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INTRODUCTION 
 

The course, Mathematical Methods 111 is meant to provide essential 
methods for solving mathematical problems. 

 
In scientific problems, often times are discovers that a factor depends 
upon several other related factors. For instance, the area of solid depends 
on its length and breadth. Potential energy of a body depends on gravity, 
density and height of the body e.t.c. Moreover, the strength of a material 
depends on temperature, density, isotropy and softness e.t.c. 

 

 
WHAT YOU WILL LEARN IN THIS COURSE 

 
This is a 3-credit course, it is grouped into 4 modules i.e. module1, 2, 3 
and 4. Module 1 has 2 units; module 2 also has 2 units as well as module 
3 with only one unit while module 4 has 3 units. In summary, the course 
has 4 modules and 8 units in all. 

 
The course guide gives a brief summary of the total contents contained 
in the course material. Functions of several variables streamline the 
relationship between function and variables, the application of Jacobian, 
down to functional dependence and independence. Also discussed here 
is the multiple, line, improper integrals and tensor calculus. 

 

 
COURSE OBJECTIVES 

 
At the end of this unit, you should be able to: 

 
 

• identify functions of two or more variablesthe ideal of Jacobian 
to be extended to three variables 

•     use of Jacobian to change variables in multiple integral and 
• determine whether two or more functions are linearly depended 

or independent respectively. 
 
 

WORKING THROUGH THE COURSE 
 

This course involves that you would be required to spend lot of time to 
read. The content of this material is dense and requires that you spend 
great time to study it. This accounts for the great effort put into its 
development in the attempt to make it readable and comprehensible. 
Nevertheless, the effort required of you is still tremendous. 

 
I would advice that you avail yourself the opportunity of attending the 
tutorial sessions where you would have the opportunity of comparing 
knowledge with your peers. 
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COURSE MATERIALS 

 
You will be provided with the following materials: 

 

 
1.        Course Guide 
2.        Study Units 

 
In addition, the course comes with a list of recommended textbooks, 
which though are not compulsory for you to acquire or indeed read, but 
are necessary as supplements to the course material. 

 

 
STUDY UNITS 

 
The following are the study units contained in this course. The units are 
arranged into four identifiable but related modules. 

 

 
Module 1      Functions of Several Variables 

 
Unit 1            Some Basic Concepts 
Unit 2            Vector Field Theory 

 

 
Module 2 

 
Unit 1            Functions of Complex Variables 
Unit 2            Integration of Complex Plane 

 

 
Module 3 

 
Unit 1            Residue Integration Method 

 

 
Module 4 

 
Unit 1            Integral Transform 
Unit 2            Fourier Series and its Application 
Unit 3            The Laplace Transform 

 

 
TEXTBOOK AND REFERENCES 

 
The following editions of these books are recommended for further 
reading. 

 

 
Advance Engineering Mathematics by KREYSZIC. 
Generalized Functions by R. F. Hoskins. 
Complex Variables by Murray R. Spiegel. 
Engineering Mathematics by K. A. Stroud. 
Advance Calculus for Applications by F. B. Hildraban 
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ASSESSMENT 
 

There are two components of assessment for this course. The Tutor- 
Marked Assignment (TMA), and the end of course examination. 

 

 
TUTOR-MARKED ASSIGNMENT 

 
The (TMA) is the continuous assessment component of your course. It 
accounts for 30 per cent of the total score. You will be given four (4) 
TMAS’ to answer. Three of these must be answered before you are 
allowed to sit for the end of course examination. The TMAs’ would be 
given to you by your facilitate and returned after you have done the 
assignment. 

 

 
FINAL EXAMINATIONS AND GRADING 

 
This examination concludes the assessment for the course. It constitutes 
70 per cent of the whole course. You will be informed of the time the 
examination. It may or may not coincide with the University Semester 
Examination. 

 

 
SUMMARY 

 
The students have been taught how to use Jacobian method to change 
the variable – multiple integral, also to determine whether two functions 
are linearly dependent or independent. 

 
Solve line, multiple and improper integrals. 
The use of Fourier transform to solve some differential equation, 
boundary values problems and e.t.c. Also talked about is Laplace 
transformation to solve some initial and boundary value problem, which 
are difficult to handle.  After which Convolution theory is applied. And 
the result’s then retrains-formed back to physical or mechanical 
problems. 

 
So far, about three methods have been thoroughly dealt with in this 
course. In Mathematical Methods IV, we shall still talk about several 
other methods to handle any category of problem, provided the problem 
can be modeled into mathematical problems. 
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MODULE 1 FUNCTIONS OF SEVERAL VARIABLES 

 
Unit 1 Some Basic Concepts 
Unit 2 Vector Field Theory 

 
 
 
UNIT 1 SOME BASIC CONCEPTS 

 

 
CONTENTS 

 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Functions of Several Variables 
3.2 Jacobian 
3.3 Function Dependence and Independence 

3.3.1 Testing for Linear Dependence or Otherwise 
3.4 Multiple Integral and Improper Integrals 

3.4.1 Double Integral 
3.4.4.1 Evaluation of Double Integrals 
3.4.4.2 Double Integral in Polar Coordinates 
3.4.4.3 Triple Integral 

4.0      Conclusion 
5.0      Summary 
6.0      Tutor-Marked Assignment 
7.0      References/Further Reading 

 

 
1.0     INTRODUCTION 

 
In scientific problems, often times one discovers that a factor depends 
upon several other related factors. For instance, the area of rectangle 
depends on its length and breath, hence can say that area is the function 
of two variables i.e. its length and breadth. Potential energy of a body 
depends on gravity, density and height of the body, hence, we can also 
say that potential energy is a function of three variables i.e gravity, 
density and height etc. The strength of a material depends upon 
temperature, density, isotropy softness etc., here we can say that the 
strength of material is a function of many variables i.e. temperature, 
density, isotropy softness etc. 
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2.0     OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 
•     use Jacobian change variables in multiple integral 
• determine whether two or more functions are linearly dependent 

or independent 
•     identify the functions of two or more variables. 

 
3.0     MAIN CONTENT 

 
3.1     Functions of Several Variables 

 
A function is composed of a domain set, a range set  and a rule of 
correspondence that assigns exactly one element of the range  to each 
element of the domain u, is called a function of two variables x and y if 
u has one definite value for every pair of variables of x and y. 
Symbolically, it is written as 

 
u =  f ( x, y) . 

The variables x and y are called independent variables while u is called 
the dependent variable. 

Similarly, we can define u as a function of more than two variables. 

In summary, we have that 
 

u( x) ⇒ a function of a single variable 
u( x1 , x2 ) ⇒ a function of two variables 
u( x1 , x2 , x3 ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
xn ) ⇒ 

a function of several variables. 

 

 
Example 1 

 
If 
(a) 

f ( x, y) = x2 − 3xy + 6 y , find : (a) f(-1,1) and f(2,3). 
f ( x, y) = x 2 − 3xy + 6 y 
f (−1,1) = (−1)2 − 3(−1)(1) + 6(1) 
f (−1,1) = 1 + 3 + 6 = 10 

 
 

(b) f (2,3) = 22 − 3(2)(3) + 6(3) 
f (2,3) = 4 − 18 + 18 = 4 
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2 2 

 
 
3.2     Jacobian 

 
Jacobian is a functional determinant (whose elements are functions) 
which is very useful in transformation of variables from Cartesian to 
polar, cylindrical and spherical coordinates in multiple integras. Let 
u(x,y) and v(x,y) be two given functions of two independent variables x 
and y. 

 
The   Jacobian   of   u   and   v   with   respect   to   x,y   denoted   by 
 u v  

J  or 
 x y  

∂(u, v) 
∂( x, y) 

 
is a second order functional determinant defined as 

 
 
 

 v 
 

 
 
(  ,  )

 ∂u ∂u 

J  
u 

 x 
 = 

∂ u v   
= ∂x ∂y 

y  ∂( x, y) ∂v ∂v 
∂x ∂y 

 
 
Properties of Jacobians 

 
If u and v are the functions of x and y, then 

 

 
∂(u, v) ∂( x, y) x = 1 
∂( x, y) ∂(u, v) 

 
 
If u,v are the functions of r,s where r,s are functions of x, y, then, 
∂(u, v) = ∂(u, v) x ∂(r, s) 
∂( x, y) ∂(r, s) ∂( x, y) 

 

 
If  functions  u,  v,  w  of  three  independent  variables  x,y,z  are  not 

 

independent, then, ∂(u, v, w) = 0 
∂( x, y, z) 

 
 
Example 2 

 
 
Find the Jacobian 

 
 
 
∂(u, v) 
∂( x, y) 

 
 
 
 
in each of the following: 

 
 
 
(i) u = x + 

y , v = y 
x x 

 
(ii) u = x2 + y 2 , v = 2 xy 



MTH 381 MATHEMATICAL III 

4 

 

 

3 3 

2 2 

 x y 

  
2 

 
 

Solution. 
 
 

u = x + 
y 

 
 
 
 
, v = 

 
 
 
y  , using  J  u 

 
 

∂u ∂u 
v  ∂(u, v) ∂ ∂  = = 

x x  x y  ∂( x, y) ∂v ∂v 
∂x ∂y 

 

(1 − 
y  

)
 

 

( 
2 y 

)
 

J  
u v 

 = ∂(u, v) = x2 x 
2 

 x y  ∂( x, y) (− 
y  

) 
x2

 
( 
2 y 

) 
x 

= 2 y − 2 y  + 2 y = 2 y 
x x3 x3 x 

 
Solution  

 
 
 v 

 

 
 
 
(  ,  )

 

 
 
∂u ∂u 

 

u = x2 + y 2 , v = 2xy , using J  
u 

 x 
 = 

∂ u v   
= ∂x ∂y 

y  ∂( x, y) ∂v ∂v 
∂x ∂y 

2x − 2 y 
J = 

2 y 2x 
= (2x)(2x)-(2y)(-2y) 
= 4x2 + 4 y 2 

= 4( x2 + y 2 ) 
 
 

Example 3 
 
 

If u=xyz, 
 
v = x2 + y 2 + z 2 , w=x+y+z ,find ∂(u, v, w) J = 

∂( x, y, z) 
 
 

Solution 
 

Since u, v,w are explicitly given, so , first we evaluate 
 

∂u 
∂x 

∂(u, v, w) ∂u 
J = = 

∂( x, y, z) ∂y 
∂u 
∂z 

∂v ∂w 
∂x ∂x 
∂v ∂w 
∂y ∂y 
∂v ∂w 
∂z ∂z 

 
 

yz zx xy 
= 2x 2 y 2z 

1 1 1 

 
= yz(2y-2z)-zx(2x-2z)+xy(2x-2y) 

 
=2[yz(y-z)-zx(x-z)+xy(x-y)] 
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J = = 

 
 

= 2[ x2 y − x2 z − xy 2  + xz 2 + y 2 z − yz 2 ] 
 
 

= 2[ x2 ( y − z) − x( y 2 + z 2 ) + yz( y − z)] 
 
 

= 2( y − z)[ x2 − x( y + z) + yz] 
 

= 2( y − z)[ y( z − x) − x( z − x)] 
 

= 2( y − z)( z − x)( y − x) 
 

= −2( x −  y)( y − z)( z − x) The  idea  can  be  easily extended to  three  or 
several variables thus: 

 
 
 
 

  ,  , 
 

 
 
 
(  ,  ,   )

 
∂u ∂v ∂w 
∂x ∂x ∂x 

J  u v w  = ∂ u v  
w = ∂u ∂v ∂w 

 x, y, z  ∂( x, y, z)
 

∂y ∂y ∂y
 

  
∂u ∂v ∂w 
∂z ∂z ∂z 

 
Example 4 

 
Jacobian can be applied to polar coordinate r andθ , thus, x = rCosθ and 
y = rSinθ . 

 

 
Then, 

 
 
 
 
 
 

∂x 

 
 

∂x ∂x 
∂( x, y) ∂r ∂θ 
∂(r,θ ) ∂y ∂y 

∂r ∂θ 
∂x 

 
 
 
 
(1) 

But = Cosθ , 
∂r 

= −r sinθ 
∂θ 

(2) 

∂y = Sinθ 
∂r 

 

and ∂y = rCosθ 
∂θ 

 
Substituting equation (2) into (1) gives 

 
Cosθ 

J = 
Sinθ 

− rSinθ 
rCosθ 

= rCos 2θ − (−rSin 2θ ) 
= r[Coc 2θ + Sin 2θ ] = r 

 
Since Cos2θ + Sin2θ = 1 



MTH 381 MATHEMATICAL III 

6 

 

 

ax bx 

bx 

ax 

 
 

∂( x, y) 
∴ J = 

∂(r,θ ) 
= r 

 
 

3.3 Function Dependence and Independence 
 

Two functions u( x) and v( x) defined on an interval 0 < x < 1 are said to be 
functionally  (linearly)  dependent  on 0 < x < 1 if  there  exist  ‘ ∃ ’  two 
constants k1 and k 2 where not both zero, such that‘ ∃ ’ 

k1u( x) + k 2 v( x) = 0 for x , ∀x .    (i) 
 
 
 
 

However, the two functions u( x) and v( x) defined on interval 
0 < x < 1 are said to be functionally (linearly) independent on 0 < x < 1 , if 
the only constants k1 and k 2 such that‘ ∃ ’ for all x in the interval where 
both constants k1 and k 2 are zeros  i.e, when u or v can not be expressed 
as proportional to the other. Otherwise, u and v are linearly dependent if 
(i) holds for some k1  and k 2 not both zero. 

 
Example 5 

 

 
Show that the functions v( x) = e ax and u( x) = ebx are linearly dependent on 
the interval. 0 < x < 1 . 

 
Solution 

 

 
Suppose 

 
 
 
k1e 

 
 
 
+ k 2 e = 0 

 
 
 

∀x in 0 < x < 1 

 
 
 
(1) 

Multiplying equation (1) by e − ax , we obtain 
k1e ax e − ax + k 2 e  e − ax  = 0 (2) 
k1 + k 2 e (b −a ) x  = 0 (3) 

 
differentiating equation (3) we obtain 

(b − a)k 2 e (b −a ) x  = 0 (4) 
(b − a)e(b−a ) x  ≠ 0 since b − a ≠ 0 
b = 0 

then it implies that  
 
(5) 

 
Substituting (5) into (1), and differentiating w.r.t.x, we obtain 
k1 ae = 0 (6) 
⇒ a = 0 , since e ax  ≠ 0. 
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ax ax 

ax 

ax 
1 

 
 
Example 6 

 

 
Show that the functions v( x) = e ax and u( x) = ebx are linearly independent 
on the interval. 0 < x < 1 . 

 
Solution: If 

 
k1e + k2 xe = 0 (1) 

 
(k1 + k 2 x)e = 0 (2) 

 
Since eax  ≠ 0 ,  ⇒ k1 + k 2 x = 0 (3) 

 
 
 
Differentiating equation (3) we obtain 

k1  = 0 

 
 
(4) 

 
Substituting (5) into (1), however 

 
k1e = 0 ⇒  k  = 0 .Since eax  ≠ 0 (5) 

 
 
 
3.3.1 Testing For Linear Dependence or Otherwise 

 
A method called Wronskian of the function could also be used to test for 
linear dependence or otherwise. Thus, consider the functions u( x) and 
v( x) and the first derivatives u′( x) and v′( x) , therefore we can define the 
Wronski determinant or Wroskian.: 

 

 
 
Wronskian 

 

= W (v( x).u( x)) = 
v( x) 
v′( x) 

u( x) 
u′( x) 

= v( x)u′( x) − u( x)v′( x) 
 
 
Results: 
v(x), u(x) are linearly independent if 

 
 
W ≠ 0 

Otherwise linearly dependent when W=0. 
 

 
Example 7 

 
Determine whether the following functions v(x) and u(x) are linearly 
dependent or independent. 

 
v(x) =cosbx, u(x) = sinbx with b ≠ 0 
v(x) = eax , u( x) = e −ax

 with a ≠ 0 . 



MTH 381 MATHEMATICAL III 

8 

 

 

 
 

Solution 
 

v( x) = cos bx , 

 
 
 
v′( x) = −b sin bx , u( x) = sin bx 

 
 
 
and u′( x) = cos bx . 

 
 
 

(a) 
 

W (v( x).u( x)) = 
v( x) 
v′( x) 

u( x)  
= 

u′( x) 
cos bx 
− sin b 

sin bx 
b cos bx 

 
 

= b(cos2 bx + sin 2 bx) 
= b ≠ 0 

 
So v(x) and u(x) are linearly independent. 

 
v( x) = eax , v′( x) = −aeax , u( x) = e− ax

 and u′( x) = −ae−ax . 
 
 
 
 

(b) 
 

W (v( x).u( x)) = v( x) u( x)  
= eax e− ax 

v′( x) u′( x) aeax
 − ae− ax

 

= −ae0 − ae0
 

= −a(e0 + e0 ) 
 

With a ≠ 0 . So v(x) and u(x) are linearly dependent. 
 

SELFASSESSMENT EXERCISE 
 

Determine whether the following pair of functions are linearly 
dependent as the case may be 

 
i. (a) u( x) = x, v( x) = e 2 x

 

(b) u( x) = 2Sinhx, v( x) = Cosx 
(c) u( x) = x 3 , v( x) = 3x 3 

 
 

ii. (a) Show  that  the  function 
linearly 

u( x) and v( x) defined  by are 

u( x) = x 2 , v( x) = x x Independent for the interval 0 < x < 1 . 
Compute the Wronskian of these functions. 

 
iii. If f (x, y ) = x4 − 2 xy + 4 y 2 , 

Find (a) f (1,−1) , (b) f (0,−3) and 
 

(c) f ( x, y + k ) − f ( x, y) 
12 

 

iv. If f (x, y ) = 4 x + 2 y , 
2 − 2 xy 
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d 

∫ 

b 

b 

 

d 

 
 
 

Find (a) 
 

f (1,−3), (b) f (2 + h,3) − f (2,3) 
h 

v. If x = r sin θ cosφ , y = r sin θ sin φ and z = r cosθ . 
 

Show that ∂(x, y, z ) 
= r 2 sin θ . 

∂(r,θ ,φ ) 
 

vi. If 
 

u = x2 , v = y 2 , 
 

find ∂(u, v) 
∂( x, y) 

 
 
 
3.4 Multiple Integral 

 
3.4.1  Double Integral 

 
Definition: In this case the integrand is a function f ( x, y) that is given 
for all ( x, y) in a closed bounded region R of the x − y plane. 

 
 
Let f ( x, y) be  a  single  valued  continuous function within  a  region 
R bounded by a close curve C . Then the region R is called 

 
The region of integration. However, double integral can be defined thus: 

 
 

∫  ∫  f ( x, y)dxdy or ∫∫ f ( x, y)dA (1) 
c    a 

r 

 
3.4.4.1 Evaluation of Double Integrals 

 
Consider a ≤ x ≤ b and g ( x) ≤ y ≤ h( x) so that y = g ( x) and y = h( x) 
represents the boundary of R . Then 

 

 

∫∫ f ( x, y)dxdy = ∫  
 h ( x ) 

f ( x, y)dx  

(2) 
a   g ( x )  

R 

 
Similarly, if R can be described thus 

 
c ≤ y ≤ d , v( y) ≤ x ≤ u( y) 

 
So that x = v( y) and x = u( y) . Then 

 
 
 

∫∫ f ( x, y)dxdy = ∫
 ∫

u ( y ) f ( x, y)dxdy  

(3) 
c   v ( y )  

R 

 
In this case, one first calculates the integral within the square brackets. 
Then  further integration is then performed. 
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0 0  

∫ 
1 1 

2 2 

 
 

Properties of Double Integrals 
 
 

1. ∫∫ af ( x, y)ds = a∫∫ f ( x, y)ds , a =constant 
D D 

 
2. ∫∫[ f ( x, y) + g ( x, y)]ds = ∫∫ f ( x, y)ds + ∫∫ g ( x, y)ds 

D D D 

 
3. ∫∫ f ( x, y)ds = ∫∫ f ( x, y)ds + ∫∫ f ( x, y)ds 

D D1 D 2 

 
Were D is the union of disjointed domains D1 and D2 

 

 
Example 5 

 
Evaluate the integrals 

 
1   1 

∫ ∫ ( x 2  + y 2 )dydx 
0   0 

 
Solution 

 
1  1 2 2 

 
∫ ∫ ( 
x 

+ y  )dy dx 
 

= 
1 [x 2 y +  1  y 3 ]1dx

 
 

0 3 0 

= ∫ [( x 2  + 1 ) − 0]dx = ∫ ( x 2  + 1 )dx 
0 3 0 3 

= 
1 x 3  + 

1 x 
1 

= 
1 

+ 
1 

3 3 0 3 3 

= 
2 
3 

 
3.4.4.2 Double Integral in Polar Coordinates 

 
This is defined by 

 
θ    r 

∫ 
1 

∫ 
1  f (r,θ )drdθ 

θ 2     r2 
 

 
Example 6 

 
Evaluate the integrals 

 
π Cosθ

 

∫ 
2   

∫  r drdθ . 
−π 

2     0 
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 
 

 

2 

∫ 

∫  
8
 

π 

 

3 

3 

dθ 

3  

 

 
 
Solution  

 
π 2 θ

 

∫ 
2   

∫ 
Cos 2 

 
 

−π  
2  r  dr dθ = I 

 (1) 
 

=  
π       r  

2Cosθ 

dθ 
∫−π         (2) 

2  3  0 

=  
π 

2    (2Cosθ ) 
−π 

2 3 
π 

= 
2 Cos 3θ dθ 

−π 

 

(3) 
2  3 

 
Using trigonometric identity to simplify Cos3θ 

 
Thus Cos3θ = Cos(2θ + θ ) = Cos2θCosθ − Sin2θSinθ 

= (Cos 2θ − Sin2θ )Cosθ − (2SinθCosθ )Sinθ 
= Cos 3θ − Sin 2θCosθ − 2Sin 2θCosθ 
= Cos3θ − 3Sin2θCosθ 
= Cos 3θ − 3[1 − Cos 2θ ]Cosθ 
= Cos3θ − 3Cosθ + Cos3θ 
= 4Cos 3θ − 3Cosθ 

∴ Cos 3θ = 
1 Cos3θ + 

3 Cosθ 
 

(4) 
4 4 

 
Hence, substituting (4) into (3) we obtain 

 
8 2    1 3  

I = ∫−π      
 

2 

Cos3θ + 
4 

Cosθ dθ 
4  

π 

 

I = − 2 
1 

2 

Sin3θ + 3Sinθ 

3  3 
 

 
 

 2   1 

 
 −π 

2 

 
 3 

 
 
 
  π 

 

 

 
 
  1  3

 

 

 
 

  π    
 

= −  Sin 2 π + 3Sin 2  −  Sin(− 2 π ) + 3Sin(− 2 )  (5) 
3  3   3  

 
But Sin 3 

2 π = −1, Sin π 
2 = 1 

 
Similarly, Sin − 3 

2 π = −1 and Sin − π 
2 = −1 (6) 

 
Substituting (6) into (5) 

 
2  1   1  

I = −   (−1) + 3 
−  

(1) + 3(−1)  

3  
3 

2  1  
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  3   1  
= −
  

+ 3 − 
 

+ 3 

3  
3 

  3  
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 
1 0 

1 z 

1 z 

1 

1 

 
 

= − 2 8 + 8 
 

2 
 

16 
 = − 32

 
  

  = − 
3  3 3  

I = −3 5 
9 

3  3  9 

 
3.4.4.3 Triple Integral 

 
Definition: A function of three variables is involved in triple integral. 
However, in triple integral, integration is carried out thrice. It is then 
define as: 

 
∫∫∫ f ( x, y, z)dxdydz 

v 

over the region v 

∫ f ( x, y, z)dv . This can also be used to find the volume of any 
v 

shape. 
 

 
Example 7 

 
Evaluate 

 
1     z    x + z 

∫−  ∫ ∫ − ( x + y + z)dydxdz 
1  0    x  z 

 
Solution 

 
1   z 

 x + z  
 

∫  ∫  ∫
 ( x + y + z)dy dx dz 

−1  0  x − z   

=  
1 z (xy +  1  y 2 zy )x + z dxdz

 
∫−  ∫ 

 

2 x − z  
 
 

= ∫  


∫ ([x( x + z) +  1 ( x + z) 2  + z( x + z)]− [x( x − z) +  1 ( x − z) 2  + z( x − z)])dz 
−1  0 2 2  

= ∫  ∫ (4 xz + 2 z 2 )dxdz 
−1  0  

z 

= ∫  [2x 2 z + 2 xz 2 ] dz 
−1 

1 
= ∫  4 z3 dz = z 4 

0 
 
= 1 −1 = 0 

−1 −1 
= 0 
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a 

 
 
Example 8 

 
Evaluate 

 

I = ∫∫∫ (3x 2  + 3 y 2  + 3z 2 )dv by changing to polar coordinate. 
v 

 
Thus x = rSinθCosφ , y = rSinθCosφ and z = rCosθ . 

 

 
Solution 

 
π π 

I = 24∫ 
2 

∫ 
2 

∫ 
 

r 2 dr(rSinθdφ )(rdθ ) 
0 0 0 

= 
24 

∫
π 

2 

∫
π 

2 

 

a 5 Sinθdθdφ 
5   0 0 

π 
π 

2
 

= 24 a 5 
∫ 

2
 

 

(−Cosθ )  dφ 
5 0 0 

= 24 a 5 ⋅  
π 

= 24 a 5π . 

5 2 5 
 
4.0     CONCLUSION 

 
In conclusion, the student should be able to use Jacobian method to 
change the variable in multiple integral and to determine whether two 
functions are linearly dependent or independent. Also to solve integral, 
multiple. 

 

 
5.0     SUMMARY 

 
The following are discussed in the unit: 

 

 
Functions  of  variable  defined  thus, 

 
 
 
u( x1 , x2 , x3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅xn ) .  Jacobian  of 

(uv) was discussed and extend it to three or several variables, thus 
 
 

 u v  ∂(u, v)  u, v, w  ∂(u, v, w) 

J   
= and J   = 

 x y 
 

∂( x, y)  x, y, z 
 

(∂x, y, z) 

 

 
Jacobian was also applied to polar coordinate thus 

 

 
∂( x, y) 

J = = r 
∂(r,θ ) 

.
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1 

1 

2 

x 

 
 

The functional dependence of two functions u( x) and 
thus: 

v( x) was discussed 

 
k1u( x) + k 2 v( x) = 0 , ∀
x 

where k1 and k2 are constants and are not zero. 

While the functional independence of two functions u( x) and 
also discussed thus: 

v( x) was 

 
k1u( x) + k 2 v( x) = 

0 
∀x , where k1 = k2 =0. 

 
Testing  for  linear  (independence)  dependent  was  discussed  using 
Wronskian method which involves the determinant thus 

 

 
 

W (v( x), u( x)) = v( x)u ′( x) − u( x)v′( x) = 
 

Lastly, multiple integral was discussed. 

v( x) 
v′( x) 

u( x) 
u ′( x) 

 
6.0 TUTOR-MARKED ASSIGNMENT 

 
i. Evaluate the double integrals 

π 1 

(a) ∫−π  ∫−  
xydxdy 

2    x y
 

(b) ∫ ∫− 
2 

e Coshxdydx 

(c) ∫ ∫ 
y  +1 

x 2 ydxdy 
1     y 

ii. Evaluate the following triple integral 
π 2    x + z 

(a) ∫−π  ∫ ∫ − ( x + y + z)d xdydz 
0    x  z 

dxdydz where x 2  + y 2  + z 2  = a
 

(b) ∫ ∫ ∫ x 2  + y 2  + z 2 
 
 

(c) Compute the volume of the solid enclosed by 
 

(i) x 
+ 

y 
+ 

z 
= 1, 

 
x = 0, y = 0, z = 0 

a b c 
(ii) x 2  + y 2  − 2ax = 0, z = 0, x 2  + y 2  = z 2 

iii. Determine whether the following pair of functions are linearly 
dependent or independent as the case may be. 
(a) 
(b) 
(c) 

u( x) = x, v( x) = e 2 x
 

u( x) = 2Sinhx, v( x) = Cosx 
u( x) = x 3 , v( x) = 3x 3 

iv. (a) show that the functions u( x) and v( x) defined by 
u( x) = x 2 , u( x) = x x. 
0 ≤ x ≤ 1. 

are  linearly  independent  for  the  interval 

(b) Compute the Wronskian of the function in 4(a) 
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v. Evalute ∫∫ ( x + y)2 dxdy , where R is a region bounded by the 

R 

parallelogram x+y=0, x+y=2, 3x-2y=0, and 3x-2y=3. 
vi. Evalute ∫∫ ( x

2 + y 2 )dxdy ,  where  R  is  a region  in  the  first 
R 

quadrant bounded by 
0<c<d 

x2 − y 2  = a , x2 − y 2  = b , 2xy=d, 0<a<b, 
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1.0 INTRODUCTION 

 
Vector function represents vector fields which have various physical and 
geometrical applications. 

 

 
The basic concepts of differential calculus can be extended to vector 
function in a simple and natural fashion. 

 

 
Vector functions are useful for representing and investigating curves and 
application in mechanics as path of moving bodies. 

 
Integral theorems will be considered in the later path of this unit’s i.e 
Line Integral, Gauss, Stokes and Greens theorems. 
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2.0     OBJECTIVES 

 
At the end of the unit, you should be able to: 

 

 
•     appreciate vector field and vector function 
• understand  the  vector  field  theory,  using  vector  function  to 

investigate curves and their applications in mechanics and 
• use integral theorem to solve some physical problems. Study of 

Line Integral, Gauss, Stokes and Greens theorems and their 
applications. 

 

 
3.0     MAIN CONTENT 

 
3.1     Vector Field Theory 

 
A scalar function is a function that is defined at each point of a certain 
set of points in space and whose values are real numbers depending only 
on the points  in  real  space  but  not  on  the  particular  choice  of  the 
coordinate system. 

 
Furthermore, the distance of f ( x, y, z) of any point  p from a fixed point 
p0 in space is  a  scalar function whose domain of  definition D is  the 

whole space. f ( x, y, z) defines  a  scalar  field  in  space.  Introducing  a 
Cartesian coordinate x0 , y0 , z0 . Then the distance 

 
 

f ( x, y, z) = ( x − x0 ) + ( y − y0 ) + ( z − z0 ) 
 

 
The temperature distribution in a heated body, density of a body and 
potential due to gravity are the examples of a scalar point function. 

 

 
3.2 Relations between Vector Field and Functions 

 
A vector v( p) is a function that is defined on some point set D in space 
i.e. the set of points of a curve, a surface or a three dimensional region 
and associates with each point p in D a vector v( p) . 

 
 
While a vector field is given in D . We introduce Cartesian coordinates 
x, y, z then we may write our vector function in terms of compound 
function. 

 
v( x, y, z) = [v1 ( x, y, z), v2 ( x, y, z), v3 ( x, y, z)] 

 

 

or using i, j, k ,. Thus 
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v( x, y, z) = v1 ( x, y, z)i + v2 ( x, y, z) j + v3 ( x, y, z)k 
 

 
But we should keep in mind that v  depends only on that points of its 
domain of definition, and at the point defines the same vector for every 
choice of the coordinate system. The velocity of a moving fluid, 
gravitational force are the examples of vector point function. 

 

 
Our notation in simple scalar and vector quantities in the pre-requisite 
course mathematical methods I and II are the same with that under 
discussion. The only difference is that the components 
becomes functions of x, y, z since v is a function of x, y, z . 

 
3.2.1 Example of Vector Field (Velocity Field) 

v1 , v2 , v3 of v now 

 
At any instant, the velocity vectors v( p) of a rotating body B constitute a 
vector field, the so called velocity field of the rotation. If we introduce a 
Cartesian coordinate system having the origin on the axis of rotations 
then 

 
v( x, y, z) = w × [z, y, z] = w × ( xi + yj + 

zk ) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Field of Tangent Vectors of 
a Curve Fig. 2: Gravitational 

Field 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: A Rotating Body and the 
Corresponding Velocity 
Field 
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where x, y, z are the coordinates of any point p of B at the instant under 
consideration. If the coordinates are such that the z-axis of rotation and 
w points in the positive direction, then w = wk and 

 

 
i  j 

v = 0 0 
x y 

k 
w = w(− yi + xj) = w[− y, x,0] 
z 

 
 
An example of a rotating body and the corresponding velocity field are 
shown in Fig. 3. 

