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INTRODUCTION 
 

Electromagnetic theory is the basis of many of the technologies which 

surround us today; and indeed, the basis of contemporary civilisation.  

 

You are expected to be familiar with basic electromagnetism and 

concepts in the prerequisite to this course, as you are encouraged to 

develop an enquiring attitude towards electromagnetically abundant 

universe around you which abounds with, and with which you interact 

every single day. 

 

It is the objectives of this course to build upon the lessons learnt in the 

prerequisite course, and to revisit from a more elevated perspective, the 

principles of electromagnetism with the view to strengthening your 

understanding of its concepts upon which developmental work and 

research in the sciences and technology are based. 

 

WHAT YOU WILL LEARN IN THIS COURSE 
 

This course comprises a total of seven units categorised into three 

modules as follows: 

 

Module 1 is composed of 2 units 

Module 2 is composed of 3 units 

Module 3 is composed of 2 units 

 

Module 1 is exclusively devoted to Maxwell’s equations and in this 

module; you will learn the basic concepts upon which Maxwell’s 

equations are founded. In Unit 1 you will undergo a broad introduction 

tour where you will be shown how Maxwell's equations comprise of 

partial differential equations which are combined with the Lorentz force 

law to form the basis of classical electrodynamics, classical optics, and 

electric circuits. In Unit 2 you will be shown how the differential and 

integral formulations of Maxwell’s equations are mathematically 

equivalent. 

 

Module 2 treats electromagnetic waves with particular reference to the 

visible portion of the electromagnetic spectrum. Specifically; Unit 1 will 

tech you about electromagnetic wave equation and the theory of light. 

You will be taught how electromagnetic waves comprise two 

perpendicular vectors; which are representative of an electric 
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electromagnetic field component and a perpendicular magnetic 

electromagnetic field component. You will also study the wave equation 

for both of these components. Unit 2 will expose you to the treatment of 

lights as transverse waves and you will learn to recognise that different 

media assert different, yet specific influences on electromagnet waves. 

In Unit 3; and with good analogy to light waves which represent the 

visible portion of the spectrum; and the same principles of which by 

extension can be extrapolated to the other parts of the electromagnetic 

spectrum ranging from the extremely low frequency waves through to 

and beyond hard radiation gamma rays, you will be able to appreciate 

the principles behind reflections and refraction of plane electromagnetic 

waves at plane boundaries,  study the characteristics of the 

electromagnetic boundary conditions viz-a-viz the normal, reaction of 

waves at boundaries, laws of reflection and refraction, reflection and 

refraction at a boundary between dielectrics, reflection and refraction at 

the surface of a conductor. 

 

Module 3 will impress upon you that electromagnetic waves represent 

an energy transport system and has associated momentum. You will 

learn about the energy theorem as well as the momentum theorem in 

Maxwell's theory of electromagnetism in Unit 1 whereas Unit 2 will 

explain to you all you need to know about radiations from extended 

sources and radiation from charges moving in matter. This unit, this 

module and this course ends with the all important of the Lorentz 

transformation and here we will show you how the transform is derived. 

 

COURSE AIM 
 

The aim of MTH 417 is to further intimate you with the electromagnetic 

theory and re-tool you for a better understanding of the world around 

you where you will now be able to establish a correlation between the 

theoretical foundation of electromagnetism and its multifaceted 

practical application as well as its permeating influence on virtually 

everything we do every day of our lives. 

 

COURSE OBJECTIVES 
 

You in turn shall be required to conscientiously and diligently work 

through this course which upon completion you should be able to: 

 

 state  the four Maxwell’s equations of electromagnetism 

 describe the Lorentz force law 

 explain why parallel currents attract and why anti-parallel 

currents repel 

 use the right hand thumb rule 

 understand the constitutive relations in electromagnetic theory 
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 relate Maxwell’s equations to the electromagnetic properties of a 

material 

 understand the genesis of Maxwell’s equations 

 analyse each of Maxwell’s equations in detail  

 work with the differential form of Maxwell’s equation 

 know why the third equation is known as Faraday's law 

 explain the continuity equation 

 see why Ampere's law is also the last of Maxwell's equations 

 distinguish between rotation-free vector field and source-free 

vector field 

 establish the relationship between electromagnetic wave and light 

 state the wave equation for electric field vector


E  

 describe the wave equation for the magnetic field vector 


B  

 recognise the three dimensional nature of wave equation for each 

component of the electric and magnetic fields 

 establish conclusively that light waves are transverse waves 

 know the ratio referred to as relaxation time of conducting 

medium 

 understand propagation of plane electromagnetic waves in non-

conducting media 

 describe the relationship between the wave number and the 

amplitudes of electric and magnetic components of 

electromagnetic waves 

 investigate the mechanism guiding the propagation of plane 

electromagnetic waves in conducting media 

 see why electric charges move almost instantly to the surface of 

perfect conductors when subjected to electromagnetic influence 

(skin effect) 

