smhy:E(ey -e”);

(6b) is obtained similarly. From and cosh? y =1+sinh® y we obtain
|cos|2 =c0s” X(1+sinh? y) + sin® x + sinh? y.

Sincesin® x + cos® x =1, this gives (7a), and (7b) is obtained similarly.
For instance, cos(2 + 3icos2cosh 3 -isin 2sinh 3 =-4.190 -9.109i .

From (6) we see that cosz and sinz are periodic with period 2n , just as
in real. Periodicity of tan z and cot z with period~ now follows.

Formula (7) points to an essential difference between the real and the
complex cosine and sine: whereas |cosx|<1and sin} <1 the complex
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cosine and sine functions are no longer bounded but approach infinity in
absolute value as y — =, since sinh y — .

Example 37

Solution of Equations. Zeros

Solve

(@) cosz =5 (which has no real solution),
(b) cosz=0

(c) sinz=0

Solution

(@) e°” -10e” +1=0from (1) by multiplication by e". This is a
quadratic equation in e”, with solution (3D-values)

e” =e V"™ 5+ ,/25-1=9.899 and 0.101.
Thus e™¥ =9.8990r0.101,e™ =1,y = +2.292, X = 2nn

Ans. Z=%2nn +2.292i(n=0,12, ), can you obtain this by
using (6a)?

(b)  cosx=0, sinhy=0,by (7a), y =0.
Ans. z=%1(2n+ln (n=012, ).

(c) sinsx =0, sinhy=0,by (7b), y =0.
Ans. z=2nmn (n=012, ).

Hence the only zeros of cosz and sinz are those of the real cosine and
sine functions.

From the definition it follows immediately that all the familiar formulas
for the real trigonometric functions continue to hold for complex values.

We mention in particular the addition rules

cos(z, +z,)=C0SZz,C0SZ, +Sinz,sinz,
sin(z, = z,) =sinz, cosz, +Sin z, COS Z,
and the formula
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10.  cos®z+sin®z=1.
Some further useful formulas are inclined in the problem set.
HYPERBOLIC FUNCTIONS

The complex hyperbolic cosine and sine are defined by the formulas

11. |coshz=7 (e’ +e7"), sinhz=1(e"-e™).

This suggested by the familiar definition for the real variable. These
functions are shown below, with derivatives

12.  (coshz)'=sinhz, (sinh z)' = cosh z,
as in calculus. The other hyperbolic functions are defined by
tan2=m, coth2=m,
cosh z sinh z
13.  sechz= 1 , cschz = ! ,
cosh z sin zh

Complex trigonometric and hyperbolic functions are related
If in (11), we replace z by iz and use (1), we obtain

14. coshiz =cos z, sinhiz =isin z,

From this, since cosh is even and sinh is odd, conversely

15. cosiz = cosh z, siniz =isinh z,

Apart from their practical importance, these formulas are remarkable in
principle. Whereas in real calculus, the trigonometric and hyperbolic
functions are of a different character, in complex these functions are
intimately related. Moreover the Euler formula relates them to the
exponential function. This situation illustrates that by working in
complex, rather than in real, one can often gain a deeper understanding
of special functions. This is one of the three main reasons of the
practical importance of complex analysis, mentioned at the beginning of
this chapter.
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In the next section we discus the complex logarithms, which differ
substantially from the real logarithm (which is simpler), and the student
should work the next section with particular care.

4.0 CONCLUSION

To this end, we conclude by giving a summary of what we have
covered.

5.0 SUMMARY
For arithmetic operations with complex number

1. Z=X+iy=re” =r(cosd +ising),

r=|z/=4/x*+y?, 8 =arctan(y/x), and for their representation in
the complex plane, see Sec 2.1 and 2.2

A complex function f(z)=u(x,y) +iv(x, y)is analytic in domain
D if it has a derivative.

2. ()= limZrA = 1@
Az—0 AZ
Everywhere in D. Also, f(z)is analytic at a point z = z,if it has a

derivative in a neighbourhood of z, (not merely at z, itself).
If f(z) is analytic in D, then u(x, y)and v(x, y)satisfy the (very
important!) Cauchy-Riemann equations (Sec. 2.5).

ou _ov u__ov

3. —=—, — ==
ox oy oy oxX
everywhere in D. Then uandvalso satisfy Laplace’s equation

4. Uy +U, =0, Vy +V,, =0
everywhere in D . If u(x, y) and v(x,y) are continuous and have
continuous  partial derivatives in D that satisfy (3) in D, then
f(z) =u(x,y)+iv(x,y) is analytic in domain D .Sec. 2.5 the
complex exponential function (Sec. 2.6)

5. e’ =expz=e‘(cosy+isiny)

is periodic with2ni, reduces toe* when z=x(y=0)and has the
derivative e*. The trigonometric functions are (Sec.2.7)

1 . 4 .. .
coszzz(e'Z +e ) =cosxcoshy —isinxsinhy

1 . 4 . . .
coszzz(e'Z +e ") =sinxcoshy —icosxsinhy
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Vi.

Vil.

viii.

Xi.

Xil.

Xiil.

XiV.

XV.

XVI.
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tanz =(sinz)/cos z,cotz =1/tan z, etc.

TUTOR-MARKED ASSIGNMENT

Let z, =3+4iand z, =5-2i
Find in the form x + iy
@ (-2, ) %4,

Show that z is pure imaginary if and only if z=-z.

. _ (3+4i)*
Find; (@) [L-i|° (b) e
Represent in polar form
/2 _
@ V44 ON
Determine the principal value of the arguments of
(8) -2+2i (b) 1-iv3

Represent in form x + iy
ooom Trl% 1 3. 3]
(8) 4-cos—  +Isim/50 I cos— +isin—

0
2 217 11 4 4
Determine and sketch the sets represented by
(@ |z-2i=2 (b) zZ+@+2i)z+(@-2i)+1=0

Find f(2+i), f(-4+i) where f(z)equals
@ 32+z () @

(z-1)
If f(z)is differentiable atz,, show that f (z) is continuous at z, .

Prove the product rule [f(z)g(z)] = f'(2)g(z) + f(2)9'(2)

Avre the following functions analytic?

(@ f(2)z* (b)  f(z2)e*(cosy +isiny).

Let v be a conjugate harmonic of u in some domain D. Show that
then h=u? —v?is harmonic in D.

Derive the Cauchy-Riemann equations in polar form equation
from equation 1.

Using the Cauchy-Riemann equations, show thate*is analytic for
all z.

) when z equals

Compute e*(in the form (u +iv) and [e*

@ n-il2 (b —1—77"‘

2 2
Show that u =¢” cos%i2 —%% is harmonic and find a conjugate.
O 0
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xvii. Prove that cosz,sin z,cosh z, and sinhzare entire functions.

xviii. What is the idea that led to the Cauchy-Riemann equations?

xix.  State the Cauchy-Riemann equations from memory.

xX.  What is an analytic function? Can a function be differentiable at a
point z, without being analytic at z,.
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UNIT 2 INTEGRATION OF COMPLEX PLANE
CONTENTS
1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1 Line Integral in the Complex Plane
3.1.1 Definition of the Complex Line Integral
3.1.2 Existence of the Complex Line Integral
3.1.3 Three Basic Properties of Complex Line Integral
3.2  Two Integration Methods
3.2.1 Use of the Representation of the Path
3.2.2 Indefinite Integration
3.2.3 Bound for the Absolute Value of Integrals
3.3 Cauchy’s Integral Theorem
3.3.1 Cauchy’s Integral Theorem
3.3.2 Independence of Path, Deformation of Path
3.3.3 Cauchy Theorem for Multiple Connected Domains
3.4  Existence of Indefinite Integral
3.5  Cauchy’s Integral Formula
3.6  Derivative of Analytic Functions
3.6.1 Moreras’s Theorem
3.6.2 Liouville’s Theorem
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading
1.0 INTRODUCTION

In this unit we defined and explained complex integrals.

fundamental result in the whole unit is Cauchy’s integral theorem.
implies, the importance of Cauchy integral formula.

We prove that if a function is analytic, it has derivatives of all orders.
Hence, in this respect, complex analytic functions behave much more

simply than real-valued functions of real variables.

Interpretation by

means of residues and applications to real integrals will be considered in
Module 3.
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2.0 OBJECTIVES

At the end of the unit, you should be able to:

- in applications there occur real integrals that can be evaluated by

complex integration, whereas the usual methods of real integral
calculus are not successful and

- some basic properties of analytic function can be established by
integration, but would be difficult to prove by other methods. The

existence of higher derivatives of analytic functions is a striking
property of this type.
3.0 MAINCONTENT
3.1 Line Integral in the Complex Plane
As in real calculus, we distinguish between definite integrals, and
indefinite integrals or ant derivatives. An indefinite integral is a
function whose derivative equals a given analytic function in a region.
By inverting known differentiation formulas we may find many types of
indefinite integrals.

We shall now define definite integrals, or line integrals, of complex
function f (z), where z = x + iy as follows;.

Path of Integration

In real calculus, a definite integral is taken over an interval (a segment)
of the real line. In the case of a complex definite integral we integrate
along a curve C in the complex plane, which will be called the path of
integration.

Now a curve C in the complex plane can be represented in the form

z(t) = x(t) + iy(t) (ast<h) 1)
wheretis a real parameter. For example,

z(t) =t + 3it O0<t<2)

represent a portion of the line y = 3x (sketch it!),

z(t) = 4cost + 4isint (m<t<m)

represent the circlez| = 4, etc. (More example below)
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C is called a smooth curve if C has a derivative

x(t) = % = x(t) +ig(t)

at each of its points which is continuous and nowhere zero.
Geometrically this means thatC has a continuous turning tangent. This
follow directly from the definition

Z(t + At) — z(t)

x(t) = lim

At—0 At

Fig. 21: Tangent vector z(t) of a curve C in the complex plane
given by z(t). The arrow on the curve indicates the
positive sense (sense of increasing t).

3.1.1 Definition of the Complex Line Integral

This will be similar to the method used in calculus. LetC be a smooth
curve in thez-plane represented in the form (1). Let f(z)be a
continuous function defined (least) at each point of C. We subdivided
(“partition”) the interval ~ (a<t<b)in (1) by points of

'y
Zm —1 m P
jazm] .
[ ]
Z

24

Fig. 22: Complex Line Integral

LEat, - Lt (=D)
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Where t,<t,<t,. To do this subdivision there corresponds a
subdivision of C by points

2o, 2y 2y, 4,(5 2),
wherez; = z(t;). On each portion of subdivision of Cwe choose an
arbitrary point, say, a point& between z,andz, (that is, & =z(t) )
wheret satisfiest, <t <t,, a point&, betweenz,andz, (thatis, & =z(t) )
wheret satisfiest, <t <t , a point&,between z andz,etc. Then we form
the sum

Sn = f(&m) (2)
m=1
where
Az, =z, ,-z,— 1
This we do for each n=12,3, - in a completely independent manner,
butin such a way that the greatest |az, |approaches zero as n approaches

infinity. This gives a sequence of complex numbers S,,S,, --. The limit
of these sequence is called the line integral (or simply the integral) of
f (z),along the oriented curve C and is denoted by

. f(z)dz 3
The curveC is called the path of integration. C is called a closed path if
z=1,, thatis, if its terminal point coincides with its initial point.

(Example: a circle, a curve shaped like an 8, etc.) Then also writes

9. instead of [

Examples follow in the next section.
General Assumption
All path of integration for complex line integral will be assumed to be

piecewise smooth, that is, to consist of finitely many smooth curves
joined end to end.

3.1.2 Existence of the Line Integral

From our assumption that f (z) is continuous and C is piecewise smooth,
the existence of the line integral (3) follows, as in the previous chapter
let us write f(z) =u(x,y)+iv(x,y). We also set
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&, =¢, +in,and Az =Ax_ +iAy,

then (2) may be written
S, => (u+iv)(ax, +iAy,) (4)

Where u=u(,,n,)andv=v(,,n,)we sum over m froml to n. We
may now splitup S, into four sums:

S, = STUAX, — S VAY, +i[S uAy, + S VAX, ]

These sums are real. Since f is continuous, uandvare continuous.

Hence, if we letnapproach infinity in the aforementioned way, then the
greatest ax,and ay, will approach zero and each sum on the right

becomes a real line integral:
lims, = J f(z)dz = J'Cudx I vdy + i[Ic udy + IchX] 5)

This  shows that under our  assumption ( f continuous
on C,and C, piecewise smooth) the line integral (3) exist and its value is

independent of the choice of subdivisions and intermediate pointsg ..

3.1.3 Three Basic Properties of Complex Line Integrals

We list three properties of complex line integrals that are quite similar to
those of real definite integrals (and real line integrals) and follow
immediately from the definition.

Integration is a linear operation, that is, a sum of two (or more) functions

can be integrated term by term, and constant factors can be taken out
from under the integral sign:

f. Ik, f,(z) + k, f,(2)Hz = k1£ f,(z)dz + k2£ f,(z)dz (6)

]

/-’_\"\EL}
Z

0

Fig. 23: Subdivision of Path (Formula (7)

Decomposing C into two portionsC,andC, (Fig), we get
. f(z)dz = I, f(z)dz + I, f(z)dz @)
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3. Reversing the sense of integration, we get the negative of the
original value:
IZ f(z)dz = - IZ" f(2)dz (8)

here the pathCwith endpointz,andZis the same; on the left we
integrate from z,toZ , on the right fromz,toZ .

Applications follow in the next section and problems at the end of it.

3.2 Two Integration Methods

Complex integration is rich in methods for evaluating integrals. We
discuss first two of them, and others will follow later in this chapter.