 

 
Example of Vector Field (Field of Force) 

 
a. If the velocity at any point (x,y,z) within a moving fluid is known 

at a certain time, then a vector field is defined. 
b. v(x, y, z ) = xyi − yz 2 kj + x 2 zk defines a vector field. A vector field 

which is independent of time is called a stationary steady-state 
vector field. 

c. Let a particle  A of mass M be fixed at a point p0 and let a particle 
B of mass M to be free to take up various positions  p in space. 
Then A attracts B. According to Newton’s Law of gravitation, the 
corresponding gravitational force p is directed from p to p0 , and 
its magnitude is proportional to 1  

2 where r is the distance 
r 

between p and p0 say. 
 
 
 

d. p = 
GM A M B 

r 2 

where G is the gravitational constant. 
 

 
Hence p defines  a  vector  field  in  space.  If  we  introduce  Cartesian 
coordinate  such  that p0 has  the  coordinates 
coordinates x, y, z , then by Pythagoras theorem. 

x0 , y0 , z 0 and p has  the 

 
 

r = ( x − x0 ) + ( y − y0 ) + ( z − z0 ) (2) 
 
Introducing the vector assuming r > 0 then 

 
 

r = ( x − x0 )i + ( y − y0 ) j + ( z − z0 )k 

 
 
 
(3) 

 
 

we have r = r and (− 1r )is a unit vector in the direction of  p ; the minus 
sign indicates that p is directed from p + p0 .Fig. 2. 
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V
 (t

 +
 p

t) 

 
 

Hence substituting (1) into (3) we obtain 
 

 
 

p = p  − 1 r  = − 
GM A M B  r 

 r    r 3 
 

 

= − GM A M B  [( x − x )i + ( y − y  
) j + ( z − z 

 

)k ] 
 

(4) 
r 3 0 0 0

 

 
Hence, this vector function describes the gravitational force acting on B. 

 

 
Derivative of a Vector Function 

 
A vector function v(t ) is said to be differentiable at a point t if the limit 
exists. The vector is called the derivative of v(t ) . 

 
 

v′(t ) = lim v(t + ∆t ) − v(t ) 
∆t →0 ∆t 

 
 
 

V1(t) 
 
 

V (t) 
 

 
Partial Derivatives of a Vector Function 

 
The way of introducing partial derivation to vector analysis is obvious. 
Indeed, let the components of a vector function. 

 
v = v1i + v2 j + v3 k be differentiable functions of 

n variables t1 , t 2 , t3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅t n . Then the partial derivative of v with respect to 
∂v 

t is denoted by 
∂t 

and is defined as the vector function. 
 

∂v = ∂v1 i + ∂v2 ∂v 
j + 3  k 

∂t ∂t ∂t ∂t 
 

Example 1 
 

Let r(t1 , t2 ) = aCot1i + aS int1  j + 3t2 k 
∂r 

 
∂t1 

∂r 
∂t 2 

= −aS int1 + aCot1i, 
 
 
= 3k 
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∫ 

∫ 

∫ ∫ 

b 

b 

B 

 
 
3.2.2 Line Integrals 

 
Definition: Let f ( x) be a single real valued function in the 
interval a ≤ x ≤ b . Thus, we can define line integral as 

b 

f ( x)dx 
a 

 
3.2.3 Evaluation of Line Integral 

 
 

Evaluation of line   integral ∫ 
 

f ( x)dx can   be   accomplished  by  two 
a 

methods. Thus: 
 
a. A line integral of a vector function F (r ) over a curve c is defined 

by 
 

∫ F (r )dr = ∫ F (r (t )). dr dt 
dt 

 

(1) 

c a 

b. In term of components, with dr = dxii  + dy j  + dz k 

Then we obtain 
 
 

∫ F (r)dr = ∫ (F1 dx + F2 dy + F3 dz) 
c c 

=   (F1 x′  + F2 y′  + F3 z
′ )dt 

c 

 
(2) 

 

Where x′ = dx , 
dt 

y′ = dy , 
dt 

 

z ′ = dx 
dt 

 

(3) 

 
It is worth to mention that if the path of integration C in equation (1) 
above is a close curve that is 

 
A 

C B 
 

A 
C then. 

 
Then instead of 

c 
we can also write 

c 

 
3.2.4  General Properties of Line Integral 

 
a. ∫ kF.dr =k ∫ F.dr where k  is a constant . 

c c 

b. ∫ (F + G) ⋅  .dr =∫ F ⋅  .dr + ∫ G ⋅  dr 
c 

c. ∫ F ⋅  dr = ∫ 
c c 

F ⋅  .dr + ∫ F ⋅  .dr 
c 

Where 
c1 c 2 

c = c1 + c2 
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c 

c 

c 

0 

 
 

3.2.5  Examples on Line Integrals 
 

If A = (3x 2  + 6 y )i − 14 yzj + 20xz 2 k ,  evaluate ∫ A..dr from 
 

(0,0,0) to 

(1,1,1) along the following parts C: 
 

 

x = t, y = t 2 , z = t 3 . 
 

 
The straight lines from (0,0,0) to (1,0,0) then to (1,1,0) and then to 
(1,1,1). 

 
The straight line joining (0,0,0) and (1,1,1). 

 

 
Solution: 

 

∫ A..dr = ∫ [(3x 2  + 6 y )i −  14 yzj + 20xz 2 k ].(dxi + dyj + dzk ) 
c c 

 

= ∫ [(3x 2  + 6 y )dx − 14 yzdy + 20xz 2 dz] 
If x = t, y = t 2 , z = t 3 . ,points (0,0,0) and (1,1,1) correspond to t=0 and 
t=1 respectively. Then 

 
t =1 

∫ A..dr = ∫ (3t 2  + 6t 2 )dt − 14(t 2 )(t 3 )d (t 2 )+ 20t (t 3 )2 d (t 3 ) 
t = 0 

 
t =1 

= ∫ (9t 2  − 28t 6  + 60t 9 )dt 
t =0 

 
= [3t 3  − 4t 7  + 6t 10 ]1  = 5 

 
Along the straight line from (0,0,0) to (1,0,0) ,  y=0, z=0, dy=0 and dz=0 
while x varies from 0 to 1. Then the integral over this point of the path is 
t =1 

∫ (3x 2  + 6(0))dx − 14(0)(0)(0) + 20x(0) 2 (0) 
x= 0 

 
t =1 

3x 2 dx = [ x 9 ]1   = 1 ∫  0
 x= 0 

 
Along the straight line from (1,0,0) to (1,1,0) ,  x=1, z=0, dx=0 while 
y varies from 0 to 1. Then the integral over this point of the path is 

 
t =1 

∫ (3(1) 2  + 6( y))0 − 14 y(0)dy + 20(1)(0) 2 (0) = 0 
y =0 



MTH 381 MODULE 1 

23 

 

 

c 

13 

 
 
Along the straight line from (1,1,0) to (1,1,1) ,  x=1, y=1, dx=0 , dy=0 
while z varies from 0 to 1. Then the integral over this point of the path is 

 
t =1 

∫ (3(1) 2  + 6(1))0 − 14(1) z(0)dy + 20(1)( z) 2 dz 
z =0 

 

 
t =1 

 3 1 

∫ (20z 2 )dz =  
20t   

 
= 20 

 
z =0   3   0 3 

 
 

Adding ∫ A..dr = 1 + 0 + 
20 

= 
23 

c 3 3 
 

The straight line joining (0,0,0) and (1,1,1) is giving in parametric form 
by x=t, z=t. Then 

t =1 

∫ A..dr = ∫ (3t 2  + 6t )dt − 14(t )(t )d (t ) + 20(t )(t 2 )dt 
t = 0 

 
t =1 

= ∫ (3t 2  + 6t − 14t 2  + 20t 3 )dt 
t =0 

 
t =1 

= ∫ (6t − 11t 2  + 20t 3 )dt = 
t =0  3 

 

 
3.3     Integral Theorem 

 
3.3.1    Divergence Theorem of Gauss 

 
For simplicity, divergence theorem of Gauss can be used to transform 
triple  integral  into  surface  integral  over  the  boundary surface  of  a 
region in space. This is obvious because surface integral is simpler and 
easier to handle compared to triple integral. 

 
Therefore, let T be closed bounded in a region space whose boundary is 
a piecewise smooth orient table surface S. 

 
Let f ( x, y, z) be a vector function that is continuous and has continuous 
first partial derivative in some domain containing T. However, the 
transformation is done by the so called divergence theorem which 
involves the divergence of a vector function F. 
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 F3 

S 

 
 

Where divergence of F 
 
 

⇒ div F =  ∂F1 + ∂F2 ∂  
+ dv = ∫∫ F ⋅ ndA 

 
(2) 

 ∂x ∂y ∂z  s 
 

 

But ∫∫ F ⋅  ndA =∫∫ (F1 dydz + F2 dxdz + F3 dxdy ) (3) 
s s 

 

 
Where ' n' is the outer unit normal vector of S. 

 
but  

 
F = F1i + F2 j + F3 k 

 
 
(4) 

 
and n = Cosαi + Cosβj + Cosγk (5) 

 

 
where α , β , and γ are the angle between ' n' and the positive 
x, y, and z axes respectively. 

 
 

Next, we substitute equation (3) and (4) into (2) so we can obtain 
 

 ∂ ∂ ∂ 
 

 

∫∫∫
 F1  + F2  + F3 dxdydz = ∫∫ (F Cosαi + F Cosβj + F Cosγk )dA  

(6) 
T     ∂x ∂y ∂z  

1 2 3
 

 
But  

Cosα = dzdy, Cosβ = dzdx, Cosγ 
 

= dxdy 
 ∂F1

 ∂F2
 ∂F3 

 
∴ ∫∫∫  

x  
+ 

y  
+ 

z 
cdz = ∫∫ F1dydz + F2 dxdz + F3 dydx (7) 

T     ∂ ∂ ∂  S 
 

 
Example 2 

 
Application of the Divergence Theorem 

 
Harmonic Function 

 
The theory of solution of Laplace gives thus: 

∂F ∂F ∂F 
∇ 2 f =   1  +   2  +   3   = 0 (8) 

∂x ∂y ∂z 
and equation (1) is called potential theory. 

 
Now, from the divergence theorem formula 

∫∫∫ divFdv = ∫∫ f ⋅ ndA 
T S 

 
 
(9) 
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n 

 
 
Where F = ∇f (10) 

 

 
is gradient of scalar function. 

divF = ∇ 2 f 

 
 
(11) 

and F ⋅  n = n ⋅  ∇f 
 

 
Hence,  

∂f 
∇ 2 fdv = dA 

 
 
(12)

 

∫∫∫  ∫∫ ∂ T S 

 
Where  

 

n ⋅  
gradf 

 

= ∂ f  dA 
∂ n 

 
 
(13) 

we denote the directional derivative of f in the outer normal direction of 
∂ f S by 
∂ n 

 
However,  

 

f ⋅  n ≡  n ⋅  

∇f 

 

≡  ∂

f 
∂ n 

 
 

⋅  
dA 

 
 
(14) 

 
3.3.2 Green’s Theorem 

 
This theorem gives the relation between the integral over the boundary 
surface which encloses the volume. If F1 , F2 , F3 are three functions of 

∂P   ∂Q   ∂R 
x, y, z and their derivatives , , are continuous and single valued 

∂x ∂y ∂z 
functions in a region V bounded by a closed surface S, then 

 
 ∂ ∂ ∂  

 

∫∫   P 
+ Q 

+  
R dv = ∫∫ (PCosα + QCosβ + RCosγ )dA 

V   ∂x ∂y ∂z  S 

 
As in (6) above 

 

 
Where Cosα , Cosβ and Cosγ are  the  direction  cosines  normal  to  the 
surface S. 

 
Example 3 

 
Evaluate the surface integral 

 

I = ∫∫ (x 3 dydz + x 2 ydzdx + x 2 zdxdy ) 
S 
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where is the surface bounded by z = 0, z = b, x 2  + y 2  = a 2 . 
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 ∫ 

 

= ∫ ( θ 

= ∫ ( θ 

= ∫ ( θ − θ ) θ 

∫ 

=  
a
 

a 

 
 

Solution 
 

Using Green’s theorem 
 

I = ∫∫∫ (3x 2  + x 2  + x 2 )dxdydz 
V 

= 4∫
a 

∫ 
 

a 2 − x 2 
 

  
b

 

 

 

dz 
 


 

 
dy5x 

 
2 dx 

0   0 0  
 

∫  ∫ 
 

a 2 − x 2 (b)dy5x 
 
2 dx 

0   0
 

 

= 20b∫  x 2 

 
 

a 2  − x 2 dx 
0 

 
Substituting x = aSinθ or x = aCosθ we have dx = aCosθdθ 

a 
20b a 2 Sin 2 

0 
a 

20a 4b Sin2
 

0 

a 2  − a 2 Sin 2θ )Cosθdθ 

1 − Sin2θ )Cosθdθ 
 
 

but 1 − Sin 2θ = Cos 2θ = Cosθ 
a 

I 20ba 4 Sin 2 Cos 2     d 
0 
a 

= −20ba 4 
0 

cos 2θdθ 

= 20ba 4  π  
  
16  

= 
5 

πa 4b 
4 

 
3.3.3 Stoke’s Theorem 

 
This is the transformation between surface integrals and line integrals. 
Stoke’s theorem involves the curl. 

 
 

i 
Curl F = ∆xF = ∂ ∂x 

F1 

j k 
∂ ∂ 
∂y ∂z 

F2 F3 

 
 
(1) 

 

 
Let  S  be  a  piecewise smooth oriented surface in  space and  let  the 
boundary of S be a piecewise smooth simple close curve C. 

 

 
Let F ( x, y, z) be a continuous vector function that has continuous first 
partial derivatives in a domain in space containing S. Then 
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 F1  

 

N 
1 2 N 

S C 

 
 

∫∫ (∆xF ) ⋅ ndA = ∫ F ⋅ dr 
 

(2) 
S C ds 

where n is a unit normal vector of S and, also dr is the unit tangent vector 
ds 

and S  the arc length of C. 
 
n 

dr 
s c ds s c 

 
 
 

dr  n 
ds 

 
 ∂ ∂ 

 
 ∂ ∂ 

 
 ∂ ∂  

 

∴ ∫∫ 
 

F3  − F2   +  F1  − F3  N  + 
 

F2  − F1  
3 

 

dudv 

R    ∂y 
∂z  
 

  ∂z 
∂x  
 

  ∂x 
∂y   

= ∫ (F1dx + F2 dy + F3 dz ) 
C 

(3) 

 
 
 
3.3.4  Green’s  Theorem  in  the  Plane  as  a  Special  Case  of 

Stoke’s Theorem 
 
Let F = F1i + F2 j + F3 k be a vector function that is continuously 
differentiable  in  a  domain  in  the x − y plane  containing  a  simply 
connected bounded closed region S whose boundary C is a piecewise 
smooth simple close curve. 

 
Then from equation (1) 

∂ F (∆ xF )⋅  n = (∆ xF )⋅  k = 2 
∂ x 

 

−  ∂ F1 

∂ x 
 
 
 
 
 
 
Then the formula in Stoke’s theorem now takes the form 

 

∫∫ 
 ∂F2 ∂ − dA = ∫ (F1dx + F2 dy ) 
 ∂x ∂x  

 
 
Hence, Green’s theorem in space is s special case of Stoke’s theorem. 
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 F1  

 

3 

S 

 
 

Example 4 
 

Evaluation of line integral by Stoke’s theorem. 
 

 dr  2 2
 

Evaluate  ∫  F ⋅ 
ds 
ds, where C is the circle x   + 

y 
= 4 , z = −3, oriented 

C   
counterclockwise as seen by a person standing at the origin, and with 
respect to right-handed Cartesian coordinates F = yi + xz 3 j − zy 3 k. 

 

 
Solution 

 
As  a  surface  S  bounded  by  C  we  can  take  the  plane  circular 
disc x 2 + y 2  = 4 in the plane z = −3. Then n  in Stoke’s theorem points in 
the positive   z-direction; thus n=k,. Hence (∆xF ) ⋅ n is simply the 
component of curl (∆xF ) in the positive z-direction.  Since  F 
with z = −3 has the components 
obtain 

F1  = y, F2  = −27 x and F3  = 3 y , we thus 

∂ F  ∂ F 
(∆ xF )⋅  n =     2  

−      1 
= 17 −  1 = 128 

∂ x  ∂ x 
 

Hence, the integral over S in Stoke’s theorem equals 128times the area 
4 π of the disk S. 

 

∴ [(∆ xF )⋅  

n]4π 
= −352 

= −28 ⋅  
4π 

= −112π 

 

4.0     CONCLUSION 
 

In conclusion, the students must have understood vector field theory and 
also be able to relate vector field and vector function together 
respectively. 

 

 
However, the Line Integral, Gauss’s, Stoke’s, and Green’s theorem were 
discussed using the knowledge acquired from vector field theory. 

 

 
5.0     SUMMARY 

 
In summary, double integrals over a region in the plane can be 
transformed  into line integrals over the boundary C of R by Green’s 
theorem in the plane using 

 

∫∫ 
 ∂F2 ∂ − dxdy = ∫ (F1 dx + F2 dy ) 
 ∂x ∂x  C 
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∫ 

∫ 

 
 
Also Triple integrals taken over a region T in space can be transformed 
into surface integrals over the boundary surface S of T by the divergence 
theorem of Gauss using, 

 
 

∫∫∫ divFdv = ∫∫ f ⋅ ndA 
T S 

where n is  the  outer  unit  normal vector  to  S  which  implies Green’s 
formulas. 

 

 
Likewise, surface integrals over a surface with boundary curve c can be 
transformed into line integrals over C by Stokes’s theorem. 

 
 

∆nF 
 
⋅ ndA =  dr  

F ⋅ ds 

∫∫ ( ) ∫   
S C  ds  

 

 
6.0 TUTOR-MARKED ASSIGNMENT 

 
i. Compute F (r) ⋅ dr 

c 
where 

(a) 
(b) 

F = y 2 i − x 4 j, 
F = x 2 i − y 2 j, 

c : r = ti + t −1 , 
c : y = 1 − x 2 , 

for 
for 

1 ≤ t ≤ 3 
− 1 ≤ x ≤ 1 

ii. Find the work done by the force 
displacement; 

F = xi − zj + 2 yk in the 

(a) Along the y axis from 0 to 1 
(a) Along the curve 

iii. Evaluate ( x 2  + y 2 ) ⋅ ds 
c 

z = y 4 , x = 1, from (1,0,1) to (1,1,1). 

(a) Over the path 
(a) Over the path 

y = 2x 
y = − x 

from (0,0) to (1,2) 
from (1,-1) to (2,-2) 

iv. Evaluate the relations between vector fields and vector functions. 
v. State  one  example  of  a  rotating  body  and  the  corresponding 

velocity field. 
vi. Let the components of a vector function 

r(t1 , t2 ) = aCost1i + aS int1 j + 3t2 k be   differentiable  functions  on 
variables t1 and t 2 . Then find the partial derivatives of r(t1 , t2 ) with 

respect to t1 and t 2 denoted by 

vii. Evaluate the surface integral 

∂r 
∂t1 

 
and ∂r 

. 
∂t2 

I = ∫∫ (x 3 dydz + x 2 ydzdx + x 2 zdxdy ) 
S 

where is the surface bounded by z = 0, z = b, x 2  + y 2  = a 2 

viii. State and prove Stoke’s theorem. 
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 dr  2 2
 

xiv. Evaluate ∫  F ⋅ 
ds 
ds, where C is the circle x   + 

y 
= 4 , 

C   
z = −3, oriented counterclockwise as seen by a person standing at 
the origin,     and    with    respect    to    right-handed   Cartesian 
coordinates F = yi + xz 3 j − zy 3 k. 

x. Show that vector function 
F = (x 2  + yz )i + (y 2  − zx) j + (z 2  − xy )k is irrotational. Find the scalar 
potential 

xi. Verify divergence theorem for the function 
F = 4 xzi − y 3 j + yz 
over the unit cube x = 0, x = 1, y = 1 and z = 0 and z = 1. 

xii. Prove that div (u × v) = v ⋅Curlu − uCurl v 
xiii. Evaluate ∫ Φ ⋅ dr, where 

L 

Φ = xyi + yzj + zxk and curve L 

r = ti + t 2 j + t 3k where − 1 ≤ t ≤ 1 . 
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1.0     INTRODUCTION 
 

CONCEPTS OF SETS IN THE COMPLEX PLANE 
 

Definition: The term set of points in the complex plane is the collection 
of finite or infinite points. Examples: the points on a line, the solution of 
quadratic equation and the points in the interior of a circle made up of 
sets respectively. 

 
A set is called open if every point of S has a neighbourhood consisting 
entirely of points that belongs to S. that is the points in the interior of a 
circle or a square from an open set, and so do the points of the “right 
half – plane” Re z = 0 > 0 . 

 
An open set S is to be connected if any two of its points can be joined 
by a    broken line of finitely many straight line segments all of where 
points belong to S. 

 
Likewise, an open connected set is called a domain. Thus, an open disk 
annulus is domain. An open square with a diagonal removed is not a 
domain since this set is not connected. 

 
The complement of a set S in the complex plane is defined to be the set 
of all points of the complex plane that do not belong to S. A set is said to 
be closed if its complements is open. Example: the point on and inside 
the unit circle form a closed set. 

 
A boundary point of a set S is a point every neighbourhood of which 
contains both points that belong to S and points that do not belong to S. 

 

 
Example: if a set S is open, then no boundary point belongs to S, if S is 
closed, then every boundary point belongs to S. 

 

 
A region is a set consisting of a domain plus, perhaps, some or all of its 
boundary points. 

 
Next we shall consider functions of complex variables but before this we 
introduce complex functions first. 

 

 
Complex functions 

 
Definition:   A real function F defined on a set S of real numbers is a 
rule    that assigns to every X in S a real number f(x), called the value of 
f at x.  Now in complex, S is a set of complex numbers and a function f 



33 

MTH 381 MATHEMATICAL III  

 

 
 
defined on S is a rule that assigns to every Z in ρ a complex number w, 
called the value of f at z. we write 
w = f ( z) 

 
 
Here z varies in S and is called a Complex Variable. The set S is called 
the domain of definition of f. 

 

 
Example 1 

 
w = f ( z) = z 2 + 3z is  a  complex function defined for  all  z;  that  is,  its 
domain S is the whole complex plane. 

 
The set of all values of a function f is called the range of f. w is a 
complex, and we write w = u + iv, where u and v are the real and the 
imaginary parts, respectively. Now w is depends on z = x + iy. Hence, u 
becomes a real function of x and y. and so does v. we may thus write: 

 
w = f ( z) = u(x, y )+ iv( x, y). 

 
This shows that a complex function f(z) is equivalent to a pair of real 
functions u(x,y) and v(x,y), each depending on the two real variables x 
and y. 

 

 
Example 2 

 
Function of a complex variable. 

 
Let 
and 

w = z 2 + 3z. 
 

z = 2 – i. 

Find u and v and calculate the values of f at z = 1 + 3i 

 
Let the real part of w be defined thus u = x 2 − y 2 + 3x and the imaginary 
part of w i.e. v = 2xy + 3 y. 

∴ f (1+ 3i) = (1+ 3i) 2 + 3(1+ 3i) = − 5 +15i 
 
Recall that i2 = -1. 

 

 
2.0 OBJECTIVES 

 
At the end of this unit, you should be able to: 

 
 
• complex numbers 
• complex analytical function 
• Cauchy – Riemann equation 
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• Cauchy’s theorem and inequality 
• integral transforms vis a vis: Fourier and Laplace transforms 
• convolution theory and their applications. 

 
3.0 MAIN CONTENT 

 
3.1 Complex Numbers 

 
It was observed early in history that there are equations which are not 
satisfied by any real number. Examples are: 

 
x 2 = − 3 or x 2 −10x + 40 = 0 

 

 
This led to the invention of complex numbers. 

 

 
Definition 

 
A complex number z is an ordered pair (x, y) of real numbers x, y and 
we write 

z = ( x, y). 
 
 

We call x the real part of z and y the imaginary part of z and write 
Re z = x, lm z = y 

 
 

Example 3 
 

Re (4, -3) = 4 and lm (4, -3) = -3, furthermore, we defined two complex 
numbers z1 = (x1, y1) and z2 = (x2, y2) to be equal if and only if their real 
parts are equal and their imaginary parts are equal. 

 

 
z1= z2 if and only if x1 = x2 and y1 = y2. 

 
Addition of complex numbers z1 = (x1, y1) and z2 = (x2, y2) is defined by 

 
1. z1 + z2 = ( x1 , y1 ) + (x2 , y2 ) = (x1 + x2 , y1 + y2 ) 

 
Multiplication of complex numbers z1  = (x1, y1) and z2  = (x2, y2) is 
defined by 

 
2. z1 z2 = ( x1 , y1 )(x2 , y2 ) = (x1 x2 − y1 y2 , x1 y2 + x2 y1 ) 

 
We shall say more about these arithmetic operations and discuss 
examples below, but we first want to introduce a much more convenient 
form of writing them as points in the plane. 
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3.1.1 Representation in the Form z = x + iy 

 
A complex number whose imaginary part is zero is of the form (x, 0). 
For such numbers we simply have 

 
(x1 , 0)+ (x2 , 0)= (x1 + x2 , 0) 
and 
(x1 , 0)(x2 , 0)= (x1 x2 ,0) 

 
as for the real numbers. This suggests that we identify (x, 0) with the 
real number x. hence the complex number system is an extension of the 
real number system. 

 
The complex number (0,1) is denoted by i. 

i = (o,1) 
 

 
and is called the imaginary unit. We show that it has the property. 

 
3. i 2 = − 1 

 

 
Indeed, from (2) we have 

 
i 2 = (0.1)(0.1) = (−1,0) = − 1 futheremore, for every real y we obtain from (2) 

 
iy = (0,1)(y,0)= (0, y ) 

 
Combining this with the above x = (x, 0) and using (1), that is, 

 
(x, y )= (x, 0)+ (0, y ), 

 
We see that we can write every complex number z = (x, y) in the form 

 
z = x + iy 

or z = x + yi. This is done in practice almost exclusively. 
 

 
Example 4 

 
Complex Numbers, their Real and Imaginary Parts 

 
z = (4, − 3)= 4 − 3i, Re (4 − 3i) = 4, lim (4 − 3i )= − 3 

 − 1
 
 

 − 1   − 1  − 1  − 1  

z =  
 

, 0  = 
 

2    2 

+ 0i 
, 
 

Re    = , 
 2  2 

lim   = 0 
 2  
 

z = (0,π ) = 0 + πi, Re (πi) = 0, lim (πi )  = π 
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a 

 

 

3.1.2  Complex Plane 
 

This is a geometric representation of complex numbers as points in the 
plane. It is of great importance in applications. This idea is quite simple 
and  natural.  We  choose  two  perpendicular  coordinate  axes,  the 
horizontal x – axis,   called the real axis, and the vertical y – axis called 
the imaginary axis. On both axes we choose the same unit of length (Fig. 
4). This is called a Cartesian   coordinate system. We now plot z = (x, 
y) = x + iy as the point P with coordinates x, y. The xy –         plane     in 
which the complex numbers are represented in this way is called the 
complex plane or Argand diagram. Figure 5 shows an example. 

 
Instead of staying “the point represented by z in the complex plane” we 
say briefly and simply “the point z in the complex plane” this will cause 
no misunderstandings. 

 
 

Imaginary 
axis 

y 

y 
1 

P z = x + iy 5  x 

- 1 
 

- 1 - 2 
 
 
 

1 x 
Fig.4 295: The Complex Plane 

Real 
xis 

- 3 
 
 
Fig. 5: The number 4 – 3i in the 

Complex Plane 

 
4 – 3i 

 
3.1.3 Arithmetic Operations 

 
We can make use of the notations z = x + iy and of the complex plane. 
Addition of the sum of z1  = x1  + iy1 and z2   = x2 + iy2 can now be written 

 
4. z1 + z2 = (x1   + iy1 ) + (x2 

z1 + z2 = (x1   + x2 )+ (iy1 

+ iy2 ) . 
+ iy2 ) = (x1   + x2 )+ i (y1   + 

 
 
y2 ) 

 
Example 5 

 
(5 + i)+ (1+ 3i )= (5 + 1) + (i + 3i) = 6 + 4i . 

 
We see that addition of complex numbers is in accordance with the 
“parallelogram law” by which forces are added in mechanics. 
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x y x 
i 

y 

 
 
Subtraction is defined to be the inverse operation of addition. That is the 
difference z = z1 − z2 . 

 
5. z1 − z2 = (x1 − x2 )+ i (y1 − y2 ) . 

 
Example 6 

 
(5 + i ) − (1+ 3i ) = (5 − 1) + (i − 3i) = 4 − 2i 

 

 
Multiplication: The Product z1z2 in (2) can now be written 

 
6. z1 z2 = (x1 + iy1 )(x2  + iy2 ) = x1 (x2  + iy2 ) + iy1 (x2  + iy2 ) 

= (x1 x2 − y1 y2 ) + i(x1 y2 + x2 y1 ) 
This is easy to remember since it is obtained formally by the rules of 
arithmetic for real numbers and using (3), that is i 2 = − 1 

 
 
Example 7 

 
(5 + i )(1+ 3i) = 5 + 15i + i + 3i 2 = 2 +16i 

 
Division is defined to be the inverse operation of multiplication. That is, 
the quotient z = z1 / z2 is the complex number z = x + iy for which 

 
7. z1 = zz2 = (x + iy )(x2 + iy2 ) (z 2 ≠  0). 

 
We show that for z2 ≠  0 the qutotient z = x + iy = z1 / z 2 is given by 

 
 
 
 
8. z = 

z1  = x1  + iy1 
= 

(x1+ iy1  )(x2 − iy2 ) 
z2 x2 + iy2 (x1+ iy2  )(x2 − iy2 ) 

 

 
(x2 

 

 

+ iy2 ) 
where  (x2 − iy2 ) is  the conjugate of 

= x1 x2 
2 
2 

+ y1 y2 

+ 2 
2 

+ x2 y1 
2 
2 

− x1 y2 

+ 2 
2 

 
Example 8 

 
If z1 = 9 – 8i and z2 = 5 + 2i, then 

 

z  = 
z1  =

 9 − 8i1 =  (9  − 8i)(5   − 2i) 
z2 5 + 2i (5 1 +2 i)(5 − 2i) 
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= 45 − 18i 
25 

− 40i 
+ 4 

− 16 
= 29 − 58i = 1− 2i. 

29 
The reader may check this result by showing that 

 
zz2 =  (1 − 2i)(5 + 2i ) =  9  − 8i = z1 . 

 
3.1.4 Properties of the Arithmetic Operations 

 
From the familiar laws for real numbers we obtain for any complex 
numbers z1, z2, z3, z the following laws (where z = x +iy): 

 
z1    + z2    =  z 2 +  z1 ………..commutative law of addition 
z1 z2 = z2 z1 ……………… commutative law of multiplication 

 
(z1    + z2 ) +  z3 =  z1   + (z2 + z3 ) ...associative law of addition 
(z1 z2 )z3 =   z1 (z2 z3 )……………………associative  law of multiplication 

 
 
 

9. z1 (z2   + z3 ) = z1 z2 +  z1 z3 ……distributive  law 
 

 

0 + z  = z  +  0 = z 
z  + 
z . 1 

(− z )  = 
= z 

(− z ) + z = + z − z = 0 

 
 

3.1.5 Complex Conjugate Numbers 
 

Let z = x + iy be any complex number. Then x – iy is called the 
conjugate of z and is denoted by z , thus, 

 
 

Example 9 
z = x + iy, z  = x − iy. 

 
The conjugate of z = 5 + 2 i is z = 5 − 2i . 

 

 
 
 

y 
 

z = x + iy 
2 

 
x 

 

5 
 

- 2 z = x − iy 

 
 
 
= 5 + 2i 
 
 
 
 
 
 
 
= 5 − 2i 



MTH 381 MATHEMATICAL III 

38 

 

 

 
Fig. 6:  Complex Conjugate Numbers 
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1 

 
 
Conjugates are useful since z z = x 2 + y 2 is real, a property we have 
used in the above division. Moreover, addition and subtraction yields 
z  + z = 2 x, z  − z = 2iy, so that we can express the real part and the 
imaginary part of z by the important formulas. 

 
 

10. 
 
Re z = x = 1 (z + z ), 

2 
lm z = y = 1 (z − z ) 

2i 
 
Example 10 

 
 
If z = 6 – 5i, then we have z = 6 + 5i and from (10) we obtain 

x = 1 (6 − 5i + 6 + 5i ) = 6 
2 

 
and 

y = 1 (6 − 5i − 6 − 5i) = 
2i 

= −10i 
= − 5 

2i 

1 (0 − 10i) 
2i 

z is real if and only if y = 0, hence z  = z by (10). 
z is said to be pure imaginary if and only if x = 0, hence z  = -z. Then 
working with conjugates is easy, since we have 

 
(z1   + z2 ) = z1  + z2 , (z1   − z2 ) = z1  − z2 

11.     

 z   z 
(z1 z2 ) = z z2 ,    1   

 
 z2  

 

=      1   
z2 

 

 
In this section we were mainly concerned with complex numbers, their 
arithmetic operations and their representation as points in the complex 
plane. The next section we shall discuss the use of polar coordinates in 
the complex  plane  and  situations  in  which  polar  coordinates  are 
advantageous. 