 qualify the phenomenon of reflection and refraction of plane 

waves at boundaries  

 distinguish between reflection and refraction at boundary 

between dielectrics and at the surface of conductors 

 solve problems involving electromagnetic boundary conditions 

 derive the laws of reflection and refraction 

 study the characteristics of monochromatic plane wave on a 

boundary 

 understand polarisation by reflection on a boundary between two 

dielectrics 

 comfortably work with reflection coefficient  

 explain the energy theorem in Maxwell’s electromagnetic theory  

 know why the energy theorem is also known as Poynting’s 

theorem 

 quantify the momentum theorem in Maxwell's electromagnetic 

theory 
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 explain the term electric volume force 

 write an expression for the Maxwell stress tensor 

 qualify relative electric permittivity 

 appreciate that there are radiation from extended sources 

 

 write down the macroscopic Maxwell equations 

 explain collision interaction between charge carriers 

 describe anisotropic and birefringent medium 

 know that charges moving in matter radiate electromagnetic 

waves 

 derive the Lorentz transformation 

 know why the combination of two Lorentz transformations must 

be a Lorentz transformation. 
 

WORKING THROUGH THIS COURSE 
 

This course requires you to spend quality time to read. Whereas the 

content of this course is quite comprehensive, it is presented in clear 

language that you can easily relate to. The presentation style is graphical 

descriptive and adequate; and is deliberately to ensure that your 

attention remains focused to the course content and remains sustained 

throughout. 
 

You should take full advantage of the tutorial sessions because this is a 

veritable forum for you to “rub minds” with your peers – which 

provides you valuable feedback as you have the opportunity of 

comparing knowledge with your course mates. 
 

COURSE MATERIALS 
 

You will be provided course material prior to commencement of this 

course, which will comprise your course guide as well as your study 

units. You will receive a list of recommended textbooks which shall be 

an invaluable asset for your course material. These textbooks are 

however not compulsory. 
 

STUDY UNITS 
 

You will find listed below the study units which are contained in this 

course and you will observe that there are three modules. Module 2 

comprises three units while Modules 1 and 3 comprise two each. 
 

Module 1  
 

Unit 1 Introduction to Maxwell’s Equations 

Unit 2 Maxwell’s Equations 
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Module 2  
 

Unit 1 Electromagnetic Wave Equation and Theory of Light  

Unit 2 Lights as Transverse Waves 

Unit 3 Reflections and Refraction of Plane Boundary of Plane 

Waves 

Module 3  
 

Unit 1 Energy Theorem in Maxwell’s Theory 

Unit 2 Radiation from Extended Sources 

  

TEXTBOOKS AND REFERENCES 
 

Banesh, H. (1973). Relativity and its Roots. New York: Freeman. 

 

Charles, F. S. (1995). The Six Core Theories of Modern Physics. MIT 

Press. 

 

Charles, W. et al. (1970). (1970). Gravitation (A Treatment of 

Maxwell's Equations in Terms of Differential Forms). New 

York: W. H. Freeman. 

 

David, H. S, Ann, W. M, & Jin, Au Kong. (1994). Electromagnetic 

Waves. Prentice-Hall. 

 

Grant, I. S. & Phillips, W.R. (2008).Electromagnetism. (2nd ed.). 

Manchester Physics Series. 

 

Griffiths, D. J. (1998). Introduction to Electrodynamics. (3rd ed.). 

Prentice Hall.  

 

Hermann, A. H. & James, R. M. (1989).Electromagnetic Fields and 

Energy. Prentice-Hall. 

 

Jackson, J. D. (1998). Classical Electrodynamics. (3rd ed.) Wiley.  

 

Landau, L. D. (1987). The Classical Theory of Fields (Course of 

Theoretical Physics: Volume 2). Butterworth-Heinemann: 

Oxford. 

 

Markus, Z. (1979). Electromagnetic Field Theory: A Problem Solving 

Approach. John Wiley & Sons. 