3.2.1 First Method: Use of Representation of the Path
This method applies to any continuous complex function.
Theorem 1 (Integration by the use of the path)

Let C be a piecewise smooth path, represented by z = z(t),
wherea <t <b Let f(z) be a continuous function on C. Then

[ f@)- Ibf[z(t)]z(t)dt Ci _de (1)
c a dt

Proof

The left-hand side of (1) is given by (5), Sec, 13.1, in terms of real
integrals, and we show that the right-hand side of (1) also equals (5).

We havez=x+iy, hencez-=x+ig. We simply write u for
ulx(t), y(t)landvfor v[x(t), y(t)].We also havedx = xdt anddy = ydt .
Consequently, in (1),

I: flz(t)]z(t)dt = I:J (U +i1v)(x+1y)dt
=1 [udx —vdy +i(udy + vdx)],

Which is the right-hand side of (5), as claimed.
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Steps in applying Theorem 1

Represent the pathC in the formz(t) a<t<b

Calculate the derivative z(t) = dzjdt

Substitute z(t) for everyzin f(z)(hence x(t) for x and y(t) for y)
Integrate f [z(t)]z(t) overtfrom atob

Example 1

A Basic Result: Integral of1Jz around the unit circle

Show that

7 a2z, (C the unit circle, clockwise) (2)
C

Z

The important result will be frequently needed.
Solution

We may represent the unit circle Cin the form
zft) = cost + isintz (O<t<2n).

So that the counterclockwise integration correspond to an increase
oftfrom 0 to 2~ . By differentiation,

x(t) = -sint +icost

Also f[z(t)]= % . Formula (1) now yields the desired result
z

Z ZTT - -
? g = — (-sint +icost)dt
7 cost +1sint
C 0

. 2n
:IL dt
= 2ni

The Euler formula helps us to save work by representing the unit circle
simply in the form

z(t) = e"
Then
ﬁe_it, dz = ieitdt.
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As before, we now get more quickly

dz 2n oy . o2n
L =k eie” =iy dt
=2ni.
Example 2

Integral of Integer Powers

Let f(z) =(z-z,)" where misan integer and z,is a constant.
Integrate in the clockwise sense around the circleC of radiusp with
centre atz,

Solution
We may represent the unit circle Cin the form
2(t) = z, + p(cost +isint) = z, + pe'z (0=t =<2n).

Then we have
m . imt

(z-2z,)" =p"e™, dz = ipe"dt,
and we obtain

9(z-2,)"dz = Jjn p"e™dt

C

_ Iznei(m+l)tdt.
0

By the Euler formula (5), the right-hand side equals
i 2“;1% cos(m+ 1)t + iIZ"sin(m +1)tH,
0 0 Ny
When m=-1,we havep™" =1,co0s0 =1,sin0 = 0and thus obtain 2ni. For

integer m # 1 each of the two integer is zero because we integrate over an
interval of length 2ni , equal to a period of sine and cosine. Hence the
result is

g@-z)nd= 2 M

10 (m#-land integer). (3)

Let us now illustrate the following important fact. If we integrate a
function f (z), from a pointz,to a pointzalong different path, we

generally get the values of the integral. In other words, a complex line
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integral generally depends not only on the end point of the path but also

on the geometric shape of the path.
Example 3
Integral of Non-analytic Function

Integrate f (z) = xfrom 0 to 1.
along C”in fig. 325 below.
along C consisting ofC,andC,.

Solution

a. C’can be represented by z(t) =t +it (0<t <1). Hence
E(t) = +i and flz(t)]=x(t) =1 (onC").

We now calculate

[ Rezdz = [ t(L+ i)dt
1 .
=—(1+1).
2( +i)
b. C, can be represented by z(t) =t (0<t<1). Hence

it)=1 and flz(t)]=x(t) =1 (onC,).
C, can be represented by z(t) =t +it (0=t <1). Hence

it)=1 and flz(t)]=x(t) =1 (onC,).
Using (7) , we calculate
R yA
1= :
MZ=1+1
/
/
« 7
Ci/ AGC
//
> // (21

»
> 1 >

Fig. 24 Path in Example 2 Fig. 25. Path in Example 3

ICRe zdz = ICRe zdz + J'CRe zdz = Ioltdt + Ioll‘ tdt
1

=—+I

Note that this result is differ from the result in (a).
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3.2.2 Second Method: Indefinite Integration

In real calculus, if for given f(x) we know anF(x)such that
F'(x) = f(x),

then we can apply the formula

( f()dx = F(b) - F(a)

This method extends to complex functions. We shall see that it is
simpler than the previous method, but, of course, we have to find an
F (z) whose derivative F‘(z) equals the given function f (z) that we want
to integrate. Clearly, differentiation formulas will often helps us in

finding such an F (z), so that this method becomes of great practical
importance.

Theorem 2 (Indefinite Integration of Analytic Functions)

Let f(z)be analytic in a simply connected domainD. Then there exists
an indefinite integral of f(z)in the domainD, that is, an analytic
function F(z)such that F'(z) = f(z)inD, and for all path in D joining
two pointz, andz,in Dwe have

4. I f (x)dz = F(z,) - F(z,) [F'(2) = f(2)]

(Note that we can writez,andz,instead ofC, since we get the same
value for all those C fromz,and z, ).

This theorem will be proved by using Cauchy’s integral theorem which
we discuss in the next section...

Example 4

i i

Il 2dz ~22) "

0 3 [0

=1(1+i)3:—3+3i
3 3 3

Example 5

i . T[i
[ cos zdz =sinz
=l

ml

= 2sinni = 2isinhn = 23.097i

83



MTH 381

MODULE 2

Example 6

8-3n
ePdz =2e
8+3ni 8+ 3
= 2(64—3ni|2 — e4+3ni|2)
=0
Since e* is periodic with period 2ni.

8-3ni

3.2.3 Bound for Absolute Value of Integrals

There will be a frequent need for estimating the absolute value of
complex line integrals. The basic formula is

6. ‘Icf(z)szML (ML -inequality);
here L is the length of C and M a constant such that

| f(z)| = M everywhere on C.

Proof:

We consider S, as given by (2). By the generalized triangle inequality
(6), we obtain

1S, == FEn)AZ,| S | F )AL,
m=1 m=1
< M£|Azm|.
m=1

Now Az, is the length of the chord whose end points arez,_,andz,.

Hence the sum on the right represents the length L of the broken line of
the chord whose endpoints arez,,z,, : - * ,z,(n If n approaches

infinity in such a way that the greatest|Azm approaches zero, then

L approaches the length L of the curve C , by the definition of the
length of a curve. From this the inequality (6) follows.

We cannot see for (6) how close to the bound ML the actual absolute
value of the integral is, but this will be no hardship in applying (6). For
the time being we explain the practical use of (6) by a simple example.

Example 8

Find a upper bound for the absolute value of the integral
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. z2%dz, C the straight-line segment from 0 to 1+i

Solution

L =~/2and|f(z)| = |2°| = 20n C gives by (6)
<22 =2.8284

‘ngdz

The absolute value of the integral is

2. 2] 2
-£+Zi=£42=0.9428
‘ 3] 3

3

In the next section we discuss the most important theorem of the whole
chapter, Cauchy’s integral theorem, which is the basic in itself and has
far reaching consequences which we shall explore, above all the
existence of all higher derivatives of an analytic function, which are
themselves analytic functions.

3.3 Cauchy’s Integral Theorem

Cauchy’s integral theorem is very important in complex analysis and has
various theoretical and practical consequences. To state this theorem, we
shall need the following concepts.

A closed path C is called a simple close path if C does not intersect or
touch itself (see diagram below). For example a circle is simple, an
eight- shaped curve is not.

A domain D in the complex plane is called a simply connected domain
if every closed path in D encloses only points of D. A domain that is not
simply connected is called multiply connected.

For instance, the interior of a circle (“circular disk™), ellipse or square is

C DTS

Simple Simple Not simple Not simple
Fig. 326. Closed paths
simply connected. More generally, the interior of a simple closed curve
is simply connected. A circular ring or annulus is multiply connected

(more precisely: doubly connected). The figure below shows further
examples.
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Simply Simply Doubly Triply
connected connected connected connected

Fig. 27: Simply and Multiply Connected Domain
Recalling that, by definition, a function is a single-valued relation, we

can  now state Cauchy’s integral theorem as follows. This theorem is
sometimes also called the Cauchy-Gaursat theorem.

3.3.1 Cauchy’s Integral Theorem

If f(z)be analytic in a simply connected domainD, then for every
simple close path C in D,

1. [ f(z)dz=0

Proof

If we make assumption —as Cauchy did- that the derivative f’(z)of
f (z) is continuous in D (existence of f ’(z) in D being a consequences of
analyticity), then Cauchy’s theorem follows from a basic theorem on
real

Fig. 28: Cauchy’s Integral Theorem

line integrals (proof below). Goursat finally proved Cauchy’s theorem
without the assumption that f ’(z) is continuous (optional proof at the end
of this chapter). Before we go into details, let us consider some example
in order to really understand what is going on.
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We mention that a closed path is sometimes called a contour and an
integral over such a path a contour integral.

Example 9

Icezd2=0, Iccoszd2=0 Icz”dz =0 (n=01 ")

For any closed path, since these functions are (analytic for all z).

Example 10
Iseczd2=0, | az =0
22+ 4
C C 1
where C is the wunit circle.secz=—— is not analytic

COSZ
atz=1n2,£3:]2,, - but all these points lie outside C ; none lie on C.

Similarly for the second  integral, whose integrand is not analytic at
z = +2ni outside C.

Example 11

J'CZdZ = 2ni

(C the unit circle, counterclockwise) does not contradict Cauchy’s
theorem, since f (z) =z is not analytic, so that the theorem does not
apply. (Verify this result!)

Example 12

dz
.[cz_z =0,
where C is the unit circle. This result does not follow from the Cauchy’s

theorem, because f(z) =—12 is not analytic atz = 0. Hence the condition
z

that f be analytic in D is sufficient rather than necessary for (1) to be
true.

Example 13
dz .
IC? = 2Tr|,
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The integration being taken around the unit circle in the clockwise
sense. C lies in the annulus %<|z|<g where 1 s analytic, but this
z

domain is not simply connected, so that Cauchy’s theorem cannot be
applied. Hence the condition that the domain D be simply connected is
quite essential.

Example 14

[ 7Z_6dz [ rz- 6dz-j dz + idz=3- 2ni+0
2~ 2y 2(z- 2) [z-2

C C C C

= 6mi
(C the unit circle, counterclockwise) by partial fraction reduction.

Cauchy’s proof under the condition that f‘(z) I continuous
From (5) we have

J. f(z)dz = (udx - vdy) + § (udy + vdx).

Since f (z)is analytic in D, its derivative F’(z) exists in D. Since F'(z)is
assume to be continuous, (4) and (5) in previous section imply that u
and v have continuous partial derivatives in D. Hence Green’s theorem
with u and —v instead of F, and F, is applicable and gives

[ (udx —vdy) = HD— \)i— dedy
where R is the region bounded by C. The second Cauchy-Rieman
integration shows that the integrand on the right is identically zero.
Hence, the integral on the left is zero. In the same fashion it follows by

the use of the first Cauchy-Rieman equation that the last integral in
the above formula is zero. This complete Cauchy’s proof.

3.3.2 Independence of Path, Deformation of Path
We shall now discuss an important consequence of Cauchy’s integral
theorem that has great practical interest, proceedings as follows. If we

subdivided the path, C in Cauchy’s theorem into two arcs C and C,,
then (1) takes the form

(2) g fdz+p fdz=0
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"

Cy
2g 22

C
2 c,

Fig. 29: Formula (2°) Fig. 30: Formula (2)

If we now reverse the sense of integration alongC7, then the integral
over C,is multiplied by -1. Denoting C;with its new orientation
byC,, we thus obtain from (6°) .

2 Icz f(z)dz =J'C1 f(z)dz.

Hence, if f it is analytic in D, C,and C,are any path in D joining two
points in D and having no further points in common, then (2) holds.

If those paths C, and C,have finitely many points in common, then (2)
continues to hold. This follow by apply previous result to the portion
of C,and C, between each pair of consecutives point of intersection.

If it is even true that (2) holds for any paths that join ant points
z,and z,and lie entirely in the simply connected domain D in

which f (z)is analytic.

To express this we may say that the integral of f(z)is independent of
path in D. (Of course the value of the integral depends on the choice
ofz,andz,.)

The proof may require additional consideration of the case in which
C,andC, have infinitely many points of intersection, and is not

presented here.

We may imagine that the pathC,in (2) was obtained fromC,by a
continuous deformation. It follows that in a given integral we may
impose a continuous deformation on the path of integration (keeping the
endpoint fixed); as long as we do not pass through a point
where f (z) is not analytic, the value of the integral will not change
under such deformation. Thisis often called the principle of
deformation of path.
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Fig. 31: Paths having finitely Fig. 32: Continuous
Many Intersections Deformation of Path

Fig. 33: Unit Circle and Path C

Example 15

Ic$= 2ni, (Counterclockwise integration) now follow from example
z

(1), for any simple closed path C whose interior contains 0.The figure
above gives the idea: first deform ABE continuously into the
path AA'B'E'E. The heavy curve in the figure shows the resulting
deformed path. Then deform EEGAA’and E'G'A’.

There is more general systemic approach to problem of this kind, as we
shall now see.

3.3.3 Cauchy Theorem for Multiple Connected Domains

A multiplys connected domain D* can be cut so that the resulting
domain (that is, D* without the point of the cut or cuts) become simply
connected.