 

 
3.2     Polar Form of Complex Number Powers and Roots 

 
It is often practical to express complex numbers z = x + iy in terms of 
polar  coordinates r, θ, these are defined by: 

 
1. x = r cosθ , y = r sin θ 

 
 
By substituting this we obtain the polar form of z, 

 
2. z = r cosθ + ir sin θ = r(cosθ +  i sin θ ) 
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r  is  called  the  absolute  value  or  modulus  of  z  and  is  denoted  by 
z .Hence 

 
 

3. z = r  = x 2 + y 2 = z z 
 
 

Geometrically,  z  is the distance of the point z from the origin (Fig. 7). 
 
 

Similarly,  z1 − z2 is the distance between z1 and z2 (Fig. 301). 
 

 
θ is called the argument of z and is denoted by arg z. thus (Fig. 7). 

 
 

4. θ 
 

= arg z = arc tan y 
x 

 
( z ≠ 0). 

 
Geometrically, θ is the directed angle from the positive x – axis to OP in 
fig. 7. Here, as in calculus, all angles are measured in radians and 
positive in the counterclockwise series. 

 
z = r 

 
Imaginary axis 

y 
y P 

 
z2 

z1    − z2 y 

 

 
 
1 + i 

z = x + iy 
 

θ 
 

x Real axis 

1 
π 

θ z1 θ 4 
x x 

1 
 

Fig. 7: Complex 
Plane, Polar Form of  a 
Complex Number 

Fig. 8: Distance between 
two points Complex 
Number 

 
Fig. 9: Example 1 

 
 

For z = 0 this angle θ is undefined. (Why?) For given z ≠ 0 it is 
determined    only up to integer multiples of 2π. The value of θ that lies 
in the interval – π < θ ≤ π is called the principal value of the argument of 
z (≠ 0) and is denoted by Arg. z. Thus θ = Arg z satisfies by definition. 

 
− π  < Arg z ≤ π. 
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Polar Form of Complex Numbers Principal Value 

 
Example 11 

 
Let z = 1 + I (cf. Fig. 9). Then 

 
 π 

z = 2  cos 
 4 

π   
+ i sin , z   = 

4  
π 

2,  arg z = 
4 

 
± 2nπ 

 

(n = 0,1, ........0. ) 
 

 
The principal value of the argument is arg z = π/4,  other values are - 
7π/4,   9π/4, etc. 

 

 
Example 12 

 
 π π  

Let z = 3 + 3 i , then z =6cos 
 3 

+ i sin , the absolute value of z is  z = 6, 
3  

and the principal value of arg z is Arg z = π/3. 
 

 
Caution! In using (4), we must pay attention to the quadrant in which z 
lies,    since tan θ has period π, so that the arguments of z and –z have 
the same        tangent. Example: for θ1 = arg (1+i) and θ2 = arg (-1 – i) 
we have tan θ1 =      tan θ2 = 1. 

 
Triangle Inequality 

 
For any complex numbers we have the importance triangle inequality 

 
5. z1   + z 2 ≤   z1    +  z 2 ( Fig . 303 ) 

 

 
Which we shall use quite frequently, this inequality follows by nothing 
that 

y 
z1 + z2 

 
z2 

 
 

z1 

x 
 

Fig 10: Triangle Inequality 
 
 
The three points 0, z1  and z1 + z2 are the vertices of a triangle (fig. 10) 
with sides z1 ,  z 2 and z1 + z 2 , and the side cannot exceed the sum of the 
other two sides. A formal proof is left to the reader (Prob.45). 
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2 

 
 

Example 13 
 

If z1 = 1 + i and z2 = -2 + 3i, then 
 

z1    +   z 2 = − 1+ 4i = 17  = 4.123 ∠    2  + 13 =  5.020. 
 

 
By induction the triangle inequality can be extended to arbitrary sums: 

 
6. z1  + z2   + ..... + zn  ≤ z1 + z2 + ... + zn ; 

 
 

That is, the absolute value of a sum cannot exceed the sum of the 
absolute values of the terms. 

 

 
3.2.1 Multiplication and Division in Polar Form 

 
This will give us a better understanding of multiplication and division. 
Let: 

z1  = r1 (cos θ1 + i sin θ1 

) 
and z2   = r2 (cosθ 2 + i sin θ 2 ). 

 
Then, by (6), sec. 12.1, the product is at first 

 
z1 z2 = r1 r2 [(cosθ1 cosθ 2 − sin θ1 sin θ 2 ) + i(sin θ1 cosθ 2 + cosθ1 sin θ 2)]. 

 
The addition rules for the sine and cosine (6) in appendix 3.1) now yield 

 
7. z1 z2 = r1 r2 [cos (θ1   + θ 2 ) + i sin (θ1 + θ )] 

 
Taking absolute values and arguments on both sides, we thus obtain the 
important rules 

 
8. z1 z 2 

and 
=  z1     z2 

 
9. arg (z1 z2 ) = arg z1 + arg z 2 (up to multiples of 2π ). 

 

 
 

We now turn to division. The quotient z = 
z1 
z2 

 

is the number z satisfying 

zz2 = z1. Hence zz2    =  z  z2 =  z1 , arg (zz2 ) = arg z + arg z2 = arg z1 . 
 

 
This yield 

 
 
 

10. z1 = 
z1 

z 2 z 2 

 

(z 2 

 

≠ 0) 
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) r1 

 
 

and 
 

 
 

11. arg 
z1 

z2 

 
= arg  z1 

 
− arg  z 2 

 

(up to multiples of 2π ). 
 
By combining these two formulas (10) and (11) we also have 

 

 
 

12. z1     = 
z2 

 

[cos (θ1 
r2 

 

− θ 2 + i sin (θ1 −θ 2 )]. 

 
Example 13 

 
Illustration of Formulas (8) – (11) 

 
Let z1 = − 2 + 2i and z2    = 3i. Then z1 z2 

= − 6 − 6i, z1 / z2 = 2 / 3 + (2i / 3) 
and for the arguments we obtain Arg z1 = 3π/4, Arg z2   = π/2. 

− 3π 
Arg z1 z2     = 

4 
π

 

= Arg z1  + Arg z2 − 2π 

Arg (z1 / z2 )  = 
4 

= Arg z1    − Arg z 2 

 
Integer power of z 

 
From (7) and (12) we have 
z 2     = r 2 (cos 2θ + i sin 2θ ), 
z −2 = r −2 [cos (− 2θ ) + i sin (− 2θ )] 

 
and more generally, for any integer n, 

 
13. z n    = r n (cos nθ +  i sin nθ ). 

 

 
Example 14 

 
Formula of De Moivre 

 

 
For  z = r = 1, formula (3) yields the so – called formula of De Moivre 
(13*)  (cosθ + i sin θ )n

 

 

=  cos nθ 
 

+  i sin nθ . 
 
This formula is useful for expressing cos nθ in terms of cos θ and sin θ. 
For instance when n = 2 and we take the real and imaginary parts on 
both sides of (13*), we get the familiar formulas. 
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 

 
 

cos 2θ = cos 2 θ − sin 2 , sin 2θ = 2 cosθ sin θ . 
 
 

3.2.2  Roots 
 

If z = w n (n = 1, 2,...), then to each value of w there corresponds one value 
of z, we shall immediately see that to a given z ≠ 0 there correspond 
precisely n distinct values of w. each of these values is called an nth root 
of z, and we  write: 

 
14. w = n  z . 

 

 
Hence this symbol is multivalued, namely, n – valued, in contrast to the 
usual conventions made in real calculus. The n value of n  z can easily be 
determined as follows. In terms of polar forms for z and 

w = R(cos φ + i sin φ ), 
The equation wn = z becomes 

wn    = R n (cos nφ + i sin nφ )= z = r(cosφ +  i sin θ ) 
By equating the absolute values on both sides we have 

R n   = r, thus R = n  r 
Where  the  root  is  real  positive  and  thus  uniquely  determined.  By 
equating the arguments we obtain 

 
nφ   = θ 

 
+ 2kπ , 

 
thus φ  = 

θ 
n 

+ 
2kπ 

n 
Where k is an integer. For k = 0,1, …, n – 1 we get n distinct values of 
w. further integers of k would give values already obtained. For 
instance, k = n gives 2kπ/n = 2π, hence the w corresponding to k = 
0, etc. consequently, n  z , for z ≠ 0, has the n distinct values 

 
 

15. n  z  = n  r  cos θ + 2kπ θ 
+ i sin + 2kπ  

 k = 0,1,... n −1. 
 n n  

 
 

These n values lie on a circle of radius n  r with center at the origin and 
constitute the vertices of a regular polygon of n sides. 

 
 

The value of n  z obtained by taking the principal value of arg z and 
k = 0 in (15) is called the principal value of w = n  z 
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 

  1  

 
 
Example 15 

 
Square Root 

 
From (15) it follows that w = z has the two values 

 

 
 
16a. 

 
w1    =  θ 

r  cos 
 2 

θ  
+ i sin  

2  
 

 
and 

 
  θ   θ  

16b. w2   = r cos 
 

+ π  + i sin 
 

+ π 
 

= − w1
 

  2   2  
 

 
Which lie symmetric with respect to the origin. For instance, the square 

 

root of 4i has the values 4i   ± 2  cos 
π 

 4 
π  

+ i sin
 

 
4  

= ± (  
2  + i 2 ). 

 

 
From (16) we can obtain the much more practical formula 

 

 
 
17. 

 
z = ± 
 
 

 
( z ) + x  + (sign y )i 

2  

 

1 ( z − x) 
2  

 
 
Where sign y = 1 if y ≥0, sign y = - 1 if y < 0, and all square toots of 
positive numbers are taken with the positive sign. This follows from 
(16) if we use the trigonometric identities. 

 
 

cos 
1 
θ  = 

2 
1 (1+ cosθ )n 
2 

sin 
1 
θ  = 

2 
1 (1− cosθ ). 
2 

 
 
Multiply them by 

 
 

r cos 
1 
θ  = 

2 

r . 
 
 

1 (r r cosθ ), 
2 

 
 
 
r sin 

1 
θ  = 

2 

 
 
 
1 (r − r cosθ ), 
2 

 
 
Use r cos θ = x, and finally choose the sign of 1m z so that sign 

 
 

 
 
Example 16 

[(Re z )(1m z )] = sign y (why?). 

 
Complex Quadratic Equation 
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Solve z 2   − (5 + i )z + 8 − i  = 0 
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  

  

= 

  

  

 
 

Solution 
 
 

z = 1 (5 + i)± 
2 

 
 
 
1 (5 + i )2   − 8 − i 
4 

 
 
 
= 1 (5 + i)± 

2 

 
 
 
− 2 + 

3 
i 

2 
 
 

= 1 (5 + i )± 
2 

1  5 
 

2  2 
+ (− 2))  + i 

 
1  5 
 

2  2 
− (− 2) 

 
 

1  1 3   
= (5 + i)± + i 

2  2 2   
3 + 2i 
 
2 − i 

 

 
Example 17 

 
Cube Root of a Positive Real Number 

 
If z is positive real, then 
values 

w = 3   z has the real value 3  r and the complex 

 
 π π   − 

 
3  r  cos 2 + i sin 2 1 

 = 3  r  + 3 i 
 

 3 3   
 

 π
 

 2 2  

π   − 
 

 

and 3  r  cos 4 + i sin 4 1 
 = 3  r  − 3 i . 

 3 3    2 2  
 
 

For  instance − 1 1 
3 1 =1, ± 

 
3i ( fig.304). 

 
These  are  the  roots  of  the 

2 2 
equation w3 = 1. 

 

 
Example 18 

 
nth Root of Unity 

 
Solve the equation zn = 1. 

 

 
Solution 

 
From (15) we obtain 

 
 

18. n 1  = cos 2kπ 
n 

+ i sin 2kπ 
n 

 
= e 2 kπi / n 

 
k = 0,1, ...., n − 1. 
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If w denotes the value corresponding to k = 1, then the n values of 
n  1 can be written as 1, w, w2, …, wn – 1. These values are the vertices of 
a regular polygon of n sides inscribed in the unit circle, with one vertex 
at the point    1. Each of these n values is called an nth root of unity. For 
instance, 4 1   has the values 1, i, -1 and –i (Fig. 12 shows 5 1 ). If w1 is 
any nth root of an    arbitrary complex number z, then the n values of 
n   z are w1, w1w, w1w2, ….      w1wn-1

 
 
Multiplying w1  by wk  corresponds to increasing the argument of w1  by 

2kπ/n. 
y 

y y 
 
 
 
 
 

x x x 
1 1 1 

 
 
 
 

Fig 11. 3 1 Fig 12. 4 1 Fig 13. 5 1 
 

The student should be familiar with the problems related to the polar 
representation with  particular    care,    since    we    shall    need    this 
representation quite often in our    work. In the next section, we discuss 
some curves and regions in the     complex plane  which  we  shall  also 
need in the chapters on complex   analysis. 

 

 
3.3     Curves on Regions in the Complex Plane 

 
In this section we consider some important curves and regions and some 
related concepts we shall frequently need. This will also help us to 
become more familiar with the complex plane. 

 
The distance between two points z and a is z − a . Hence a circle C of 
radius ρ and center at a (fig. 14) can be represented by; 

 
1. z − a = ρ. 

 
 
In particular, the so-called unit, that is the circle of radius 1 and center at 
the origin a = 0 (fig. 308), is given by; 

 
z = 1. 

 
 
Furthermore, the inequality 
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2. z − a  < ρ 
 
 

holds for every point z inside C: that is, (2) represents the interior of C. 
Such a  region is  called a  circular disk or,  more precisely, an open 
circular disk, in contrast to the closed circular disk. 

 
z − a ≤ ρ. 

 
 

This consists of the interior of C and C itself. The open disk (2) is also 
called a neighborhood of the point a. Obviously, a has infinitely many 
such   neighborhoods, each of which corresponds to a certain value of p 
(> 0); and a belong  to each of these neighborhoods, that is a, is a point 
of each          of them. 

y 
y 

 
 

ρ 
 
 
 
 
 

x 
Fig 14. Circle in the Complex Plane 

 
x 

1 
 
 
 
Fig 15. Unit Circle 

 
 
 

Similarly, the inequality  
 
z − a ρ. 

represents the exterior of the circle C. Furthermore, the region between 
two concentric circles of radii ρ1 and ρ2 (> ρ1) can be represented in the 
form 

 
3. ρ1 < z − a < ρ. 

 
 

Where a is the center of the circles. Such a region is called an open 
circular ring or open annulus (Fig. 16). 

 
 

y ρ2 
 
 

ρ1 
 
 

a 
 

x 
 

Fig 16. Annulus in the Complex Plane 
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Example 19 

 
lar Disk 

 
 
 

Determine the region in the complex plane given by z − 3 + i ≤ 4. 
 
 
Solution: the inequality is valid precisely for all z whose distance from a 
= 3 – i does not exceed 4. Hence this is a closed circular disk of 
radius 4 with center at 3 – i. 

 

 
Example 20 

 

 
Unit Circle and Unit Disk 

 
Determine each of the regions 

 
(a) z < 1 (b) z  ≤1 (c) z > 1. 

 
 
Solution 

 
(a)      The interior of the unit circle. This called the open unit disk. 
(b) The unit circle and its interior. This is called the closed ad disk. 
(c) The exterior of the unit circle. 

 
By the (open) upper half we mean the set of all points z = x + iy such 
that y > 0 . Similarly, the condition y < 0 defines the lower half – plane, 
x > 0 the right half – plane and x < 0 the left half – plane. 

 
3.3.1    Some Concepts Related to Sets in the Complex Plane 

 
We finally list a few concepts that are of general interest and will be 
used in our further work. 

 
The term set of points in the complex plane means any sort of collection 
of a quadratic equation. The points on a line and the points in the interior 
of a circle are sets. 

 
A set S is called open, if every point of S has a neighborhood consisting 
entirely of points that belong to S. for example, the neighborhood 
consisting entirely of points that belong to S. For example, the points in 
the interior of a circle or a square form an open set, and so do the points 
of the “right half – plane” Re z = x > 0. 
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An open set S is said to be connected if any two of its points can be 
joined by a broken line of finitely many straight line segments all of 
whose points belong to S. an open connected set is called a domain. 
Thus an open disk   (2) and an open annulus (3) are domains. An open 
square with a diagonal removed is not a domain since this set is not 
connected. (Why?). 

 
The complement of a set S in the complex plane is defined to be the set 
of all points of the complex plane that do not belong to S. A set is called 
closed if its complement is open. For example, the points on and inside 
the unit circle form a closed set (“closed unit disk” cf. example 2) since 
its complement    z  > is open. 

 
 

A boundary point of a set S is points every neighbourhood of which 
contains both points that belong to S and points that do not belong to S. 
For example; the boundary points of an annulus are the points on the 
two bounding circles. 

 
Clearly, if a set S is open, then no boundary point belongs to S; is 
closed, and then every boundary point belongs to S. 

 
A region is a set of a domain plus, perhaps, some or all of its boundary 
points. (The reader is warned that some authors use the term “region” 
for what we call a domain (following the modern standard terminology) 
and others make no distinction between the two terms.) 

 
So far, we have been concerned with complex numbers and the complex 
plane (just as at the beginning of calculus, one talks about real numbers 
and the real line). In the next section, we start doing complex calculus: 
we introduce complex functions and derivatives. This will generalise 
familiar concepts of calculus. 

 

 
SELF ASSESSMENT EXERCISE 1 

 
Determine and sketch the sets represented by 

 
1. z − 2i = 2 2. 1 ≤ z + 1 − i ≤ 3 

 

3. Re (z 2 ) ≤ 1 π 
4. arg z < 

4 
 

5. − π <1m z ≤ π 

 

7. z + 1  = 1 
z − 1 

6. 1  
<1 

z 
z + 3i 8. 
z − i 

= 1
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9. lm 2 z + 1 ≤1 
4 z − 4 

 
10. 

 

z z + (1 + 2i )z + (1 − 2i )z 
 
+ 1 = 0. 

 
 
3.4     Limit, Derivative and Analytic Functions 

 
The functions with which complex is concerned are complex functions 
that     are differentiable. Hence, we should first say what we mean by a 
complex function and then define the concepts of limit and derivative in 
complex. This discussion will be quite similar to that in calculus. 

 

 
3.4.1    Complex Function 

 
Recall from the calculus that a real function f defined on a set S of real 
numbers (usually an interval) is a rule that assigns to every x in S a real 
number f(x) called the value of f at x. 

 

 
Now in complex, S is a set of complex numbers. And a function f 
defined on S is a rule that assigns to every z in S a complex number w, 
called the value of f at z. write 

 
w = f ( z) 

 
 
Here z varies in S and is called a complex variable. The set S is called 
the domain of definition of f. 

 

 
Example 21 

 
w = f ( z) = z2  + 3z is a complex function defined for all z; that is, its 
domain S is the whole complex plane. 

 

 
The set of all values of a function f is called the range of f. 

 
W is complex, and we write w = u + iv, where u and v are the real and 
imaginary parts, respectively. Now w depends on z = x + iy. Hence u 
becomes a real function; of x and y, and so does v. We may thus write: 

 
w =  f (z ) = u(x, y ) + iv (x, y ). 

 
This shows that a complex function f(z) is equivalent to a pair of real 
functions u(x,y) and depending on the two real variables x and y. 
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  

 
 

Example 22 
 

Function of a Complex Variable 
 

Let w = f(z) = z2   +3z. Find u and v and z = 2 –i. 
 

 
Solution 

 
u = Re f ( z) = x 2 + y 2 + 3x and v = 2xy + 3 y , also, 
f (1 + 3i ) = (1 + 3i )2

 + 3(1 + 3i ) 
 

= 1 − 
 

9 + 6i + 3 + 9i = − 5 + 15i 
 

This shows that u(1,3) = -5 and v (1,3) = 15, similarly. 
f (2 − i ) = (2 − i )2

 + 3(2 − i ) = 4i + 6 − 3i = 9 − 7i. 
 

 
Example 23 

 
Function of a Complex Variable 

 
 

Let 
 

w = f (z ) = 2iz + 6z. . Find u and v and the value for f at z  = 
1 

+ 4i 
2 

Solution 
 
 
 

Also 

f ( z) = 2i( x + iy) + 6( x − iy) 
gives 

u( x, y) = 6x − 2 y and v( x, y) = 2x − 6 y. 

  
 

  
 

f  
1 + 4i 

 
= 2i 

1 + 4i  + 6 1 

 

− 4i  = i − 8 + 3 − 24i = − 5 − 23i. 

 2   2   2  
 
 
 

Limit, Continuity 
 

A function f(z) is said to be limit l as z approaches a point z0, written 
 

1. lim ( f 
z → z0 

( z) = l 
 
 

y v 

∂ 
z0

 
 

z0 

θ f(z) 
 

l 
 

 
x u 

Fig 17: Limit 
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' 

 
 
If f is defined in a neighborhood of 
f  are “close” to l for all z “close” to 

z0 

z0 ; 

(except itself) and if the values of 
that is, in precise terms, for every 

positive real ∈  we can find a positive real ∂ such that for z ≠ z0 in the 
disk z − z0 < ∂ (Fig.310) we have 

 

 

2. f ( z) −  l <  ∈; 
 
 

That is, for every z ≠ z0 in that the value of f lies in the disk (2). 
Formally, this definition is similar to that in calculus, but there is a big 
difference. Whereas in the real line, here, by definition, z may approach 
z0 from any direction in the complex plane. This will be quite essential 
in what follows. 

 
If a limit exists, it is unique. (Cf. Prob. 30) 
A function f(z) is said to be continuous at z = z0 if f(z0) is defined and 

 
3. lim 

z → z0 
f ( z)  = f ( z0 ). 

 
Note that by the definition of a limit this implies that f(z) is defined in 
some neighbourhood of z0. 

 
f(z) is said to be continuous in a domain if it is continuous at each point 
of this domain. 

 

 
3.4.3 Derivative 

 
The derivative of a complex function f at a point z0  is written 
and is defined by 

f  ( z0 ) 

 
 
4. f ' ( z0 ) = 

 
lim 
∆z → 0 

f (z0 + ∆z ) − 
∆z 

f ( z0 ) 

 
provided this limit exists. Then f is said to be differentiable at z0. if we 
write ∆z = z − z0 we also have 

 
 
(4’) 

 
f ' ( z) = 

 
lim f ( z) − f ( z0 ) 
z → z0 z − z0 

 
Remember that this definition of a limit implies that f(z) is defined (at 
least) in a neighborhood of z0. Also by that definition, z may approach z0 
from any direction. Hence differentially at z0 means that, along whatever 
path z approaches z0, the quotient in (4’) always approaches a certain 
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value and all these values are equal. This is important and should be 
kept in mind. 

 

 
Example 24 

 
Differentiability Derivatives 

 
The function f(z) = z 2   is differentiate for all z and has the derivative 

f ′( z) = 2 z because 
 
 
 

f ' ( z) 
 
= lim 

∆z → 0 

 (  z + ∆z ) 2   − z 
2
 

∆z 

 
= 2z. 

 
The differentiation rules are the same as in real calculus, since their 
proofs are literally the same. Thus, 

  
' ' '

 
 

cf ' 

 

= cf '  ( f 
 

+ g ) '   = 
 

f '  + g ' , ( fg ) '   = 
 

f ' g + fg ' ,  f  

 
g 

=  
f  g − fg 

g 2
 

  
 

As well as the chain rule and power rule (zn)’ = nz n −1  (n integer) hold. 
Also, if f (z) is differentiable at z0. It is continues s at z0. (Cf. Prob. 34). 

 

 
Example 25 

 

 
z not differentiable 

 
It is important to note that there are many simple functions that do not 
have a derivative at any point. For instance, f  ( z) = z = x − iy is such a 
function? Indeed, we write ∆z  = ∆x + i∆y, we have 

 

5. f (z + ∆z ) − 
∆z 

f ( z) = 
 (z + ∆z )− z 

∆z 

 

= ∆z 
∆z 

 

= ∆x − i∆y 
∆x + i∆y. 

 

 
but -1 along path II. Hence, by equation of (5) at 
any z. 

∆z → 0 does not exit at 

 
This example may be surprising, but it merely illustrates that 
differentiability of a complex function is a rather serve requirement. 
The idea of proof approach form different directions is based and will be 
discussed again in the next section. 
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2 n 

 
 
 
 

y 
II z +L1z 

 
 
 

z I 
 

 
 

x 
Fig. 18: Paths in (5) 

 
 
3.4.1    Analytic Functions 

 
These are the functions that are differentiable in some domain, so that 
we can do “calculus in complex.” They are the main concern of complex 
analysis. Their introduction is our main goal in this section; 

 

 
Definition (Analyticity) 

 
A function f(z) is said to be analytical in a domain D if f(z) is defined 
and     differentiable at all points of D. The function f(z) is said to be 
analytic at a  point z = z0 

sec. 12.3) of z0. 
in D if f(z) is analytic in a neighbourhood (cf. 

 
Also, by analytical function we mean a function that is analytical in 
some  domain. 
Hence, analytical of f(z) at z0 means that f (z) has a derivative at every 
point in some neighbourhood of z0  (including z0  itself since, by 
definition, z0 is a point of all its neighbourhood). This concept is 
motivated by the fact that it is of no practical interest when a function is 
differentiable merely at a single point z0 but not throughout some 
neighbourhood of z0. Problem 28  gives an example. 
An older term for analytical in D is regular in D, and a more modern 
term is holomorphic in D. 

 

 
Example 26 

 
Polynomids Rational Functions 

 
The integer power 1, z, z2, … and more generally, polynomials, that is 
function of the form 

 
f ( z) = c0 + c1 z + c2 z + ...cn z 

Where ci,    and i=1,2,3…. are complex constants, are analytical in the 
entire complex plane. The quotient of two polynomials g(z) and h(z). 
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m 

 
 

f ( z) = 
g ( z) . 
h ( z) 

is called a rational function. This f is analytic except at the points where 
h(z)= 0 here we assume that common factors of g and h have been 
cancelled partial fractions 

 
c 

( z − z0 ) 

 
(c ≠ 0) 

(c and z0 complex, m is a positive integer) are special rational functions, 
they are analytic except at z0. It is in algebra that every rational function 
can be written as a sum of a polynomial (which may be 0) and finitely 
partial fractions. 

 

 
The concepts discussed in this section extend familiar concepts of 
calculus. Most important is the concept of an analytic function. Indeed, 
complex analysis is concerned exclusively with analytic functions and 
although many will yield a branch of mathematics, that is most beautiful 
from  the  theoretical  point  of  view  and  most  useful  for  practical 
purposes. 

 
Before we consider special analytic functions (exponential functions, 
cosine, sine etc.) let us give equations by means of which we can readily 
decide whether a function is analytic or not. These are the famous 
Cauchy–Riemann equation, which we shall discuss in the next section. 

 

 
3.5     Cauchy – Riemann Equations 

 
We shall now derive a very important criterion (a test) for the analyticity 
of a complex function. 

 
w = f ( z) = u( x, y) + i( x, y). 

 
 

Roughly, f is analytic in a domain D if and only if the first partial 
derivatives of u and v satisfy the two equations 

 
1. u2 = u y , u y    = − v2 . 

∂ ∂
 

Everywhere in D, here u x   = u 
∂x , u y   = u 

∂y and similarly for ux and 

u y which are  the  usual  notations  for  partial  derivatives.  The  precise 
formulation of this   statement is given in Theorem 1 and 2 below. The 
equation (1) is called the    Cauchy    –    Riemann    equations.    They 
are the most important equations in the whole unit. 
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Example 27 
f ( z) = z 2 = x 2 − y 2 + 2ixy is analytic for all z, and 

u = x 2 − y 2 and v = 2xy 
 
Satisfy (1), namely, 
follow. 

u x = 2x = v y and u y = − 2 y = − v x more examples will 

 
3.5.1   Theorem 1 (Cauchy Riemann Equations) 

 
Let f(z) = u(x,y) + iv(x,y) be defined and continuous in some 
neighbourhood of a point z = x + iy and differentiable at z itself. Then at 
the point, the first – order partial derivatives of u and v exist and satisfy 
the Cauchy Riemann equations (1). 

 
Hence if f(z) is analytic in a domain f’ (z) at z exists. It is given by (1) at 
all points of D. 

 

 
Proof 
By assumption, the derivative f’ (z) at z exists. It given by 

 
 
2. f ' ( z) = 

 
lim 
∆ z → 0 

f (z + ∆z )− f ( z) 
∆z 

The idea of the proof is very simple, by the definition of a limit in 
complex (cf. sec. 12.4) we can let L1z approaches zero along any path in 
a neighbourhood of z. Thus, we may choose the two paths I and II in fig. 
312 and equate the results. By comparing the real parts we shall obtain 
the first Cauchy Riemann equation and by comparing the imaginary 
parts  we shall obtain the other equation in (1). The technical details are 
as follows. 

 
We write L1z  = L1x  +iL1y.  In terms of u and v, the derivative in (2) 
becomes 

 

3. f ' (z ) = lim [u (  x + ∆x, y + ∆y )  + iv (  x + ∆x, y + ∆y )] − [u (  x, y )  + iv (  x, y )] 
∆z →0 ∆x + i∆y 

 
 
We first choose path I in fig. 312. Thus we let 
∆y → 0 first and then ∆x → 0. 
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II z +L1z 

 
 
 

z I 
 
 

x 
Fig. 19: Paths in (2) 

 

After L1y becomes zero, L1z = L1x. then (3) becomes, if we first write the 
two u – terms and then two v-terms. 

 

f ' ( z) = lim u (x + ∆x, y )− u(x, y ) + i lim v(x + ∆x, y )− v(x, y ) 
∆x → 0 ∆x ∆x → 0 ∆x 

 
Since f’(z) exists, the two  real limits on the right exist. By definition, 
they are the partial derivatives of u and v with respect to x. hence the 
derivative f’ (z) of f(z) can be written 

 
4. f ( z) = u x + iv x 

 
Similarly,  if  we  choose  path  II  in  fig  312,  we  let ∆x → 0 first  and 
then ∆y → 0 . After L1x becomes zero, L1z = iL1y, so that from (3) we now 
obtain 

 

f ' ( z) = lim u (x , y + ∆y )− u(x, y ) + i lim v(x, y + ∆ y )− v(x, y ) 
∆y → 0 i∆y ∆y → 0 i∆y 

 

 
Since  f’(z)  exists,  the  limits  on  the  right  exist  and  yield  partial 
derivatives with respect to y; noting that 1/i = -i, we obtain: 

 
5. f ( z) = − iu y  + v y 

 
 

The existence of the derivatives f ' (z) thus implies the existence of the 
four partial derivatives in (4) and (5). By equating the real parts ux and 
vy  in (4) and (5) we obtain the first Cauchy – Riemann equation (1). 
Equating the imaginary part yields the other. This proves the first 
statements of the theorem and implies the second because of the 
definition of analyticity. 

 

 
Formulas (4) and (5) are also quite practical for calculating derivatives 
f ' (z), as we shall see. 
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Examples 28 

 
Cauchy – Riemann Equations 

 
f ( z) = z 2 is analytic for all z. it follows that the Cauchy – Riemann 

equations must be satisfied (as we have verified above). 
 
For f ( z) = z = x − iy we have u = x, v = -y and see that the second 
Cauchy-Riemann equation is satisfied, uy= - vx = 0, but the first is not: 
u x =1≠ v y  = − 1. We  conclude  that f ( z) = z is  not  analytic,  confirming 
example 4 of sec. 12.4. Note the savings in calculation! 

 
The Cauchy – Riemann equations are fundamental because they are not 
only necessary but also sufficient for a function to be analytic. More 
precisely, the following holds. 

 

 
Theorem 2 (Cauchy – Riemann Equations) 

 
If two real – valued continuous functions u(x,y) and v(x,y) of two real 
variables x and y have continuous first partial derivatives that satisfy the 
Cauchy – Riemann equations in some domain D, then the complex 
function f ( z) = u( x, y) + iv( x, y) is analytic in D. 

 

 
The proof of this theorem is more involved than the previous proof; 
Theorems 1 and 2 are of great practical importance, since by using the 
Cauchy – Riemann equations we can now easily find out whether or not 
a given complex function is analytic. 

 

 
Example 29 

 
Cauchy – Riemann Equations 

 
Is f(z) = z3 analytic? 