 

Maxwell, J. C. (1954). A Treatise on Electricity and Magnetism Dover.  
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Tipler, P. (2004). Physics for Scientists and Engineers: Electricity, 

Magnetism, Light, and Elementary Modern Physics. (5th ed.). W. 

H. Freeman.  

 

Wheeler, J. A,  Misner, C. & Thorne. K.S. (1973). Gravitation. W. H. 

Freeman & Co. 

 

ASSESSMENT 
 

Assessment of your performance is partly through tutor-marked 

assignments which you can refer to as TMA, and partly through the 

final examination. 

 

TUTOR-MARKED ASSIGNMENT 
 

This is basically continuous assessment which accounts for 30% of your 

total score. During this course you will be given four tutor-marked 

assignments and you must answer three of them to qualify to sit for the 

end of year examination. Tutor-marked assignments are provided by 

your course facilitator and you must return the answers to your course 

facilitator within the stipulated period. 

 

FINAL EXAMINATION AND GRADING 
 

You must sit for the final examination which accounts for 70% of your 

score upon completion of this course. You will be notified in advance of 

the date, time and the venue for the examinations which may, or may 

not coincide with National Open University of Nigeria semester 

examination. 

 

SUMMARY 
 

Each of the three modules of this course has been designed to stimulate 

your interest in electromagnetic theory through fundamental conceptual 

building blocks in the study and practical application of 

electromagnetism. 

 

Module 1 takes you on an introductory tour of Maxwell’s equations, 

intimating you with the Lorentz force law and the constitutive relations 

which place you in a comfortable environment to understand subsequent 

material. Module 2 further cements the lessons learnt in Module 1 by 

showing you that Maxwell’s equations come in both integral and 
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differential form, and that the law of conservation of energy applies to 

electromagnetism through the continuity equation. 

 

Module 2 relates visible light to electromagnetic theory through the 

wave equation and further stresses that the two perpendicular 

components of electromagnetic waves mutually perpendicular to the 

direction of wave propagation are the electric and the magnetic vectors 

– and both vectors are quantified through the wave equation for each of 

these components. Light is transverse waves and exhibits specific 

characteristics in both conducting and non-conducting media. Its 

reflection and refraction at plane boundaries between adjacent media are 

guided by strict rules while the propagation of electromagnetic waves 

through media depends on the constitution of the media. 

 

Module 3 visualises electromagnetic waves from the perspective of an 

energy transport with which it ascribes energy through the  energy 

theorem in Maxwell's theory; and momentum through the momentum 

theorem in Maxwell's theory. Module 3 delves into radiation from 

extended sources, radiation from charges moving in matter and 

investigates the conceptual basis for, and the derivation of the Lorentz 

transformation. 

 

Indeed, this course will change and broaden the way you hitherto 

perceived electromagnetism and my advice is:  make sure you have 

enough referential and study materials at your disposal, and devote 

sufficient quality time to your study. 

 

Good luck. 
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MODULE 1 
 

Unit 1  Introduction to Maxwell’s Equations 

Unit 2 Maxwell’s Equations 

 

 

UNIT 1 INTRODUCTION TO MAXWELL’S 

EQUATIONS 
 

CONTENTS 
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3.2 The Lorentz Force Law 
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6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Maxwell's equations comprise partial differential equations which 

combined with the Lorentz force law form the basis of classical 

electrodynamics, classical optics, and electric circuits. Modern electrical 

and communications technologies depend on Maxwell's equations which 

describe how electric and magnetic fields are generated and how they 

are altered by each other, and by electric charges and currents. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 state  the four Maxwell equations of electromagnetism 

 describe the Lorentz force law 

 explain why parallel currents attract and why anti-parallel 

currents repel 

 use the right hand thumb rule 

 understand the constitutive relations in electromagnetic theory 

 relate Maxwell equations to the electromagnetic properties of a 

material. 
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3.0 MAIN CONTENT 
 

3.1 Introduction to Maxwell’s Equations 
 

The basic equations of electromagnetism are the four Maxwell’s 

equations and the Lorentz force law. In principle, these together with 

Newton’s second law of motion are enough to completely determine the 

motion of an assembly of charges given the initial positions and 

velocities of all the charges. It is well known that light is a form of 

electromagnetic radiation, so it is instructive to review some of the 

properties of electricity and magnetism leading to the derivations of the 

Maxwell’s equations. 