For doubly connected domain D* we need one cut C (figure below).If

f (z)is analytic in D* and at each point of C,andC,then, sinceC,,C,and
C bound a simply connected domain, it follows from Cauchy’s theorem
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that the integral of f taken overC,, C,C, in the sense indicated by the

arrows in the figure has the value zero. Since we integrate along Cin
both directions, the corresponding integrals cancel out, and we obtain

(3% f. f(z)dz [, f(z)dz=0

where one of the curve is traversed in the counterclockwise sense and
the other in the opposite sense. Reversing the sense of integration on one
of the curves, we may write this

C

Fig 34: Doubly Connected Domain Fig. 35: Pathsin (3)

3. [ f(z)dz + 1, f(z)dz

where curve now traversed in the same sense (the figure above). We
remember that (3) holds under the assumption that f (z) is analytic in the
domain bounded by C,andC,and at each point of C,andC,.

Can you see how the result in Example (7) now follows immediately
from our present consideration?

For more complicated domains we may need more than one cuts, but the

basic idea remains the same as before. For instance, for the triply
connected domain in figure below,

[. f(@dz+( f(z)dz+ f(z)dz=0

where C,and C,are traversed in the same sense and C,is traversed in the
opposite sense.
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Fig. 36: Triply Connected Domain
Example 16
From (3), Example 2, it now follows that

o 2ni(m =-1)
g, (2= 29)"dz = _
—0(m # —1and integer)

For counterclockwise integration around any simple closed path
containing z, in its interior.

In the next section, using Cauchy integral theorem, we prove the
existence of indefinite integrals of analytic functions. This will also
justify our earlier method of indefinite integration.

Fig. 39: Problem 29
3.4 Existence of Indefinite Integral
This section includes an application of Cauchy’s integral theorem. It

relates to Theorem 2 in section 3.2 on the evaluation of line integrals by
indefinite integration and substitution of the limits of integration:

1. Izzlf(z)dz =F(z,)-F(z,) [F'(z) = f(2)]

Where F(z)is an indefinite integral of f(z), that is F'(z)=f(z), as
indicated.

In most applications, such aF(z)can be found from differentiation
formulas.
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Theorem 1 (Existence of an Indefinite Integral)

If f(z)is analytic in a simply connected domain D, then there exists an
indefinite integral F(z)of f(z)in D, which is analytic in D joining two
points z,andz,in D, the integral of f(z) fromz,andz, can be evaluated
by formula (1).

Proof

The conditions of Cauchy’s integral theorem are satisfied. Hence the
line integral of f (z)from z,in D to any z in D is independent of path in

D. We keep z,fixed. Then this integral becomes a function of z, which
we denote by F(z):

2. F@)- f f(z")dz".

We show that this F(z) is analytic in D and that F’(z) = f(z). The idea of
doing this is as follows. We form the differential quotient

F(z+Az)-F(z) _ 122 IMZ Yz -
- = z
Az Azt (7 )dz tz

0 Zy

=L
- AZ IZO !

Subtract f (z) from it and show that expression obtained approaches zero
asAz — 0; this is done by using the continuity of f(z). We now give the
details.

Fig. 38: Path of Integration

We keep z fixed. Then we choosez + Az in D. This is possible since D is
a domain; hence D contains a neighbourhood of z. See figure above.
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The segment we use as the path of integration in the previous formula.
We now subtract f (z). This is a constant, since z is kept fixed. Hence

(@) = 1(2) LMZ dz" = f(2)Az.

Thus
)=+ "t (@de’
)= — Z)dz
Azl

This trick permits us to write a single integral:
F(z+Az)-F(z) _ _ 1 n _ .
~ f(z)= b [f(z))- f(z2)lz

f (z) s analytic, hence continuous. An e>0 being given, we can thus find
a & >0such that
\f(z*)—f(z)\<e when \z*—z\<a

Consequently, letting |Az| <3 , we see that the ML-inequality yields

|F(z+A7)-F(2)
Az

<l laz| = €;
|47

1 Z+Az * -
- f(z)‘ = M‘Lo [f(z") - f(2)dz
that is, by the definition of a limit and of the derivative,

F'(z) = lim

F(z+Az7)-F(z) _ £(2)
Az '

Since z is any point in D, this proves that F(z) is analytic in D and is an
indefinite integral or antiderivative of f(z)in D, written

F(z) = f f (z)dz.

Also, if G'(z)=f(z), thenF'(z)-G'(z)=0in D; henceF(z)-G(z)is
constant in D. That is, two indefinite integrals of f (z). This proves the
theorem.

See section 3.2 for examples and problems on indefinite integration.
The theorem in this section followed from Cauchy’s integral theorem. A
much more fundamental consequence is Cauchy’s integral formula for

evaluating integrals over close curves, which we discuss in the next
section.
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3.5 Cauchy’s Integral Formula

The most important consequences of Cauchy’s integral theorem is
Cauchy’s integral formula. This formula is useful for evaluating
integrals (see example below). More importantly, it plays a key role in
providing the surprising fact that analytic function have derivative of all
orders (see section 3.6), In establishing Taylor series representations and
so on. Cauchy’s integral formula and its conditions of validity may be
stated as follows.

Theorem 1 (Cauchy’s Integral Formula)

Let f(z)is analytic in a simply connected domain D. Then for any
pointz,in D and any simple closed path C in D which encloses z,(fig.
below),

1. ? Iz = 2nif (2,) (Cauchy’s integral formula)
cz- Z, °

The integration being taken in the counterclockwise sense.
Proof

By addition and subtraction, f(z)= f(z,)+[f(z)- f(z,)}. We insert this
into (1) on the left and can take constant factor f(z,) out from under the
integral sign. Then

dz_, 1@-1@),

2. —d =f(z +
Tz—z : (O)Tcz—zo %o -1,

The first on the right hand equals f(z,) 2ni(see Example 8 in sec. 3.3,

with m=-1). This proves this theorem, provided the second integral on
the right is zero. This is what we are now going to show. It’s integrand
Is analytic, except atz,. Hence by the principle of deformation of path

(sec. 3.3) we replace C by a small circle K of radiusp and centre z,

(figure below), without altering the value of the integral. Since f (z)is

analytic, it is continuous. Hence, an e>0 being given, we can find
ad >0 such that

1f(2) - f(z,) <e forall zinthe disk |z-z,|<3
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i -

Fig. 39: Cauchy’s Integral Fig. 40: Proof of
Formula Cauchy’s  Integral Formula

Choosing the radius p of k smaller thans , we thus have the inequality

€
<

‘f(z)— f(2) g,
P

z-1,

At each point of k. The length of k is 2mp .Hence by ML-inequality in
sec. 3.2,

f(z) - f(z,)
K z-1,
Since e(>0) can be choosing arbitrarily small, it follows that the last
integral on the right-hand side of (2) has the value zero, and the theorem
is proved.

dz <%21'rp = 2me.

Example 17

Cauchy’s Integral Formula

VA

9 dz = 2ne’ = 2ne?
cz-2 72=2

For any contour enclosing z, = 2 (sincee’is entire), and zero for any
contour for which z, = 2 lies outside (by Cauchy’s integral theorem).

Example 18

Cauchy’s Integral Formula

2° -6 2°-3
gy =g — =iz -3]
c2z-i c2z-1i z=if2
:%—6rri (z, = tiinsideC).
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Example 19
Integration Around Different Contour

7% +1
Z) =
9(2) ——

in the counterclockwise sense around a circle of radius 1 with centre at
the point

a. z=1 (b) 4

N =

() z=-1+3, (d) z=i.

Solution

To see what is going on, locate the point where g(z) is not analytic and
sketch them along with the contours (figure below) . These points are -1
andl1. We see that (b) will give the same result as (a), by the principle of
deformation of path. And (d) gives zero, By Cauchy’s integral theorem.
We consider (a) and afterward (c).

Herez, =1, sothatz-z, =z -1in (1). Hence we must write

z22+1 72 +1., 1 7’ +1
7) = = : thus f(z2)= ,
0@ =5" =) @=5

(b)
Fig. 41: Example 3

Looking back, we point to a chain of basic results. The beginning was
Cauchy’s integral theorem in sec. 3.3. From it followed Cauchy’s
integral formula (1) in this section. From it follows the existence of all
higher derivatives of an analytic function, in the next section. This is the
probably the most exciting link of our chain. From it follows in the
Taylor series for analytic functions.
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3.6  Derivative of Analytic Functions

From the assumption that a real function of a real variable is once
differentiable, nothing follows about the existence of derivatives of
higher order. We shall now see that from the assumption that a complex
function has a first derivative in a domain D, there follows the existence
of derivative of all orders in D. This means that in this respect complex
analytic functions behave much more simply than real functions that are
once differentiable.

Theorem 1 (Derivative of Analytic Function)

If f(z)is analytic in a domain D, then it has derivatives of all orders in
D, which are then also analytic function in D. The value of these
derivatives at a pointz,in D are given by the formulas

1 f@
2ni ¢ (Z - 20)2

@) fz)=

@) ) s

and in general

z

W) e o, S (n-12, )

here C is any simple closed path in D that encloses z,and whose full

interior belongs to D; And we integrate counterclockwise around
C(figure below).

Comment
For memorizing (1), it is useful to observe that these formulas are

obtained formally by differentiating the Cauchy formula (1), Sec. 3.5,
under the integral sign with respect to z,.

Proof of Theorem

We prove (1) .
We start from the definition

f (Zo +Az) - f (Zo)
Az

) = i
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On the right we represent f (z, + Az)and f(z,)by Cauchy’s integral
formula (1), sec. 3.5; we can combine the two integrals into a single
integral by taking the common denominator and simplifying the
numerator (where z - z,drops out and only f (z)az remains):

f(z, +Az) - f(z,) 1 0O f(z f(z) , U
0 DI SEPI () @)
Az 2niAz 1€ 2-(g +A2) cz-z,

1 f(z)

- 2nilAz fe (z-z,-Az)(z2-2,)

Fig. 42: Theorem 1 and its Proof

Clearly, we can now establish(l’) by showing that, as Az — 0,the
integral on the right approaches the integral in (1). To do this, we

consider the difference between these two integrals. We can write this
difference as a single integral by taking the common denominator and
simplifying. This gives

f(2) _ f(2)
fe (z-1z, —Az)(z—zo)dZ c(z-12,)°
f(z)

~f (z-z,-Az)(z-12,)

We show by ML-inequality (Sec. 3.2) that this difference approaches
zero asAz —0,.

Being analytic, the function f (z)is continuous on C , hence bounded in
absolute value, say, |f(z)| < K. Let d be the smallest distance fromz,to

the points of C(see fig. below). Then for all zjon C,
2-2,| 2 d?,

hence
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1 <i‘
|z—zo|2 ~d?

Furthermore, if |Az| < dJ2, then for all z on C we also have
|2-2,— 1z 29, hence v sg

2 z-2,-477  d
Let L be the length of C. Then by ML-inequality, if Az|< d |,

P ) dz‘<K|Az|Ei
C(z-2, ~N2)(z~-2,)°

This approaches zero as Az — 0, Formula (') is proved.

Note that we used Cauchy’s integral formula (1), Sec. 3.5, but if all we
had  known about f (z,) is the fact that it can be represented by (1),

Sec. 3.5, our argument would have established the existence of the
derivative f'(z,)of f(z).This is essential to continuation and

completion of this proof, because it implies that (1") can be proved by
similar argument, with f replaced by f ', and that the general formula (1)
then follows by induction.

Example 20
Evaluation of Line Integrals

From (1') , for any contour enclosing the point ni (counterclockwise)

? ﬁdz = 2ni(cos z) .
c(z-mi)? =l

= 2nisinnl = 2n Sinhn

Example 21

From (1") , for any contour enclosing the point -1(counterclockwise)

?ﬂdz- mi(z* -3z° +6) )
¢ (z+i)° ==

=ni[l2z* -6]__, = -18ni
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Example 22

By (@), for any contour for which 1 lies inside and+2i lie outside
(counterclockwise),

’

e’ et [
a-07az+a  2tea =
0
o dz = 2ni ]
e’ (z° +4)-e*2z
= 2ni
(z% +4)? z=1
_eni _ 5 os0i
25

3.6.1 Moreras’s Theorem

If f(z)is continuous in a simply connected domain D and if

2. 7. f(z)dz=0
for every closed path in D, then f (z)is analytic in D.

Proof

In sec.3.4 it was shown that if f (z)
F(z) = LZ f(2")dz"

is analytic in D and F’(z) = f(z). In the proof we use only the continuity
of f(z)and the property that its integral around every close path in D is
zero; from the assumptions we concluded that F(z)is analytic. By
theorem 1, the derivative of F(z)is analytic, that is f(z)is analytic in D,
and Morera’s theorem is proved.

Theorem 1 also yields a basic inequality that has many applications. To
get it, all we have to do is to choose for C in (1) a circle of radius r and
centrez,and apply ML-inequality (Sec. 3.2); with |f(z)=M]|on C we

obtain from (1)
n! 1

dzl<—M n
2n rn+

n!
‘f(”)zo‘ =_"
2n

f(2)

c )Z _ Zo)n+l

This yields Cauchy’s inequality
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I
3. ‘f(n)Zo‘sn'M.
rn

To gain first impression of the importance of this inequality, let us prove
a famous theorem on entire functions (functions that are analytic for all
z; cf.Sec. 2.6)

3.6.2 Liouville’s Theorem

If an entire function f (z)is bounded in absolute value for all z,
then f (z) must be a constant.