 

 
Solution 

 
We find u = x3 – 3xy and v = 3x2y and v = 3x2y – y3. next we calculate 
ux = 3x2 – 3y2, vy = 3x2 – 3y2

 

uy = -6xy, vx = 6xy 
 
We see that the Cauchy – Riemann equations are satisfied for every z, 
hence f (z) = z3 is analytic for every z, by theorem 2. 
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Example 30 
 

Determination of an Analytic Function with given Real Part 
 

We illustrate another class of practical; that can be solved by the Cauchy 
– Riemann equations. 

 

 
Find the most general analytic function f(z) whose real part is 

u = x3 – y2 – x. 
 

 
Solution 

 
We have uz = 2x – 1 = vy by the first Cauchy – Riemann equation. This 
we integrate with respect to y; 

 
v = 2xy − y + k ( x). 

 

 
As an important point, since we integrated a partial derivative with 
respect to y, the “constant” of integration k may depend on the other 
variable, x. (To understand this, calculate vy from the v.) and the second 
Cauchy – Riemann equation. 

 
 

u y   = − v x 

 

= − 2 y + dk 
dx 

 
On the other hand, from the given u = x2 – y2 – x we have uy = -2y. By 
comparison, dk/dx = 0. Hence k = constant, which must be real. (Why?). 

 
The result is 

 
f ( z) = u + iv = x 2 − y 2 − x + i(2xy − y + k ). 

 
We can express in terms of z, namely, f(z) = z2 – z + ik. 

 

 
Example 31 

 
An Analytic Function of Constant Absolute Value is Constant 

 
The  Cauchy  –  Riemann  equations  also  help  to  establish  general 
properties of analytic functions. 

 
For example, show that if f (z) is analytic in a domain D and 
constant in D, then f(z) = constant in D. 

f ( z) = k = 
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x y 

u 

r 

2 3 

2 3 

 
 
Solution 

 

 
By assumption, u 2 + v 2 = k 2 by differentiation. 

uu x − vu x = 0. uu y + vv y = 0. 
 

 
From this and the Cauchy – Riemann equations. 

 
6. (a) uu x − uu y = 0. (b) uu y + uu x   = 0 

 

 
To get rid of uy  multiply (6a) by u and (6b) by v and add. Similarly to 
eliminate ux, multiply (6a) by – v and (6b) by u and add. This yield. 

 

(u 2 + v 2 )u 
 

= 0. (u 2 + v 2 )u 
 

= 0. 
 
If k2  = u2  + v2  = 0, then u = v, hence f = 0. if k ≠ 0, then u x = y  = 0, 
hence by the Cauchy – Riemann equations, also vx 

u = constant and v = constant, hence f = constant. 
= v y = 0. together, 

 
If we use polar form z = r(cos θ + isin θ) and set 
f(z) = u(r, θ), then the Cauchy – Riemann equations are 

 

 
1 −1 

7. ur = vθ 
r 

and vr  = uθ 
r 

The derivative can then be calculated from 
 
8a. f ' ( z) = (u 

or from 
+ ivr )(cosθ − i sin θ ) 

 
8b. f ' ( z) = (v − iuθ )(cosθ − i sin θ )/ r . 

 
 
Example 32  Cauchy – Riemann equations in polar form 

 

let f ( z) = z 3 = r 3 (cos 3θ + i sin 3θ ). 
Then u = r 3 cos 3θ , v = r 3 sin 3θ 

 
 

By definition, 
 

ur  = 3r cos 3θ , vθ = 3r cos 3θ , 
vr 3r sin 3θ , uθ = 3r sin 3θ 

 
We see that (7) holds for all z ≠ 0. this confirms that z3 is analytic for all 
z  ≠ 0. (and we know that it is also analytic at (z = 0). From (8b) we 
obtain the derivative as expected. 
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v   v v 

x 

 
 

f ' ( z) = 3r 2 (cos 3θ + i sin 3θ )(cosθ − i sin θ ) = 3z 2 . 
 
 

Laplace’s Equation: Harmonic functions 
 

One of the main reasons for the great practical importance of complex 
analysis in engineering mathematics results form the fact that the real 
part    of  an  analytic  function  f  =  u  +  iv  satisfies  the  so  –  called 
Laplace’s equation. 

 
9. ∇ 2 u = u + 

y 
= 0. 

 
( ∇ 2 read “nabla squared”) and the same holds fort the imaginary part 

 
10. ∇ 2    = + 

x x y y 
= 0. 

 

 
Laplace’s equation is one of the most equations in physics, occurring in 
gravitation, electrostatics, fluid flow, etc. (cf. chaps. 11, 17) let us 
discover why this equation arises in complex analysis. 

 

 
Theorem 3 (Laplace’s Equation) 

 
If f(z) = u(x,y) + iv(x,y) is analytic in a domain d, then u and v satisfy 
Laplace’s equation (9) and (10) in d and have continuous second partial 
derivatives in D. 

 

 
Proof: 

 
Differentiating ux  = vy  with respect to x and uy  = vx  with respect to y, 

we obtain 
 

11. u x x   = v u y y  
= − vx y . 

 

 
Now the derivative of an analytic function is itself analytic, as we shall 
prove later (in sec. 13.6). This implies that u and v have continuous 
partial derivatives of all orders; in particular, the mixed second 
derivatives are equal; vyx = vxy. By adding (11) we thus obtain (9). 
Similarly, (10), is obtained by differentiating ux  = vy  with respect to y 
and uy = -vx with respect to x and subtracting, using uxy = uyx. 

 
Solutions  of  Laplace’s  equation  having  continuous  second  –  order 
partial derivatives are  called harmonic functions and  their  theory is 
called  potential  theory  (cf.  also  sec.  11.11).  Hence  the  real  and 
imaginary parts of an analytic function are harmonic functions. 
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If two harmonic functions u and v satisfy the Cauchy – Riemann 
equations in a domain d, they are the real and imaginary parts of an 
analytic function f   in d. Then v is said to be a conjugate harmonic 
function of u in d. (of course this use of the word “conjugate” has 
nothing to do  with that employed in  defining z ,  the  conjugate of  a 
complex number z). 

 
A conjugate of a given harmonic function can be obtained from the 
Cauchy – Riemann equations, as may be illustrated by the following 
example. 

 

 
Example 33 

 
Conjugate Harmonic Function 

 
Verify that u = x 2 − y 2 − y is harmonic in the complex plane and find a 
conjugate harmonic function of v of u. 

 

 
Solution 

 
∇ 2 u = 0 by  direct  calculation.  Now u x = 2 x and u y = − 2 y −1. hence  a 
conjugate v of u must satisfy 

 
v = u x = 2x, v x = − u y  = 2 y +1. 

 

 
Integrating the first equation with respect to y and differentiating the 
result  with respect to x, we obtain. 

 
v = 2xy + h( x), v  = 2 y + 

dh 
x dx 

 
A comparison with the second shows that dh/dx = 1. This gives h(x) = x 
+ c. hence v = 2xy + x + c (c any real cons tan t ) is the most general conjugate 
harmonic of the given u. 

 
The corresponding analytic function is 

f ( z) = u + iv = x 2 − y 2 − y + i(2xy + x + c) = z 2 + iz + ic. 
 
 
The Cauchy – Riemann equations are the most important equations in 
this     chapter. Their relation to Laplace’s equation opens wide ranges 
of engineering and physical applications, as we shown in chapter 17. In 
the remainder of this chapter we discuss elementary functions, one after 
the other, beginning with e z in the next section. Without knowing these 
functions and their properties we would not be able to do any useful 
practical work. This is just as in calculus. 
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3.6     Exponential Function 
 

The remaining sections of this chapter will be devoted to the most 
important elementary complex function, logarithm, trigonometric 
functions, etc we shall see that these complex functions can easily be 
defined in such a way that, for real values of the independent variable, 
the functions become identical with the familiar real functions. Some of 
the complex functions have interesting properties. Which do not show 
when the independent variable is restricted to real values. The student 
should   follow   the   consideration  with   great   care,   because   these 
elementary functions will   be frequently needed in applications. 

 
 

We begin with the complex exponential function also written as one of 
most   important analytic functions. The definition of ez  in terms of the 
real functions ex cos y and sin y is ez = ex(cos y + sin y).  This definition 
is motivated by requirement that make ez a natural extension of the real 
exponential function ex, namely. 

 
(a)      ez should reduce to the latter when z        = x is real; 
(b) ez  should be an entire function, that is analytic for all z, and 

resembling calculus, its derivative should be 
 

2.        (ez)1 = ez
 

 
from (1) we see that (a) holds, since cos 0 = 1 and sin 0 = 0. that ez is 
easily verified by the  Cauchy-Riemann equations. Formula (2)  then 
follows from (4) that 

 
(ez)1 = (ez cos y)z + i(ex sin y)x = ez cos y + iez   sin y = ez.

 

 
ez. has further interesting properties. Let us first show that, as in real, we 
have the functional relations 

 
3. e z1 + z2

 = e z1 z2
 

 
For any 

 
z1 = x1 + iy1 and 

 
 
 
z2 = x2 

 
 
 
+ iy2 

 
 
 
, indeed, by (1). 

= e x1
 (cos y1 + i sin y1 ) e (cos y2 + i sin y2 ). 

 
Since e x1 e x2   = e x1  + e x2 for these real functions, by an application of the 
addition formulas for the cosine and sine functions (similar to that in 
sec. 12.2) we find that this equals 

 
e z1 z2 = e x1 (cos (y +   2 )+ i sin ( y1 + ))= e z1 + z2
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As asserted. An 

 
 

4. e iy = cos y + i sin y = cos 2  y + sin 2  y = 1. 
 
 
That is, for pure imaginary exponents the exponential function has 
absolute value one, a result the student should remember. From (7) and 
(1), 

 
5. e z = e x . Hence arg e z  = y + 2nπ (n = 0,1,2,⋅ ⋅ ⋅⋅) 

 
 

since e z   = e x . shows that (1) is actually e x in polar form. 
 
 
Example 34 

 
Illustration of Some Properties of the Exponential Function 

 
Computation of values from (1) provides no problem. For instance, 
verify that 

 
e1.4−0.6i  = e1.4 (cos 0.6 − i sin 0.6) = 4.055(0.825 − 0.565i) = 3.347 − 2.290i, 
e1.4−0.6i

 = e1.4  = 4.055, Arge1.4−0.6i  = −0.6. 
 
 

Since cos 2π = 1 and sin 2π = 0 , we have from (5) 
 
6. e 2πi  = 1 

 
Furthermore use (1), (5) or (6) to verify these important special values: 

 
7. eπi 2  = i , eπi  = −1 , e −πi  2  = −i , e −πi   = −1. 

 
To illustrate (3), take the product of 

 
e 2 +i  = e 2 (cos i + i sin 1) = e 4 −i e 4 (cos1 − i sin 1) 
and verify that equals 

 
e 2 e 4 (cos 2 1 + sin 2 1) = e 6  = e ( 2+i )−( 4−i ) . 

 
 

Finally, conclude from e z = e x  ≠ 0 in (8)that 
 
 

8. e x  ≠ 0 for all z 
 
So here we have an entire function that never vanishes, in contrast to 
(non-constant)  polynomials,  which  are  also  entire  (Example  5  in 



MTH 381 MODULE 2 

66 

 

 

 
 

 
 

Sec.2.4) but always have zero, as is proved in algebra. [Can you obtain 
(11) from (3) ?] 

 
 

Periodicity of e x with period 2πi , 
 

9. e z + 2πi
 = e z all z 

 
is a basic property that follows from (1) and the periodicity of cosy and 
siny. It also follows from (3) and (9).] Hence all the values that w = e z 

can assume are already assumed in the horizontal strip of width 2π . 
 

10. − π < y ≤ π 
 

 

This infinite strip is called a fundamental region of e x . 
 

 
Example 35 

 

 
Solution of an Equation 

 
Find all solution of e x  = 3 + 4i 

 
Solution 

 
e x   = e x  = 5, x = In 5 = 1.609 is a real part of all solutions. Furthermore, 

 

since e x  = 5 , 
 

e x  cos y = 3, 
 
e x sin y = 4, 

y 
cosy = 0.6, siny = 0.8, y = 0.927 . 

π 
 

 

x 
- π 

 

Fig. 20: Fundamental Region of the Exponential Function ez  I 
in the z-plane 

 
Ans. z =1.609 + 0.927i ± 2nπi (n = 0,1,2,⋅ ⋅ ⋅ ⋅ ⋅) . These are infinitely many 
solutions (due to the periodicity of e z ). They lie on the vertical line 
x=1.609 at a distance 2π from their neighbours. 

 
To summarise: many properties of e z  = exp z parallel to those of e x ; an 
exception is the periodicity of e x with 2πi , which suggested the concept 
of a fundamental region and causes the periodicity of cosz and sinz with 
the real period 2π , as we shall see in the next section. Keep in mind that 
e z is an entire function. (Do you still remember what that means?) 
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3.7 Trigonometric Functions, Hyperbolic Functions 

 
Just as e z extends e x to complex, we want the complex trigonometric 
functions to extend the familiar real trigonometric functions. The idea of 
making the connection is the use of the Euler formulae. 

 
e ix  = cos x + i sin x, e −ix  = cos x − i sin x. 

 

 
By addition and subtraction we obtain 

 

cos x = 
1 

(e iz  + e −iz ), 
2 

 
sinx = 1 (e iz  − e −iz ) 

2i 

 
x real 

 
This suggests the following definitions for complex values z = x + iy 

1. cos z = 1 (e iz  + e −iz ), 
2 

 
sinz = 1 

(e iz  − e −iz ). 
2i 

 
Furthermore, in agreement with the definition from the real calculus we 
define 

2. 

and 

 

tan z = 
sin z , 
cos z 

cotz = 
cos z 
sin z 

 
 

3. sec z = 
1 , 

cos z 

 
cosecz = 

1 . 
sin z 

 
Since e z is entire, cosz and sinz are entire functions. Tanz and secz are 
not entire; they are analytic except at the point where cosz is zero; and 
cot z and csc z are  analytic  except,  where sin z = 0 .  Formulas  for  the 
derivatives follows readily from (e z )′ = e z and (1)-(3); as in calculus, 

 
4. (cos z)′ = − sin z, (sin z)′ = cos z, (tan z)′ = sec 2  z, 

 

 
etc. Equation (1) also shows that Euler’s formula is valid in complex: 

 
5. eiz  = cos z + i sin z for all z. 

 
Real and imaginary parts of cosz and sinz are needed in computing 
values, and they also help in displaying properties of our functions. We 
illustrate this by typical example. 
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Example 36 
 

Real and Imaginary Parts. Absolute Value. Periodicity 
 

Show that 
 

(a) cos z = cos x cosh y − i sin x sinh y 
6. (b) sin z = sin x cosh y + i cos x sinh y 

 

 
and 

 
7. (a) cosh z = cos 2  x + sinh 2  y 

 

(b) 
 

sinh z = sin 2  x + sinh 2  y 
 
 

And give some application of these formulas. 
 

 
Solution 

 
From (1) 

cos z = 
1 (ei () x +iy + e−i ( x +iy ) ) 
2 

= 1 e − y (cos x + i sin y) + 1 e y (cos x − i sin y) 
2 2 

= 1 (e y  + e − y ) cos x − 1 i(e y  − e − y ) sin x. 
2 2 

 
This yields (6a) since, as is known from calculus, 

 
8. cosh y = 1 (e y  + e − y ), 

2 
sinhy = 

1 
(e y  − e − y ); 

2 
 

(6b) is obtained similarly. From and cosh 2  y = 1 + sinh 2  y we obtain 
 

cos = cos 2  x(1 + sinh 2  y) + sin 2  x + sinh 2  y. 
 
 

Since sin 2  x + cos 2  x = 1 , this gives (7a), and (7b) is obtained similarly. 
 

For instance, cos(2 + 3i cos 2 cosh 3 − i sin 2 sinh 3 = −4.190 − 9.109i . 
 

From (6) we see that cosz and sinz are periodic with period 2π , just as 
in real. Periodicity of tan z and cot z with period π now follows. 

 
Formula (7) points to an essential difference between the real and the 
complex cosine and sine: whereas cos x ≤ 1 and sin x ≤ 1, the complex 
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cosine and sine functions are no longer bounded but approach infinity in 
absolute value as y → ∞, since sinh y → ∞. 

 
 
Example 37 

 
Solution of Equations. Zeros 

 
Solve 

 

 
(a) cos z = 5 (which has no real solution), 
(b) 
(c) 

cos z = 0 
sin z = 0 

 
Solution 

 
(a) e 2iz  − 10e iz  + 1 = 0 from  (1)  by  multiplication  by eiz .  This  is  a 
quadratic equation in eiz , with solution (3D-values) 

 
e iz  = e − y +ix 5 ± 25 − 1 = 9.899 and 0.101. 

 
Thus e − y  = 9.899 or 0.101, e ix  = 1, y = ±2.292, x = 2nπ 

 
 

Ans. z = ±2nπ ± 2.292i(n = 0,1,2,⋅ ⋅ ⋅⋅), 
 

can  you  obtain  this  by 
using (6a)? 

 
(b) cos x = 0, sinh y = 0, by (7a), y = 0. 

 
Ans. z = ± 1 (2n +1)π (n = 0,1,2,⋅ ⋅ ⋅⋅). 

 
(c) sin sx = 0, sinh y = 0, by (7b), y = 0. 

 
Ans. z = 2nπ (n = 0,1,2,⋅ ⋅ ⋅⋅). 

 

 
Hence the only zeros of cosz and sinz are those of the real cosine and 
sine functions. 

 

 
From the definition it follows immediately that all the familiar formulas 
for the real trigonometric functions continue to hold for complex values. 

 
We mention in particular the addition rules 

 

9. 
cos( z1  ± z 2 ) = cos z1 cos z 2  ± sin z1 sin z 2 

sin( z1  ± z 2 ) = sin z1 cos z 2  ± sin z 2  cos z1 

and the formula 
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10. cos2 z + sin 2 z = 1. 
 

Some further useful formulas are inclined in the problem set. 
 

 
HYPERBOLIC FUNCTIONS 

 
The complex hyperbolic cosine and sine are defined by the formulas 

 
 
 

11. cosh z =  1 (e z + e − z ), sinh z =  1 (e z − e− z ). 
 

This suggested by the familiar definition for the real variable. These 
functions are shown below, with derivatives 

 
12. (cosh z)′ = sinh z, (sinh z)′ = cosh z, 

as in calculus. The other hyperbolic functions are defined by 
 

tan z = 
sinh z , 
cosh z 

 

coth z = 
cosh z , 
sinh z 

 
 

13. 
 
sec hz = 

1 , 
cosh z 

 
csc hz = 

1 , 
sin zh 

 
Complex trigonometric and hyperbolic functions are related 

 
If in (11), we replace z by iz and use (1), we obtain 

 
14. cosh iz = cos z, sinh iz = i sin z, 

 

 
From this, since cosh is even and sinh is odd, conversely 

 
 
 

15. cos iz = cosh z, sin iz = i sinh z, 
 

 
Apart from their practical importance, these formulas are remarkable in 
principle. Whereas in real calculus, the trigonometric and hyperbolic 
functions are of a different character, in complex these functions are 
intimately related. Moreover the Euler formula relates them to the 
exponential function. This  situation   illustrates   that   by   working   in 
complex, rather than in real, one can often gain a deeper understanding 
of  special functions. This  is  one  of  the  three  main  reasons of  the 
practical importance of complex analysis, mentioned at the beginning of 
this chapter. 
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In the next section we discus the complex logarithms, which differ 
substantially from the real logarithm (which is simpler), and the student 
should work the next section with particular care. 

 

 
4.0     CONCLUSION 

 
To  this  end,  we  conclude  by  giving  a  summary of  what  we  have 
covered. 

 

 
5.0     SUMMARY 

 
For arithmetic operations with complex number 

 
1. z = x + iy = re iθ = r(cosθ + i sin θ ), 

 

r = z = 
 

x2 + y 2 , 
 

θ = arctan( y / x), 
 

and for their representation in 
the complex plane, see Sec 2.1 and 2.2 
A complex function f ( z) = u( x, y) + iv( x, y) is analytic in domain 
D if it has a derivative. 

 
 

2. f ′( z) = lim 
∆z →0 

f ( z + ∆z) − f ( z) 
∆z 

Everywhere in D. Also, f ( z) is analytic at a point z = z 0 if it has a 
derivative in a neighbourhood of z0   (not merely at z0 itself). 
If  f ( z) is analytic in D, then u(x, y)and v( x, y) satisfy the (very 
important!) Cauchy-Riemann equations (Sec. 2.5). 

 

3. ∂u = ∂v , ∂u = − ∂v 
∂x ∂y ∂y ∂x 
everywhere in D. Then u and v also satisfy Laplace’s equation 

 
4. u xx  + u yy  = 0, vxx + vyy  = 0 

everywhere in D . If u(x, y) and v( x, y) are continuous and have 
continuous partial derivatives in D that satisfy (3) in D, then 
f ( z) = u( x, y) + iv( x, y) is analytic  in  domain  D  .Sec.  2.5  the 

complex exponential function (Sec. 2.6) 
 
5. e z  = exp z = e z (cos y + i sin y) 

is periodic with 2πi , reduces to e z when z = x( y = 0) and has the 
derivative e z . The trigonometric functions are (Sec.2.7) 

cos z = 
1 

(e iz  + e −iz ) = cos x cosh y − i sin x sinh y 
2 

cos z = 
1 

(e iz  + e −iz ) = sin x cosh y − i cos x sinh y 
2 
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tan z = (sin z) / cos z, cot z = 1 / tan z, etc. 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Let z1  = 3 + 4i and z2  = 5 − 2i 
Find in the form x + iy 

 

(a) 
 
( z1  − z 2 ) (b) z2 

2 z 
ii. Show that z is pure imaginary if and only if z = − z. 

 
 

iii. Find;  (a) 
 

1 − i 2 
 
(b) (3 + 4i)4

 

 
 

iv. Represent in polar form 
(3 − 4i)3

 

 

(a) i  2 
3 + 3i 

 

(b) 4i 

v. Determine the principal value of the arguments of 
(a) − 2 + 2i (b) 1 − i  3 

vi. Represent in form x + iy 
 

(a)  π 
4 cos π  

+ i sin  
 3π 

50  cos 
 
+ i sin 3π  

 

 2 2   4 4  
vii. Determine and sketch the sets represented by 

(a) z − 2i = 2 (b) zz + (1 + 2i) z + (1 − 2i) + 1 = 0 
 
 

viii. Find f (2 + i), f (−4 + i) where f ( z) equals 
 

(a) 
 
3z 2  + z 

 
(b) ( z + 1) 

( z −1) 
ix. If f ( z) is differentiable at z0 , show that f ( z) is continuous at z0 . 

x. Prove the product rule [ f ( z) g ( z)]′ = f ′( z) g ( z) + 
xi. Are the following functions analytic? 

 

f ( z) g ′( z) 

(a) f ( z) z 4 (b) f ( z)e x (cos y + i sin y) . 
xii. Let v be a conjugate harmonic of u in some domain D. Show that 

then h = u 2  − v 2 is harmonic in D. 
xiii. Derive the Cauchy-Riemann equations in polar form equation 

from equation 1. 
xiv. Using the Cauchy-Riemann equations, show that e x is analytic for 

all z. 
 

xv. Compute e z (in the form ( u + iv ) and e z   ) when z equals 
 

(a) 
 
π − i / 2 

 
(b) 

 

−1 − 7πi 
4 

 x 2 y 2   
xvi. Show that u = e xy

 cos − 
  2 

 is harmonic and find a conjugate. 
2  
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xvii. Prove that cos z, sin z, cosh z, and sinh z are entire functions. 
xviii.  What is the idea that led to the Cauchy-Riemann equations? 
xix. State the Cauchy-Riemann equations from memory. 
xx. What is an analytic function? Can a function be differentiable at a 

point z0 without being analytic at z0 . 
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1.0     INTRODUCTION 

 
In this unit we defined and explained complex integrals.  The most 
fundamental result in the whole unit is Cauchy’s integral theorem.   It 
implies, the importance of Cauchy integral formula. 

 
We prove that if a function is analytic, it has derivatives of all orders. 
Hence, in this respect, complex analytic functions behave much more 
simply than real-valued functions of real variables.  Interpretation by 
means of residues and applications to real integrals will be considered in 
Module 3. 
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2.0     OBJECTIVES 

 
At the end of the unit, you should be able to: 

 
 
• in applications there occur real integrals that can be evaluated by 

complex integration, whereas the usual methods of real integral 
calculus are not successful and 

• some basic properties of analytic function can be established by 
integration, but would be difficult to prove by other methods. The 
existence of higher derivatives of analytic functions is a striking 
property of this type. 

 

 
3.0     MAIN CONTENT 

 
3.1     Line Integral in the Complex Plane 

 
As in real calculus, we distinguish between definite integrals, and 
indefinite  integrals  or  ant  derivatives.  An  indefinite  integral  is  a 
function whose derivative equals a given analytic function in a region. 
By inverting known differentiation formulas we may find many types of 
indefinite integrals. 

 
We shall now define definite integrals, or line integrals, of complex 
function f ( z), where z = x + iy as follows;. 

 
Path of Integration 

 
In real calculus, a definite integral is taken over an interval (a segment) 
of the real line. In the case of a complex definite integral we integrate 
along a curve C  in the complex plane, which will be called the path of 
integration. 

 

 
Now a curve C in the complex plane can be represented in the form 

 
z(t ) = x(t ) + iy(t ) (a ≤ t ≤ b) (1) 

 
 
where t is a real parameter. For example, 

 
z(t ) = t + 3it (0 ≤ t ≤ 2) 

 
represent a portion of the line y = 3x (sketch it!), 

 
z(t ) = 4 cos t + 4i sin t (-π ≤ t ≤ π ) 

 

 

represent the circle z = 4 , etc. (More example below) 
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C is called a smooth curve if C has a derivative 
 

 

z&(t ) = dz = x& (t ) + iy& (t ) 
dt 

at each of its points which is continuous and nowhere zero. 
Geometrically this means that C has a continuous turning tangent. This 
follow directly from the definition 

 

 

z&(t ) = lim z(t + ∆t ) − z(t ) 
∆t →0 ∆t 

 

 

 
 

Fig. 21:         Tangent vector z(t) of a curve C in the complex plane 
given by z(t).  The arrow on the curve indicates the 
positive sense (sense of increasing t). 

 
3.1.1  Definition of the Complex Line Integral 

 
This will be similar to the method used in calculus. Let C be a smooth 
curve  in  the z -plane  represented  in  the  form  (1).  Let f ( z) be  a 
continuous function defined (least) at each point of C . We subdivided 
(“partition”) the interval (a ≤ t ≤ b) in (1) by points of 

 
 

 
Fig. 22: Complex Line Integral 

 

t0 (= a), t1 ,⋅  ⋅  ⋅  ⋅  .t n−1 , t n (= b) 
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∫ 

∫ ∫ 

 
 
Where t0  < t1 < ⋅⋅⋅tn . To do this subdivision there corresponds a 
subdivision of C by points 

 

z0 , z1 ,⋅  ⋅  ⋅  ⋅  .z n −1 , z n (= z), 

where z j  = z(t j ) .  On  each  portion of  subdivision of  C we  choose an 
arbitrary  point,  say,  a  point ξ1 between z0 and z1 (that  is, ξ1  = z(t) ) 
where t  satisfies t0  ≤ t ≤ t1 , a point ξ1 between z0 and z1 (that is, ξ1  = z(t)  ) 
where t  satisfies t0  ≤ t ≤ t1 , a point ξ 2 between 
the sum 

z1 and z2 etc. Then we form 

 
n 

S n  = ∑ f (ξ m ) 
m=1 

where 

 
 
 
 
 
∆zm  = zm − zm −1. 

 
(2) 

This we do for each n = 1,2,3,⋅ ⋅ ⋅ ⋅ in a completely independent manner, 
but in such a way that the greatest ∆zm approaches zero as n approaches 
infinity. This gives a sequence of complex numbers S 2 , S3 ,⋅ ⋅ ⋅ ⋅ .  The limit 
of these sequence is called the line integral (or simply the integral) of 
f ( z), along the oriented curve C and is denoted by 

 
 

f ( z)dz 
C 

(3) 
The curve C is called the path of integration. C is called a closed path if 
z = z0 , that is, if its terminal point coincides with its initial point. 

 

 
(Example: a circle, a curve shaped like an 8, etc.) Then also writes 

 
instead of 

C C 

 
Examples follow in the next section. 

 

 
General Assumption 

 
All path of integration for complex line integral will be assumed to be 
piecewise smooth, that is, to consist of finitely many smooth curves 
joined end to end. 

 

 
3.1.2     Existence of the Line Integral 

 
From our assumption that f ( z) is continuous and C is piecewise smooth, 
the existence of the line integral (3) follows, as in the previous chapter 
let us write f ( z) = u( x, y) + iv( x, y) . We also set 
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∫ ∫ ∫ 

 
 

ξ m  = ξ m  + iη m and ∆z m  = ∆xm  + i∆ym 

 
then (2) may be written 

S n  = ∑ (u + iv)(∆xm  + i∆ym ) 

 
 
(4) 

 
Where u = u(ξ m ,η m ) and v = v(ξ m ,η m ) we sum over m from1 to n.  We 
may now split up S n into four sums: 

 

S n  = ∑ u∆xm  − ∑ v∆ym  + i[∑ u∆ym  + ∑ v∆xm ] 
 

 

These  sums  are  real.  Since f is  continuous, u and v are  continuous. 
Hence, if we let n approach infinity in the aforementioned way, then the 
greatest ∆xm and ∆ym will approach zero and each sum on the right 
becomes a real line integral: 

 
 

lim S 
 
= ∫  f ( z)dz = ∫ udx − ∫

 vdy + i[∫ udy + ∫ vdx] 
 

(5) 
n→∞    n C C C C C 

 

 
This      shows      that      under      our      assumption      ( f continuous 
on C1 and C2 piecewise smooth) the line integral (3) exist and its value is 
independent of the choice of subdivisions and intermediate points ξ m . 

 
3.1.3    Three Basic Properties of Complex Line Integrals 

 
We list three properties of complex line integrals that are quite similar to 
those of real definite integrals (and real line integrals) and follow 
immediately from the definition. 

 
Integration is a linear operation, that is, a sum of two (or more) functions 
can be integrated term by term, and constant factors can be taken out 
from under the integral sign: 

 

∫ [k1 f1 ( z) + k 2 f 2 ( z)]dz = k1 ∫ f1 ( z)dz + k 2 ∫ f 2 ( z)dz (6) 
C C C 

 
 
 

 
Fig. 23: Subdivision of Path (Formula (7) 

 
Decomposing C into two portions C1 and C2 (Fig), we get 

f ( z)dz = 
C C1 

f ( z)dz + 
C2 

f ( z)dz (7) 
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z 

∫ 

z 

b 

b b 

 
 
 
 
3. Reversing the sense of integration, we get the negative of the 

original value: 

∫  f ( z)dz = −∫ 
0   f ( z)dz 

 

(8) 
z0 z 

 

 
here  the  path C with  endpoint z0 and Z is  the  same; on  the  left  we 
integrate from z0 to Z , on the right from z0 to Z . 

 
Applications follow in the next section and problems at the end of it. 

 

 
3.2 Two Integration Methods 

 
Complex integration is rich in methods for evaluating integrals. We 
discuss first two of them, and others will follow later in this chapter. 

 

 
3.2.1  First Method: Use of Representation of the Path 

This method applies to any continuous complex function. 

Theorem 1 (Integration by the use of the path) 

Let C be a piecewise smooth path, represented by z = z(t), 
where a ≤ t ≤ b Let f(z) be a continuous function on C. Then 

 
 

∫  f ( z) = ∫ 
 

f [z(t)]z&(t)dt  
 i = 

dz 
 
 

 

(1) 
C a

  
dt  

 
 
Proof 

 
The left-hand side of (1) is given by (5), Sec, 13.1, in terms of real 
integrals, and we show that the right-hand side of (1) also equals (5). 

 

 
We have z = x + iy , hence z&  = x& + iy& . We simply write u for 
u[x(t ), y(t )] and v for 
Consequently, in (1), 

v[x(t), y(t )] .We also have dx = x&dt and dy = y&dt . 

 

∫  f [z(t )]z&(t)dt = ∫ 
 

(u + iv)( x& + iy& )dt 
a a 

= [udx − vdy + i(udy + vdx)], 
C 

 
Which is the right-hand side of (5), as claimed. 
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1 
∫ ∫ 

2 

 
 

Steps in applying Theorem 1 
 

Represent the path C in the form z(t ) a ≤ t ≤ b 
Calculate the derivative z&(t ) = dz dt 
Substitute z(t ) for every z in f ( z) (hence x(t ) for x and y(t ) for y) 
Integrate f [z(t)]z&(t ) over t from a to b 

 
Example 1 

 
A Basic Result: Integral of1 z around the unit circle 

 
 

Show that 
 

dz 
= 2πi 

C   z 
( C the unit circle, clockwise) (2) 

 

 
The important result will be frequently needed. 