 

The original studies of electricity and magnetism date back to at least 

the early Greek times.  By the start of the nineteenth century, it was 

known that some objects could possess an electrical charge, and that 

these charges could exert a force on each other even through a vacuum.  

This force could be described mathematically as 
  

 EqFE


       (1.1) 

where q is the electrical charge on the object in question and E


 is the 

electric field produced by all the other charges in the universe.  The 

charge was discovered to take on a discrete set of values, one of the first 

examples of quantisation.  In its turn, the electric field can be described 

by a scalar potential field V, which is related to the electric field by 
    

VE 


     (1.2) 

 

The vector, differential-operator   in these equations is defined as 

 ˆ ˆ ˆx y z
x y z

  

  
     

 

In addition, it was also noted that a moving charge may experience 

another force which is proportional to its velocity v


.  This led to the 

definition of another field; namely the magnetic field B


, such that 

  

 BvqFB


 .     (1.3) 

 

As with the electric field, the magnetic field is generated by all the other 

currents in the universe. The magnetic field can be described in terms of 

a vector potential field A


, which is related to the magnetic field by 

 

 AB


       (1.4) 
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3.2 The Lorentz Force Law 
 

We now begin to consider how things change when charges are in 

motion. A simple apparatus demonstrates that something strange 

happens when charges are in motion:  

If we run currents next to one another in parallel, we find that they are 

attracted when the currents run in the same direction; they are repulsed 

when the currents run in opposite directions. This is despite the fact the 

wires are completely neutral: if we put a stationary test charge near the 

wires, it feels no force. 

 
Fig. 1.1:  Left: Parallel Currents Attract. Right: Anti-Parallel 

Currents Repel 
 

Furthermore, experiments show that the force is proportional to the 

currents - double the current in one of the wires, and you double the 

force. Double the current in both wires and you quadruple the force. 

This indicates a force that is proportional to the velocity of a moving 

charge; and, that it points in a direction perpendicular to the velocity. 

These conditions suggest a force that depends on a cross product. 

 

What we say is that some kind of field B


 the “magnetic field" - arises 

from the current. The direction of this field is kind of odd: it wraps 

around the current in a circular fashion, with a direction that is defined 

by the right-hand rule: We point our right thumb in the direction of the 

current, and our fingers curl in the same sense as the magnetic field 

(Figure 1. 2).  
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Fig. 1.2: Right Hand Rule 
 

With this sense of the magnetic field defined, the force that arises when 

a charge moves through this field is given by 

 

            B
c

v
qF


  

where c is the speed of light. The appearance of c in this force law is a 

hint that special relativity plays an important role in these discussions. 

 

If we have both the electric and magnetic fields, the total force that acts 

on a charge is of course given by:   

 

 







 B

c

v
EqF


     (1.5) 

 

This combined force law is known as the Lorentz force. 

 

3.3 The Constitutive Relations  
 

Similar to the constitutive relations in continuous medium mechanics, 

there are also constitutive relationships in electromagnetic theory. 

Constitutive relations describe the medium’s properties and effects when 

two physical quantities are related. It can be viewed as the description of 

response of the medium as a system to certain input. For example, in 
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continuous medium mechanic, the response of a linear-elastic medium 

to strain can be described by the Hooke’s law, and the resultant is the 

stress. 

 

The relationship between stress and strain is the Hooke’s law. In another 

word, Hooke’s law is the constitutive relations for linear elasticity. In 

electromagnetic theory, there are four fundamental constitutive 

relationships to describe the response of a medium to a variety of 

electromagnetic input. Two of them describe the relationship between 

the electric field E


 and the conductive current


J , and the electric 

displacement


D , and the other two describe the relationship between the 

magnetic field 


H  and the magnetic induction B


, and the magnetic 

polarisation


M . Quantitatively, these four constitutive relationships are  

  

      (iv)                                            HM

    (iii)                                             HB

                 (ii)                                              ED

(i)                     law) s(Ohm'      EJ

           

























 (1.50) 

 

where σ is the electric conductivity, ε the dielectric permittivity, μ the 

magnetic permeability, and χ the magnetic susceptibility. It is possible to 

discuss the electromagnetic properties of earth material in terms of these 

four parameters. It is noteworthy that the first relation is the well-known 

Ohm’s law in a microscopic form. These four parameters exclusively 

describe the electromagnetic properties of a material. It is necessary to 

point out that some of them are inter-related (to be seen later). To 

understand the behaviour of these electromagnetic parameters are the 

central piece to understand the geophysical response when geophysical 

surveys are employed to solve any engineering, exploration, and 

environmental problems. 