Proof

By assumption, |f(z)|is bounded, say, |f(z)| <K for all z. Using (3), we
see that f'(z0)|< K /r.Since this is true for every r, we can take r as
large as we please and conclude that f ‘(z,) =0. Sincez, is arbitrary,
f'(z)=0for all z, and f (z) is a constant.

This completes the proof.

This is the end of section on complex integration, which gave us a first
impression of the methods that have no counterpart in real integral
calculus. We have seen that these methods result directly or indirectly
from Cauchy’s integral theorem (Sec.3..3) More on integration follows
in the next section.

In the next section, we consider power series, which play a great role in
complex analysis, and we shall see that the Taylor series of calculus

have a complex counterpart, so thate*, cosz,sinzetc. have Maclaurin
series that are quite similar to those in calculus.

4.0 CONCLUSION

In conclusion, we state that if a function is analytic, it has derivative of
all orders.

5.0 SUMMARY

The complex line integral of a function f(z)taken over a path Cis
donated by (sec. 3.1)

& f(z)dz or, if Cis closed, also by 9. f(z)dz.
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Such an integral can be evaluated by using the equation z=z(t) of C,
where a<t=<b (se. 3.2):

L t@dz=( o)) i &0
c a dt

As another_method, if f(z) is analytic (sec.2.4) in a simply
connected domain D, then there exists an F(z)in D such
thatF'(z) = f (z)and for every path C in D from a point z,to a

pointz, we have

2. I f(z)dz=F(z,) - F(z,) [F'(z2)=f(2)].
Cauchy integral theorem states that if f(z)is analytic in as
simply connected domain D, then for every closed path C in D

3. 7. f(z)dz =0.
If f(z)is as in Cauchy’s integral theorem, then for anyz, in its
interior we have Cauchy integral formula

_ 1 f(2)
4, f(ZO)—ﬁPCZ_;ZOdZ.

Furthermore, then f (z) has derivative of all orders in D that are
themselves analytic functions in D and (sec. 3.6)

6.0 TUTOR-MARKED ASSIGNMENT

I. Show that ?Cg = 2ni (C the unit circle clockwise)
z
ii. Evaluate Tcezdz by the method in theorem 1 and compare the
result by method in theorem 2.
(C is the line segment from 0 tol1 + %I)

iii. For what contour C will it follow from Cauchy’s theorem that

@) ]»Cd—zzzo, (b) ?(Zf_z) 42=0?
iv. Evaluate the following integrals

(a) LZi (z? -1)°dz (b) E Z cos zdz
V. State and prove Morera’s theorem
Vi. State and prove Liouville’s theorem
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1.0 INTRODUCTION

Since there are various methods of determining the coefficients of a
Laurent series, without using the integral formulas. We intend (may) use
the formula for b, for evaluating complex integrals in a very elegant and

simple fashion.b, will be called the residue or f(z)at z=z,.The

powerful method may also be applied for evaluation certain real
integrals, as we shall see in section 3.3 and 3.4 of module 3 and unit 1.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
- determine and explain Residue

- use Residue to evaluate integrals and

- show that the Residue integration method can be extended to the
case of several singular points of f(z)inside C.
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3.0 MAINCONTENT

3.1 Residues

Let us first explain what a residue is and how it can be used for
evaluating  Integrals

9 f (z)dz.

C

There will be counter integral taken around a simple closed path C.
If f(z)is analytic everywhere on C and inside C, such an integral is zero

by Cauchy’s integral theorem and we are done.

If f(z)has a singularity at a pointz = z;inside C, but is otherwise
analytic on C and inside, then f (z) has a Laurent series
” b b
f(z)=sa,(z-z,)" +——+—"2—+
R N
That converges for all points nearz = z, (exceptat z = zitself), in some
domain of the form 0<|z=z,/<R. Now comes the key idea. The

coefficient b, of the first negative power of this Laurent series is

]
given by the integral formula, with n=1, that is,

1
b, =Ec f (2)dz,

Since we can obtain Laurent series by various methods, without using
the integral formulas for the coefficients, we can find b, by one of these

methods and then use the formula for b, for evaluating the integral:

L g, f(2)dz = 2nib, .
Here we integrate in the counterclockwise sense around the
simple closed path that contains z = z,in its interior.
The coefficient b, is called the residue of f(z)at z =z and we
shall denote it by

2. b, = Res f(2)
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Examplel
Evaluation of an Integral by Means of a Residue

Integrate the function f(z)=z"*around the unit circle C in the
counterclockwise sense.

Solution

We obtain the Laurent series thus:

Which converges for [z[>0 (that is for all z = 0).) This series shows
that f (z) has a pole of third order atz=0and the residue of f(z)at

z=0ish, = 141,

From (1) we thus obtain the answer

M2 4z = 2nib,~ 2.
¢z 3

Example 2
Be Careful to use the right Laurent Series!

Integrate f(z) =1](z° - z*)around the circle C: |z|=1J2 in the clockwise
sense.

Solution
2° -7* =7°(1-1z) Shows f(z) thatz=0andz =1. Nowz =1lies outside C.

Hence it is of no interest here. So we need the residue of f(z)at 0. We find it
from the Laurent series that converges for 0 < [z| < 1 that

1 1 1 1
="+ 4+ 4+1+z+ O0<|z/<1
ot <[4 -

We see it from this residue is 1. Clockwise integration thus yields

z . .
?023_24— 211|F\Z§08f(2)— 2ni
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Caution! Had we use the wrong series (I1) say:

1 1 1 1
S L R (7 <),

3 4 4 5 6

N
|
N
N
N
N

We would have obtained the wrong answer 0. Explain!

3.1.1 Two Formulas for Residues at Simple Poles

Before we continue the integration, we ask the following question: To
get a residue, a single coefficient of a Laurent series, must we divide the
whole series or is there a more economical way? For poles, there is. We
shall derive, once and for all, some formulas for residues at poles, so
that in this case we no longer need the whole series.

Let f(z) have asimple pole atz = z,

b,
-1,

f(z) =

+a,ta,(z-2,)ta,(z-2,)"+ 0<|z-z,| <R

Here b, = 0 (why?) Multiply both sides by z -z, we have
(z—zO)f(z)=bl+(z—zo)[a°+a1(z—zo)+ “““ ]
We now letz — z,. The right hand side approachesb, . This gives

Res f(z) =b, =Ii:m(z—zo)f(z) 3

Example 3

Residue at a Simple Pole

9i+1 ) < 9i+1 09z+1 U
es— =lim(z -1) ~ =[] -
-2, Z(Z +1) z=i Z(Z+|) :Z(Z+|PZ=1
]
:1—0|=—5i
-2

Another, sometimes simpler formula for the residue at a simple pole is
obtained by starting from

qa(z)
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with analytic p(z) andq(z) where we assume that p(z,) = 0Oandq(z)has a
simple zero at z -z, (so that f (z) has a simple pole at z -z,ad wanted. By
the definition of a simple zero, q(z) has a Taylor series of the form

(z- 20)2
2!

Q(Z)=(Z-Zo)q'(zo)+ q"(zo)+...

This we substitute into f = pJjg and then f into (3), finding

R=esf(z):|i=m(z-i)ﬂ:|imD (2-25)p(2) 0

A(2) 5 (2= 2)0'(Ze) + (2= 29)07(20) 1 2417,

We now see that on the right, a factorz -z, is cancelled and resulting
denominator has the limitq'(z,). Hence our second formula for the
residue at a pole is

SResf(z)=ReM=M- ®
2=124 2=2¢ CI(Z) q(zo)

Example 4
Residue at a Simple Pole Calculated by Formula (4)

9z +i 9z +i 10i

Res == o - = -b5i
[l -
=i 72(z° +1)  [132° +1§Z:i -
B 2
Example 5

Another Application of Formula (4)

cosnz
74 -1

f(z) =

Solution

p(z) =cosnzis entire, and q(z)=z*-1has a simple zero atl,i,-1,-i.
Hence f (z) has a simple pole at these points (and no further poles).

Sinceq ‘(z) = 4z°, we see from (4) that the residue equal the

value for %%% at those points, that is,
X Z X
coshn ~ 2 8980 coshni _cosm _ i coshm cosh(-ni) _ i
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4 4i° -4 4 4 a(-i)* 4
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3.1.2 Two Formulas for Residues at Simple Poles

Let f (z)be analytic function that has pole of any order m>1 at a
pointz = z,.Then, by the definition of such pole, the Laurent series
of f(z) converging near z — z,(exceptz = z,) is

b b b,

b
f(z)= m m-1 +—1 +a,+ -z,)+
(Z) (Z _ Zo)m (Z _ zo)m—l (Z _ ZO)Z 7— Zo a0 a'l(z ZO)

whereb_ = 0. Multiplying both sides by (z - z,) ", we have

(2-2,)" f(z)=b, +b,,(z=2,)+ b,(z-2,) "+ b, (z - Zo)m_l
tay(z-2)" +Ha(z-z,)" +
We see that the residueb,of f(z)atz=z,is now the coefficient of the
power (z-z,)""in the Taylor series of the function

9(s) =(z-2,)" f(2)

On the left, with center z = z, . Thus by Taylor’s theorem,

9" (z,)

1
Y(m-1)!

Hence if f(z) has a pole of mth order atz = z,, the residue is given by

_ . dml _
Rest@= mp ™ dml[(z 7)" f(Z)]D (5)

In particular, for a second-order pole (m=2),
Res f(z) = lim{{(z - ,)2f ()}

Example 6
Residue at a Pole of Higher Order

The function
50z

'O~ o

has a pole pole of second orderatz =1

Res f(z) = I|m—[(z )% f(2)]= Ilm—BS—QH =

=ldz ] z+41]
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Example 7
Residue from a Partial Fraction

If f(z)is rational, we can also determine its residue from partial
fractions. In Example 6,

50z -8 8 10
+

f(z) = - = + =
(z+4)(z-1) z+4 z-1 (z-)

This shows that the residue t z =1is 8 (as before),and at z=-4 (simple
pole) itis-8. Why is this so? Considerz =1. There the Laurent has two
fractions as its principal part and the first fraction as the sum of the other
part. This first fraction is analytic at z =1, so that it has a Taylor series
with centre z =1, as it should be. Similarly, at z=4 the first fraction is
the principal part of the Laurent series.

Example 8
Integration around a Second-order Pole

Counterclockwise integration around any simple closed pathC such
thatz = 1is inside C and z=4 outside C yields

es 2ni = 211iE =1.0053
= (z+48)(z-D)° 50

Z
9 2dz
C(z+4)(z-1

So far we can evaluate integrals of analytic functions f (z) over closed
curveCwhen f(z) has only one singular point insideC. In the next
section we show that the residue integration method can be readily
extended to the case of several singular points of f (z)insideC.

3.2 Residue Theorem

So far we are in a position to evaluate contour integrals whose
integrands have only a single isolated singularity inside the contour of
integration. We shall now see that our simple method may be extended
to the case when the integrand has several isolated singularity inside the
contour. This extension is surprisingly simple, as follows

Residue Theorem
Let f (z) be a function that is analytic inside a simple closed path C and

on C, except for finitely many singular pointz,,z,, -, z,insideC. Then
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§Cf(z) - 2nikZer=els f(2), (1)

The integral being taken in the clockwise sense around the pathC

Proof: We enclose each of the singular points z; in a circle C; with
radius small enough that k circles and C are all separated (fig. 43). Then

e

Fig_."43: Residue Theorem

f (z)is analytic in the multiply connected domain D bounded by C and
C, - C,and on the entire boundary of D. From the Cauchy’s integral
theorem we have

9. f(z)dz g, f(z)dz + 9. f(z)dz+: -+ f(2)dz=0 2

* fe,

the integral along C being taken in the counterclockwise sense and the
other integrals in the clockwise sense. We now reverse the sense of
integration alongC, ~-C,. Then the signs of the values of these
integrals change, and we obtain from (2)

9. f(z)dz g, f(z)dz + 9. f(z)dz+- - - f(2)dz 3

* fe

k

All these integrals are now taken in the clockwise sense. By (1) in the
previous section

7 f(2)dz = Res f(2),

So that (3) yields (1), and the theorem is proved.

This important theorem has various applications with complex and real
integrals. We shall first consider some complex integrals.
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Example 9
Integration by the Residue Theorem

Evaluate the following integral counterclockwise around any simple
close path such that:

a 0 and 1 are inside C
b. 0 is inside, 1outside,
c 1 is inside, O outside,
d Oand1l are outside.

4-3z
72—

Solution
The integrand has simple poles at 0 and 1, with residues

4-3z (1432 4-3z [4-3z01
Res Res =
iy z(z 1) % Z- 1% =1 7(z-1) H z EH

Confirm this by (4) Ans.(a). (2ni(=4 +1) = =6ni,) (b). —8ni (C). 2ni (d). 0
Example 10
Integration by the Residue Theorem

Evaluate the following integral, where Cis the ellipse9x® +y* =9
(counterclockwise).

Solution

Since z* -16=0 at + 2iand+ 2, the first term of the integrand has simple
poles at +2i insideC, with residues (note: e* =1)

ZerrZ D nZ l zenZ D nZ l
RES _Ze ] =-, ReS _Ze [] == y
2 2' =16 4z°,, 16 ==2iz'-16 | 47° 16
0 0

and simple poles at +2which lie outsideC, so that they are of no
interest here. The second term of the integrand has an essential
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singularity at 0, with residue"%as obtained from
2 1

et =7 144+ T ..H=z+ +_ 2z

0oz 277 3'2 0 z z

Ans. 2ni(-6/-1/6 +n 2J2) = n (n 2 - 1J4)i = 30.221i.by the residue theorem.
Example 10

Confirmation of an Earlier Result

Integrate (;m(ma positive integer) in the clockwise sense around
z-1,

and simple close path C enclosing pointz = z,.