 

 
Solution 

 
We may represent the unit circle C in the form 

 

z(&t ) = cos t + i sin t z 
 

(0 ≤ t ≤ 2π ). 
 

 
So  that  the  counterclockwise  integration  correspond  to  an  increase 
of t from 0 to 2π . By differentiation, 

 
z&(t ) = − sin t + i cos t 

 

Also f [z(t )] = 
1 

z(t ) 

 
. Formula (1) now yields the desired result 

 
 

dz =  
2π

 

z 

 

cos t + i sin t 
(− sin t + i cos t )dt 

C 0 
 

π 

= i ∫  dt 
0 

= 2πi 
 

The Euler formula helps us to save work by representing the unit circle 
simply in the form 

 
z(t ) = eit 

 

 
Then  

 
1 

z(t ) 

 
 
e−it , 

 
 
dz = ieit dt. 
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∫ ∫ ∫ 

∫ 

∫ 

∫ 

m 

m 

2 

i ∫ 
2 

 
 
 
 
As before, we now get more quickly 

 
dz 2π 2π

 

= 
C   z 0 

e −it ieit  = i dt 
0 

= 2πi . 
 
Example 2 

 
Integral of Integer Powers 

 
Let f ( z) = ( z − z0 ) where m is an integer and z0 is a constant. 
Integrate  in  the  clockwise  sense  around  the  circle C of  radius ρ with 
centre at z0 

 

 
Solution 

 
We may represent the unit circle C in the form 

 
z(t ) = z0 + ρ (cos t + i sin t ) = z0 + ρeit z (0 ≤ t ≤ 2π ). 

 
Then we have 
( z − z0 ) = ρ m eimt , dz = iρeit

 dt, 
and we obtain 

 
 

∫ ( z − z0 
C 

2π
 

π 

) m dz = 
0 

 

ρ m e imt dt 

= ei ( m+1)t dt. 
0 

 
By the Euler formula (5), the right-hand side equals 

m +1   
2π ρ 

 
π 

cos(m + 1)t + i ∫
 sin(m + 1)t . 

 0 0  
When m = −1, we have ρ m +1 = 1, cos 0 = 1, sin 0 = 0 and thus obtain 2πi . For 
integer m ≠ 1 each of the two integer is zero because we integrate over an 
interval of length 2πi , equal to a period of sine and cosine. Hence the 
result is 

 
 
 

( z − z0 
C 

2πi 
) m dz =  

0 

(m = -1) 
(m ≠ -1 and integer). 

 
(3) 

 
 
Let us now illustrate the following important fact. If we integrate a 
function f ( z), from  a  point z0 to  a  point z1 along  different  path,  we 
generally get the values of the integral. In other words, a complex line 
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∫ = ∫  + 

 
 

integral generally depends not only on the end point of the path but also 
on the geometric shape of the path. 

 

 
Example 3 

 
Integral of Non-analytic Function 

 
Integrate f ( z) = x from 0 to 1. 
along C * in fig. 325 below. 
along C consisting of C1 and C2 . 

 
Solution 

 
a. C * can be represented by z(t ) = t + it (0 ≤ t ≤ 1) . Hence 
z&(t ) = +i and f [z(t)] = x(t ) = 1 (on C * ). 

 
We now calculate 

 
1 

Re zdz t (1 i)dt 
C 0 

= 1 (1 + i). 
2 

 
b. C1  can be represented by z(t ) = t (0 ≤ t ≤ 1) . Hence 

z&(t ) = 1 and f [z(t)] = x(t ) = 1 (on C1 ). 
C2  can be represented by z(t ) = t + it (0 ≤ t ≤ 1) . Hence 
z&(t ) = 1 and f [z(t)] = x(t ) = 1 (on C2 ). 

Using (7) , we calculate 
 
 

y 
 

1 
 

ρ 
z0 C*

 
 

 
C1 

 
 
 
z = 1 + i 

 
 

C2 
 

 
 
1 

Fig. 24 Path in Example 2 Fig. 25. Path in Example 3 
 
 

1 1 

∫ Re zdz =∫ Re zdz + ∫ Re zdz =∫ tdt +∫ 1⋅ tdt 
C C1 C2 0 0  

= 
1 

+ i 
2 

Note that this result is differ from the result in (a). 
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∫ 

∫−π 
= 

z 

 
 
3.2.2  Second Method: Indefinite Integration 

 
In  real  calculus,  if   for  given f ( x) we  know  an F ( x) such  that 
F ′( x) = f ( x), 
then we can apply the formula 

b 

f ( x)dx = F (b) − F (a) 
a 

This  method  extends  to  complex  functions.  We  shall  see  that  it  is 
simpler than the previous method, but, of course, we have to find an 
F ( z) whose derivative F ′( z) equals the given function f ( z) that we want 
to integrate.  Clearly,  differentiation formulas  will  often  helps  us  in 
finding such an F ( z) , so that this method becomes of great practical 
importance. 

 
Theorem 2 (Indefinite Integration of Analytic Functions) 

 
Let f ( z) be analytic in a simply connected domain D . Then there exists 
an  indefinite  integral  of f ( z) in  the  domain D ,  that  is,  an  analytic 
function F ( z) such that F ′( z) = f ( z) in D , and for all path in  D joining 
two point z0 and z1 in D we have 

 
 
 

4. ∫ 
1
 

 

f ( x)dz = F ( z1 ) − F ( z0 ) [F ′( z) = f ( z)]. 
z0 

 
 
(Note that we can write z0 and z1 instead of C , since we get the same 
value for all those C from z0 and z1  ). 

 
This theorem will be proved by using Cauchy’s integral theorem which 
we discuss in the next section… 

 

 
Example 4 

 

 

∫
1+i 

z 3 dz = 
1 z 3 1 + i 

0 3 0 

= 1 (1 + i)3  = − 2 + 2 i 
3 3 3 

 
Example 5 

 
 

πi 
cos zdz sin z 
i 

πi 
− πi 

= 2 sin πi = 2i sinh π = 23.097i 
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∫ 

∫ 

 
 

Example 6 
 
 

8−3πi 
 

8+3πi 

 
e z 2 dz 

 
=2e z 2

 
8 − 3π 

8 + 3π 

= 2(e4−3πi  2 − e4+3πi  2 ) 

= 0 
Since e z is periodic with period 2πi. 

 
3.2.3 Bound for Absolute Value of Integrals 

 
There  will  be  a  frequent need  for  estimating the  absolute  value  of 
complex line integrals. The basic formula is 

 
 

6. f ( z)dz 
C 

≤ ML ( ML -inequality); 

here  L  is  the  length  of  C  and  M  a  constant  such  that 
f ( z) ≤ M everywhere on C. 

 
 

Proof: 
 

We consider S n as given by (2). By the generalized triangle inequality 
(6), we obtain 

 

 
n 

S n   = ∑ f (ξ m )∆z m 
m=1 

m 

≤ ∑ 
m =1 

 
f (ξ m ) ∆zm 

n 

≤ M ∑ ∆zm . 
m =1 

 
Now ∆zm is  the  length  of  the  chord  whose  end  points  are zm −1 and zm . 
Hence the sum on the right represents the length L* of the broken line of 
the  chord  whose  endpoints  are z0 , z1 ,⋅ ⋅ ⋅ ⋅ ⋅ , zn (n 
= Z ). 

If  n  approaches 

infinity in such a way that the greatest ∆zm approaches zero, then 
L* approaches the length L  of  the  curve  C  ,  by  the  definition of  the 
length of a curve. From this the inequality (6) follows. 

 
We cannot see for (6) how close to the bound ML the actual absolute 
value  of the integral is, but this will be no hardship in applying (6). For 
the time being we explain the practical use of (6) by a simple example. 

 

 
Example 8 

 
Find a upper bound for the absolute value of the integral 
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∫ 

∫ 

 

 
 

z 2 dz, 
C 

C the straight-line segment from 0 to 1+i 
 
Solution 

 
L = 2 and f ( z) = z 2   ≤ 2 on C gives by (6) 

 
z 2 dz ≤ 2 

C 

 
2 = 2.8284 

 

 
The absolute value of the integral is 

− 2 + 2 i = 2 
 
2 = 0.9428 

3 3 3 
 

 
In the next section we discuss the most important theorem of the whole 
chapter, Cauchy’s integral theorem, which is the basic in itself and has 
far reaching consequences which we shall explore, above all the 
existence of all higher derivatives  of an analytic function, which are 
themselves analytic functions. 

 

 
3.3     Cauchy’s Integral Theorem 

 
Cauchy’s integral theorem is very important in complex analysis and has 
various theoretical and practical consequences. To state this theorem, we 
shall need the following concepts. 

 
A closed path C is called a simple close path if C does not intersect or 
touch itself (see diagram below). For example a circle is simple, an 
eight- shaped curve is not. 

 
A domain D in the complex plane is called a simply connected domain 
if every closed path in D encloses only points of D. A domain that is not 
simply connected is called multiply connected. 

 
For instance, the interior of a circle (“circular disk”), ellipse or square is 

 
 
 
 
 
 
 
 
 
 
 
 
simply connected. More generally, the interior of a simple closed curve 
is simply connected. A circular ring or annulus is multiply connected 
(more precisely: doubly connected). The figure below shows further 
examples. 
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∫ 

 

 
 

 
 

Fig. 27: Simply and Multiply Connected Domain 
 

Recalling that, by definition, a function is a single-valued relation, we 
can     now state Cauchy’s integral theorem as follows. This theorem is 
sometimes also called the Cauchy-Gaursat theorem. 

 

 
3.3.1    Cauchy’s Integral Theorem 

 
If f ( z) be  analytic in  a  simply connected domain D ,  then for  every 
simple close path C in D, 

 
 
 

1. f ( z)dz = 0 
C 

 
 

Proof 
 

If we make assumption –as Cauchy did- that the derivative 

 
 
 
f ′( z) of 

f ( z) is continuous in D (existence of f ′( z) in D being a consequences of 
analyticity), then Cauchy’s theorem follows from a basic theorem on 
real 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 28: Cauchy’s Integral Theorem 
 

line integrals (proof below). Goursat finally proved Cauchy’s theorem 
without the assumption that f ′( z) is continuous (optional proof at the end 
of this chapter). Before we go into details, let us consider some example 
in order to really understand what is going on. 
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∫ 

∫ 

 
 
We mention that a closed path is sometimes called a contour and an 
integral over such a path a contour integral. 

 
Example 9 

 
 

∫ e z dz = 0 , ∫ cos zdz = 0 

 
 
 
∫ z n dz = 0 

 
 
 
(n = 0,1,⋅ ⋅ ⋅⋅) 

C C C 

 
For any closed path, since these functions are (analytic for all z). 

 

 
Example 10 

 
 

∫ sec zdz = 0 , ∫ 
dz 

= 0 
z 2  + 4 

C C 

where C is the unit circle. sec z = 
1 

cos z 
is not analytic 

at z = ± π 2 ,± 3π 2 ,⋅ ⋅
⋅ ⋅ , 

but all these points lie outside C ; none lie on C. 

Similarly for the second integral, whose integrand is not analytic at 
z = ±2πi outside C. 

 
Example 11 

 
 

zdz = 2πi 
C 

 
(C the unit circle, counterclockwise) does not contradict Cauchy’s 
theorem, since f ( z) = z is  not  analytic,  so  that  the  theorem does  not 
apply. (Verify this result!) 

 
Example 12 

 

∫  
dz 

= 0, 
C  z 2 

where C is the unit circle. This result does not follow from the Cauchy’s 
 

theorem, because f ( z) =  
1 
z 2 

 

is not analytic at z = 0 . Hence the condition 

that f  be analytic in D is sufficient rather than necessary for (1) to be 
true. 

 

 
Example 13 

 
dz 

C  z 2 

 
= 2πi, 
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∫ ∫ 
4 

C 

1 

∫ ∫ 

∫ 

∂x 

 
 

The  integration being  taken around the  unit circle in  the  clockwise 
 

sense. C lies in the annulus 1 
< z < 

3 
2 2 

 

where 1   is analytic, but this 
z 

domain is not simply connected, so that Cauchy’s theorem cannot be 
applied. Hence the condition that the domain D be simply connected is 
quite essential. 

 

 
Example 14 

 
7 z −  6 

dz = 
z 2  −  2z 

7 z −  6 
z( z −  2) 

dz = ∫ 
3 dz + 
z z −  2 

dz = 3 ⋅  2πi + 0 

C C C C 
 

= 6πi 
(C the unit circle, counterclockwise) by partial fraction reduction. 

 
Cauchy’s proof under the condition that f ′( z) I continuous 

 

 
From (5) we have 

 
∫  f ( z)dz =∫ (udx − vdy) + ∫ (udy + vdx). 
C C C 

 
Since f ( z) is analytic in D, its derivative F ′( z) exists in D. Since F ′( z) is 
assume to be continuous,  (4) and  (5) in previous section imply that u 
and v  have continuous partial derivatives in D. Hence Green’s theorem 
with u and –v instead of F1  and F2 is applicable and gives 

 
 

∫ (udx − vdy) = ∫∫  − ∂v − ∂u  
dxdy 

R   ∂y  
 

where R is the region bounded by C. The second Cauchy-Rieman 
integration shows that the integrand on the right is identically zero. 

 
Hence, the integral on the left is zero. In the same fashion it follows by 
the use of      the first Cauchy-Rieman equation that the last integral in 
the above formula is zero. This complete Cauchy’s proof. 

 

 
3.3.2    Independence of Path, Deformation of Path 

 
We shall now discuss an important consequence of Cauchy’s integral 
theorem that has great practical interest, proceedings as follows. If we 
subdivided the path, C in Cauchy’s theorem into two arcs 
then (1) takes the form 

C * and C2 , 

 
(2′) fdz + 

C1 C2 
fdz = 0 . 
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1 

1 1 

∫ ∫ 

1 

1 

 

 
 

 
Fig. 29: Formula (2’) Fig. 30: Formula (2) 

 
 
If we now reverse the sense of integration along C * , then the integral 
over C * is  multiplied  by  -1.  Denoting C * with  its  new  orientation 
by C2 , we thus obtain from (6′) . 

 
 
 

2. C2 
f ( z)dz = 

C1 

f ( z)dz. 
 
 
 
Hence, if f it is analytic in D, C * and C2 are any path in D joining two 
points in D and having no further points in common, then (2) holds. 

 
If those paths C * and C2 have finitely many points in common, then (2) 
continues to hold. This follow by apply previous result to the portion 
of C1 and C2 between each pair of consecutives point of intersection. 

 
If  it  is  even  true  that  (2)  holds  for  any  paths  that  join  ant  points 
z1 and z2 and  lie   entirely   in   the   simply   connected   domain   D   in 
which f ( z) is analytic. 

 

 
To express this we may say that the integral of f ( z) is independent of 
path in D. (Of course the value of the integral depends on the choice 
of z1 and z2 .) 

 

 
The proof may require additional consideration of the case in which 
C1 and C2 have  infinitely  many  points  of  intersection,  and  is  not 
presented here. 

 

 
We  may  imagine  that  the  path C2 in  (2)  was  obtained  from C1 by  a 
continuous deformation. It follows that in a given integral we may 
impose a continuous deformation on the path of integration (keeping the 
endpoint        fixed);  as  long  as  we  do  not  pass  through  a  point 
where f ( z) is not analytic,  the  value  of  the  integral  will  not  change 
under such deformation. This is    often    called    the    principle    of 
deformation of path. 
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∫ 

 
 
 
 
 

 
 

Fig. 31: Paths having finitely Fig. 32: Continuous 
Many Intersections Deformation of Path 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 33: Unit Circle and Path C 

Example 15 
 

dz 
= 2πi, (Counterclockwise integration)  now  follow  from  example 

C   z 
(1), for any simple closed path C whose interior contains 0.The figure 
above   gives   the   idea:   first   deform   ABE   continuously  into   the 
path AA′B′E ′E .  The  heavy  curve  in  the  figure  shows  the  resulting 
deformed path. Then deform E ′EGAA′ and E′G′A′ . 

 
There is more general systemic approach to problem of this kind, as we 
shall now see. 

 

 
3.3.3    Cauchy Theorem for Multiple Connected Domains 

 
A  multiplys connected domain D*  can  be  cut  so  that  the  resulting 
domain (that is, D* without the point of the cut or cuts) become simply 
connected. 

 

~ 
For doubly connected domain D* we need one cut C (figure below).If 
f ( z) is analytic in D* and at each point of C1 and C2 then, since C1 , C2 and 

C bound a simply connected domain, it follows from Cauchy’s theorem 
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1   C 2 

∫ ∫ 

∫ ∫ 

∫ ∫ ∫ 

 
 

that the integral of f  taken over C , ~ , C 
 

in the sense indicated by the 
~ 

arrows in the figure has the value zero. Since we integrate along C in 
both directions, the corresponding integrals cancel out, and we obtain 

 
(3*) f ( z)dz + 

C1 C2 
f ( z)dz = 0 

 
where one of the curve is traversed in the counterclockwise sense and 
the other in the opposite sense. Reversing the sense of integration on one 
of the curves, we may write this 

 

 

 
 
Fig 34: Doubly Connected Domain          Fig. 35: Paths in (3) 

 
3. f ( z)dz + 

C1 C2 

f ( z)dz 

 
where curve now traversed in the same sense (the figure above). We 
remember that (3) holds under the assumption that f ( z) is analytic in the 
domain bounded by C1 and C2 and at each point of C1 and C2 . 

 
Can you see how the result in Example (7) now follows immediately 
from   our present consideration? 

 
For more complicated domains we may need more than one cuts, but the 
basic idea remains the same as before. For instance, for the triply 
connected domain in figure below, 

 
f ( z)dz + 

C1 C2 

f ( z)dz + 
C3 

f ( z)dz = 0 
 

 
where C2 and C3 are traversed in the same sense and 
opposite sense. 

C1 is traversed in the 
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∫ 

z 

 

 
 

 
 

Fig. 36: Triply Connected Domain 
 

Example 16 
 

From (3), Example 2, it now follows that 
 
 

( z − z0 
C 

2πi(m = −1) 
) m dz =  

0(m ≠ −1and int eger) 
 

 
For  counterclockwise  integration  around any  simple  closed  path 
containing z0 in its interior. 

 
In the next section, using Cauchy integral theorem, we prove the 
existence of indefinite integrals of analytic functions. This will also 
justify our earlier method of indefinite integration. 

 

 

 
 

Fig. 39: Problem 29 
 

3.4     Existence of Indefinite Integral 
 

This section includes an application of Cauchy’s integral theorem. It 
relates to Theorem 2 in section 3.2 on the evaluation of line integrals by 
indefinite integration and substitution of the limits of integration: 

 
 

1. ∫ 
1
 

 

f ( z)dz = F ( z1 ) − F ( z0 ) [F ′( z) = f ( z)], 
z0 

Where F ( z) is  an  indefinite  integral  of  f(z),  that  is 
indicated. 

 
F ′( z) = 

 
f ( z) ,  as 

In  most  applications,  such  a F ( z) can  be  found  from  differentiation 
formulas. 
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= ∫ 
1

 

+∆z 

∫ 

∫ 
1 z     z 

 
 
Theorem 1 (Existence of an Indefinite Integral) 

 
If  f ( z) is analytic in a simply connected domain D, then there exists an 
indefinite integral F ( z) of f(z)in D, which is analytic in D joining two 
points z0 and z1 in D, the integral of f(z) from z0 and z1 can be evaluated 
by formula (1). 

 

 
Proof 

 
The conditions of Cauchy’s integral theorem are satisfied. Hence the 
line integral of f ( z) from z0 in D to any z in D is independent of path in 
D. We keep z0 fixed. Then this integral becomes a function of z, which 
we denote by F ( z) : 

 

 
z 

2. F ( z) f ( z * )dz * . 
z0 

 
We show that this F ( z) is analytic in D and that F ′( z) = f ( z) . The idea of 
doing this is as follows. We form the differential quotient 

 
F ( z + ∆z) − F ( z) =   1  

∫
z 

 
z +∆z 

* *  − 
 

* *  

∆z ∆z  z f ( z )dz f ( z 
z 

)dz  
0 0 

 
+∆ 

= f ( z* )dz* , 
∆z  z0 

 
Subtract f ( z) from it and show that expression obtained approaches zero 
as ∆z → 0; this is done by using the continuity of 
details. 

 

 
 

 
Fig. 38: Path of Integration 

f ( z) . We now give the 

 
We keep z fixed. Then we choose z + ∆z in D. This is possible since D is 
a domain; hence D contains a neighbourhood of z. See figure above. 
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∫ 

∫ 

∫  [ − ] 

 
 

The segment we use as the path of integration in the previous formula. 
We now subtract f ( z) . This is a constant, since z is kept fixed. Hence 

 
z +∆z 

∫ 
 

f ( z)dz *  = 
 

f ( z)∫ 
z + ∆z  

dz *  = 
 

f ( z)∆z. 
z z 

 
Thus  

 

f ( z) =  1 
∆z

 

 
 
z +∆z 

 
 
f ( z)dz * 

z 

This trick permits us to write a single integral: 
 

F ( z + ∆z) − F ( z) 
∆z

 − f ( z) =  1 
∆z

 
 
z +∆z [ f ( z * ) − f ( z)]dz * 
z0 

f ( z) is analytic, hence continuous. An e>0 being given, we can thus find 
a δ > 0 such that 

f ( z * ) − f ( z) < e when 

 
 
z *  − z < δ 

 
 

Consequently, letting ∆z < δ , we see that the ML-inequality yields 
 
 

F ( z + ∆z) − F ( z) − f ( z) =  1 
∆z ∆z 

 
z +∆z 

f ( z * ) f ( z) dz * 
z0 

≤  1  e 
∆z 

 
∆z = e; 

 
 

that is, by the definition of a limit and of the derivative, 
 

F ′( z) = lim F ( z + ∆z) − F ( z) =  
f ( z). 

∆z ∆z 
 

Since z is any point in D, this proves that F ( z) is analytic in D and is an 
indefinite integral or antiderivative of f ( z) in D, written 

 
 

F ( z) = ∫ f ( z)dz. 
 

Also,  if G′( z) = f ( z), then F ′( z) − G′( z) ≡ 0 in  D;  hence F ( z) − G( z) is 
constant in D. That is, two indefinite integrals of f ( z) . This proves the 
theorem. 

 
See section 3.2 for examples and problems on indefinite integration. 

 
The theorem in this section followed from Cauchy’s integral theorem. A 
much more fundamental consequence is Cauchy’s integral formula for 
evaluating integrals over close curves, which we discuss in the next 
section. 
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0 

 
 
3.5     Cauchy’s Integral Formula 

 
The most important consequences of Cauchy’s integral theorem is 
Cauchy’s  integral  formula.  This  formula  is  useful  for  evaluating 
integrals (see example below). More importantly, it plays a key role in 
providing the surprising fact that analytic function have derivative of all 
orders (see section 3.6), In establishing Taylor series representations and 
so on. Cauchy’s integral formula and its conditions of validity may be 
stated as follows. 

 

 
Theorem 1 (Cauchy’s Integral Formula) 

 
Let f ( z) is analytic in a simply connected domain D. Then for any 
point z0 in D and any simple closed path C in D which encloses 
below), 

z0 (fig. 

 
1. 

∫
 f ( z) dz = 2πif ( z ) (Cauchy’s integral formula) 
C  z − z0 

 
 
 
The integration being taken in the counterclockwise sense. 

 
Proof 

 
By addition and subtraction, 

 
 
 
f ( z) = 

 
 
 

f ( z0 ) + [ f ( z) − f ( z0 )]. . We insert this 
into (1) on the left and can take constant factor 
integral sign. Then 

f ( z0 ) out from under the 

 
 
2. ∫

 f ( z) dz = 
 
f ( z0 )∫

 dz + ∫
 f ( z) − f ( z0 )dz. 

C  z − z0 C  z − z0 
C z − z0 

 
The first on the right hand equals f ( z0 ) ⋅ 2πi (see Example 8 in sec. 3.3, 
with m=-1). This proves this theorem, provided the second integral on 
the right is zero. This is what we are now going to show. It’s integrand 
is analytic, except at z0 . Hence by the principle of deformation of path 
(sec. 3.3) we replace C by a small circle K of radius ρ and centre  z0 

(figure below), without altering the value of the integral. Since f ( z) is 
analytic, it is continuous.  Hence,  an  e>0  being  given,  we  can  find 
a δ > 0 such that 

 
f ( z) − f ( z0 ) < e for all z in the disk z − z0   < δ 
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∫ 

∫ 

z 

− 3 

2 

z 

3 3 

 

 
 

 
Fig. 39: Cauchy’s Integral Fig. 40: Proof of 
Formula Cauchy’s Integral Formula 

 
Choosing the radius ρ of k smaller than δ , we thus have the inequality 

 
 

f ( z) − f ( z0 ) dz < ε 
z − z0 ρ 

 
 

At each point of k. The length of k is 
sec. 3.2, 

2πρ .Hence by ML-inequality in 

 
f ( z) − f ( z0 ) 

K z − z0 

 
dz < ε 2πρ = 2πε . 

ρ 
Since e(>0) can be choosing arbitrarily small, it follows that the last 
integral on the right-hand side of (2) has the value zero, and the theorem 
is proved. 

 

 
Example 17 

 
Cauchy’s Integral Formula 

 
e 

dz = 2πe z
  

= 2πe 2
 

 
C  z − 2 

 
z = 2 

 
 

For any contour enclosing z0  = 2 (since e is entire), and zero for any 
contour for which z0  = 2 lies outside (by Cauchy’s integral theorem). 

 

 
Example 18 

 

 
Cauchy’s Integral Formula 

 
z  − 6 

∫  dz = ∫ 
z dz = 2π [1 z 3  − 3] 

C  2z − i 
π

 

C 2 z − 1 i 2 z = i 2 

= − 6πi ( z  =  1 i inside C) . 
8 0 2
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z 2i 

2 

2 2 2 

 
 
Example 19 

 
Integration Around Different Contour 

 
 

g ( z ) = z  + 1 
z 2  − 1 

 
in the counterclockwise sense around a circle of radius 1 with centre at 
the point 

 
a. z = 1 (b) =  1 

2 (c) z = −1 +  1  , (d) z = i . 
 
Solution 

 
To see what is going on, locate the point where g(z) is not analytic and 
sketch them along with the contours (figure below) . These points are -1 
and1. We see that (b) will give the same result as (a), by the principle of 
deformation of path. And (d) gives zero, By Cauchy’s integral theorem. 
We consider (a) and afterward (c). 

 

 
Here z0  = 1, so that z − z0  = z −1in (1). Hence we must write 

(  ) = z
 + 1 = ( z  + 1)(

 1  );
 

= z  + 1 
g z 

z 2  − 1 
 
z + 1 

 
z − 1 

thus f ( z) 
z 2 −1 

, 
 

 

 
 
Fig. 41:  Example 3 

 
Looking back, we point to a chain of basic results. The beginning was 
Cauchy’s  integral  theorem  in  sec.  3.3.  From  it  followed  Cauchy’s 
integral formula (1) in this section. From it follows the existence of all 
higher derivatives of an analytic function, in the next section. This is the 
probably the most exciting link of our chain. From it follows in the 
Taylor series for analytic functions. 
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0 

0 

0 

0 

 
 

3.6     Derivative of Analytic Functions 
 

From the assumption that a real function of a real variable is once 
differentiable, nothing follows about the existence of derivatives of 
higher order. We shall now see that from the assumption that a complex 
function has a first derivative in a domain D, there follows the existence 
of derivative of all orders in D. This means that in this respect complex 
analytic functions behave much more simply than real functions that are 
once differentiable. 

 

 
Theorem 1 (Derivative of Analytic Function) 

 
If  f ( z) is analytic in a domain D, then it has derivatives of all orders in 
D,  which  are  then  also  analytic function  in  D.  The  value  of  these 
derivatives at a point z0 in D are given by the formulas 

 
 

(1′) f ′( z ) =  1 f ( z) 
dz

 
0 2πi ∫C  ( z − z ) 2 

 
 

(1′′) f ′′( z ) =  2! f ( z) 
dz

 
0 2πi ∫C  ( z − z ) 3 

and in general 
 
 

(1)
 

f n ( z ) =  n! f ( z) 
dz

  

(n =1,2,⋅ ⋅ ⋅⋅);
 

0 2πi ∫C  ( z − z 
 
) n +1 

 
here C is any simple closed path in D that encloses z0 and whose full 
interior belongs to D; And we integrate counterclockwise around 
C(figure below). 

 
Comment 

 
For memorizing (1), it is useful to observe that these formulas are 
obtained formally by differentiating the Cauchy formula (1), Sec. 3.5, 
under the integral sign with respect to z0 . 

 
 

Proof of Theorem 
 

We prove (1′) . 
We start from the definition 

 
 

f ′( z 
 
) = lim 

∆z →0 

f ( z0  + ∆z) − f ( z0 ) 
∆z 
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 0 
∫ 

∫ ∫ 

∫ 

2 

2 

 
 
On  the  right  we  represent f ( z0  + ∆z) and f ( z0 ) by  Cauchy’s  integral 
formula (1), sec. 3.5;  we can combine the two integrals  into a single 
integral  by  taking  the  common  denominator  and  simplifying  the 
numerator (where z − z0 drops out and only f ( z)∆z remains): 

 
 

f ( z + ∆z) − f ( z ) 1  f ( z) f ( z)  
  0  0    = 

∆z 2πi∆z ∫C  z − ( z  + ∆z) 
dz − 

C  z − z0 
dz 
 

= 1 
∫
 f ( z)  

dz ⋅ 
2πi∆z C ( z − z0 − ∆z)( z − z0 ) 

 
 

 
 

Fig. 42: Theorem 1 and its Proof 
 
Clearly,  we  can  now  establish (1′) by  showing  that,  as ∆z → 0, the 
integral on the right approaches the integral in (1′) . To do this, we 
consider the difference between these two integrals. We can write this 
difference as a single integral by taking the common denominator and 
simplifying. This gives 

 
f ( z) dz f ( z)  

C ( z − z0 

 
= 

 
− ∆z)( z − z0 ) 

f ( z) 

− dz 
C ( z − z0 ) 

 
dz 

C ( z − z0 − ∆z)( z − z0 ) 
 
We show by ML-inequality (Sec. 3.2) that this difference approaches 
zero as ∆z → 0, . 

 

 
Being analytic, the function f ( z) is continuous on C , hence bounded in 
absolute value, say, f ( z) ≤ K . Let d be the smallest distance from z0 to 
the points of C(see fig. below). Then for all z on C, 

 
 

z − z0 ≥ d 2 , 
 

 
hence 
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∫ 

∫ 

6 

2 

2 

4 

 
 

1 
z − z0 

≤ 1 ⋅ 
d 2 

 

 

Furthermore, if ∆z ≤ d 2, then for all z on C we also have 
 

z − z0 

 
− ∆z ≥ d , 

2 

 
hence 1 

z − z0  − ∆z 
≤ 2 ⋅ 

d 
 

 

Let L be the length of C. Then by ML-inequality, if ∆z ≤ d 2, 
 
 

f ( z) 
≤ ∆ 

2 
⋅  

1  
⋅
 

 
C ( z − z0 

dz 
− ∆z)( z − z0 ) 

K z 
d   d 2 

 
This approaches zero as ∆z → 0, Formula (1′) is proved. 

 

 
Note that we used Cauchy’s integral formula (1), Sec. 3.5, but if all we 
had     known about f ( z0 ) is the fact that it can be represented by (1), 
Sec. 3.5, our  argument  would  have  established  the  existence  of  the 
derivative f ′( z0 ) of f ( z) .This is essential to continuation and 
completion of this proof, because it implies that (1′′) can be proved by 
similar argument, with f replaced by f ′ , and that the general formula (1) 
then follows by induction. 

 
Example 20 

 
Evaluation of Line Integrals 

 
From (1′) , for any contour enclosing the point πi (counterclockwise) 

 
 

cos z 
C ( z − πi) 2 

 

dz = 2πi(cos z)′ 
 
 
z = πi 

= 2πi sin πi = 2π sinh π 
 
 
 

Example 21 
 

From (1′′) , for any contour enclosing the point -1(counterclockwise) 
 
 

∫  
z  − 3z 2 + 

dz = πi( z 4  − 3z 2  + 6)′′ 
C ( z + i)3

 z = −i 
= πi[12 z 2 − 6]z =−i  = −18πi 
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∫  2 2 

∫ 

z 

z 

 
 
Example 22 

 
By (1′) ,  for  any contour for  which 1  lies  inside and ± 2i 
(counterclockwise), 

 
 
 
lie  outside 

 
′ 

e z  e z  
 

C ( z − 1)  ( z  + 4) 
 

 z 2  + 4 
 

 
z = 1 

dz = 2πi  

= 2 e ( z 2 + 4) − e z 2z 
πi 

( z 2  + 4) 2 

 
z = 1 

= 
6eπ i = 2.050i. 
25 

 
3.6.1 Moreras’s Theorem 

 
If  f ( z) is continuous in a simply connected domain D and if 

 
 

2. f ( z)dz = 0 
C 

for every closed path in D, then f ( z) is analytic in D. 
 