 

4.0 CONCLUSION  
 

In this unit we have been able to state the four Maxwell equations and 

apply the Lorentz law s of electromagnetism. We have discovered why 

parallel currents attract and anti-parallel currents repel in conductors as 

well as use the right hand thumb rule to determine the direction of the 

magnetic force field associated with his current. 
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The constitutive relations in electromagnetic theory and the relationship 

between Maxwell’s equations and the electromagnetic properties of a 

material have been established. 

 

5.0 SUMMARY 
 

Maxwell’s equations are fundamental to the understanding of the 

behaviour of electromagnetic waves in vacuum and in matter. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. State Maxwell’s equations? 

2. Explain what is constitutive relations in electromagnetic.  

3. Describe a brief experiment to demonstrate Lorentz force law. 
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1.0 INTRODUCTION 

 

Maxwell's equations represent a set of partial differential equations that, 

together with the Lorentz force law, form the foundation of classical 

electrodynamics, classical optics, and electric circuits and while the 

differential and integral formulations of the equations are 

mathematically equivalent, both the differential and integral 

formulations are useful. 

 

Whereas the integral formulation can often be used to simply and 

directly calculate fields from symmetric distributions of charges and 

currents, the differential formulation is a more natural starting point for 

calculating the fields in more complicated situations. 

The conservation law that electric charge is conserved is expressed by 

the continuity equation. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 discuss the genesis of Maxwell’s Equations 

 analyse each of Maxwell’s Equations in detail  

 work with the differential form of Maxwell’s Equation 

 know why the third equation is known as Faraday's Law 

 explain the Continuity Equation 

 see why Ampere's Law is also the last of Maxwell's Equations 

 distinguish between rotation-free vector field and source-free 

vector field. 
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3.0 MAIN CONTENT 

 

3.1 Maxwell’s Equations 
 

The fact that the electric field was described in terms of stationary 

charges, while the magnetic field was described in terms of moving 

charges led people to suspect that some relationship existed between the 

two fields.  This was confirmed when it was found that an electric 

current could be generated by changing the magnetic field.  In the mid-

1800's, the theories of electricity and magnetism were finally united by 

James Clerk Maxwell in four equations now known as Maxwell's 

Equations. 

  

 
 
E dS dV

f
  




 (1.6) 

 
 
B dS  0  (1.7) 

 

 
   
E dl

d

dt
B dS     (1.8) 

 
     
B dl j dS

d

dt
E dSf         (1.9) 

 

Each one of these can be understood separately. 

 

The first of Maxwell's equations, equation (1.6), is known as Gauss's 

Law.  It relates the flux of electric field intensity to the total charge 

enclosed by the surface.  The flux is defined as 

  

 E E dS 
 

 (1.10) 

where dS is the vector outwardly normal to the surface and the integral 

is over the entire surface enclosing the region in question.  In words, 

Gauss's law tells us that the total flux through a closed surface, i.e. the 

change in the number of field lines passing through a closed surface, is 

proportional to the total charge contained within the volume defined by 

the surface.  Thus if there is no charge inside the surface, the net flux is 

zero.  If there is a positive net charge, the enclosed region acts as a 

source; if the net charge is negative, the enclosed region acts as a sink. 

The constant  is called the electric permittivity of the medium.  If the 

medium is a vacuum, then  0 , where 0 is known as the permittivity 

of free space and has a value of0

128 8542 10 2  


.  C2

N m
.  The electric 

permittivity was originally used to act as a medium dependent 

proportionality constant that connects a parallel plate capacitor's 

capacitance with its geometric characteristics.  Conceptually, we can 

view the permittivity as encompassing the electrical behaviour of the 
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medium: in a sense, it is a measure of the degree to which the material is 

permeated by the electric field in which it is immersed.  We can relate 

the electric permittivity to the dielectric constant by the following 

formula 

   Ke 0 . (1.11) 

 

The second equation is also a form of Gauss's law, this time applied to 

the magnetic field.  The fact that the enclosed charge is zero tells us that, 

at least according to classical electromagnetic theory, there is no such 

thing as a magnetic monopole.  In other words, whereas the electrical 

charge could be viewed as either a positive or negative charge 

individually, we can never find magnetic charges which do not include 

both a positive and negative pole.  Since the total enclosed charge is the 

algebraic sum of the charges, this lack of magnetic monopoles 

automatically insures that the sum is zero. 