Solution

—in its own Laurent series with centrez = z, consisting of this

(z-1,)
one- term principal path, and
1 1
Res =1, Res———=0 (m=23"").
=0 71— 1, 1=1y (Z _ ZO)

In agreement with Example (2), we thus obtain

dz 27'r| ifm=1
CJ'C(z—z) DO ifm=23,---

It should be very surprising to hear that our present complex integration
method can be used for evaluating real integrals (incidentally, some of
them difficult to evaluate by other methods). In the next section we
discuss two methods for accomplishing this goal.

3.3 Evaluation of Real Integral
We want to show that residue theorem also yields a very elegant and

simple method for evaluating certain classes of complicated real
integrals.
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Integrals of Rational fractions of Cos and Sin®
We first consider integrals of the type
2m .
I = { F(cosB,sin6)d6 (¢D)
where F(cosB,sinB)is a real rational fraction ofCose and Sin® [for

example, (sin?8)]J(5-4cos8)and is finite on the interval of integration.
Settinge® = z,we  obtain

cos6 =1(eie +e79) = 1—9 z +1—9

(2) 2 201 27
) 1 . r 1. 17
sin@=—(e® -e™®)=="1z=1

2i( ) 2i1 2[]

and we see that the integrand becomes a rational function of z, say,

f(2).

Aso ranges from0 to 2w, the variable z ranges once around the unit
circle |z =1in the counterclockwise sense. Since we haved® = dzffz,

and the given integral takes the form
dz
| =q f(z)—, 3
1 f@ (3)
The integration being taken counterclockwise around the unit circle.
Example 11
An Integral of the Type (1)

Show by the present method that

de

2Tl
0 - =
J \/_2 -cos6

21

Solution

We use cos = (z +%) anddo = % . Then the integral becomes
iz
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¢ dfiz = dz _ET dz
x/§+252+1D Cc+2'(zz+2\/5+1) i z-V2-1)@z-v2+1)
0 Z[]

We see that the integrand has two simple poles, one at z, =+/2 +1, which
lies outside the unit circle. C: |z|=1 and is thus of no interest, and the

other at z, =+/2-1inside C, where the residue is

Res

(e
[EEN

1 0
T

N
] ~a

Zo(z- 2-1)(z- 2+1) [z 2-100, ,4 2

Together with  the factor - 2Jiin front of the integral this yields the
desired result 2ni(-2/i)(-1/2) = 2n

3.3.1 Improper Integrals of Rational Function

We now consider the real integral of the type
[ f()dx (4)

Such an integral, for which the interval of integration is not finite, is
called animproper integral, and it has the meaning

[ f(dx= lim [ (dx+ lim [ () (5a)

a a b 0

If both limit exist, we may couple the two independent passages to
-« and, and write

j_: f(x)dx =1im J’_RR f (x)dx (5b)

We assume that the function f (x) in (4) is a real rational function whose
denominator is different from zero for all real x and is of degree at least
two units higher than the degree of denominator. Then the limit in (5a)
exists, and we may start from (5b). We may consider the corresponding
contour integral

9. f(z)dz (5¢)

Around a path C on the diagram below. Since f (x) is rational, f (z) has
finitely many poles in the upper-half plane, and if we choose R large
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enough, then
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-

—~—

. R r
Fig. 44: Path C of the Contour Integral in (5%)

C encloses all these poles .By the residue theorem we then obtain

§ f(2)dz = f(2)dz+ j_RR f (x)dx = 2ni " Resf (2)

When the sun consists of all the residues, of f(z)at the point in the
upper half-plane at which f (z)has a pole. From this we have

6) [ f(x)dx=2niy Res f(2)-[ f(2)dz

We prove thatR — « the value of the integral over the semicircle S
approaches zero. If we setz = Re'®, then S is represented by R = const, and
as zrangesalong S, the variable®ranges fromO to = .Since, by
assumption, the degree of the denominator of f(z)is at least two units
higher than the degree of the numerator, we have

k.

| |2 (|Z|:R>RO)
z

f(2)] <

for sufficiently large constantsk and R, . By the ML-inequality
k kre
‘Is f(z)dz‘<?nR=? (R>R,)

Hence, asRapproaches infinity, the value of the integral over
S approaches zero, and (5) and (6) yield the result

(7)

j f(X)dx = 2ni y Res f(2)

the sum being extended over the residues of f (z)corresponding to the
poles of f (z)in the upper half-plane.
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Example 12
An Improper Integral from 0 to -

Using (7), show that
1) 1

fo 1+x* =2\/E

Solution

Indeed, f(z) = (1—14)has four simple poles at the points
+Z

nil4 3nij4

~3nij4
ze™, z,e”, 2,

—ril4
Z,8

The first two of these poles lie in the upper-half plane. We find

0 [ .
Res f(z) = :—Dl B ! e
Sty Hatl, 4
u ]
Resf(z)=r t 1 =Zg-%l
- - U
223, J@+zhy §4z3 o, 4
N ]

By (1) and (7), in the current section,

= dX 2ni nill4 4 LT n
=—(-e™ +e =nsin—=——.
Fegext =g ¢ JEnsn =R
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S\ /Z‘

Fig. 45: Example 2

e
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Example 13
Another Improper Integral

Using (7) show that
© X2 -1 i

f X +5x _
‘+4 6

Solution

The degree of denominator is two units higher than that of the
numerator, so that our method again applies. Now

2 _ 2 _
f(Z):p(z): z° -1 z°-1
qz z + 1z + z z

has simple poles at 2iandiin the upper-plane (and at -2iand-iin the
lower half-plane, which are of no interest here). We calculate the

residues from (4), noting that q'(z) =4z° +10z,

a 2 _ 0 2 _ -
Resf(z)=  ° Dl = , RESf(Z)D= i Dl =7*
2=2i D423 +10 1 i E 2= D4ZS 0L 6_|
7 - 10z

Ans.2ni(5/12i-1/3i) = 5 as asserted.

Looking back, we realise that the key ideas of our present methods were
these. In the first method we mapped the interval of integration on the
real axis onto a closed curved in the complex plane (the unit circle). In
the  second method we attached to an interval on the real axis a semi
circle such  that we got a closed curve in the complex plane, which we
then “blew up.” This second method can be applied to further types of
integrals, as we show in the next section, the last in the chapter.

3.4  Further Types of Real Integrals

There are further classes of integrals that can be evaluated by applying
the residue theorem to suitable complex integrals. In application
suchintegral may arise in connection with integral transformations or
representation of special functions. In the present section we shall
consider two such classes of integrals. One of them is important in the
problems involving the Fourier integral representation. The other class
consists of real integral whose integrand is finite at some point in the
interval of integration.
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3.4.1 Fourier Integral
Real integral of the form
1. I_: f(x) = cossxdx and I_Z f (X) = sin sxdx (s real)

occur in connection with the Fourier integral.

If f(x)is a rational function satisfying the assumptions on the degree
stated in connection with (4), then the integral (1) may be evaluated in a
similar to that used for the integral in (4) of the previous section. In fact,
we may then consider the corresponding integral

7. f(2)e™dz (s real and positive)
Over the contour C in sec 3.3 instead of (7), sec. 3.3, we get

[ f(2)e™dz = 2ni'y Resf (2)e™] (s>0) )
where the sum consists of the residue of f(z)e™ as its pole in the upper

half-plane. Equating the and imaginary parts on both sides of (2), we
have

[t (x)cossxdx = ~2ni'y ImRes[f (2)e™ ]
(s>0)(3)
J-_w f (x)sinsxdx = 2niz ReRes[f (z)e* ]

We remember that (7), was established by proving that the value of the
integral over the semicircle S in fig. approaches zeroas R — «.

To establish (2) we should now prove the same fact for our present contour
integral. This can be done as follows, Since S lies in the upper half-plane
y=0and s>0, we see that

el =|e™e™| =Y <1 (s>0, y=0)
From this obtain the inequality
| f(2)e™] =) =|f(z]e”|<|f (7 (s>0, y=0)

which reduces our present problem to that in previous section.
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Continuing as before, we see that the value of the integral under
consideration approaches zero as R approaches infinity. This establishes
(2), which implies (3).

Example 14

An Application of (3)

Show that
o CZOSSX2 =7T_eks, 00%dx=o (s>0, k>0)
=Kk +X k =Kk +X
Solution
In fact, kze > has only one pole in the upper plane, namely, a simple
+ X

pole at z-ik, and from (4) we obtain

e e e
Res kZ + 7 _ D D
= El_z (1
2=ik ﬁ ZD z=ik 21k
Therefore,
eisz —ks "o
I PERE) ———dx = Znis— =gk,
=k 2ik  k

Since e™ = cossx + isin sx, this yields the above results

3.4.2 Types of Real Improper Integrals

Another kind of improper integral is a definite integral
B
f, F)dx (4)

whose integral becomes infinite at a point ain the interval of
integration,

lim| f (x)| = =
Then the integral (4) means

If f (x)dx = lim IA f () + lim Ia: f (x)dx (5)
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where 1 and n approaches zero independently and through positive
values. It may happen that neither of these limits exists, if 1,n—0
independently,

but
. [ a-T B N
HI!) f f (x)dx + Joun f (x)de (6)

exists. This is called the Cauchy principal value of the integral. It is
written

DV.V. If f (x)dx.

For example,
tdx (" tdx0

V.V.(1x, =lm™) _ + =0

p [1Xs 0xe I‘X?’ O
the principal value exists although the integral itself has no meaning.
The  whole situation is quite similar to that discussed in the second
part of the previous section.
To evaluate improper integral whose integrands have poles on the real
axis, we use a part that avoids these singularities by following small
semi-circles at the singular points; the procedure may be illustrated by
the following example.
Example 15
An Application

Show that

(This is the limit of sine integral Si(x) as x — «)
Solution

(sinz)
z

a. We do not consider because this function does not behave

suitably at infinity. We considerS-, which has a simple pole at
Z

z=0, and integrate around the contour in figure below. Since ° is
z

analytic inside and on C Cauchy’s integral theorem gives
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?C—dz =0 @)

We prove that the value of the integral over the large
semicircleC, approachesRas  approaches infinity.  Setting

z=Re®.dz=iRe"do, oz 5 and therefore
z=i
iz i
Ic—dz ‘I e me‘ “|de (z=Re®)
In the mtegrant on the right,
‘eIR (cos8 +isin®) ‘eiRcose e—RsinB _ e—RsinGI

We insert this, sin(m -0) =sin® to get an integral fromOtom |2,
and then @ = 20 (Wwhen0<6 <m|J2); to get an integral that we
can evaluate:

Fig. 46: Contour in Example 2

*}, J’=23KTF

¥y=s5ng

J l >
0 /2 e

Fig. 47: Inequality in Example 2

iz

de - I; RSN 4 _ Lnlze—Rsinedede

m
Jo I°
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M2 orepr A T -R o
<2 e Td97aTe )0 @ R

Hence the value of the integral over C,approachesas R — «

For the integral over small semicircle C,in figure above , we
have

e’ . dz e” -1
e e S

The first integral on the right equals-ni. The integral of the
second integral is analytic and thus bounded, say, less than some
constant M in absolute value for all z onC, and between C,and

the x-axis. Hence by the ML -inequality, the absolute value of
this integral cannot exceed Mnr . This approachesr — 0. Because
of part (b), from (7) we thus obtain

iz ix

e “ e e”

[ —d2=pv.v.j_ —dX+IimJ' —dz
C, 7 © X r—0JC; 7

ix

= pv.v.ﬁce7 dx-ni =0

Hence this principal value equalsni ; its real part is 0 and its imaginary
part is

pV.V. I_ZSI—?(X dx=m (8)

Now the integrand in (8) is not singular at x = 0. Furthermore,
Since for positive xthe function 1Jx decreases, the area under the
curve of the integrand between two consecutive positive zeros
decreases in a monotone fashion, that is, the absolute value of the
integrals

nn+n SIN X

I, ={ — dx n=01,

From a monotone decreasing sequence, |I,],[l,], ~-and I, —0as n—«.
Since these integrals have alternating sign (why?), it follows from the
Leibniz test that the infinite series|,+1,+1,+ - -converges. Clearly,
the sum of the series is the integral

= 8in X . bsinx
[ ——dx =Ilim dx
X —0 X
0 b 0

which therefore exists. Similarly the integral from 0 to -« exists. Hence
we need not take the principal value in (8), and
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= SIN X
—dx =
[ W=

Since the integrand is an even function, the desired result follows.
In part (c) of example 2 we avoided the simple pole by integrating along
a small semicircleC, , and then we let C, shrink to a point. This process

suggests the following.

3.4.3 Simple Poles on the Real Axis

If (z) has a simple pole at z = a onthe real axis, then
Iimjc f(z)dz = ni Rgasf (2).

r—0

Cy

a-—-r a a+r x

Fig. 48: Theorem1
Proof

By the definition of a simple pole the integrand f(z)has at z =athe
Laurent series

F@)=2 49 b =Resf(2

Z_

where g(z)is analytic on the semicircle of integration
C,:z=a+re®, 0<0=m
and for all z between C, and the x-axis. By integration,

o f(2)dz - J;rz)—?eire‘ede + | 9(2)dz

The first integral on the right equals-bni.The second cannot

exceed Mnr in absolute value, by the ML-inequality and Mnr — 0as
r—0.

We may combine this theorem with (7) or (3) in this section.