 
Proof 

 
In sec.3.4 it was shown that if f ( z) 

 
 
 

F ( z) = ∫ 
 

f ( z* )dz* 
z0 

 
is analytic in D and F ′( z) = f ( z) . In the proof we use only the continuity 
of f ( z) and the property that its integral around every close path in D is 
zero;  from  the  assumptions  we  concluded  that F ( z) is  analytic.  By 
theorem 1, the derivative of F ( z) is analytic, that is f ( z) is analytic in D, 
and Morera’s theorem is proved. 

 

 
Theorem 1 also yields a basic inequality that has many applications. To 
get it, all we have to do is to choose for C in (1) a circle of radius r and 
centre z0 and apply ML-inequality (Sec. 3.2); with 
obtain from (1) 

f ( z) ≤ M on C we 

 
 
 

f ( n ) z = 
n!  

∫
 f ( z)  

dz ≤ n! 
M 1   

2πr. 0 2π C ) z − z0 ) n +1 2π  r n +1
 

 

 
This yields Cauchy’s inequality 
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0 

∫ ∫ 

0 

 
 
 

3. f ( n ) z ≤ 
n! M . 
r n 

 
To gain first impression of the importance of this inequality, let us prove 
a famous theorem on entire functions (functions that are analytic for all 
z; cf.Sec. 2.6) 

 

 
3.6.2    Liouville’s Theorem 

 
If  an  entire  function f ( z) is  bounded  in  absolute  value  for  all  z, 
then f ( z) must be a constant. 

 

 
Proof 

 
By assumption, f ( z) is bounded, say, f ( z) < K for all z. Using (3), we 

 

see that 
 

f ′( z ) < K / r .Since this is true for every r, we can take r as 
large as we please and conclude that f ′( z 0 ) = 0 . Since z 0 

f ′( z) = 0 for all z, and f ( z) is a constant. 
 
 

This completes the proof. 

is arbitrary, 

 
This is the end of section on complex integration, which gave us a first 
impression of the methods that have no counterpart in real integral 
calculus. We have seen that these methods result directly or indirectly 
from Cauchy’s integral theorem (Sec.3..3) More on integration follows 
in the next section. 

 

 
In the next section, we consider power series, which play a great role in 
complex analysis, and we shall see that the Taylor series of calculus 
have a complex counterpart, so that e z , cos z, sin z etc. have Maclaurin 
series that are quite similar to those in calculus. 

 

 
4.0 CONCLUSION 

 
In conclusion, we state that if a function is analytic, it has derivative of 
all orders. 

 

 
5.0 SUMMARY 

 
The complex line integral of a function 
donated by (sec. 3.1) 

f ( z) taken over a path  C is 

 
f ( z)dz 

C 
or, if C is closed, also by 

C 
f ( z)dz . 
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∫ 

∫ 

∫ 

∫ 

− 

b 

1 

0 

∫  5 

∫ 
i 

 
 
Such an integral can be evaluated by using the equation z=z(t) of C, 
where a ≤ t ≤ b (se. 3.2): 

 
 

1. ∫ 
 

f ( z)dz = ∫ 
 

f ( z(t)) z&(t )  
 i = 

dt  
 

C a

  
dt  

As  another  method,  if f ( z) is  analytic  (sec.2.4)  in  a  simply 
connected  domain  D,  then  there  exists  an F ( z) in  D  such 
that F ′( z) = f ( z) and for every path C in D from a point z0 to a 
point z1 we have 

2. f ( z)dz = F ( z1 ) − F ( z 0 ) C 
[ F ′( z) = f ( z) ]. 

Cauchy integral theorem states that if f ( z) is  analytic in as 
simply connected domain D, then for every closed path C in D 

 
3. f ( z)dz = 0 . 

C 

If  f ( z) is as in Cauchy’s integral theorem, then for any z0 

 
 
in its 

interior we have Cauchy integral formula 
 
 

4. f ( z 0 ) = ∫
 f ( z) 

dz. 
2πi C  z − z0 

Furthermore, then f ( z) has derivative of all orders in D that are 
themselves analytic functions in D and (sec. 3.6) 

5. f ( n ) ( z  ) =  n! f ( z)  
dz. 

 

(n =1,2,⋅ ⋅ ⋅).
 

0 2πi ∫C  ( z − z ) n +1
 

 
6.0 TUTOR-MARKED ASSIGNMENT 

 
 

i. Show that dz 
= 2πi 

C   z 

 

(C the unit circle clockwise) 

ii. Evaluate e z dz by the method in theorem 1 and compare the 
C 

result by method in theorem 2. 
πi (C is the line segment from 0 to1 + ) 
2 

iii. For what contour C will it follow from Cauchy’s theorem that 
− z 

 

(a)
 

∫  
dz 

= 0,
  

(b)
 e dz = 0 ?

 
 

C   z ( z z) 
iv. Evaluate the following integrals 

 

(a) 
2i 

( z 2 
 

− 1) 3 dz π 

(b) ∫ 
 

z cos zdz 
i 0 

v. State and prove Morera’s theorem 
vi. State and prove Liouville’s theorem 
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UNIT 1 RESIDUE INTEGRATION METHOD 

 

 
CONTENTS 
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1.0 INTRODUCTION 

 
Since there are various methods of determining the coefficients of a 
Laurent series, without using the integral formulas. We intend (may) use 
the formula for b1 for evaluating complex integrals in a very elegant and 
simple  fashion. b1 will  be  called  the  residue  or f ( z) at z = z0 .The 
powerful  method  may  also  be  applied  for  evaluation  certain  real 
integrals, as we shall see in section 3.3 and 3.4 of module 3 and unit 1. 

 

 
2.0 OBJECTIVES 

 
At the end of this unit, you should be able to: 

 
 
• determine and explain Residue 
• use Residue to evaluate integrals and 
• show that the Residue integration method can be extended to the 

case of several singular points of f ( z) inside C. 
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1 2πi 

∫ 

n 

1. 

 
 

3.0 MAIN CONTENT 
 

3.1 Residues 
 

Let  us  first  explain  what  a  residue  is  and  how  it  can  be  used  for 
evaluating Integrals 

∫ f ( z)dz. 
C 

 
There will be counter integral taken around a simple closed path C. 
If  f ( z) is analytic everywhere on C and inside C, such an integral is zero 
by Cauchy’s integral theorem and we are done. 

 
If f ( z) has  a  singularity  at  a  point z = z0 inside  C,  but  is  otherwise 
analytic on C and inside, then f ( z) has a Laurent series 

 

 
∞ 

f ( z) = ∑ an 
n =0 

 
( z − z0 )  + 

b1 

z − z0 
+ 

b2 

( z − z0 

 
+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

) 2 

That converges for all points near z = z0 (except at z = z0 itself), in some 
domain  of  the  form 0 < z = z0 < R .  Now  comes  the  key  idea.  The 

1 
coefficient b1 of the first negative power  ( z = z0 ) 

of this Laurent series is 

given by the integral formula, with n=1, that is, 
 

b  =  
1  

∫ f ( z)dz, 
C 

Since we can obtain Laurent series by various methods, without using 
the integral formulas for the coefficients, we can find b1 by one of these 
methods and then use the formula for b1 for evaluating the integral: 

 
 

f ( z)dz = 2πib1 . C 
 
 
 

Here  we  integrate  in  the  counterclockwise  sense  around  the 
simple closed path that contains z = z0 in its interior. 

 
The coefficient b1 is called the residue of f ( z) at z = z0 and we 
shall denote it by 

 
 
 

2. b1  = Re s f ( z) 
z = z0 
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∫ 

∫ 

3 

 
 
Example1 

 
Evaluation of an Integral by Means of a Residue 

 
Integrate  the  function 
counterclockwise sense. 

 
Solution 

f ( z) = z −4 around  the  unit  circle  C  in  the 

 
We obtain the Laurent series thus: 

 

f ( z) = sin z = 1  − 1 + z − z 
 
+ ⋅ ⋅ ⋅ ⋅ 

z 4 z 3 3! z 5! 7! 
 
Which converges for  [z[ > 0 (that is for all z ≠ 0). ) This series shows 
that f ( z) has a pole of third order at z = 0 and the residue of f ( z) at 
z = 0 is b1  = 1

3 !. 
 
From  (1) we thus obtain the answer 

sin z 2 πi .
 

 
C    z 4 

dz = πib1 = − 3 
 
Example 2 

 

 
Be Careful to use the right Laurent Series! 

 
Integrate 
sense. 

 
Solution 

f ( z) = 1 ( z 3  − z 4 ) around the circle C: z = 1 2 in the clockwise 

 
z 3  − z 4  = z 3 (1 − z) Shows f ( z) that z = 0 and z = 1. Now z = 1lies outside C. 

 
Hence it is of no interest here. So we need the residue of f ( z) at 0. We find it 
from the Laurent series that converges for 0 < z < 1 that 

1 
z 3  − z 4 

= 1  + 1 
z 3 z 2 

+ 1 +1 + z + ⋅ ⋅ ⋅ ⋅ ⋅ 
z 

 
0 < z < 1 

 
We see it from this residue is 1. Clockwise integration thus yields 

dz 
C  z 3  − z 4 

 

= −2πi Re s f ( z) = − 2πi 
z =0 
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= 

a 

 
 

Caution! Had we use the wrong series (II) say: 
 

1 
z 3  − z 4 

= − 1 
z 4 
− 1  − 1 

z 5 z 6 

 

− ⋅ ⋅ ⋅ ⋅ ⋅ 
 
( z < 1), 

 
We would have obtained the wrong answer 0. Explain! 

 

 
3.1.1    Two Formulas for Residues at Simple Poles 

 
Before we continue the integration, we ask the following question: To 
get a residue, a single coefficient of a Laurent series, must we divide the 
whole series or is there a more economical way? For poles, there is. We 
shall derive, once and for all, some formulas for residues at poles, so 
that in this case we no longer need the whole series. 

 
Let f ( z) have a simple pole at z = z0 

 
 
 

f ( z) = 
b1 

z − z0 

 

+ 0  + a1 ( z − z0 

 

) + a2 

 

( z − z0 

 

) 2  + ⋅ ⋅ ⋅ 
 
0 < z − z0   < R 

 
Here b1  = 0 (why?) Multiply both sides by z − z0 we have 

 
 

( z − z0 

 

) f ( z) = b1 

 

+ ( z − z0 )[a 0 + a1 ( z − z0 ) + ⋅ ⋅ ⋅ ⋅ ⋅] 
 

We now let z → z0 . The right hand side approaches b1 . This gives 
 

Re s f ( z) = b1  = lim( z − z0 ) f ( z) (3) 
z = z0 z = z0 

 
Example 3 

 
Residue at a Simple Pole 

 
 

Re s 9i + 1  
= lim( z − i) 9i + 1  9 z + 1  

  
z = z0 z( z 2  + 1) z =i z( z + i)  z( z + i) 

 

 
z =1 

= 10i = −5i 
− 2 

 
Another, sometimes simpler formula for the residue at a simple pole is 
obtained by starting from 

 
f ( z) = p( z) 

q( z) 
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 

2 

2 

 
 
with analytic p( z) and q( z) where we assume that p( z0 ) ≠ 0 and q( z) has a 
simple zero at z − z0 (so that f ( z) has a simple pole at z − z0 ad wanted. By 
the definition of a simple zero, q( z) has a Taylor series of the form 

 
 
 

q( z) = ( z − z 
 
)q′( z ) + 

( z − z0 ) 
 
q′′( z 

 
) + ⋅ ⋅ ⋅ 0 0 2! 0

 

 
This we substitute into f = p q and then  f into (3), finding 

 
 
 

Re s f ( z) = lim( z − i) p( z ) = lim
 ( z − z0 ) p( z)  

 
=  0 =  0

 
q( z)

 
=  0      ( z − z

 
)[q′( z

 
) + ( z − z

 
)q′′( z

 
) / 2 + ⋅ ⋅ ⋅]   

=

 
z  z z  z z  z   0 0 0 0  z  1 

 
We now see that on the right, a factor z − z0 is cancelled and resulting 
denominator has  the  limit q′( z0 ) .  Hence  our  second formula for  the 
residue at a pole is 

p( z) p( z ) 
Re s f ( z) = Re 
s 

=   0    . (4) 
z = z0 z = z0 q( z) q( z0 ) 

 
Example 4 

 
Residue at a Simple Pole Calculated by Formula (4) 

 

 
 

Re s 9z + i  
== 
 

9z + i  
 
 

= 10i = −5i 

z =i z( z 2  + 1)  3z 2  + 1) 
 

− 
z =i 

 
Example 5 

 
Another Application of Formula (4) 

 

 

f ( z) = cos πz . 
z 4  − 1 

 
Solution 

 
p( z) = cos πz is  entire,  and q( z) = z 4 −1 has  a  simple  zero  at1,i,-1,-i. 

Hence f ( z) has a simple pole at these points (and no further poles). 
 
Since q ′ ( z )  = 4 z 3  , we  see  from  (4)  that  the  residue  equal  the 

 cosh πi  
value  for  

 
 

4z 3 
 at those points, that is, 
 

cosh π 
 

≈ 2.8980, cosh πi = cos π = − i , - cosh π , cosh(−πi) = i . 
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1 

 

m 2 a 

m 

m 

0 

m 

0 

 
 

3.1.2 Two Formulas for Residues at Simple Poles 
 

Let f ( z) be  analytic  function  that  has  pole  of  any  order  m>1  at  a 
point z = z0 .Then,  by  the  definition of  such  pole,  the  Laurent  series 
of f ( z) converging near z = z0 (except z = z0 ) is 

 
f ( z) = 

bm 

( z − z0 ) 
+ 

bm−1 

( z − z0 ) 

 
 
m−1 

 
+ ⋅ ⋅ ⋅ ⋅ 

b2 

( z − z0 ) 
+ 

b1 

z − z0 

 
+ 0 + a1 ( z − z0 

 
) + ⋅⋅⋅ ⋅ 

 
where bm  ≠ 0 . Multiplying both sides by ( z − z0 ) , we have 

 
( z − z0 ) f ( z) = bm  + bm −1 ( z − z0 ) + ⋅ ⋅ ⋅ ⋅b2 ( z − z0 ) 

m −2 + b1 ( z − z0 ) 
m −1 

+ a0 ( z − z0 )m + +a ( z − z )m +1 + ⋅⋅ ⋅ ⋅. 
We see that the residue b1 of f ( z) at z = z0 is now the coefficient of the 
power ( z − z0 )m −1 in the Taylor series of the function 

g (s) = ( z − z0 ) f ( z) 
 

On the left, with center z = z0 .Thus by Taylor’s theorem, 

b = 1 g 
1 (m −1)! 

 
( m−1) ( z ) 

 
Hence if f ( z) has a pole of mth order at z = z0 , the residue is given by 

 
Re s f ( z) = 1  d 

lim 
m −1 

 

[( z − z 
 

) m  f ( z)]. 
 
(5) 

z = z0 (m − 1) z = z0  dz m−1 0 
 

 

 
In particular, for a second-order pole (m=2), 

Re s f ( z) = lim{[( z − z0 )2 f ( z)′]}. 
z = z0 z = z0 

 
Example 6 

 
Residue at a Pole of Higher Order 

 
The function  

 
f ( z) = 

 
 

50z 
( z + 4)( z −12 ) 

 
has a pole pole of second order at z = 1 

d
 

 
 
d  z 

 
 

Re s f ( z) = lim [( z − 1) 2  f ( z)] = lim  
50  

 = 8 
z =1 z →1 dz z →1 dz  z + 4  
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∫ 

 
 
Example 7 

 
Residue from a Partial Fraction 

 
If f ( z) is  rational,  we  can  also  determine  its  residue  from  partial 
fractions. In Example 6, 

 
 

f ( z) = 

 
 
 
50z 

 
 
 

=  − 8  + 8 + 

 
 
 
10 . 

( z + 4)( z − 1) 2 z + 4 z − 1 ( z − 1) 2 

 
This shows that the residue t z = 1 is 8 (as before),and at z=-4 (simple 
pole)  it is -8. Why is this so?  Consider z = 1 . There the Laurent has two 
fractions as its principal part and the first fraction as the sum of the other 
part. This first fraction is analytic at z = 1 , so that it has a Taylor series 
with centre z = 1 , as it should be. Similarly, at z=4 the first fraction is 
the principal part of the Laurent series. 

 

 
Example 8 

 
Integration around a Second-order Pole 

 
Counterclockwise  integration  around  any  simple  closed  path C such 
that z = 1 is inside C and z=4 outside C yields 

 
z 

C (z + 4)(z −1)2
 

 
dz = Res 2πi 

z=1 

z 
(z + 4)(z −1)2

 
= 2πi 8 

50 

 
≈ 1.0053i 

 
 
So far we can evaluate integrals of analytic functions f ( z) over closed 
curve C when f ( z) has  only one  singular point  inside C .  In  the  next 
section we show that the residue integration method can be readily 
extended to the case of several singular points of f ( z) inside C . 

 
 
3.2     Residue Theorem 

 

 
So  far  we  are  in  a  position  to  evaluate  contour  integrals  whose 
integrands have only a single isolated singularity inside the contour of 
integration. We shall now see that our simple method may be extended 
to the case when the integrand has several isolated singularity inside the 
contour. This extension is surprisingly simple, as follows 

 

 
Residue Theorem 

 
Let f ( z) be a function that is analytic inside a simple closed path C and 
on C , except for finitely many singular point z1 , z 2 ,⋅ ⋅ ⋅⋅, zk inside C . Then 
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∫ ∫ ∫ 
∫ 

∫ ∫ ∫ 
∫ 

∫ 

 
 

k 

∫ f ( z) = 2πi∑ Re s f ( z), 
 

(1) 
C 

j =1 z =1 
 

 
The integral being taken in the clockwise sense around the path C 

 

 
Proof: We enclose each of the singular points zj  in a circle Cj  with 
radius small enough that k circles and C are all separated (fig. 43). Then 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 43: Residue Theorem 
 

f ( z) is analytic in the multiply connected domain D bounded by C and 
C1 ⋅ ⋅ ⋅ ⋅⋅Cn and on the entire boundary of D. From the Cauchy’s integral 
theorem we have 

 
f ( z)dz + 

C C1 
f ( z)dz + 

C2 
f ( z)dz + ⋅  ⋅  ⋅  
⋅  + 

Ck 

f ( z)dz = 0 (2) 

 

 
the integral along C being taken in the counterclockwise sense and the 
other  integrals in the clockwise sense. We now reverse the sense of 
integration  along C1 ⋅ ⋅ ⋅ ⋅⋅Cn .  Then  the  signs  of  the  values  of  these 
integrals change, and we obtain from (2) 

 
f ( z)dz + 

C C1 
f ( z)dz + 

C2 
f ( z)dz + ⋅  ⋅  ⋅  
⋅  + 

Ck 

f ( z)dz (3) 

 
All these integrals are now taken in the clockwise sense. By (1) in the 
previous section 

f ( z)dz = Re s f ( z), 
C j z = z j 

 
 

So that (3) yields (1), and the theorem is proved. 
 

This important theorem has various applications with complex and real 
integrals. We shall first consider some complex integrals. 
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∫ 

 
πz 

 
 
Example 9 

 
Integration by the Residue Theorem 

 
Evaluate the  following integral counterclockwise around any simple 
close  path such that: 

 

 
a.       0 and 1 are inside C 
b.        0 is inside, 1outside, 
c.        1 is inside, 0 outside, 
d.        0and1 are outside. 

 
4 − 3z 

C  z 2  − z 
 
Solution 

 
The integrand has simple poles at 0 and 1, with residues 

 
−  z 

 
−  z 

 
4 − 3z

 
 4 − 3z 

 
Re s  

4 3 =  
4 3  


  

= −4, 
 

Re s 
 

=  
 

 

= 1. 
z =0 z( z − 1)  z − 1  z 

=0 

z =1 z( z − 1)  z  z =1 

 
Confirm this by (4) Ans.(a). ( 2πi(−4 + 1) = −6πi, ) (b). − 8πi (c). 2πi (d). 0 

 
 
Example 10 

 
Integration by the Residue Theorem 

 

 
Evaluate  the  following  integral,  where  C is  the  ellipse 9x 2  + y 2  = 9 
(counterclockwise). 

∫ 
 ze

 
C  z 4  − 16 

Solution 

 
+ z e 

π  2   
dz 
 

 
Since z 4  − 16 =0 at ± 2i and ± 2 , the first term of the integrand has simple 
poles  at ± 2i inside C , with residues (note: e 2πi

 = 1) 
 
 
 
 

Re s zeπz  
ze 

=  

πz  

 
 

= − 
1 

, 
 
Re s zeπz  

ze 
=  

πz  

 
 

= − 
1 

, 

z = 2i z 4  − 16  4z 3  

 

 
z = 2i 16 z =−2i  z 4  − 16  4z 3  

 
z =−2i 16 

 
and simple poles at ± 2 which lie  outside C ,  so  that they are of  no 
interest here. The  second  term  of  the  integrand  has  an  essential 
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m 

m 

m 

 
 

singularity at 0, with residue π 2 
as obtained from 

2 
 
 

zeπ   z  π 
= z1 + 

 z 
π 2 

+ 
2! z 2 

π 3 
+ 

3! z 3 

 π 2 
+ ⋅ ⋅ ⋅ ⋅ = z + π + 

 z 
⋅ 
1 

+ ⋅ ⋅ ⋅ ⋅ . 
z 

 

 

Ans. 2πi(−6 / − 1/ 6 + π 2 2) = π (π 2  − 1 4)i = 30.221i. by the residue theorem. 
 
 

Example 10 
 

Confirmation of an Earlier Result 
 
 

Integrate 1 
( z − z0 ) 

 

( m a positive integer) in the clockwise sense around 

and simple close path C enclosing point z = z0 . 
 

 
Solution 

 
1 

( z − z0 

 

in its own Laurent series with centre z = z 
) m 0

 

 

consisting of this 

one- term principal path, and 
 
 

Re s 
z = z0 

1 
z − z0 

 
= 1, 

 
Re s 
z = z0 

 
1 = 0 

( z − z0 ) 

 

(m = 2,3 ⋅ ⋅ ⋅ ⋅⋅). 

 
In agreement with Example (2), we thus obtain 

 

∫ 
dz

 
C ( z − z0 ) 

2πi 
=  
0 

if m = 1 
if m = 2,3,⋅ ⋅ ⋅ ⋅ 

 
It should be very surprising to hear that our present complex integration 
method can be used for evaluating real integrals (incidentally, some of 
them difficult to evaluate by other methods). In the next section we 
discuss two methods for accomplishing this goal. 

 

 
3.3     Evaluation of Real Integral 

 
We want to show that residue theorem also yields a very elegant and 
simple method for evaluating certain classes of complicated real 
integrals. 
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2 

2 

∫ 

 
 
Integrals of Rational fractions of Cosθ and Sinθ 

 
We first consider integrals of the type 

 
π 

I = ∫ 
 

F (cosθ , sin θ )dθ 
 

(1) 
0 

 
where F (cosθ , sin θ ) is  a  real  rational  fraction  of Cosθ and Sinθ [for 
example, (sin 2 θ ) (5 − 4 cosθ ) and is finite on the interval of integration. 
Setting eiθ

 = z, we obtain 
 
 
 
 
 
 
(2) 

 
cosθ = 1 (eiθ  + e −iθ ) = 

2 
1 −

 

1  1  
 z +  

2  2  
1  1  

sin θ = (e iθ 
2i 

− e iθ ) =  z −  
2i  2  

 
 
 
and we see that the integrand becomes a rational function of z, say, 
f ( z) . 

 
Asθ ranges from0 to 2π , the variable z ranges once around the unit 
circle z = 1in  the  counterclockwise sense. Since we  have dθ = dz iz , 
and the given integral takes the form 

 
 

I = ∫ f ( z) dz , 
 

(3) 
C iz 

 
The integration being taken counterclockwise around the unit circle. 

 

 
Example 11 

 
An Integral of the Type (1) 

 
Show by the present method that 

 
π dθ 

0 
2 − cosθ 

 
= 2π 

 
Solution 

 
 

We use 
 

cosθ = ( z + 1 
z ) and dθ = 

dz . Then the integral becomes 
iz 
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∫ ∫ ∫ 

= 

∫ ∫ 

∫−∞  
f ( x)dx = l 

→∞ ∫− 

∫ 

 
 

dz iz 
C 1  

2 +  z + 
2  

 
= 

1  C 
 

z  

dz 

c + i ( z 2  + 2 
2 

 
 
2z + 1) 

= 2 
i  C ( z − 

dz 
2 − 1)( z − 

 
 
2 + 1) 

 
 

We see that the integrand has two simple poles, one at z1 = 2 + 1, which 
lies outside the unit circle. C: z = 1 and is thus of no interest, and the 

 

other at 
 

z2  = 
 

2 − 1 inside C, where the residue is 
 

 

Re s 1  1
  
  

= − 1 . 

z = z 2 ( z − 2 − 1)( z − 2 + 1)  z 
− 

2 − 1 z 

= 

2 −1 2 

 
Together with the factor − 2 i in front of the integral this yields the 
desired result 2πi(−2 / i)(−1/ 2) = 2π 

 

 

3.3.1 Improper Integrals of Rational Function 
 

We now consider the real integral of the type 
∞ 

∫−∞  
f ( x)dx 

 
 
(4) 

 

 
Such an integral, for which the interval of integration is not finite, is 
called an improper integral, and it has the meaning 

 
∞ 

∫−∞  
f ( x)dx = 0 

lim 
→−∞ 

 

f ( x)dx + b 
lim 
→−∞ 

 

f ( x)dx. 
 

(5a) 
a a b 0 

 
If both limit exist, we may couple the two independent passages to 
− ∞ and ∞ , and write 

 
∞ R 

im f ( x)dx 
R R 

(5b) 

 
We assume that the function f ( x) in (4) is a real rational function whose 
denominator is different from zero for all real x and is of degree at least 
two units higher than the degree of denominator. Then the limit in (5a) 
exists, and we may  start from (5b). We may consider the corresponding 
contour integral 

 

 
f ( z)dz 

C 
(5c) 

 
Around a path C on the diagram below. Since f ( x) is rational, f ( z) has 
finitely many poles in the upper-half plane, and if we choose R large 
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enough, then 
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∫ 

R 

R 

2 

 

 
 

 
 
Fig. 44: Path C of the Contour Integral in (5*) 

 
C encloses all these poles .By the residue theorem we then obtain 

 
 

∫ f ( z)dz = ∫ 
 

f ( z)dz + ∫ f ( x)dx = 2πi∑ Re sf ( z) 
C S − R 

 
When the sun consists of all the residues, of f ( z) at the point in the 
upper half-plane at which f ( z) has a pole. From this we have 

 
 

(6) ∫ f ( x)dx = 2πi∑ Re s f ( z) −∫ 
 

f ( z)dz 
− R S 

 
We  prove  that R → ∞ ,the  value  of  the  integral  over  the  semicircle  S 
approaches zero. If we set z = R eiθ , then S is represented by R = const, and 
as z ranges along S,  the  variable θ ranges  from0  to π .Since,  by 
assumption, the degree of the denominator of f ( z) is at least two units 
higher than the degree of the numerator, we have 

 
 

f ( z) <  
k 

z 

 
( z = R > R0 ) 

 
 
for sufficiently large constants k and R0 . By the ML-inequality 

 
f ( z)dz 

S 
<  

k  
πR = 

kπ 
R 2 R 

 
(R > R0 ) 

 
Hence, as R approaches infinity, the value of the integral over 
S approaches zero, and (5) and (6) yield the result 

 

 
(7) 

 
∞ 

∫−∞ 

 

f ( x)dx = 2πi∑ Re s f ( z) 
 
 
the sum being extended over the residues of 
poles  of f ( z) in the upper half-plane. 

f ( z) corresponding to the 
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∫  4 

= 

= 

π 

0 2 1 x 2 2 

 
 

Example 12 
 

An Improper Integral from 0 to ∞ 
 

Using (7), show that 
∞ dx 

=   
π 

 
0  1 + x 2  2 

 
Solution 

 
 

Indeed, f ( z) = 

 
 
 

1 
(1 + z 4 ) 

 
 
 
 
has four simple poles at the points 

 

 

z1e πi  4 , z2 e 3πi 4 , z3 e −3πi  4 , z4 e −πi  4 

 
The first two of these poles lie in the upper-half plane. We find 

 

 
 1  

Re s f ( z) =     1  
 
  

= 1 e −3πi  4 , 

z = z1  (1 + z 4 )′ 

 

 
z = z1 

 4z 3  

 
z = z1 

4 

 1  
Re s f ( z) =    1  

 
 

 
= 1 e −9πi  4 

z = z1  (1 + z 4 )′ 

 

 
z = z2 

 4z 3 

 
z = z2 

4 

 
By (1) and (7), in the current section, 

 
∞ dx 

= 
2πi 

(−eπi  4  + e −πi  4 ) = π sin 
π  

= 
π 

.
 

∫−∞ 1 + x 4 4 
 
4 2  2 

Since 1/(1 + x4) is an even function, we thus obtain, as asserted, 
 

∞ ∞ 
dx 1 dx 

= = ∫ 1 + x 4 
∫  + 4 −∞ 
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Fig. 45: Example 2 
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Example 13 

 
Another Improper Integral 

 
Using (7) show that 

∞ x 2  − 1 
π 

dx . ∫−∞ x 4  + 5x = 2  + 4 6 
 
Solution 

 
The  degree  of  denominator  is  two  units  higher  than  that  of  the 
numerator, so that our method again applies. Now 

 
 

f ( z) = p( z) = z 2  − 1 = z 2  − 1 
q z z  +  z  + z z 

 

 

has simple poles at 2i and i in the upper-plane (and at − 2i and − i in the 
lower  half-plane,  which  are  of  no  interest  here).  We  calculate  the 
residues from (4), noting that q′( z) = 4 z 3 + 10 z , 

 
 

 
Re s f ( z) =  z 2  − 1   

 
 

=  
5  

, 
 

Re s f ( z) = 
 

z 2  − 1   
 
 

= − 2 

z = 2i  4z 3  + 10 
z 

 z = 2i 

π 
12i z =i  4 z 3  + 

10z 
 z =i  6i 

Ans.2πi(5 / 12i −1 / 3i) = , as asserted. 
6 

 
Looking back, we realise that the key ideas of our present methods were 
these. In the first method we mapped the interval of integration on the 
real axis onto a closed curved in the complex plane (the unit circle). In 
the      second method we attached to an interval on the real axis a semi 
circle such    that we got a closed curve in the complex plane, which we 
then “blew up.” This second method can be applied to further types of 
integrals, as we show in the next section, the last in the chapter. 

 

 
3.4     Further Types of Real Integrals 

 
There are further classes of integrals that can be evaluated by applying 
the residue theorem to suitable complex integrals. In application 
suchintegral may arise in connection with integral transformations or 
representation of special functions. In the present section we shall 
consider two such classes of integrals. One of them is important in the 
problems involving the Fourier integral representation. The other class 
consists of real integral whose integrand is finite at some point in the 
interval of integration. 
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∫ 

∞ 

∞ 

 
 

3.4.1 Fourier Integral 
 

Real integral of the form 
 

∞ 
1. ∫−∞  

f ( x) = cos sxdx 
∞ 

and ∫−∞  
f ( x) = sin sxdx 

 
(s real) 

 

 
occur in connection with the Fourier integral. 

 
If  f ( x) is a rational function satisfying the assumptions on the degree 
stated in connection with (4), then the integral (1) may be evaluated in a 
similar to that used for the integral in (4) of the previous section. In fact, 
we may then consider the corresponding integral 

 

 
f ( z)e isz dz 

C 
( s real and positive) 

 
Over the contour C in sec 3.3 instead of (7), sec. 3.3, we get 

 

∫ f ( z)eisz dz = 2πi∑ Re s[ f ( z)e isz ] 
 

( s > 0 ) (2) 
−∞ 

 
 

where the sum consists of the residue of f ( z)eisz as its pole in the upper 
half-plane. Equating the and imaginary parts on both sides of (2), we 
have 

 

∫ f ( x) cos sxdx = −2πi∑ Im Re s[ f ( z)eisz ], 
−∞ 
∞ 

∫−∞ 

 

f ( x) sin sxdx = 2πi∑ Re Re s[ f ( z)e isz ] 
( s > 0 )(3) 

 
 
 
 

We remember that (7), was established by proving that the value of the 
integral over the semicircle S in fig. approaches zero as R → ∞ . 