 

The third equation is known as Faraday's Law.  In a manner similar to 

the electric flux, the magnetic flux is defined as 

  

 B B dS 
 

 (1.12) 

 

where the surface is now an open surface bounded by a conducting loop.  

Faraday found that if the induced emf (electromotive force) that was 

developed in the loop depended on the rate at which the magnetic flux 

changed, 

 emf  
d

dt

B
 (1.13) 

 

However, the emf exists only as a result of the presence of an electric 

field, which is related to the emf by 

 emf  
 
E dl  (1.14) 

 

Combining (1.13) and (1.14), any direct reference to the induced emf is 

removed and we get Faraday's law.  Physically, this shows us that if the 

magnetic flux changes, in other words if either the surface area or the 

magnetic field changes with time, an electrical field is produced as 

result.  This electrical field creates an emf which acts in such a way as to 

resist the changes in the magnetic flux.  Thus, a time varying magnetic 

field creates an electric field.  Since there are no charges which act as a 

source or a sink, the field lines close on themselves, forming loops. 

 

The last of Maxwell's equations is known as Ampere's Law.  In its 

original form as expressed by Ampere, it related the number of magnetic 

field lines which passed through a surface formed by a closed loop to 

the total amount of current which was enclosed by the loop 
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    SdjldB


 , (1.15) 

 

where j


 is known as the current density.  The open surface is bounded 

by the loop, and the quantity  is called the permeability of the medium.  

In a vacuum,   0 , where 0 is called the permeability of free space 

and has a value of  0

74 10    N s

C

2

2 .  We can relate the permeability of 

free space with the permeability via the equation 

  

   KB 0 , (1.16) 

 

where KB is called the relative permeability.  In a manner similar to the 

dielectric constant, the relative permeability can be viewed as a 

measurement of how well the magnetic field permeates a material. 

 

While Ampere's law in its original formulation explained many 

important effects, such as the operation of a solenoid, it was found to 

also create larger problems.  In particular, use of Ampere's law in the 

form of equation (1.15) led to violation of conservation of energy for the 

electric and magnetic fields.  In order to correct this, Maxwell 

hypothesized the existence of an additional current, the displacement 

current, which is defined as 

  

 i
E

t
dSd  








. (1.17) 

When this is combined with Ampere's law in a region with no physical 

currents, we get 

 
 
B dl

d

dt

E  


. 

 

In other words, just as a time varying magnetic flux lead to the creation 

of a circular electric field, so too does a time varying electric flux lead to 

the creation of a linear magnetic field.  If a physical current also exists, 

we again regain the last of Maxwell's equations. 

 

3.2 Differential Form of Maxwell’s Equation 
 

In this section we derive the Maxwell’s equations based of the 

differentiation form of a number of physical principles. Thus we recast 

Maxwell's Equations into a differential form.  This form will be 

necessary later when we begin discussing the wave nature of light.  In 

order to do this conversion, we first need two important results from 

vector calculus, Gauss's divergence theorem and Stokes theorem. 

Gauss's divergence theorem tells us that the net flux of a vector field 

through a closed surface is equal to the integral of the divergence of that 
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field over the volume contained in the surface (i.e. conversion of 

integration over s closed Surface to Volume Integral) 

 
   
F dS FdV    . (1.18) 

 

Similarly, Stokes theorem states that the flux through a closed loop is 

equal the integral of the curl of the field over the area enclosed by the 

loop (integral over a closed curve to Surface integral) 

  

 
    
F dl F dS     . (1.19) 

Let's start with Gauss's divergence theorem and apply it to the first two 

of Maxwell's equations.  Then we get 

  

 




dV E dS

EdV

 



 

  

 

 
 

and 

  
0  

  





 

 
B dS

BdV
. 

These relations must be equal for any volume, so the first two Maxwell's 

equations in MKSA system become 

  

 
 
 E




 (1.20) 

and 

 
 
 B 0. (1.21) 

 

From the above equations, (1.20) implies that electric charges whose 

density   is _ are the sources of the electric field 


E , while (1.21)  

implies that Field lines of 


B are closed, which is equivalent to the 

statement that there are no magnetic monopoles(Figure 3a).  