Thus,
DV.V. j f(x)dx = 2ni " Resf (2) +ni ) Resf (2) (9)
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(summation over all poles in the upper half-plane in the first sum, and
on the x-axis in the second), valid for rational f(x) = p(x}q(x)with

degree q = degree p + 2, having simple poles on the x-axis.

This is the end of unit 1, which added another powerful general
integration method to the methods discussed in the chapter on
integration. Remember that our present residue method is based on
Laurent series, which we  therefore had to discuss first.

In the next chapter we present a systemic discussion of mapping by
analytic functions (“conformal mapping”) .Conformal mapping will
then be applied to potential theory, our last chapter on complex analysis.

4.0 CONCLUSION

In this unit, we have seen that our simple method have been extended to
the case when the integrand has several isolated singularities inside the
contour. We also proved the residue theorem.

5.0 SUMMARY

The residue of an analytic function f(z)at a pointz=z, is the

coefficient of the power in the Laurent series

Z-1,

b, Lob
2-2, (z-1,)"
converges near z, (except at z, itself). This residue is given by the
integral 3.1

of f (z)which

f(z)=a,ta(z-z)+ +

b :2_;? f(z)dz (@D

but can be obtained in various other ways, so that one can use (1) for
evaluating integral over closed curves. More generally, the residue
theorem (sec.3.2) states that if f(z)is analytic in a domain D such

except at finitely many pointsz;and Cis a simple close path in D such
that noz; lies on C and the full interior of C belongs to D, then

ffc. f (2)dz =%ZF§§$ f(2) (2

(summation only over those z; that lie inside C).

This integration method is elegant and powerful. Formulas for the
residue at poles are (m =order of the pole)
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1 H dm:l[(z—Z )" f(z)]E, m=12,-- (3)
(m-1! - dz"*
Re ling, o 0 ]

z 1z

st(2)=

Hence for a simple pole (m =1),

Res f(z) = lim(z - 2,)f (2) (39)

7=7,

Another formula for the case of a simple pole of f(z) = p(z]q(2)

Res f (7) = P()
T

37)

Residue integration involves closed curves, but the real interval of
integration0<0 <2m is transformed into the unit circle by setting
z =¢", so that by residue integration we can integrate real integrals of
the form (sec. 3.3)

[, F(cossin6)de
where F is a rational function of cos® and sin® ,such as, for instance,
sin’0

——, etc.
5-4cos6

Another method of integrating real integrals by residues is the use of a
closed contour consisting of an interval - R < x < R of the real axis and a
semicircle|z|= R. From the residue theorem, if we let R — =, we obtain for

rational f (x) = p(xJq(x) (withqg(x) =0 and g >degree p+2)

j_: f (x)dx = 2ni 5 Resf (2) (sec.3.3)
fwcos sxdx = =2 Z ImRes[f (z)e™]
{wsin sxdx = 2n Z Im Res[f(z)e™ (sec.3.4)

—o0

(sum of all residues at poles in the upper-half plane). In sec.3.4, we also
extend this method to real integrals whose integrands become infinite at
some point in the interval of integration.

6.0 TUTOR-MARKED ASSIGNMENT

I. Explain the term residues and how it can be used for evaluating
integrals.
ii. Find the residues at the singular points of the following functions;
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C0S 2z e’
a b t C —_—
@ = (b)  tanz © o
iii.  Evaluate the following integrals where C is the unit circle
(counterclockwise).
dz 77 +1
@) Icot zdz (b) [ (©) ? =
O O
C

z cz -2z

Cc

v. Show that

ZHL =21
Jo \2 —cos6

7.0 REFERENCES/FURTHER READING
Hildraban, F. B. Advanced Calculus for Application.

Murray, R. Spieg (1974). Schaums Outline Series or Theory and
Problem of Advanced Calculus. Great Britain: McGraw-Hill Inc.

Stephenor, G. (1977). Mathematical Methods for Science Students.
London: Longman, Group Limited.

Stroud, K.A. (1995).. Engineering Maths. 5™ Edition Palgraw.

Verma, P.D.S. (1995). Engineering Mathematics. New Delhi: Vikas
Publishing House PVT Ltd.

128



MTH 381
MODULE 4 INTEGRAL TRANSFORMS
Unit 1 Integral Transform
Unit 2 Fourier Series Application
Unit 3 Laplace Transforms and Application
UNIT 1 INTEGRAL TRANSFORMS
CONTENTS
1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1  Finite Fourier Transform
3.1.1 Half Fourier Cosine series
3.1.2 Half Fourier Sine series
3.1.3 Ordinary Fourier series
3.2 The Fourier Transform
3.2.1 Fourier Sine Transform
3.2.2 Fourier Cosine Transform
3.2.3 Ordinary Fourier series
3.3  Fourier Integral Formulas
3.4  Transform of Derivatives
4.0 Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading
1.0 INTRODUCTION

MATHEMATICAL 111

The integral transform method is one of the best methods used in

handling problems involving mechanical vibrations. The

transform method is given by

F(P)= [ f(0K(x p)dx

With the inverse,

f(x)=>=F(p)H(x p)

p=a

integral

F(p)is the integral transform of f(x)and k(x,p) is called the kernel of
the transformation.
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20 OBJECTIVES

At the end of this unit, you should be able to:

- state various form of integral transform

- state Fourier Sine series and Fourier Cosine series

- apply Fourier transform to solve some fourth, third and second
order differential equations

- develop techniques and methods through transformation or along

with transform to be able to solve physical and mechanical
problems (vibrations).

3.0 MAINCONTENT

3.1 Finite Fourier Transform

Let f (x) be a function defined in the intervala<x<b i.e. f(x) is
defined on x -space. Letk(x, p) be a function x of and some parameter p .

Then the integral transform method is given by,

F(p) = { f(0K(x,p)dx (1)
F(p)is called an integral transform of f (x) andk(x, p) is called the kernel
of the transform

Symbolically,

F=Tf (2
whereTis an integral operator which means multiply what
followsT byk(x, p)and integrate the product with respect to x between

the limit of 'a'and'b'. The new function F(p)can be regarded as the
image of f (x) produced byT .

F(p) is defined on p-space/image-space.

For integral transform to be a useful concept, it is necessary that there
should exist an inverse operator T *which yields a unique F(t) from a
given F(p). From equation (2) we have that:

f-T7(F) (3)

Finding the operatorT "*is equivalent to solving equation (1) regardless
an integral equation for f (t)
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f(t)= [ F(p)H(p.x)dp (@)

i.e. F(t)is an integral transform of F(p) with kernel H(p, x).

A specification of theT™ operator as in equation (4) is known as
Inversion Theorem.

3.1 Finite Fourier Transforms

3.1.1 Half Range Fourier Sine Series

F(x) = Zb SmP‘EX D<x<L
Where
bp = . f(x)i—zsinplLXde
2 pnx
k(x,p) =
(X,p) = 2

The image space is given by all the positive integral values of p . Hence
bp rather thanb(p).

3.1.2 Half Range Fourier Sine Series 0<x=<L

1 ” PTTX
f(x)==a coS——
(x) 5 oxp% L

Where

ap = 1(x —lz_cosp—[rxédx

3.1.3 Ordinary Fourier Series

*.PTTX
f(x) = ZC e
p=—c
pPTIX [
= Ce -
z xpD LDD

p=-x

Where -L<x<L

1 PTR 1]
Cp= L. f(x)%—exp —I—TB(DDdX
L OO
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3.2 The Fourier Transform

3.2.1 Fourier Sine Transforms

2 2
F(p) = f f (x)sin p(x)dx
]
om0
0SS X<

With inversion

2 2
f09= = § Fulp)sinp()dp
gm0
0<psw

Since kernel for operator and its inversion.

3.2.2 Fourier Cosine Transforms

2 2
F.(p)= —0 | f(x)cosp(x)dx
0
amoe

With the inversion

f(x)— —Dé F.(p)cosp(x)dx

HRLNN

Same kernelcosp(x) for operator and its inversion.

3.2.3 Ordinary Fourier Transforms
F(p) = (om ) J'_i f (x)e’dx

The kernel k(x,p) =e*™

With inversion is
f(x) = ()% F(p)e ™ dp
Then H = (p, x)e ¥
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havek # H(p, x) (11)
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If f(x)iseventhen f(-x)= f(x)
and F(p) = F.(p)

Butif f(x)isoddthen f(-x)=-f(x) and
Thus F(p) =iF,(p)

From equation (9) above, we can deduce that;
(2m) 7 F(p) = I:, f (x)e X dx

- [ Fe™ Wk | F(x)e P Wak

But if

x=-t

=x=0=t=0

X=-0=t=0
dx = —dt

Thus, we have

° -ip (x ® —-ip(x
I. f (x)e*Mdx = f, f (-t POt
(2n)*F(p)= I_Ow f (x)e *™dx + Iow f (-x)e ™ dx

If f(x)iseventhen f(-x)= f(x)

Equation (16) becomes

I: f (x)[e®™ +e7*™ Jdx for even f (x)

2;0” f (x)cos p(x)dx = (2 )2 F (p)

But, for odd f (x)

IO” f (x)[e“’(x) — P Jdx

- Zif f (x)sin p(x)dx

134

MODULE 4

(12)

(13)

(14)

(15)

(16)

(17)

(18)



MTH 381 MATHEMATICAL 111

3.3 Fourier Integral Formular
FO) == dp[ f(t)cosp(x-tyt (19)
m- 0

Note that from (9) and (10) we have that:
F(><)=i T 0o f(t)ePWdt (20)
21 [ [

We have now prove that equations (19) equals (20)
Consider equation (19)

L: f (t)cos p(x —t)dx is a an even function of p

So that (19) can be re-written in the form

FO) == dpj ft)cosp(x-tyt (21)
Tl

e 1 -
Since [ g(p)dp == _a(p)dp

g(p)iseven
N
Hence O‘Ef_mdpfo f (t)sin p(x —t)dt (22)

In other to arrive at equation (19), we have equation (21) equals (22)
because

cosB —isin@ —e™"

1 =, = _
. =_— =ip (x-t)

F(x) - I_wdp [ f(e dt
et f (et
om I pj‘”

Which is equal to (20).

3.4 Transforms of Derivatives
e s R
F(P =F(y(x)) = | y(x)e®dx (23)
namorn -

We shall now transform y’(x) = F(y‘(x))
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. ’ 1 2 ' ip(x
LF(Y(0) = %z—mmy [ ¥ ()ePdx
L

Using integration by parts, we have

o1de ip (X) ” ) ip (x)
J
—  t(x)e -ip  y(x)e dx;
— o

] U
[
[ 2m
]

suppose y(x) — 0 as x — %«

010" e e _ 01

00 Ly(e dxodprl_ [ y(x)e

2 m 2
=ip(Y(p))

F(y'(x)) =ip(Y(p))-
S N
Y00 == [y (e
2n
0 o

Integration by parts,

2

0 oo w : 0
5_1 Oy (0eP™ —ipg y'(x)e®Vdx
O

H2mo e 0
suppose y‘(x) — 0

Then we have

- ipI:, y'(x)e®Mdx.

Which - p[F(y'0))=ip(-ip(Y (p)))
=-ip’[Y (p)]
=-p°(y(x)
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Suppose we have

2
M+ﬂ+y: f(x)

dx®  dx
y —0, y'—0as x— it (30)

In other to arrive at equation (19), we equation (21)
Because cos@ =isin@ =™,
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FE) =2 Cdp et
2 LPL '

ST e odp(” f (et
pAll

—o0 —o0

Which is equal to (20).

F(y"+y'+y)=G(p)

S=pY(p)=iY(p)+Y(p) =G(p)

Y(p)[-p?-ip+1]

Y(p)zg S(p) B (31)
- (p +ip-D

40 CONCLUSION

In this unit, we treated the various forms of integral transform. The

Fourier sine and cosine series representation were discussed. The
inverse theorem was also considered.

5.0 SUMMARY

The general scheme of solving problem by integral transform is
summarized below;

Physical problems —
modeled it terms of Application of Equivilent .
equation involving fx) sutabie integral equation Fip); . 3 Dlmg
atnd difficult to solve transform using [ now easy to gratin —»
orditatily operator T solve
Solution in
terms of Fip

Applying
Inverse theslurem Salve for 1)
opetator T

This is the diagrammatic expression of the summary.

138



MTH 381 MATHEMATICAL 111

6.0 TUTOR-MARKED ASSIGNMENT

I. State the method of integral transforms and its inverse. State also
the Kernels of the method and its inverse

ii. Discuss briefly the inverse theorem.

iii.  State the three theorems of finite Fourier transforms.

-¥, . -
v, 1f F(p) = Fy(0)= 27 [ y(xePd
2w
use  the  transformationy’(x) = F(y"(x)), proof  that

F(y'(q)=iplY ()}
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1.0 INTRODUCTION

Fourier series arises from the task of representing a given periodic
function f (x) by trigonometric series. The Fourier series coefficients are
determined from f (x) by Euler formula.

20 OBJECTIVES

At the end of this unit, you should be able to:

- determine Fourier coefficients

- find the convergence and sum of Fourier seriesand
- use Euler formula for the Fourier coefficients.

3.0 MAINCONTENT

3.1 Fourier Series

3.1.1 Euler Formula for the Fourier Coefficients

Let us assume that f(x) is a periodic function of period 2n that can be
represented by a trigonometric series

0

f(x)=a, +Zan cosnx + b, sinnx 1)

That is to say, we assume the convergence of the series and has f(x)as
its sum.
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In any function f (x) of such, we shall determine the coefficientsa, and
b,of the corresponding series.