 
To establish (2) we should now prove the same fact for our present contour 
integral. This can be done as follows, Since S lies in the upper half-plane 
y ≥ 0 and s > 0 , we see that 

 

 

eisz
 = e isx

 e −isy
 = e − sy  ≤ 1 ( s > 0 , y ≥ 0 ) 

 
 

From this obtain the inequality 
 

f ( z)e isz
 =) = f ( z eisz   ≤ f ( z ( s > 0 , y ≥ 0 ) 

 

which reduces our present problem to that in previous section. 
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B 

B B 

 
 
Continuing as before, we see that the value of the integral under 
consideration approaches zero as R approaches infinity. This establishes 
(2), which implies (3). 

 

 
Example 14 

 
An Application of (3) 

 
Show that 

 
 

∞ 

 
 
 
cos sx 

dx = 
π 

e ks ,
 

 
 
 
∞     sin sx 

= 0
 

 
 
 
 
(s > 0, 

 
 
 
 
k > 0) ∫−∞ k 2  + x 2 k ∫−∞ k 2  + x 2 dx

 
 
Solution 

 
 
In fact, eisz  

has only one pole in the upper plane, namely, a simple 
k 2  + x 2 

pole at z = ik , and from (4) we obtain 
 
 

Re s e isz 

k 2  + z 2
 

 e isz  

 
=  2z  

 e − ks  

 
=  . 

2ik 
z =ik 

  z =ik   
 
Therefore,  

 
∞ e isz 

 
 

dx = 2πi 
e 

 
 
− ks 

 
 

= 
π e ks .

 
∫−∞ k 2  + z 2 

 
2ik k 

 
Since eisx  = cos sx + i sin sx, this yields the above results 

 
 
3.4.2 Types of Real Improper Integrals 

 
Another kind of improper integral is a definite integral 

 
 

∫  f ( x)dx (4) 
A 

 
whose  integral  becomes  infinite  at  a  point a in  the  interval  of 
integration, 

 
lim f ( x) = ∞ 
x→a 

 
Then the integral (4) means 

 
 

∫  f ( x)dx = lim ∫ 
a −τ  

f ( x)dx + lim ∫ 
 

f ( x)dx 
 

(5) 
A τ →a   A η →0 a +η 
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1 x τ →0 ∫−   

B 

B 

 
 

where  τ and  η approaches  zero  independently  and  through  positive 
values. It  may happen that  neither of  these  limits  exists,  if 
independently, 

τ,η →0 

 
but  

 

lim∫
 

 
 
a −τ 

+ ∫  
 
 
(6)

 
τ →0  A 

f ( x)dx f ( x)dx 
a +η  

 
 

exists. This is called the Cauchy principal value of the integral. It is 
written 

 

pv.v. ∫ 
 

f ( x)dx. 
A 

 
For example,  

 
1  dx 

 
 
 −τ  dx 

 
 
1 dx  

pv.v. ∫−  3 
= lim 

 x 3  + ∫τ x 3  = 0 
 

 
the principal value exists although the integral itself has no meaning. 
The    whole situation is quite similar to that discussed in the second 
part of the previous section. 

 
To evaluate improper integral whose integrands have poles on the real 
axis, we use a part that avoids these singularities by following small 
semi-circles at the singular points; the procedure may be illustrated by 
the following example. 

 

 
Example 15 

 
An Application 

 
Show that  

 
∞ sin x π 

∫  dx = . 
0 x 2 

 
(This is the limit of sine integral Si(x) as x → ∞ ) 

 
Solution 

 

 

a. We do not consider (sin z) 
z 

 
 
 
 
because this function does not behave 
 

iz 

suitably at infinity. We consider e 
z 

 

, which has a simple pole at 
 

iz 

z=0, and integrate around the contour in figure below. Since e is 
z 

analytic inside and on C Cauchy’s integral theorem gives 
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∫ 
e 

∫ ∫ ∫ 

2 

 
 
 
 

iz 

dz = 0 
C    z 

 
(7) 

 
b. We prove that the value of the integral over the large 

semicircle C 1 approaches R as  approaches infinity.  Setting 
 

z = R e iθ .dz = iR e iθ dθ , 
 

iz
 

dz 
z = idθ 

 

and therefore 

e dz 
C    z 

π 

= e iz 
0 

 

idθ 
π 

≤ e iz  dθ 
0 

 

( z = R e iθ ) 

In the integrant on the right, 
eiz

 = e iR (cosθ +i sin θ )
 = e iR cos θ

 e − R sin θ
 = e − R sin θ . 

 
 

We insert this, sin(π − θ ) = sin θ to get an integral from 0 to π  2 , 
and then ϖ ≥ 2θ π (when 0 ≤ θ ≤ π 2 ); to get an integral that we 
can evaluate: 

 
 
 

 
 

Fig. 46: Contour in Example 2 
 

 
 

Fig. 47: Inequality in Example 2 
 
 
 

π π 

∫  e iz  dθ = ∫ 
 

e − R sin θ 
π 

dθ = ∫ 
 

e − R sin θdθ dθ 
0 0 0 
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θ = − → ∫ 

∫ 

< 

e 

e 

∫ 

 
 

π  2    −2 Rθ π  π − R 

2 e d (1 e ) 0 
 
as R → ∞C 

0 R 1
 

Hence the value of the integral over C1 approaches as R → ∞ 
 

c. For the integral over small semicircle 
have 

C2 in figure above , we 

iz 

∫ dz = ∫ 
dz + ∫ 

e iz  −1 
dz 

C2      z C2     z C2 z 
 

The first integral on the right equals − πi . The integral of the 
second integral is analytic and thus bounded, say, less than some 
constant M in absolute value for all z on C2 and between C2 and 
the x-axis. Hence by the ML − inequality, the absolute value of 
this integral cannot exceed Mπr . This approaches r → 0 . Because 
of part (b), from (7) we thus obtain 

 
iz ∞ 

∫ dz = pv.v.∫ 
eix  

dx + lim∫ 
eiz 

dz 
C2      z  

∞  e ix 

−∞   x r →0  C2     z 

= pv.v.∫−∞ 
dx − πi = 0 

x 
Hence this principal value equals πi ; its real part is 0 and its imaginary 
part is 

∞ 
pv.v.∫−∞ 

sin x 
x 

 
dx = π 

 
(8) 

 
d. Now the integrand in (8) is not singular at x = 0 . Furthermore, 

Since for positive x the function 1 x decreases, the area under the 
curve of the integrand between two consecutive positive zeros 
decreases in a monotone fashion, that is, the absolute value of the 
integrals 

 

I   = ∫
 nπ +π sin x dx  

n = 0,1,⋅ ⋅ ⋅ ⋅ ⋅ n nπ  x 
 

From a monotone decreasing sequence, I1 , I 2 ,⋅ ⋅ ⋅ ⋅ and  I n  → 0 as n → ∞ . 
Since these integrals have alternating sign (why?), it follows from the 
Leibniz test that the infinite series I 0  + I1 + I 2  + ⋅⋅ ⋅ ⋅converges.  Clearly, 
the sum of the series is the integral 

 
∞ sin x 

x
 

 
dx = lim 

→∞ 

b sin x dx 
x 

0 b 0 
 

which therefore exists. Similarly the integral from 0 to 
we need not take the principal value in (8), and 

− ∞ exists. Hence 
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∫ ∫ ∫ 

1 

2 

 
 

∞ 

∫−∞ 

sin x 
x 

 
dx = π 

Since the integrand is an even function, the desired result follows. 
In part (c) of example 2 we avoided the simple pole by integrating along 
a small semicircle C2 , and then we let 
suggests the following. 

C2 shrink to a point. This process 

 
3.4.3 Simple Poles on the Real Axis 

 
If ( z) has a simple pole at z = a on the real axis, then 

lim ∫ 
 

f ( z)dz = πi Re s f ( z). 
r →0   C2 z =a 

 
 
 

 
Fig. 48:  Theorem 1 

 
Proof 

 
By the definition of a simple pole the integrand 
Laurent series 

f ( z) has at z = a the 

 
f ( z) = b1 

z − a 

 
+ g ( z), 

 
b1  = Re s f ( z) 

z = a 

 
where g ( z) is analytic on the semicircle of integration 

C  : z = a + reiθ , 0 ≤ θ = π 
and for all z between C2 and the x-axis. By integration, 

 
π 

f ( z)dz = 
C2 0 

b1 

re iθ 

 
ireiθ dθ + 

C2 

 
g ( z)dz 

 
The first integral on the right equals − b πi .The second cannot 
exceed Mπr in  absolute  value,  by  the  ML-inequality and 
r → 0 . 

 
We may combine this theorem with (7) or (3) in this section. 

Mπr → 0 as 

 
Thus,  

 
∞ 

pv.v.∫ 
 
 
f ( x)dx = 2πi∑ Re sf ( z) +πi∑ Re sf ( z) 

 
 
(9) 

−∞ 
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1 2πi 

∫ 

2 

 
 

(summation over all poles in the upper half-plane in the first sum, and 
on  the  x-axis  in  the  second),  valid  for  rational f ( x) = p( x) 
degree q ≥ degree p + 2 , having simple poles on the x-axis. 

q( x) with 

 

 
This is the end of unit 1, which added another powerful general 
integration  method  to  the  methods  discussed  in  the  chapter  on 
integration. Remember that our present residue method is based on 
Laurent series, which we    therefore had to discuss first. 

 

 
In the next chapter we present a systemic discussion of mapping by 
analytic functions (“conformal mapping”) .Conformal mapping will 
then be applied to potential theory, our last chapter on complex analysis. 

 

 
4.0     CONCLUSION 

 
In this unit, we have seen that our simple method have been extended to 
the case when the integrand has several isolated singularities inside the 
contour. We also proved the residue theorem. 

 
5.0 SUMMARY 

 

 
The  residue  of  an  analytic  function f ( z) at  a   point z = z0 

 
 
 
is  the 

 

coefficient of 1 
z − z0 

 

the power in the Laurent series 
 

f ( z) = a0 

 

+ a1 ( z − z0 

 

) + ⋅ ⋅ ⋅ ⋅ + 
b1 

z − z0 
+ 

b2 

( z − z0 ) 

 

+ ⋅⋅⋅⋅  of 
 
f ( z) which 

converges near z0 (except at z0 itself). This residue is given by  the 
integral 3.1 

b  =  
1  

∫ f ( z)dz 
C 

 

(1) 

but can be obtained in various other ways, so that one can use (1) for 
evaluating  integral  over  closed  curves.  More  generally,  the  residue 
theorem (sec.3.2) states that if f ( z) is analytic in a domain D such 
except at finitely many points z j and C is a simple close path in D such 
that no z j lies on C and the full interior of C belongs to D, then 

 
 
 

f ( z)dz = 
C j 

1 
2πi 

 

∑ Re s f ( z) 
j     z = z j 

 

(2) 
 

 
(summation only over those z j that lie inside C ). 

 
 

This  integration  method  is  elegant  and  powerful.  Formulas  for  the 
residue at poles are ( m = order of the pole) 
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m  1 

2 

∞ 

∞ 

 
 
 
 

1  d m −1 
 

s f ( z) = 
= (m − 1)! → 

 
dz  − 

[( z − z
 
) m  f ( z)],

 
m = 1,2,⋅ ⋅ ⋅

 
(3)

 

Re lim 0 
z  z0 

z    z0   

Hence for a simple pole ( m = 1 ), 
 

Re s f ( z) = lim ( z − z0 ) f ( z) (3 * ) 
z = z0 z → z0 

 
Another formula for the case of a simple pole of f ( z) = p( z) q( z) 

 
Re s f ( z) = 

z = z0 

p( z) 
q′( z) 

 
(3 ** ) 

 

 
Residue  integration  involves  closed  curves,  but  the  real  interval  of 
integration 0 ≤ θ ≤ 2π is  transformed  into  the  unit  circle  by  setting 
z = e iθ , so that by residue integration we can integrate real integrals of 
the form  (sec. 3.3) 

 
π 

∫  F (cosθ sin θ )dθ 
0 

where F  is a rational function of 
 

cosθ and 
 

sin θ ,such as, for instance, 
sin 2 θ 

, 
5 − 4 cosθ 

etc. 
 
Another method of integrating real integrals by residues is the use of a 
closed contour consisting of an interval − R ≤ x ≤ R of the real axis and a 
semicircle z = R . From the residue theorem, if we let R → ∞, we obtain for 

 

rational f ( x) = p( x) q( x) (with q( x) ≠ 0 and q > degree p + 2 ) 
 

 
 

∫ f ( x)dx = 2πi∑ Re sf ( z) 
 

(sec.3.3) 
−∞ 

∫ cos sxdx = −2π ∑ Im Re s[ f ( z)eisz ] 
−∞ 
∞

 

∫ sin sxdx = 2π ∑ Im Re s[ f ( z)eisz 

] 
(sec.3.4) 

−∞ 
 

 
(sum of all residues at poles in the upper-half plane). In sec.3.4, we also 
extend this method to real integrals whose integrands become infinite at 
some point in the interval of integration. 

 

 
6.0     TUTOR-MARKED ASSIGNMENT 

 
i. Explain the term residues and how it can be used for evaluating 

integrals. 
ii.       Find the residues at the singular points of the following functions; 
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∫ 

∫ 

z 

 
 
 

(a) cos 2z (b) 
 
tan z (c) e 

z 4 ( z + πi)6
 

iii. Evaluate the following integrals where C is the unit circle 
(counterclockwise). 

 
(a) ∫ cot zdz

  
(b) ∫

 dz 
1 − e 

 
(c) z 2  + 1 

2 

C C z C  z  − 2z 
 

iv. Show that 
 

2π  dθ 
0 2 − cosθ 

 
= 2π 
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1.0     INTRODUCTION 

 
The integral transform method is one of the best methods used in 
handling problems involving mechanical vibrations. The integral 
transform method is given by 

 
 

F ( p) = ∫ 
 

f ( x)k ( x, ρ )dx 
a 

With the inverse, 
b 

f ( x) = ∑ F ( p)H ( x, ρ ) 
p = a 

F (ρ ) is the integral transform of 
the transformation. 

f ( x) and k ( x, ρ ) is called the kernel of 
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b 

 
 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 
• state various form of integral transform 
• state Fourier Sine series and Fourier Cosine series 
• apply Fourier transform to solve some fourth, third and second 

order differential equations 
• develop techniques and methods through transformation or along 

with transform to be able to solve physical and mechanical 
problems (vibrations). 

 

 
3.0 MAIN CONTENT 

 
3.1 Finite Fourier Transform 

 
Let f ( x) be a function defined in the interval a ≤ x ≤ b i.e. f ( x) is 
defined on x -space. Let k ( x, ρ ) be a function x of and some parameter ρ . 

 
 

Then the integral transform method is given by, 
 
 

F ( p) = ∫ 
 

f ( x)k ( x, ρ )dx 
 

(1) 
a 

F (ρ ) is called an integral transform of f ( x) and k ( x, ρ ) is called the kernel 
of the transform 

 
Symbolically,  

 
F = Tf 

 
 
(2) 

where T is an integral operator which means multiply what 
follows T by k ( x, p) and integrate the product with respect to x between 
the limit of ' a' and ' b' . The new function F (ρ ) can be regarded as the 
image of f ( x) produced by T . 

 
F ( p) is defined on p-space/image-space. 

 
 

For integral transform to be a useful concept, it is necessary that there 
should exist an inverse operator T −1 which yields a unique F (t) 
given F (ρ ) . From equation (2) we have that: 

from a 

 

 

f = T −1 (F ) (3) 
 

Finding the operator T −1 is equivalent to solving equation (1) regardless 
an integral equation for f (t ) 
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 

 

∫− 

β 

1 

 L    

 
 
 

f (t ) = ∫ 
 

F (ρ )H (ρ , x)dρ 
 

(4) 
α 

 
i.e. F (t) is an integral transform of F (ρ ) with kernel H (ρ , x) . 
A  specification  of  the T −1

 

Inversion Theorem. 
operator  as  in  equation  (4)  is  known  as 

 
3.1 Finite Fourier Transforms 

 
3.1.1 Half Range Fourier Sine Series 

 
∞ 

f ( x) = ∑ bρ Sin 
ρ =1 

ρπx 
L 

 
0 ≤ x ≤ L 

 

 
Where   

bρ = ∫
L  

f ( x) 2 

 

 
 
sin 

 
 
ρπx  

dx 
0  L L   

k ( x, ρ ) = 
2 ρπx . 
L   L 

 
The image space is given by all the positive integral values of ρ . Hence 
bρ rather than b(ρ ) . 

 
3.1.2 Half Range Fourier Sine Series 0 ≤ x ≤ L 

 
 

f ( x) = 
∞ 

a0 × ∑ cos 2 ρ =1 

ρπx 
L 

 

 
Where   

aρ = ∫
L  

f ( x) 2 

 

 
 
cos 

 
 
ρπx  

dx 
0  L L   

 
3.1.3 Ordinary Fourier Series 

 

 
  ρπx  

 

f ( x) = 
∞  i  

∑ C ρ e 
ρ =−∞ 

∞   ρπx  
= ∑ Cρ exp  

 
ρ =−∞   L   

 
Where − L ≤ x ≤ L 

 
 1 

 ρπ 
 

L 
Cρ = 

L 

 

f ( x) 
 2L 

 

exp − i 
 

x 
dx 

L   
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− 1 

−∞ 
−iρ ( x ) 

 
 

3.2 The Fourier Transform 
 

3.2.1 Fourier Sine Transforms 
 

1 

 2  2      

∞
 

FS (ρ ) = 
   ∫   f ( x) sin ρ ( x)dx (5) 

 π  0 

 
0 ≤ x ≤ ∞ 

 
With inversion 

 

 
1 

 2  2      

∞
 

f ( x) = 
   ∫  FS (ρ ) sin ρ ( x)dρ 

 π  0 
 

 
0 ≤ ρ ≤ ∞ 

 
 

Since kernel for operator and its inversion. 
 

 
3.2.2 Fourier Cosine Transforms 

 
1 

 2  2      

∞
 

Fc (ρ ) = 
   ∫   f ( x) cos ρ ( x)dx (7) 

 π  0 

 
With the inversion 

 
1 

 2  2 

f ( x) = 
   Fc (ρ ) cos ρ ( x)dx (8) 

 π  
 

Same kernel cos ρ ( x) for operator and its inversion. 
 

3.2.3 Ordinary Fourier Transforms 
 

∞ 
F (ρ ) = (2π )  2 ∫ 

 

f ( x)e iρ ( x ) dx 
 

(9) 
−∞ 

 

 
The kernel k ( x, ρ ) = e iρx

 

 
With inversion is 

∞ 

f ( x) = (2π )− 12 ∫ F (ρ )e dρ 

Then H = (ρ , x)e −iρ ( x )
 (10) 
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have k ≠ H (ρ , x) (11) 
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0 

∫ 

0 

∫ 

∞ 

0 

∞ 

∞ 

 
 
If  f ( x) is even then f (− x) = f ( x) 
and F (ρ ) = Fc (ρ ) (12) 

 
But if f ( x) is odd then f (− x) = − f ( x) and 

 
Thus F (ρ ) = iFc (ρ ) (13) 

 
From equation (9) above, we can deduce that; 

 

(2π )− 12 F (ρ ) = ∫ 
 

f ( x)e −iρ ( x ) dx 
 

= ∫−∞ 

−∞ 
∞ 

f ( x)e −iρ ( x ) dx + 
0 

 
f ( x)e −iρ ( x ) dx 

 

 
(14) 

 
But if 

 

x = −t 

⇒ x = 0 ⇒ t = 0 
x =  −∞ ⇒ t = 0 
∴ dx = −dt 

 
Thus, we have 

 
 

∫−∞ 

∞ 
f ( x)e −iρ ( x ) dx = 

0 

 

f (−t)e −iρ ( x ) dt 
 
(15) 

 

(2π )− 1 
2  F (ρ ) = ∫ 

∞ 
f ( x)e −iρ ( x ) dx + ∫ 

 

f (− x)e −iρ ( x ) dx 
 

(16) 
−∞ 0 

 
 
If  f ( x) is even then f (− x) = f ( x) 

 
∴ Equation (16) becomes 

 

∫   f ( x)[e iρ ( x )  + e −iρ ( x ) ]dx for even f ( x) 
0 

∞ 

2∫   f ( x) cos ρ ( x)dx = (2π )1 
2  F (ρ ) 

 
(17) 

0 
 
 
 
But, for odd f ( x) 

 

∫   f ( x)[e iρ ( x )  − e −iρ ( x ) ]dx 
0 

∞ 

= 2i∫ 
 
f ( x) sin ρ ( x)dx 

 
(18) 

0 
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∫ ∫ 

∫ 

1 

ρ 

 
 

3.3 Fourier Integral Formular 
F ( x) = 1 

∫
∞  

d
 ∞ 

∫   f (t ) cos
  

( x − t)dt
  

(19)
 

ρ  ρ 
π   −∞ 0 

 
Note that from (9) and (10) we have that: 

 

F ( x) =  
1 ∞ 

e −iρ ( x ) dρ ∞ 

f (t)eiρ ( x ) dt 
 
(20) 

2π ∫−∞ 
∫−∞ 

 
We have now prove that equations (19) equals (20) 
Consider equation (19) 

 
∞ 

∫−∞  
f (t) cos ρ ( x − t)dx is a an even function of ρ

 
 

So that (19) can be re-written in the form 
 

F ( x) = 1 
∫
∞  

d
 ∞ 

∫   f (t ) cos
  

( x − t)dt
  

(21)
 

ρ  ρ 
π   −∞ 0 

 
∞ 1  ∞ 

Since 
0 

g (ρ )dρ = g (ρ )dρ 
2  −∞ 

g (ρ ) is even 
 
 

Hence 0 =  1 
2π 

∞ 

∫−∞ 
dρ

 
∞ 

f (t) sin 
0 

 
ρ ( x − t )dt 

 
(22) 

 
In other to arrive at equation (19), we have equation (21) equals (22) 
because 

 
cosθ = i sin θ = e −iθ

 

 

∴  F ( x) =  1 ∞  
d

 ∞ 

f (t )e −iρ ( x −t ) dt 
2π ∫−∞ 

∞ 

= e−iρ ( x ) dρ 

ρ ∫−∞ 

∞ 

f (t)eiρ ( x ) dt 
2π ∫−∞ 

∫−∞ 
 

Which is equal to (20). 
 

3.4 Transforms of Derivatives 
 

− 1 

 1   2      ∞  
i  ( x ) F (ρ ) = F ( y( x)) =   

 2π  ∫−∞ 
y( x)e dx

 
(23) 

 
We shall now transform y′( x) = F ( y′( x)) 
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ρ 

 

1 2 

 
 

− 1 

 1    2      
∞ 

 
i  ( x ) 

 
(24)

 
∴ F ( y′( x)) =   

2π 
∫−∞ 

y′( x)e dx 

  
 
Using integration by parts, we have 

 
− 1 

 1    2 ∞ ∞ 
iρ ( x ) 

∫
  

iρ ( x ) 


 
 
 2π 
 

t ( x)e 
 − ∞ 

− iρ y( x)e 
−∞ 

dx 
 

(25) 

 
suppose y( x) → 0 as x → ±∞ 

 
− 1 

   2      ∞ 

′ 
 
iρ ( x ) 

− 1 

=  1  ∞  
iρ ( x ) 

∴   
2 

∫−∞ 
y ( x)e dx iρ   

2 
∫−∞ 

y( x)e dx 
  π    π  

 
= iρ (Y (ρ )) 

 
∴ F ( y′( x)) = iρ (Y (ρ )) . (26) 

− 1 

 1   2      

∞ 
 
iρ ( x ) 

 

(27)
 

y′′( x) =   
2π 

∫−∞ 
y′( x)e dx 

  
 
Integration by parts, 

 
 

 1  
 
  

− 1 
2  ∞ 
 y′( x)e iρ ( x ) 

 
∞ 

− iρ ∫ 
 

y′( x)e iρ ( x ) dx 
 
(28) 

 2π   − ∞ −∞  
suppose y′( x) → 0 

 

 
Then we have 

 
 

− iρ 
∞ 

∫−∞ 

 

y′( x)eiρ ( x ) dx . 
 
Which − ρ [F ( y′( x))] = iρ (− iρ (Y (ρ ))) 

= −iρ 2 [Y (ρ )] 
= −ρ 2 (y( x)) 

 
 
 
 
(29) 
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Suppose we have 
 

d 2 y 
dx 2 

 

+ dy 
dx 

 
+ y = 

 
f ( x) 

y → 0 , y′ → 0 as x → ±∞ (30) 
 

 
In other to arrive at equation (19), we equation (21) 
Because cosθ = i sin θ = e −iθ . 
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∴ f ( x) =  
1 ∞  

d
 ∞ 

f (t )e −iρ ( x −t ) dt. 
 
 

=  
1  

∫
∞

 

2π 

2π ∫−∞ 
 
 
e −iρ ( x ) dρ 

ρ ∫−∞ 
 
 
∞ 

∫  f (t )e iρ ( x ) dt. 

−∞ −∞ 

 
Which is equal to (20). 

 
F ( y ′′ + y′ + y) = G(ρ ) 
∴ − ρ 2Y (ρ ) − iY (ρ ) + Y (ρ ) = G(ρ ) 
Y (ρ )[− ρ 2 − iρ + 1] 

 
Y (ρ ) =  G(ρ )  

2  
 
(31) 

 − (ρ + iρ −1)  
 
 

4.0     CONCLUSION 
 

In this unit, we treated the various forms of integral transform. The 
Fourier  sine  and  cosine  series  representation  were  discussed.  The 
inverse theorem was also considered. 

 

 
5.0     SUMMARY 

 
The general scheme of solving problem by integral transform is 
summarized below; 

 

 

 
 

This is the diagrammatic expression of the summary. 
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ρ 

 
 
6.0 TUTOR-MARKED ASSIGNMENT 

 
i. State the method of integral transforms and its inverse. State also 

the Kernels of the method and its inverse 
ii. Discuss briefly the inverse theorem. 
iii. State the three theorems of finite Fourier transforms. 

− 1 

 1    2      ∞  
i  ( x ) iv. If F (ρ ) = F (y( x)) =   

2 
∫−∞ 

y( x)e dx 
  π  

use the transformation y′( x) = F (y′′( x)) , proof that 
F (y′( x)) = iρ [Y (ρ )]. 
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1.0     INTRODUCTION 

 
Fourier series arises from the task of representing a given periodic 
function f ( x) by trigonometric series. The Fourier series coefficients are 
determined from f ( x) by Euler formula. 

 
 

2.0     OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 
•     determine Fourier coefficients 
•     find the convergence and sum of Fourier seriesand 
•     use Euler formula for the Fourier coefficients. 

 
3.0     MAIN CONTENT 

 
3.1     Fourier Series 

 
3.1.1    Euler Formula for the Fourier Coefficients 

 
Let us assume that f ( x) is a periodic function of period 2π that can be 
represented by a trigonometric series 

 
∞ 

f ( x) = a0  + ∑ an cos nx + bn sin nx 
n =1 

 
(1) 

 
That is to say, we assume the convergence of the series and has 
its sum. 

f ( x) as 
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2π 

∞ ∞ 

∞ 

n 

 
 
In any function f ( x) of such, we shall determine the coefficients an and 
bn of the corresponding series. 

 

 
(1) To determine a0 ,we shall integrate both sides of the equation 1, 

from − π ≤ x ≤ π 
 

Thus, we have 
π π     ∞  
∫−π

 f ( x)dx = ∫−π  
a0  + ∑ an cos nx + bn sin nxdx 
 

π 
∞ 

π
 

 n =1

 
 

∞ π
 

= ∫−π  
a0 dx + ∑ an ∫−π

cos nxdx + ∑bn ∫−π
sin nxdx 

 
π 

= a0 x 
−
 

n=1 

+ ∑ 
an

 

n =1 

 
π 

sin nx 
−
 

n =1 

− ∑ 
bn

 

n=1 

 
π 

cos nx 
−

 

π n π n π 

 
 

= 2πa0
 + ∑ 1 [a 

 

(sin nπ − sin(−nπ )) − (cos nπ − cos(−nπ ))] 
 

 

= 2πa0 

n=1 n  
(2) 

 
Hence 

π
 

2πa0 = ∫−π
 
f ( x)dx 

1 π
 

⇒ a0  = ∫−π 
f ( x)dx (3) 

 
To determine a1 , a2 ,⋅  ⋅  ⋅  ⋅  ⋅ an using the same procedure.

 However, 
multiplying equation (1) by cos mx , when m is any fixed real number, 
and integrate from − π ≤ x ≤ π 

 
π π     ∞  

∴ ∫−π

 f ( x) cos mxdx = ∫−π  
a0  + ∑ an cos nx + bn sin nx cos 

mxdx 
(4) 

 
π 

∞ 
π

 

 n=1  
∞ π

 

= a0 ∫−π 
cos mxdx + ∑ an ∫−π

cos nxdx + ∑bn ∫−π
sin nxdx (5) 

n =1 n =1 

 
Evaluate (5) term by term, we have 

 
 

π 

a cos mxdx = a 

 

 
sin 
 

π 

mx  
 = 0 

 
(6)

 

0 ∫−π
 

0  m  −π 
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Using trigonometric identities 
∞ π 1  ∞ π

 

∑ an ∫−π
cos nx cos mxdx = 

2 ∑ an ∫−π  
[cos(n + m) x + cos(n − m) x]xdx (7) 

n =1 n =1 
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Similarly, 
 

∞ π 1  ∞ π
 

∑ bn ∫−π
sin nx cos nxdx = 

2 ∑ bn ∫−π  
[sin(n + m) x + sin(n − m) x]xdx (8) 

n =1 n =1 

 
From (7), we have, 

 

∫
π   

cos(n + m) xdx = sin(n + m) x π 
= 0 

 
(9) 

−π  n + m π 
 

 

and 
 

∫
π   

cos(n − m) xdx = sin(n − m) x π 
= 0 

 
(10) 

−π  n − m π 
 

 

for n ≠ m 
 

but if n = m we have that 
 

π π π
 

∫−π  
cos(n − m) xdx = ∫−π  

cos(0) xdx = ∫−π 
dx. 

 
because cos 0 = 1 

 
π  π 

∴  ∫  dx = x 
−

 
 
= 2π 

 

(11) 
−π  π 

 
 

From equation (8) we obtain thus 
 

∫
π   

sin(n + m) xdx = − cos(n + m) x π 
= 0 

 
(12) 

−π 

and 
n + m π 

 

∫
π   

sin(n − m) xdx = − cos(n − m) x π 
= 0 

 
(13) 

−π  n − m π 
 

 

Substituting equations (9), (10), and (11) into (7), we have 
 

∞ π 

∑ an ∫ 
0 

cos nx cos mxdx =  n ≠ m  
(14) 

−π 
n =1 π n = m 

 

 
and substituting equations (12), (13), and (14) into (8) gives 
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1 

2   

m 

 
 

∞ π 

∑ bn ∫ 
0 

sin nx cos mxdx =  n ≠ m  
(15) 

−π 
n =1 π  n = m 

 

 
Then, in view of equations (14), (15) and (6), equation (5) becomes: 

 
π ∞ ∞ 

∫−π
 f ( x) cos mxdx = an (0) + ∑ anπ +∑ bn (0) 

 
= a π 

 
 

π 

∫ 

n =m n =1  
(16) 

∴ am  = 
π

 f ( x) cos mxdx 
−π 

(17) 

 
b1 , b2 ,⋅ ⋅ ⋅ ⋅ ⋅bn can also be obtained in the same manner, by multiplying 
equation (1) by sin mx and integrate from − π ≤ x ≤ π . 