 

We shall now obtain the last two Maxwell’s equations using the Stokes 

theorem. First, we discuss the Ampere’s law. Ampere’s law describes 

the fact that an electric current can generate an induced magnetic field. It 

states that in a stable magnetic field the integration along a magnetic 

loop is equal to the electric current the loop enclosed. Mathematically, 

Ampere’s law can be expressed as: 

  

   jldH


 (1.22) 
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Fig. 1.3:   Rotation-Free Vector Field (a) and Source-Free Vector 

Field (b) 

 

 

Let us take a simple case to illustrate the Ampere’s law, as shown in 

Figure 1.4. Recall that the curl of a vector field is defined as 

 

 .lim
0

n
S

ldH
HHCur

S














 (1.23) 

 

Consider the case of that the magnetic field is on the plane of the paper 

and the electric current is flowing out from the paper with the current 

normal to the paper we can have 

 

 J
S

j
n

S

ldH
HHCur

S





















.lim
0

 (1.24) 

where  J


 is the current density in an infinitesimal area. Meanwhile, if 

the electric field E


 is not stable, i.e., varying with respect to time, and 

the variation frequency is high enough and extends into the radar 

frequency, there will be another current in the medium known as the 

displacement current and is proportional to the variation of the electric 

field E


, and the proportional factor is the dielectric permittivity ε. Thus, 

there will be another contributor, Dd


/dt, to induce the magnetic field H


. 

The displacement current works exactly the same way as the conductive 

current J


, so that the total current should be J


+ Dd


/dt; put both 

contributors into the above equation ends up with the first equation of 

the Maxwell's equations: 

              

 
t

D
jH







  (1.25) 
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Fig. 1.4:  Illustration of Ampere’s Law (a) and Faraday’s Law (b) 

 

Second, we take a look of the Faraday’s law. Faraday’s law states that a 

moving magnet can generate an alternating electric field. 

Mathematically, the moving magnet can be represented by the variation 

of a vector magnetic potential ψ and the Faraday’s law can be 

mathematically expressed as 

  

 
t

E








 (1.27) 

by taking curl or cross product of both sides of the equation we have 

 

 
t

B

tt
E





















 )( . (1.28) 

 

These relations must hold for any surface bounded by a closed loop, so 

the last two Maxwell's equations become 

 

 
 



  E
B

t




 (1.29) 

and 

 














t

E
jB









 (1.30) 

Within material media having polarisation 


P  and magnetisation 


M the 

above laws still hold with the following replacements 

 

             


 P


 ,      























t

E

t

P
Mjj









 (1.31) 
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That is to the true charge density we have to add the polarisation charge 

density and to the true current density we have to add the contributions 

of the magnetisation current, the polarisation current and the 

displacement current introduced by Maxwell. In terms of the electric 

displacement and magnetic fields defined by 

 

 


 PED   

and 

 


 MBH


1
 

Respectively, Maxwell equations can be brought into the following form 

 

 






















D

t

D
jH

t

B
E








 

3

2

1

M

M

M

                 

  0 B


. M4 

 

The set of equations Maxwell’s equations expressed in terms of the 

derived field quantities 


D  and 


H  are called Maxwell’s macroscopic 

equations. These equations are convenient to use in certain simple 

cases. Together with the boundary conditions and the constitutive 

relations, they describe uniquely (but only approximately) the properties 

of the electric and magnetic fields in matter. 

 

In some materials (linear media) it happens that 


 ED    and 


 HB    

where the quantities   and    are called the dielectric constant and 

magnetic permeability of the medium respectively. 

 

3.3 The Continuity Equation 
 

The electric charge is conserved. Actually we have never observed in 

the laboratory a violation of this conservation law. This conservation 

law is expressed by the following continuity equation 

  

 0. 




t
j




 (M5) 
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where j is the charge density and 


 uj   is the current density. This 

equation follows from Maxwell’s equations and it is not an independent 

hypothesis. 

 

The quantity 


S
dSj .  S represents the charge flowing out of surface S 

per unit time (this is measured in Amperes in the system MKSA). If the 

charge density is time independent then from the continuity equation it 

follows that 0. 


j


. In this case we say that we have steady currents.  

 

Remark 

 

In this system the first three equations (M1) − (M3) are independent, 

equation (M4) has the character of an initial condition, and the 

continuity equation (M5) follows from (M2) and (M3). Indeed, equation 

(M1) implies that 

  

  dxEtxBtxB

t

t

),(,,

0

0



















 
, 

where            

  




















0,.,. txBtxB


, 

so that equation (M4) holds for all t if it holds at some fixed (say, initial) 

time to . 