(1) To determine a,,we shall integrate both sides of the equation 1,
from-n <x<n

Thus, we have

J" f (x)dx = I Dao DZa cosan+b smnxDDdx
n=1

° U
m m

= L a,dx + Z a, Lcos nxdx + zbn Lsin nxadx

_ n Ca, . m " b, u
=a, +S —sinn -S> —Ccosnx

n=1 n=1

i n 1 n i

0

= 2na, + Z%[an (sin nm —sin(-nm)) - (cosnm = cos(-nn))]

= 2na0 (2)

Hence
2na, = I." f (x)dx

= a,-= % I_"n f (x)dx (3)

To determine a,a,, * -« -« a,using the  same procedure.
However,

multiplying equation (1) bycosmx, when m is any fixed real number,
and integrate from-n < x<n

" f(x)cosmxdx = j" Dao DZa cosnx +b smn?(DDcos 4)
" mxdx
[In=1 0
=a I cosmde+Z ] cos nxdx + Zb ] sin nxdx (5)

Evaluate (5) term by term, we have

0omxil
a cosmxdx=a sim— =0 (6)

o). = m .
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Using trigonometric identities
“ 12 o

a,| cosnxcosmxdx==% a,| [cos(n+m)x+cos(n—m)x]xdx 7
>, 7 2.3 [eos(n + m)x-+ cos(n = m)x (7)
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Similarly,
nZ;b" Lsin nx cos nxdx = %;bn I: [sin(n +m)x +sin(n — m)xJxdx
From (7), we have,

Jj cos(n + m)xdx =

sin(n + m)x ': ~0

n+m

and

J" cos(n - m)xdx = M’" =0
o n—-m ut

forn=m

but ifn = m we have that
f cos(n —m)xdx = I_" cos(0)xdx = I_" dx.

because cos0 =1

J’j dx = x”7 =2n
From equation (8) we obtain thus

J" sin(n + m)xdx = —M’" =0
o n+m u

and

J" sin(n — m)xdx =
- n-m

_M'::o

Substituting equations (9), (10), and (11) into (7), we have

= 10 n#m
Zanj COS NX COS MXAX = []
n=1 o (m nN=m

and substituting equations (12), (13), and (14) into (8) gives
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- #
Z an'" sin nx cos mxdx = %O nEm (15)
=1 o n N=mM

Then, in view of equations (14), (15) and (6), equation (5) becomes:

J: f (x) cosmxdx = a, (0) + jz an +iZ b, (0)
=a,m (16)

ca, ot _ f(x)cosmxdx an

b,,b,, ----b,can also be obtained in the same manner, by multiplying
equation (1) by sinmx and integrate from-n < x<n .

Using the trigonometric identities and manipulation, we have

n . ] O T .ogoo

[ feosinmxdx =] “a, + Y a, cosnx+b, sinnx ;sin (18)
" mxdx )

[] [In=1 L0

Integrating term by term, we see that the right hand side becomes

I" f (x)sin mxdx = r a, sin mxdx + Z ] a, cos nxsin mxdx
m -n = -

+ Z ] b, sin nxsin mxdx (19)

Using the same principle as before

f a,sinmxdx =0 (20)
> a, [ cosnxsinmxdx =0 (21)
n=1 i

forn=123,
but

Zr b, sin nxsin mxdx = _;DJ‘_" [cos(n —m)x —cos(n + m)x]xd@D
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1 (=Dsin(n-m)x _1 (-Dsin(n+m)x - (22)
2 (n-m) 2 (n+m)

N=mMm

butfor n=m

1~ 1~
> [ cos(0)dx =3 I_,,dx =n

n#m

J'"sin nx cos mxdx = ? (23)
o [ nN=m
. substituting equation (23) into (19) we obtain thus
Ij f (x)sinmxdx = b,m
1 -
—J
= b, = f(x)sinmxdx (24)

I
Form=12,

Writing nin place of min equation (17) and (24) respectively, we have

1 h
a, = ZJ-" f (x)dx

_1 -
3, = [ f (x) cos mxdx (25)

and

o opgoo

0
B

b, = 1 I_" f (x) sin mxdx
This is called the Euler formula.

These numbers given in equation (25) are called the Fourier coefficients
of f(x). However, the trigonometric series in equation (1) with
coefficients given by (25) is called the Fourier series of f (x).

Example 1

Find the Fourier coefficients of the periodic function f(x)where

-1 if -n<x<0
f(x) =10 :
1 if 0<x<m
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and  f(x+2n)=f(x).

Solution
_ 1 _ 1o "ol
=5 [ f(xX)dx = >, Euj dX+L dxmj

-

[-0-(=n)]

1 - 1 0 1
— —dx=—/(-X —
2n I‘" Zn( )— ha

I

_—
2

and

1

g = (x )‘ =L -0)

0 2n

From equation (25) i.e.

a, _1 f f (x) cos nxdx

1 o0 1~
== —cosnxdx + — L cos nxdx
- m

1D—sinn>1 sinnx | O

0 + =

_;% n -n n 0
a, =0

Similarly for

b, = lj_" f (x)sin nxdx
T[ T

—=sinnxdx + J'"sin nxdx

[ 0

[ m- 0 iy
} Lcos n>1 cos nx |rr [
_:% n -1 n OB

1
= —/[cos0 - cos(—nx) —cosnx + cos0]
Nm

= i[2 - 2cos(nx)]

MATHEMATICAL 111
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N
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N.B cos(—nn) = cos(nx)

= S [L-cos(nm)]
Nm
2

=—[M-(-1)"]
Nm

N.B cosnx=(-1)"

b, :i[1+1]:i
Nn N
for n=135,
bn=£[0]=0
N
for n=2406,
4 4 4
b=y b= b= ete
b,=b,=by=0

3.2 Even and Odd Numbers

Fourier coefficients of a function can be avoided if the function is odd or
even. We say a function y = g(x) is said to be even if

g(-x)=g(x) forall x. (26)
While a function h(x) is said to be odd if
h(-x) = -h(x) for all x. (27)

However, it worth mentioning here that the function cosnx is even, while
the function sinnxis odd.

If g(x)isan even function, then

I—LL g(xdx) =2 f g(x)dx. (28)

If h(x) is an odd function, then
LLL h(x)dx = 0 (29)

The product of both odd and even function is odd
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. let  q(x) = g(x)h(x)
and q(-x) = g(-x)h(-x) = g(x)[= h(x)]=-a(x)
3.2.1 Theorem 1 (Fourier Series of Even and Odd Functions)

The Fourier series of an even function f (x) of periodic 2L is a “Fourier
cosine series”

f(x)=a,+ écosnil_X (30)

n=1

with coefficients

1 L L NmX
a=—p f (x)dx, a = | f(x)cosde
L

=

0 0 n 0

n=12,

Also the Fourier series of an odd function f (x) of period 2L is a “Fourier
sine series”

f(x) = b, sin > (31)
n=1 L
with coefficients

bnzzfiij(x)snpﬂﬂﬁdx (32)
L L

0

In particular, this theorem implies that the Fourier series of an even
function f (x) of period 2L = 2n Fourier cosine series.

f(x)=a, +a,cosx+a,Ccos2Xx+a,; CoS3X+:-----
with coefficients (33)
1 T' 2 ™
8 == f(x)dx, a, =—, f (x) cos nxdx
n2,1,2......... (34)

Similarly, the Fourier series of an odd function f (x) of period2n is a
Fourier sine series.

f(x)=Db;sinx+b,sin2x+b,sin3x+
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with coefficients (35)

b, =2 (" f (x)sinnxdx (36)
0

3.2.2 Theorem 2 (Sum of Functions)

The Fourier coefficients of a sum f + f,are the sums of the
corresponding Fourier coefficients of f, f,and f,.

The Fourier coefficients of a cf are ¢ times the corresponding Fourier
coefficients of f.

Example 2

The function f* (x)is the sum of the function

1 0<Xx<nm .
f(x)=1] as in example 1 and the constant 1.
=1 - <Xx<0

Hence from example 1 and theorem 2, above, we conclude that

£ (0 =1+ Fsinx Leinax+Lsinsx+1 sinbx+-.-
n+ 3 5 6 -]
N O

Example 3
Find the Fourier series of the function

f(X)=X+Tr if -n <x<n and
F(x+ 2n) = F(x)

Solution
Let f =f +f, where f —xandf,=n.

The Fourier coefficients of f, are zero, except for the one (the constant
term), which is .

Hence, by theorem 2, the Fourier coefficients a,,b are those f,, except

fora,, whichis » . Since f/isodd, a, =0 for n=12,

and
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2

b =£I" f (x)sinnxdx = © (" xsin nxdx
mn

n

n o 1 0

Integrating by parts we obtain

D_ D m
b, = 2 [ xcosn nm+£D cos ndx
o n O[ b1l ]
0
2
= —Ccosnm
n
:g(—l)” :3 for odd n
n n
2
=-= forevenn
n
Hence, b, =2.b, = -1b; =E,b4 -1
3
.E.

Therefore the Fourier series of f(x) is given thus;

f(X)=n+ Z%Sin X 1sin 2X +lsin 3x —lsin 4x +£sin 5XE
- 2 3 4 5 0
W

4.0 CONCLUSION

The conclusion of this unit is embedded in the summary as discussed
below.

5.0 SUMMARY

A Fourier series of a given function f (x) of period 2n is a series of the
form

a, +>"a, cosnx+b, sinnx

n=1
With coefficients given as in equation (25).

Theorem 1 given conditions that is sufficient for this series to converge
and at each x to have the value f (x), except at discontinuities of f (x),
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where the series equals the arithmetic mean of the left-hand and right-
hand limits of f(x)at that point.
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TUTOR-MARKED ASSIGNMENT

Find the Fourier coefficients of the periodic function f (x) where
- if -n<x<0

kf(X)EkD if 0<x<n

and f(x+2n)=f(x)

Explain the term odd and even function of a Fourier series
Find the Fourier series of the function

f(X)=X+m if 0<x<n and

f(x+2n)=f(X)

Find the smallest positive period p of the following function
(@  cosx,sinx,cos2x,sin 2x

If f (x) and g(x) have period p, show that

h = af + bg(a,b,constant) has the period p .
Thus all functions of period p from a vector space.

Evaluate the following integrals when

n=012, -

¥ s
@) f, “cos nxdx (b) f ” X C0S nxdx
(©) I:éex cos nxadx (d) Lj x* cos nxdx
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1.0 INTRODUCTION

The Laplace transform is a method for solving differential equations and
corresponding initial and boundary value problems. The process of
solution consists of three main steps:

In this way the Laplace transformation reduces the problem of solving a
differential equation to an algebraic problem.

The Laplace transform is the most important method used in solving
engineering mathematics.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. undergo the three main steps of solving initial and boundary
value problem.

3.0 MAINCONTENT
3.1 The Classical Laplace Transform

Let f be a function of the real variable t which is defined for all t >
0 and which is either continuous or at least sectionally continuous.
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The classical Laplace Transform T of f is the function Fy(s) defined
by the formula

Fo(s) =1 {f(0)} = I, e () dt. (1)

This definition of Fy(s) clearly makes sense only for those values of s for
which the infinite integral is convergent. For many applications it is
enough to regard s as a real parameter, but in general it should be taken
as complex, say s = o +io. Thus Fy(s) is really a function of a complex
variable defined over a certain region of the complex plane; the region
of definition comprises just those values of s for which the infinite
integral exists.

3.1.1 Elementary Applications of the Laplace Transform
Depend Essentially on Three Basic Properties

I. Linearity. If the Laplace Transforms of f and g are Fy(s) and
Go(s) respectively, and if a; and a, are any (real) constants, then
the Laplace Transform of the function h defined by

is h(t) = a;f(t) + a;g(t)
Ho(s) = a1Fo(s) + a,Go(s). (2)

The proof is trivial.

ii. Transform of a Derivative. If f is differentiable (and therefore
continuous) for f = 0, then

= sF%(s) — f(0). (3)

Proof

Using integration by parts we have

t[F(H] = I:e'“ Ftydt = [ f ()] se™ f (1)t

=-f(0)+5 (e f ()t
) +s et
Since lim e™'f(t) = 0
Corollary. If f is n-times differentiable fort = 0, then

t [F)] = s"Fo(s) =" (0) = s" 2 F(0) ........ — (0.
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iii.  The Convelution Theorem. Let f and g have Laplace
Transforms Fy(s) and Gy(s) respectively, and define h as follows:

H(t) = J':)f(t)g(t—r)dr, t=0.

Then,
t [h()] = Fo(s)Go(s)- 4)

(Recall that h, as defined here, is the convolution of the functions u(t)f(t)
and u(t)g(t). If f and g happen to be functions which vanish identically
for all negative values of t then the above result can be expressed in the
form:

The Laplace Transform of the convolution of f and g is the product of
the individual Laplace Transform.

Proof

The Laplace Transform of h is given by

L oLt 0
Ho(s) = ;e tgjof(r)(\:](t—r)dr%dt.

Now,
I(t)f(r)g(t—r)dr =I;of(r)g(t -t)u(t-t)dr
because u(t-t)=1 forallt suchthatt <t
and u(t-t)=0 forall t suchthatt >t.
Hence
Ho(s) = (e F()gt-t)ut-t)de  dt
= Te" o g
Again,
I:g(t —tu(t-r)edt = g(t-t)e de
T
because utt-t )=1 foralltsuchthatt>rt ,
and u(t-t)=0 foralltsuchthatt<r.
Thus,
o  [] O
J J
Ho(s)= _ f@) g(t-t)e dt;dr.
0 T 0

And so putting T =t - r_, we get
_ *© Q *© -s(T+t) @
Ho(s) = Iof(r)ijog(T)e dTDdr.
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SinceT=0whent=r1 .
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That is,
Ho(s) = J';of(r)e'“dr I:g(l')e‘STdT = F,(5)D, (5).