 
Using the trigonometric identities and manipulation, we have 

 
π π     ∞  
∫−π

 f ( x) sin mxdx = ∫−π  
a0  + ∑ an cos nx + bn sin nx sin 

mxdx 
(18) 

  n =1  
 

 
Integrating term by term, we see that the right hand side becomes 

 
π π 

∞ 
π

 

∫−π 
f ( x) sin mxdx = ∫−π  

an sin mxdx + ∑ ∫−π  
an cos nx sin mxdx 

n =1 
∞ π

 

+ ∑ ∫−π  
bn sin nx sin mxdx 

n =1 

(19) 

 
Using the same principle as before 

 
π 

∫−π  
an sin mxdx = 0 

 

(20) 
 

∞ π
 

∑ an ∫−π
cos nx sin mxdx = 0 

n =1 

(21) 

 
for n =1,2,3,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 
 
but 

 
∞ π  1  π 

 
∑ ∫−π  

bn sin nx sin mxdx = ∫−π  
[cos(n − m) x − cos(n + m) x]xdx 

n =1 
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∫ 

1 

0 ∫ 

1 

 
 

1 (−1) sin(n − m) x − 1 (−1) sin(n + m) x 0 
 
(22) 

2 (n − m) 2 (n + m) 
 

n ≠ m 
 

but for n = m 
 

1  π 1  π
 

2 ∫−π 

 

π
 

cos(0)dx = 
2  −π

 

dx = π 
 

0 

 

 
 
n ≠ m 

∴ ∫−  
sin nx cos mxdx =  (23) 

π π n = m 
 

∴ substituting equation (23) into (19) we obtain thus 
 

π 

f ( x) sin mxdx = b π ∫−π 
n
 

π 

∫ 
⇒ bm  = 

π
 f ( x) sin mxdx 

−π 
(24) 

 

For m =1,2,⋅ ⋅ ⋅ ⋅ 
 
 

Writing n in place of m in equation (17) and (24) respectively, we have 
 

 
1 π  

a  = 
2π   −π

 

f ( x)dx  
 

π 

a  = ∫ f ( x) cos mxdx 
n 

π   −π  
and  

 

(25) 

b  = 1
 

π    

f ( x) sin mxdx 
 

n 
π ∫−π  

 

 
This is called the Euler formula. 

 

 
These numbers given in equation (25) are called the Fourier coefficients 
of f ( x) .  However,  the  trigonometric  series  in  equation  (1)  with 
coefficients given by (25) is called the Fourier series of f ( x) . 

 
 

Example 1 
 

Find the Fourier coefficients of the periodic function f ( x) where 
 

 

− 1 
f ( x) =  

1 

if − π < x < 0 
if   0 < x < π 
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∫ 

π 

0 

∫ 

1 1 

 
 

and f ( x + 2π ) = f ( x) . 
 
 
Solution 

 

a  =  1 π f ( x)dx =   1 ∫
0 π 

−dx + ∫
 dx 

0 2π   −π 2π  
−π 

0  

 
π 

2π ∫−π 
− dx = 

2π 
(− x) 

0 
− π 

=  1  [− 0 − (−π )] 
2π 

= − 1 
2 

 
and 

 
 

1 
2π 

= 1 
2 

 
 
 

π 1 
dx = 

0 2π 

 
 
 

π 
( x) 

0 

 
 
 

=  1  [π − 0] 
2π 

∴ = − 1 + 1 = 0. 
2 2 

 
From equation (25) i.e. 

 

 
1 

∫
π

 

an  = 
π f ( x) cos nxdx 

−π 

= 1 
∫

0 
− cos nxdx + 1 

∫
π

 
 

cos nxdx 
π   −π π   0 

1  − sin nx 
0 

=  

 

+ 
sin nx π  

 = 0 

π  n − π 

∴ an  = 0 
n 0  

 
Similarly for 

 

 
1 

∫
π

 

bn  = 
π f ( x) sin nxdx 

−π 

=  1 


∫
0 

 

− sin nxdx + ∫  sin nxdx 

π  −π
 

1  cos nx 0 

0  

cos nx π  

=  
π  n 

−  
− π n  

=  
1  

[cos 0 − cos(−nx) − cos nx + cos 0] 
nπ 

=  1  [2 − 2 cos(nx)] 
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nπ 
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L 

2 

4 4 

L L 

 
 

N.B cos(−nπ ) = cos(nx) 
 
 

=  
1  

[1 − cos(nπ )] 
nπ 

=  2  [1 − (−1) n ] 
nπ 

 
N.B cos nx = (−1)n

 
 
 

=  2  1 + 1 =  4 
bn nπ 

[  ]  
nπ 

 

for n =1,3,5,⋅ ⋅ ⋅⋅ ⋅ 
 

bn  = 
nπ 

 

[0] = 0 

 
for n = 2,4,6,⋅ ⋅ ⋅ ⋅ ⋅ 

 

∴ b1 = 
4 , 
π 

 

b3  = , 
3π 

 

b5  = , 
5π 

 

etc 

b2  = b4  = b6  = 0 
 

3.2 Even and Odd Numbers 
 

Fourier coefficients of a function can be avoided if the function is odd or 
even. We say a function y = g ( x) is said to be even if 

 
g (− x) = g ( x) for all x. (26) 

 
 

While a function h( x) is said to be odd if 
 

h(− x) = −h( x) for all x. (27) 
 
 

However, it worth mentioning here that the function cos nx is even, while 
the function sin nx is odd. 

 
If g ( x) is an even function, then 

 
 
 

∫   g ( xdx) = 2∫ 
 

g ( x)dx. 
 

(28) 
− L 0 

 
If h( x) is an odd function, then 

 

∫−   
h( x)dx = 0 

 
 
(29) 

L 

 
The product of both odd and even function is odd 
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∫ ∫ 

n ∫ 

∫ ∫ π 

 
 

∴ let q( x) = g ( x)h( x) 
and q(− x) = g (− x)h(− x) = g ( x)[− h( x)] = −q( x) 

 
3.2.1 Theorem 1 (Fourier Series of Even and Odd Functions) 

 
The Fourier series of an even function f ( x) 
cosine series” 

of periodic 2L is a “Fourier 

 
∞ 

f ( x) = a0  + ∑ cos 
n =1 

nπx 
L 

 
(30) 

 
with coefficients 

 

a  = 
1   L

 

L 

 
f ( x)dx ,

 
a  = 

2 
L 

 
L 

f ( x) cos 
nπx 

dx 
L 

0 0 n 0 

 

n =1,2,⋅ ⋅ ⋅ ⋅ 
 
 
Also the Fourier series of an odd function f ( x) of period 2L is a “Fourier 
sine series” 

 
∞ 

f ( x) = ∑ bn sin 
n =1 

nπx 
L 

 
(31) 

 
with coefficients 

 

b  = 
2  L

 

L 

 
f ( x) sin nπx 

dx 
L 

 
(32) 

0 

 
In particular, this theorem implies that the Fourier series of an even 
function f ( x) of period 2L = 2π Fourier cosine series. 

 

 
f ( x) = a0  + a1 cos x + a2 cos 2x + a3 cos 3x + ⋅ ⋅ ⋅ ⋅ ⋅ 

 
with coefficients (33) 

 
1  π 2  π

 

a  = 0 
π  0 

f ( x)dx , an  = 
0 

f ( x) cos nxdx 

n 2, 1, 2 ………. (34) 
 
Similarly, the Fourier series of an odd function f ( x) of period 2π 

Fourier sine series. 
is a 

 
f ( x) = b1 sin x + b2 sin 2x + b3 sin 3x + ⋅ ⋅ ⋅ ⋅ ⋅ 
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n ∫ 

π 

 
 

with coefficients (35) 
 

b  = 
2   L

 

π 

 

f ( x) sin nxdx 
 

(36) 

0 
 

3.2.2 Theorem 2 (Sum of Functions) 
 

The Fourier coefficients of a sum 
corresponding Fourier coefficients of f2 

f1 + f 2 are the sums of the 
f1 and f2 . 

 
The Fourier coefficients of a  cf are c times the corresponding Fourier 
coefficients of f. 

 
Example 2 

 
The function 

1 
f ( x) =  

− 1 

f ∗  ( x) is the sum of the function 
0 < x < π 

− π < x < 0 
as in example 1 and the constant 1.

 
 

 
Hence from example 1 and theorem 2, above, we conclude that 

 
f ∗  ( x) = 1 + 4  

 sin x 
+ 
 

1 sin 3x + 
3 

1 sin 5x + 
5 

1  
sin 6x + ⋅ ⋅ ⋅ ⋅ 

⋅ 
6  

 

 
Example 3 

 
Find the Fourier series of the function 

 
f ( x) = x + π if − π < x < π and 

f ( x + 2π ) = f ( x) 
 
 

Solution 
 

Let f = f1 + f 2 where f1 = x and f2  = π . 
 

The Fourier coefficients of f 2 

term), which is π . 
are zero, except for the one (the constant 

 
Hence, by theorem 2, the Fourier coefficients an , bn are those f1 , except 
for a0 , which is π . Since f1 is odd, an  = 0 for n =1,2,⋅ ⋅ ⋅ ⋅ 

 
and 
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∫ ∫ 

π ∫  + 
 

 
 

2  π 2  π
 

b  = f 
π 

( x) sin nxdx = 
π 

x sin nxdx 

n 0 1 0 

 
Integrating by parts we obtain 

 
2  − x cos nx π  1 π

 

bn  =  
 n 

 
0  

π  
0 

cos ndx 
 

 

 

= 
2 cos nπ 
n 

 

 

= 2 (−1) n  = 2 

 
 
 
 
 
for odd n 

n 
 

 

= −  2 
n 

n 
 
 
for even n 

 
 

Hence, b1 = 2, b2 = −1, b3 = 2 , b 
3 4

 
= −  1 ⋅  ⋅  
⋅  ⋅  ⋅  

2 
 
Therefore the Fourier series of f ( x) is given thus; 

 
 

 
f ( x) = π + 2 sin x 
− 

 

1 sin 2 x + 
2 

1 sin 3x − 
3 

1 sin 4x + 
4 

1  
sin 5x  

5  
 
 
4.0 CONCLUSION 

 
The conclusion of this unit is embedded in the summary as discussed 
below. 

 

 
5.0 SUMMARY 

 
A Fourier series of a given function 
form 

f ( x) of period 2π is a series of the 

∞ 

a0  + ∑ an cos nx + bn sin nx 
n =1 

 
With coefficients given as in equation (25). 

 

 
Theorem 1 given conditions that is sufficient for this series to converge 
and at each x to have the value f ( x) , except at discontinuities of f ( x) , 
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where the series equals the arithmetic mean of the left-hand and right- 
hand limits of f ( x) at that point. 
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∫ ∫ 

0 

 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Find the Fourier coefficients of the periodic function f ( x) where 
 

− 
k f ( x) =  

k 

if − π < x < 0 
if   0 < x < π 

and f ( x + 2π ) = f ( x) 
ii. Explain the term odd and even function of a Fourier series 
iii. Find the Fourier series of the function 

f ( x) = x + π 

f ( x + 2π ) = 

 

 

f ( x) 
if 0 < x < π and 

iv Find the smallest positive period p of the following function 
(a) cos x, sin x, cos 2x, sin 2 x 

v. If f ( x) and g ( x) have period p , show that 
h = af + bg (a, b, cons tan t ) has the period p . 
Thus all functions of period p from a vector space. 

vi. Evaluate the following integrals when 
n = 0,1,2,⋅ ⋅ ⋅ ⋅ 

π π 

(a) ∫ 
2 cos nxdx (b) ∫ 

2 x cos nxdx 
π 

2 
π 2 

(c) 2 e x cos nxdx 
0 

(d) 
0 

x 2 cos nxdx 
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1.0     INTRODUCTION 

 
The Laplace transform is a method for solving differential equations and 
corresponding initial and boundary value problems.   The process of 
solution consists of three main steps: 

 
In this way the Laplace transformation reduces the problem of solving a 
differential equation to an algebraic problem. 

 
The Laplace transform is the most important method used in solving 
engineering mathematics. 

 

 
2.0     OBJECTIVES 

 
At the end of this unit, you should be able to: 

 
 
• undergo the three  main steps of  solving initial and  boundary 

value problem. 
 

 
3.0     MAIN CONTENT 

 
3.1     The Classical Laplace Transform 

 

 
Let f be a function of the real variable t which is defined for  all t ≥ 
0 and which is either continuous or at least  sectionally continuous. 
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∫  
− [ − ]∞ −

 

∫ 

 
 

The classical Laplace Transform † of f is the function F0(s) defined 
by the formula 

∞ 

F0(s) ≡ l {f(t)} = ∫ 0  e 
 
-st 

 

f(t) dt. (1) 
 

This definition of F0(s) clearly makes sense only for those values of s for 
which the infinite integral is convergent.   For many applications it is 
enough to regard s as a real parameter, but in general it should be taken 
as complex, say s = σ  + iω .  Thus F0(s) is really a function of a complex 
variable defined over a certain region of the complex plane; the region 
of definition comprises just those values of s for which the infinite 
integral exists. 

 

 
3.1.1    Elementary Applications of the Laplace Transform 

Depend Essentially on Three Basic Properties 
 
 

i.        Linearity.  If the Laplace Transforms of f and g are F0(s) and 
G0(s) respectively, and if a1  and a2  are any (real) constants, then 
the Laplace Transform of the function h defined by 

 

 
is h(t) = a1f(t) + a2g(t) 

H0(s) = a1F0(s) + a2G0(s). (2) 
 

The proof is trivial. 
 

ii.       Transform of a Derivative.  If f is differentiable (and therefore 
continuous) for f ≥ 0, then 

= sF0(s) – f(0). (3) 
 

Proof 
 

Using integration by parts we have 
 
 

t[f'(t)] = 
∞ 

e st  f (t )dt = e st  f (t ) se st  f (t )dt 
0 0

 

∞ 
= - f(0) + s 

 

Since lim e-stf(t) = 0 

e −st f (t )dt 
0 

 
Corollary. If f is n-times differentiable for t ≥ 0, then 

 
t [f(n)(t)] = snF0(s) – sn – 1f(0) – sn – 2 f'(0) …….. – f(n- 1)(0). 
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0 

 

∫ e 0 

0 

 
 

iii. The  Convelution  Theorem. Let  f   and  g   have  Laplace 
Transforms F0(s) and G0(s) respectively, and define h as follows: 

 
 

 
 
 

Then, 

 
H(t) = t 

∫ 0 
f (τ ) g (t − τ )dτ ,

 

 
t ≥ 0. 

t [h(t)]  = F0(s)G0(s). (4) 
 

 
(Recall that h, as defined here, is the convolution of the functions u(t)f(t) 
and u(t)g(t).  If f and g happen to be functions which vanish identically 
for all negative values of t then the above result can be expressed in the 
form: 

 
The Laplace Transform of the convolution of f and g is the product of 
the individual Laplace Transform. 

 

 
Proof 

 
The Laplace Transform of h is given by 

∞    −     t  
 
 
 

Now, 

H0(s) = st 
∫  

f (τ ) g (t − τ )dτ dt. 
 

t 
∫ 0 

f (τ ) g (t − τ )dτ 
∞ 

= ∫ 0 
f (τ ) g (t − τ )u(t − τ )dτ 

because u(t - τ ) = 1  for all τ  such that τ  < t 
and u(t - τ ) = 0  for all τ  such that τ  > t. 

 
Hence  

 
∞ −     ∞  

 
 
 

Again, 

H0(s) = ∫   e st 
∫ 0   0 

f (τ ) g (t − τ )u(t − τ )dτ dt. 
 

∞ 
∫  g (t − τ )u(t − τ )e −st dt = ∫ 

∞ 
g (t − τ )e −st dτ 

τ 
because u(t -τ ) = 1 for all t such that t > τ , 
and u(t -τ ) = 0 for all t such that t < τ . 

 

Thus,  
 
∞   ∞  

∫  ∫  
−

 

H0(s) = f (τ ) 
0 
 

τ 
g (t − τ )e st dt dτ . 

 

And so putting T = t - τ , we get 
 

H0(s) = ∞   ∞ 
∫  f (τ )∫ 

 

g (T )e 
 
−s (T +τ ) dT dτ . 

0   0  
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Since T = 0 when t = τ . 
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0 0 

2 

2 

 
 

That is, 
 
 
 

Remark 

 
 
H0(s) = 

 
 
∞ 

∫ 0 
f (τ )e

 

 
 
− st dτ 

 
 
∞ 

∫ 0 
g (T )e

 

 
 
− sT dT = F (s)D 

 

 
 
(s). 

 
The change in the order of integration in the proof given above is 
justified by the absolute convergence of the integrals concerned. 

 

 
3.1.2    Applications of Laplace 

 

 
The most immediate application of these properties is in the solution of 
ordinary differential equations with constants.  Consider the case of the 
general second-order equation 

 

a d y 
+ 2 b dy 

+ cy = f(t) 
 
(5) 

dt 2 dt 
 

Where y(0) = α  and d'(0) = β . If l [y(t)] = Y0(s) then 

l
 dy   d 

= sY (s) - α , and l 
y  = 2Y0(s) - α s - β .

 

  0   
 dt   dt 2  

 
 
 

Taking Laplace Transforms of both sides of (5.5) therefore gives 
 

a[s2Y0(s) - α s - β ] + 2b [sY0(s) - α ] + cY0(s) = F0(s). 
That is,  

 
Y0(s) = 

 
 
  F0  (s) 

+ 
as 2  + 2bs + c 

 
 
aαs + (aβ + 2bα ) 

as 2  + 2bs + c 

 
 
(6) 

 
Y0(s) is thus given explicitly as a function of s, and what remains is an 
inversion problem; that is to say we need to determine a function y(t) 
whose Laplace Transform is Y0(s).  The question of uniqueness which 
naturally arises at this point is not, in practice, a serious problem.  In 
brief, if y1  and y2  are any two functions which have the same Laplace 
Transform Y0(s), then they can differ in value only on a set of points 
which is (in a sense which can be made precise) a negligibly small set. 
In fact, we have the following situation: 

 
∞ 

if l [y1(t)] = l [y2(t)] then ∫ 0 
|y1(t) – y2(t)| dt = 0. 

 

 
With  this  proviso  in  mind,  we  admit  the  slight  abuse  of  notation 
involved, and write: 

 F (s)   aαs + (aβ + 2bα  
y(t) ≡ l −1 [Y (s)] = l −1   0   + l −1 

  (7) 
0 

 as 2  + 2bs + c  
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 as 2  + 2bs + c  
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−1 

 
 
where y is defined for all t > 0. 

 

 
A more serious problem from the practical point of view is that of 
implementing the required inversion; that is, of division effective 
procedures which allow us to recover a function f(t) given its Laplace 
Transform F0(s).  In a large number of commonly occurring cases this 
can be done by expressing F0(s) as a combination of standard functions 
of s whose inverse transforms are known . 

 

 
Note that with zero initial conditions, (y(0) = y'(0) = 0), the differential 
equation (5) can be regarded as representing a linear time-invariant 
system which transforms a given input signal f into a corresponding 
output y.  This output function y is the particular integral associated 
with f and, using the Convolution Theorem, it can be expressed in terms 
of the appropriate impulse response function characterizing the system: 

 
t −1

 
 

 
 
Where 

Y(t) = ∫ 0 
f (τ )h1 (t − τ )dτ = l

 
[F0 (s)H 0 

∞ 
H0(s) = ∫ 0 

e 

 
-st 

 
h(t) dt = 1 

as 2  + 2bs + c 
 

 
Non-zero initial conditions correspond to the presence of stored energy 
in the system at time t = 0.  The response of the system to this stored 
energy is independent of the particular input f and is given by the 
complementary function.  The complete solution (valid for all t > 0) of 
the equation (5) can be written in the form. 

 
Y(t) = l −1

 [F0 (s)H 0 (s)] + l [aαs + (aβ + 2bα )]H 0 (s)]. (8) 
 
In applying the classical Laplace transform technique to (5) we are 
tacitly assuming that the system which it is being taken to represent is 
unforced for t < 0; that is, that the response which we compute from (5) 
is actually the response to the excitation f(t)u(t).  This is sometimes 
expressed by saying that the input is suddenly applied at time t = 0. 

 

 
3.2     Laplace Transforms of Generalised Functions 

 

 
If a is any positive number then there is no specialty in  extending 
the definition of the classical, one-sided,  Laplace Transform to 
apply to the case of a delta function located at t = a, or to any of its 
derivatives located there; for a direct application of the appropriate 
sampling property gives immediately 
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 

a 

0 

o 

∫ 

a  

 
 

∞ 
l{δ a (t )} = l{δ (t − a)} = ∫ 0 

e 

 
−st 

 
δ (t − a)dt = e 

 
−sa 

 
(9) 

 
∞  

 
 

l{δ ' (t − a)} = 
0 

and so on 

e − st δ ' (t − a)dt = −  d 
 dt 

 

(e − st ) 
 t 
=a 

 

= se −sa 
 

(10) 

 
Now take the case of a function f defined by a relation of the form 

f(t) = φ 1(t)u(a-t) + φ 2(t)u(t – a) (11) 

where a > 0, and φ 1  and φ 2  are continuously differentiable functions. 
Using the notation 

 

 
f'(t) = φ ' (t)u(a – t) + φ ' (t)u(t – a)  (for all t ≠ a) 1 2 

and 
Df(t) = φ  ' (t)u(a – t) + φ ' (t)u(a – t) + [ φ 2(a) - φ 1(a)] δ (t – a) 1 2 

≡ f ' (t ) + [ f (a+) − f (a−)]δ (t − a). 
 

(12) 
 

 
Using integration by parts to evaluate the Laplace integral we have 

 
∞  -st

 a ' -st
 ∞ ' -st

 

∫ 0 
e 

 

 

f'(t)dt = ∫ 0 
φ1 (t)e 

∞ 
 

dt + ∫ 0 
 

 

φ 2 (t)e  dt 
 

∞ 
 

= e −st φ (t )   + s
  

φ  (t)e-stdt +
 e −st φ

 
(t)

 ∞ 

φ   (t)e-stdt  1  
  

a st

 

∫ 0   1
 

 
∞

 

 2 


 

 
st as 

 ∫ a 2
 

 
a 

= s  
φ (t)e − 

dt + φ  (t)e −  
dt  − e − 

[φ  (a) − φ (a)] − φ (0) 

∫ 1  

∫ a  2
  2 1 1 

 

≡ sF (s) − f (0) − e − as [ f (a+) − f (a−)] (13) 
 

so that a modification of the derivative rule is required when we adhere 
to the classical meaning of the term “derivative” in the case of 
discontinuous functions. 

 
On the other hand, from (12) we get 

 
∞  -st

 ∞  -st
  

-as
 

∫ 0 
e [Df(t)]dt = ∫ 0 

e f'(t)dt + [f(a+) – f(a-)] e 

= sF0(s) – f(0) (14) 
and the usual form of the derivative rule continues to apply. 
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The result (13) makes sense even when we allow a to tend to zero, for 
then we get 
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2 

1 

2 

 
 

∞ 
l [f'(t)] = ∫ 0 

 
φ ' (t)e 

 
-st ∞ 

dt = s ∫ 0 
φ 2(t)e 

 
-st 

 
dt - φ 2(0) 

= sF0(s) – f(0+). (15) 
 
However, a complication arises with regard to l [Df(t)] when a = 0.  If 
we have 

 
then f(t) = φ 1(t)u(-t) + φ 2(t)u(t) 

Df(t) = φ ' (t)u(-t)+ [ φ 2(0) - φ 1(0)] δ (t) 
and so,  

 
l [Df(t)] = l [ φ ' (t)] + [ φ 2(0) - φ 1(0)] l [ δ (t)] 

= s l [ φ 2(t)] - φ 2(0) + [ φ 2(0) - φ 1(0)] ∆ (s) 
≡ sF0(s) – f(0 +) + [f(0+)– f(0 -)] ∆ (s). (16) 

 
The difficulty is that, as remarked in Sec. 4.5, the Laplace Transform of 
the delta function (which we have denoted by ∆ (s)) is not defined by the 
Laplace integral 

 
∞ 

∫ 0 
e 

 
-st + ∞ 
δ (t)dt = ∫ − ∞ 

e 

 
-st 

 
u(t) δ (t)dt. 

 

 
The role of the delta function as a (generalized) impulse response 
function suggests that we should have ∆ (s) = 1 for all s, and this is the 
definition  most  usually  adopted.     However  the  discussion  on  the 
significance of the formal product u(t) δ (t) shows that there are grounds 

 

for taking  ∆ (s) = 1 , for all s; other values for  ∆ (s) have also at the 
2 

issue cannot be resolved simply by an appeal to the definition of δ as a 
limit, nor by means of the formulation as a (Riemann) Stieltjes integral. 
In the latter case, for example, we have for an arbitrary continuous 
integrand f 

 
∞ 

∫ 0 
f(t)duc(t) = (1 – c)f(0) (17) 

 

 
We could therefore obtain ∆ (s) ≡ 1 by choosing c = 0 or, equally well, 
∆ (s)  ≡ 1 by choosing c = 1 .   Whatever value we choose for  ∆ (s) the 

2 2 
relation (16) is bond to be consistent with the behaviour of  δ as the 
derivative of the unit step function u. for, since 

 
 
 
 
 
We have 

∞ 
l [u(t)] = ∫ 0 

e 

 
-st 

 
dt = 1/s, 
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 1  
l [u'(t)] = [s    - u(0 + )] + ∆ (s)[u(0+) – u(0-)] 

 s  
= (1 – 1) + ∆ (s) (1 – 0) = ∆ (s). 

 
On the other hand care must be taken to ensure that the correct form of 
(16) is used when a specific definition of  ∆ (s) has been decided on. 
Thus, for ∆ (s) = 1 we get 

 
l [Df(t)] = sF0(s) – f(0 - ) 

= sF0(s) (18) 
 

Whenever f(t) = 0 for all t < 0. 
 
 

But for ∆ (s) = 1  the result becomes 
2 

 

l [Df(t)] = sF0(s) - 1 [f(0+) + f(0 -)]. 
2 

 
In what follows, we shall adopt the majority view and define ∆ (s) to be 
1 for all values of s.  Similarly, we shall take the Laplace Transform of 
δ ' to be s; the analogue of (19) then becomes 

 
l [D2f(t)] = s2F0(s) – sf(0-) – f'(0-) (19) 

= s2F0(s) 
 

whenever f(t) = 0 for all t < 0.  The convenience of these definitions is 
readily illustrated by the following derivation of the Laplace Transform 
of a periodic function: 

 
Let f be a function which vanishes identically outside the finite interval 
(0,T).  The periodic extension of f, of period T, is the function obtained 
by summing the translates, f(t – kT), for k = 0, ± 1, ± 2,…., (see fig. 49) 

 
+∞ 

fT(t) =  ∑ f (t − kT ) 
k =−∞ 

 
(20) 
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∞ 

 

 

 
 

 
 

Fig. 49 
 
We can write fT as a convolution: 

 
+∞ 

fT(t) =  ∑[ f (t) ∗  δ (t −  kT )] = 
k =−∞ 

f (t) ∗  
+∞ 

∑δ (t − kT ). 
k =−∞ 

 
(21) 

 
further, using the above definition of ∆ (s), we obtain 

 
 +∞ 

l δ (t − kT ) 
 
= l 

  
δ (t − kT )  ∑ k =−∞ 

. ∑ .  k =∞  
 

 
 

= 1 + e-sT + e-2sT + e-3sT + … = 

The summation being valid provided that 

−α +iω )T
 

1 (22) 
1 − e −sT

 

|e-sT| = |e-( e 
 

| e −αT < 1, 
 
That is, for all s such that Re(s) > 0. Hence, appealing to the Conclusion 

 

 
Theorem for the Laplace transform, (21) and (22) together yield 

 
 +∞ 

l δ (t − kT )  =
 F0 (s)  

(23)  ∑ k =−∞ . 
 1 − e 

−sT 
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0 0 

0 

 
 

3.3     Computation of Laplace Transforms 
 

If f is an ordinary function whose Laplace Transform exists (for some 
values of s) then we should be able to find that transform, in principle at 
least,  by  evaluating directly the  integral  which  defines F0(s).    It  is 
usually simpler in practice to make use of certain appropriate properties 
of the Laplace integral and to derive specific transforms from them. The 
following results are easy to establish and are particularly useful in this 
respect: 

 

 
(L.T.I) The first Translation Property.  If l [f(t)] = F0(s), and if a is any 
real constant, then 

 
l [eatf(t)] = F0(s – a). 

 
(L.T.2)  The Second Translation Property.  If l [f(t)] = F0(s), and if a is 
any positive constant, then 

 
l [u(t – a)f(t – a)] = e-asF0(s). 

 
(L.T.3) Change of Scale. If  l [f(t)] = F0(s), and if a is any positive 
constant, then 

 
1  s  

l [f(at)] = F   . 
a 0 

 a  
 

(L.T.4) Multiplication t. If l [f(t)] = F0(s), then 
 
 

l [tf(t)] = - d  F (s) ≡ - 
 

F ' (s) . 
ds 

 

 
(L.T.5)  Transform of an Integral.  If l [f(t)] = F0(s), and if the function 

g is defined by 
 
 

 
 
 

then 

t 
g(t) = ∫ 0 

f(τ )dτ
 

 

l [g(t)] = 1 F (s). 
s 

 
The first three of the above properties follow immediately on making 
suitable changes of variable in the Laplace integrals concerned.  For 
(L.T.4) we have only to differentiate with respect to s under the integral 
sign, while in the case of (L.T.5) it is enough to note that g'(t) = f(t) and 
that g(0) = 0; the result then follows from the rule for finding the 
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Laplace Transform of a derivative.   Using these properties, an 
elementary basic table of standard transforms can be constructed without 
difficulty (Table 1).  This list can be extended by using various special 
techniques. In particular, the results for the transforms of delta functions 
derived in the preceding section are of considerable value in this 
connection. 

 
Table 1:        Basic Table of Standard Transforms 

 

fu(t)(t) F0(s) Region of (absolute) convergence 
u(t) 

t 
tn(n>1) 
eat 

 
e-at 

 
sinh at 

cosh at 

sin at 

cos at 

1/s 
1/s2 

n!/sn+1 
1 

s − a 
1 

s + a 
a 

s 2  − a 2 

s 
s 2  − a 2 

a 
s 2  + a 2 

s 
s 2  + a 2 

Re(s) > 0 
Re(s) > 0 
Re(s) > 0 

 
Re(s) > a 

Re(s) > - a 

Re(s) > | a | 

Re(s) > | a | 

Re(s) > 0 

Re(s) > 0 

 
Example 1 

 
Find the Laplace transform of the triangular waveform show in fig. 50. 

 

 

 
 

Fig. 50: Laplace Transform of the Triangle Waveform 
 

We shall obviously expect to use the formula (23) for the Laplace 
Transform of the periodic extension of a function f, but the first need is 
to establish the transform of this function f itself.   In fig. 51 there is 
shown a decomposition of the required function into a combination of 
ramp functions: 
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= 

e 

e 

. 

 
 
 
 

f(t) = tu(t) – 2(t – 1)u(t – 1) + (t – 2)u(t – 2) 
 

 

 
 

Fig. 51 (b) 
 

A straightforward application of the second translation property (L.T.2) 
immediately gives 

 
 

F0(s) = 
 

1  − 2 
 
e −s 

 
−2 s 

+ 1 − e − s  
2

 

    = 
 

4 e −s 

 

sinh 2  s . 
s 2 s 2 s 2 

 s  s 2 2 
 

 
Hence, applying (5.23) 

 

 

 4 −s
 

2  s   1  2 sinh 2 s / 2 tanh s / 2 

l [fT(t)] =    2
 sinh  

 
 = 2 = 2

 

 s 2  1 − e −2 s  

 
s  sinh s s 

 

 
4.0     CONCLUSION 

 
In this unit we considerd the Laplace transform atum from practical 
point of view and illustrate its use by important engineering problems, 
many of them related to ordinary differential equations. 
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∫ 

 
 
5.0     SUMMARY 

 
The main purpose of the Laplace transformation is the solution of 
differential equations and systems of such equations, as well as 
corresponding initial value problems. 

 

 
The Laplace transform f(s) = l (f) of a function f(t) depend by. 

 
 
F(s) l (f) 

δ 
e −st f (t)dt 

0 
 

 
Further, more discussion, the Laplace of the derivation such that. 

 

 
l (f)' = s l (f) + f(0) 
l (f") = s2  

l (f) – sf(0) – f(0). 
 

 
 
Hence, by taking the transform of a given differential equation 

 

a dy + by = f(t). 
dx 

d 2 y 
+ 

dx 2 

 
∴ l (y) = y(s) 
Hence, the simple equation becomes 

 
(s2 x as x b) y = l ( δ ) x s f(0) + f'(0) + a f(0). 

 
Hence,  l ( δ ) the transformation back to hard problem can be gotten 
from the table 1 – unit 3. 

 

 
6.0 TUTOR-MARKED ASSIGNMENT 

 

i. Find the Laplace transform of the following function 

a. eat, 

b. cos wt 
c. cosh bt 

ii. Use Laplace transforms to obtain, for t x0, the solution of the 
linear differential equation 
d 2 y 

 

dx 2 
xy = t., which satisfies the condition y(0) = 1, y'(0) = -2 

iii. Use the convolution theorem for the Laplace Transform to solve 
 

the integral equation y(t) = cost + 2sint + 
 

for t > 0. 

t 
∫ 0

y(τ ) sin(t − τ )dτ
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iv. Identify the function whose Laplace Transforms are: 
 

(a) s 2  + 2 
 
 

(b) 
s + 1 

cosh s . 
e s 
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