Remark

The change in the order of integration in the proof given above is
justified by the absolute convergence of the integrals concerned.

3.1.2 Applications of Laplace
The most immediate application of these properties is in the solution of

ordinary differential equations with constants. Consider the case of the
general second-order equation

d’y . dy
adt—2+2ba+cy=f(t) (5)

Where y(0) = o and d'(0) = B . If 1 [y(t)] = Yo(s) then

DdyO Od yo_
! =sY (s)-a, and 1 —— =2Y0(s)-as-B.

Taking Laplace Transforms of both sides of (5.5) therefore gives

a[s?Yo(s) - o 5- B]+2b[SYo(S) - @ ]+ cYo(S) = Fols).
That is,
_ R aas + (ap + 2ba)
Yols) = as’ +2bs+c as’+ 2bS+cC ©)

Yo(s) is thus given explicitly as a function of s, and what remains is an
inversion problem; that is to say we need to determine a function y(t)
whose Laplace Transform is Y(s). The question of uniqueness which
naturally arises at this point is not, in practice, a serious problem. In
brief, if y; and y, are any two functions which have the same Laplace
Transform Y/(s), then they can differ in value only on a set of points
which is (in a sense which can be made precise) a negligibly small set.
In fact, we have the following situation:

if 1[ya(0] = v [y2(t)] then : [y2(t) - y2(t)| dt = 0.

With this proviso in mind, we admit the slight abuse of notation
involved, and write:

%(t) = I_l[Y (s)] = I_l%ié + I_1D aas + (ap + ZbQDD

(7)

jas® +2bs+c
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7 as?+2bs+c [
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where y is defined for all t > 0.

A more serious problem from the practical point of view is that of
implementing the required inversion; that is, of division effective
procedures which allow us to recover a function f(t) given its Laplace
Transform Fy(s). In a large number of commonly occurring cases this
can be done by expressing Fy(s) as a combination of standard functions
of s whose inverse transforms are known .

Note that with zero initial conditions, (y(0) = y'(0) = 0), the differential
equation (5) can be regarded as representing a linear time-invariant
system which transforms a given input signal f into a corresponding
output y. This output function y is the particular integral associated
with f and, using the Convolution Theorem, it can be expressed in terms
of the appropriate impulse response function characterizing the system:

Y(t) = I(t)f(T)hl(t—T)dT =17[F,(s)H,

Where
1

- °,-st —
Hol®) Jo®© h(t) dt as® +2bs+c
Non-zero initial conditions correspond to the presence of stored energy
in the system at time t = 0. The response of the system to this stored
energy is independent of the particular input f and is given by the
complementary function. The complete solution (valid for all t > 0) of
the equation (5) can be written in the form.

Y(t) = 17 [F,(s)H, ()] + 1 *[aas + (aB + 2ba)]H, (s)]. (8)

In applying the classical Laplace transform technique to (5) we are
tacitly assuming that the system which it is being taken to represent is
unforced for t < 0; that is, that the response which we compute from (5)
is actually the response to the excitation f(t)u(t). This is sometimes
expressed by saying that the input is suddenly applied at time t = 0.

3.2 Laplace Transforms of Generalised Functions

If a is any positive number then there is no specialty in extending
the definition of the classical, one-sided, Laplace Transform to
apply to the case of a delta function located at t = a, or to any of its
derivatives located there; for a direct application of the appropriate
sampling property gives immediately
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B, )= 1B (-a)) = ;oe'“é (t-a)dt=e™ (9)
5 (t-a)} = J':e"“é '(t - a)dt = —E% (e'“)% = g™ (10)
and so on =a

Now take the case of a function f defined by a relation of the form
f(t) = ¢ 1(Yu(a-t) + ¢ 2()u(t - a) (11)

where a > 0, and ¢, and ¢ , are continuously differentiable functions.
Using the notation

f'(t) = o, (Yu(@a—1t) + ¢, (Yu(t—a) (forallt =a)
and
Df(t) = ¢ ,(u(@—1t) + g, (u@a—1) + [¢2(a) - ¢ 1(a)]5 (t—a)
= f (1) +[f(a+) - f(a-)B(t-a). (12)

Using integration by parts to evaluate the Laplace integral we have

o e f(dt= Ig(pl' (e dt+ g, (Dt

O 0 . O 0
_ O st ey0 styey Locsto gyl =
s €Yo () + o (evdt+ eo(t) st
010 fgoe 02 f, e(Derdt
[+ 7; U Da
a 0 a

st as

=5 g M 00 R @ @0

Ia dt -e
D:I . % 2 1 1
=sF,(s) - f(0) - e *[f (a+) - f(a-)] (13)

so that a modification of the derivative rule is required when we adhere
to the classical meaning of the term *“derivative” in the case of
discontinuous functions.

On the other hand, from (12) we get

I:e'St[Df(t)]dt = | ;"e-stf'(t)dt + [f(at+) - f(a-)] e

= sFy(s) — f(0) (14)
and the usual form of the derivative rule continues to apply.
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The result (13) makes sense even when we allow a to tend to zero, for
then we get
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HIF®1= 1 0.0 dt=s7 "0, dt- ¢2(0)
= SFy(s) — f(0+). (15)

However, a complication arises with regard to 1 [Df(t)] whena = 0. If
we have

then f(t) = @ 1(u(-t) + 9 2(t)u(t)
Df(t) = o, (Yu(-t)+ [0 2(0) - ¢ 1(0)] 5 (t)
and so,
1 [DF(R)] = 1 [0,(D)] + [0 2(0) - 9 2(0)] 1 [ (V)]
=51 [92(t)] - 92(0) + [92(0) - 01(0)] a(s)
=sFo(s) — (0 +) + [f(0+)-f(0 -)] a(s). (16)

The difficulty is that, as remarked in Sec. 4.5, the Laplace Transform of
the delta function (which we have denoted by a (s)) is not defined by the

Laplace integral
[ ‘(’; e*'s (t)dt = | j “estu(t) & (t)dt.

The role of the delta function as a (generalized) impulse response
function suggests that we should have a (s) = 1 for all s, and this is the

definition most usually adopted. However the discussion on the
significance of the formal product u(t)s (t) shows that there are grounds

for taking a(s) = % for all s; other values for a(s) have also at the

issue cannot be resolved simply by an appeal to the definition of & as a
limit, nor by means of the formulation as a (Riemann) Stieltjes integral.
In the latter case, for example, we have for an arbitrary continuous
integrand f

f ;f(t)duc(t) =(1-0)f(0) (17)

We could therefore obtain a(s) =1 by choosing ¢ = 0 or, equally well,
A(S) E%by choosing ¢ :%. Whatever value we choose for a(s) the

relation (16) is bond to be consistent with the behaviour of § as the
derivative of the unit step function u. for, since

1 [u®)] = I;e'“dt: 1/s,

We have
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U] = 58 5 - U0 +)] + & ()[u(0+) - u()]
KoK
=(1-1)+ a(s) (1-0)= a(s).

On the other hand care must be taken to ensure that the correct form of
(16) is used when a specific definition of a (s) has been decided on.
Thus, for a(s) = 1 we get

1 [Df(t)] = sFo(s) - (0 -)
= sFy(s) (18)

Whenever f(t) =0 forall t < 0.

But for a(s) = % the result becomes

' D] = SFofs) - 5 [f(0+) + £0 )]

In what follows, we shall adopt the majority view and define a (s) to be
1 for all values of s. Similarly, we shall take the Laplace Transform of
8 ' to be s; the analogue of (19) then becomes

1 [D*(1)] = s°Fo(S) — sf(0-) — f(0-) (19)
= §°Fo(s)

whenever f(t) = 0 for all t < 0. The convenience of these definitions is
readily illustrated by the following derivation of the Laplace Transform
of a periodic function:

Let f be a function which vanishes identically outside the finite interval

(0,T). The periodic extension of f, of period T, is the function obtained
by summing the translates, f(t — kT), fork =0, +1, +2,...., (see fig. 49)

fi(t)= > f(t-KT) (20)

k==
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Y

Fig. 49

We can write fr as a convolution:

400 +oo

fr(t) = s [F(t)* 5(t- kT)] =T O* 5t -KkT). (21)

k=—co k=—c

further, using the above definition of a(s), we obtain

[Je ]
S(t kT) t - KkT).
HZ "Bk

=1reT4etTaedy = 1 (22)
The summation being valid provided that

-sT| e @ +iw)T

e le |e™*T<1,

That is, for all s such that Re(s) > 0. Hence, appealing to the Conclusion
Theorem for the Laplace transform, (21) and (22) together yield

HM( ~KT) [ = Fo(s) (23)

-sT

.D l-e
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3.3 Computation of Laplace Transforms

If f is an ordinary function whose Laplace Transform exists (for some
values of s) then we should be able to find that transform, in principle at
least, by evaluating directly the integral which defines Fo(s). It is
usually simpler in practice to make use of certain appropriate properties
of the Laplace integral and to derive specific transforms from them. The
following results are easy to establish and are particularly useful in this
respect:

(L.T.1) The first Translation Property. If 1 [f(t)] = Fo(s), and if a is any
real constant, then

1 [e*F(1)] = Fo(s — a).

(L.T.2) The Second Translation Property. If 1 [f(t)] = Fo(s), and if a is
any positive constant, then

1 [u(t=a)f(t—a)] = e™®Fqy(s).

(L.T.3) Change of Scale. If 1 [f(t)] = Fo(s), and if a is any positive
constant, then

| [f@an] = LFESE.
d xag
(L.T.4) Multiplication t. If 1 [f(t)] = Fo(s), then
W] = - S Fofs) = - Fo(s).
ds

(L.T.5) Transform of an Integral. If 1 [f(t)] = Fo(s), and if the function
g is defined by

ot) = Igf(r )t
then
' [90] = Fo(s).

The first three of the above properties follow immediately on making
suitable changes of variable in the Laplace integrals concerned. For
(L.T.4) we have only to differentiate with respect to s under the integral
sign, while in the case of (L.T.5) it is enough to note that g'(t) = f(t) and
that g(0) = 0; the result then follows from the rule for finding the
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Laplace Transform of a derivative. Using these properties, an
elementary basic table of standard transforms can be constructed without
difficulty (Table 1). This list can be extended by using various special
techniques. In particular, the results for the transforms of delta functions
derived in the preceding section are of considerable value in this
connection.

Table 1: Basic Table of Standard Transforms
fu(t)(t) Fo(s) Region of (absolute) convergence
u(t) 1/s Re(s) >0
t 1/s* Re(s) >0
t"(n>1) nl/s™* Re(s) > 0
eat 4
s-a Re(s)>a
ot 1
sta Re(s)>-a
sinh at a
s*-a’ Re(s)>|a|
cosh at 5
s’ -a’ Re(s)>a|
sin at a
s’ +a’ Re(s)>0
cos at S
s? +3a? Re(s) >0
Example 1

Find the Laplace transform of the triangular waveform show in fig. 50.

Fig. 50: Laplace Transform of the Triangle Waveform

We shall obviously expect to use the formula (23) for the Laplace
Transform of the periodic extension of a function f, but the first need is
to establish the transform of this function f itself. In fig. 51 there is
shown a decomposition of the required function into a combination of
ramp functions:
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f(6) = tu(t) — 2(t = Du(t = 1) + (t = 2)u(t - 2)

|

Fig. 5.4(a).

Fig. 5.4 (b).

Fig. 51 (b)

A straightforward application of the second translation property (L.T.2)
immediately gives

1 2 ., e® [-e™l 4 ... .,58

Fo(S)= —=-—e° + = = e*sinh? =,

olS) s’ §? s? Es % s? 2

Hence, applying (5.23)
04, ,s00 1 2sinh?s/2 tanhs/2
1 [f+(D)]= —e sinh — 5 = - :
[Fr(0] s 2 24 H1-e  s2sinhs 52
0

4.0 CONCLUSION

In this unit we considerd the Laplace transform atum from practical
point of view and illustrate its use by important engineering problems,
many of them related to ordinary differential equations.
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5.0 SUMMARY

The main purpose of the Laplace transformation is the solution of
differential equations and systems of such equations, as well as
corresponding initial value problems.

The Laplace transform f(s) = 1 (f) of a function f(t) depend by.
F(s) 1 (f) Se‘st f (t)dt
Io

Further, more discussion, the Laplace of the derivation such that.

1 (F) =s1 (f) +(0)
1 (F) =2 1 (F) - sf(0) - F(0).

Hence, by taking the transform of a given differential equation 3 Z +
X

a4+ by = ().
dx

L (y) =Y(s)
Hence, the simple equation becomes

(*xasxb)y=1(5)xsf(0) +F(0) +af(0).

Hence, 1 (8 ) the transformation back to hard problem can be gotten
from the table 1 — unit 3.

6.0 TUTOR-MARKED ASSIGNMENT

I. Find the Laplace transform of the following function
a. v
b. cos wt
C. cosh bt
ii. Use Laplace transforms to obtain, for t x0, the solution of the
linear differential equation
d?y
dx?
iii.  Use the convolution theorem for the Laplace Transform to solve

Xy = t., which satisfies the condition y(0) = 1, y'(0) =-2

the integral equation y(t) = cost + 2sint + Igy(r)sin(t -1)dt

fort>0.
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Identify the function whose Laplace Transforms are:

S2 +2
(a) s+1
(b) coshs

S

e
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