 

Similarly, the continuity equation (M5) follows by taking the divergence 

of (M2) and by applying (M3). In its turn, equation (M3) can be used to 

eliminate the unknown   by defining the electric volume charge density 

in terms of 


D as 

             


 D.:


  

In this way, the Maxwell system reduces to the two vector equations 

(M1), (M2) , valid in any material medium, conducting or non-

conducting, for the five unknown vector functions 


JHBDE ,,,,  of (x, t). 

These two vector equations are complemented by three additional vector 

relations, called constitutive equations, and so the count is right. These 

constitutive relations are not universally valid but depend upon the 

properties of the materials under consideration. We can assume to start 

with that they have the form of local relations 
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) H, E( B  B

) H, E( D   D

) H, E( J  J













 

 

and in fact for many purposes we will take the very simple linear 

constitutive relations 

 

                 (C3)                                            HB

                 (C2)                                           ED

(C1)                  law) s(Ohm'      HJ

           



















                                     

where 0)(  x ,  is the electric conductivity, 1 the resistivity, 

0)( 0   x  is the electric permittivity and 0)(  x   the 

magnetic permeability of the material. These relations apply to empty 

space with 0,, 00    and the more common materials can be 

classified according to the values of the scalar coefficients 0,, 0    

as follows: 

 














conductorsperfect  :

conductors:0

sdielectric:0







 

 














ctorssupercondu : 0  µ

bodies cdiamagneti : µo  µ  0

bodies icparamagnet : µo  µ

 

 

Where 00 , are the (constant) permittivity and permeability of empty 

space. 

 

We will exclude in the sequel the case of superconductors 8 and we will 

always assume that there exists 0


 such that 0)( 


 x . 

For homogeneous media the coefficients  , and μ are constant. They 

depend on physical parameters such as temperature: for example, the 

conductivity of metals decreases with increasing temperature. 

 

4.0 CONCLUSION  
 

This unit further explains the role of Maxwell’s equations in media. It 

has been shown that while the integral form of Maxwell’s equations 

serves as a veritable tool for the analysis of electromagnetic waves, the 

differential form of Maxwell’s equation is often a more natural and 
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more useful tool when investigating wave properties in the physical 

domain. 

 

The continuity equation shows us that Maxwell’s equations do not 

contradict the laws of conservation. 

 

5.0 SUMMARY 
 

Maxwell’s equations can be applied in either the integral form or the 

differential form and Maxwell’s equations resonate with the principle of 

conservation of energy. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Write down Maxwell’s equations in both integral and differential 

form? 

2. What does the continuity equation state? 

3. Relate Gauss's law to Maxwell’s equations. 

4. Which of Maxwell’s equations is known as Faraday's law? 

5. Explain Ampere's law. What role does it play in electromagnetic 

theory? 
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MODULE 2 

 
Unit 1 Electromagnetic Wave Equation and Theory of Light 

Unit 2 Lights as Transverse Waves 

Unit 3 Reflections and Refraction of Plane Boundary of Plane 

Waves 

 

 

UNIT 1  ELECTROMAGNETIC WAVE EQUATION 

AND THEORY OF LIGHT 
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Electromagnetic Wave Equation and Theory of Light 

3.2 Wave Equation for 


E  

3.3 Wave Equation for 


B  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Electromagnetic wave equation is a second-order partial differential 

equation that describes the propagation of electromagnetic 

waves through a medium or in a vacuum where the homogeneous form 

of the equation can be written in terms of either the electric field E or 

the magnetic field B. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 establish the relationship between electromagnetic wave and light 

 state the wave equation for electric field vector


E  

 describe the wave equation for the magnetic field vector 


B  

 recognise the three dimensional nature of wave equation for each 

component of the electric and magnetic fields. 
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3.0 MAIN CONTENT 

 

3.1 Electromagnetic Wave Equation and Theory of Light 
 

A common question is, how are Maxwell's equations used to show wave 

motion?  Consider the electric and magnetic fields in a charge free 

vacuum region.  Then Maxwell's equations become 

 

0

),( 000
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



. 

3.2 Wave Equation for 


E  
 

To derive the wave equation for the electric field, start with the third of 

Maxwell's equations and take the curl of both sides 

 )( B
tt

B
E














. (1.32) 

The left hand side can be simplified by using the vector relationship 

            
a b c b a c c a b        (1.33) 

to get 
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 (1.34) 

where the last step used the fact that 
 
 E 0 .  To evaluate the right 

hand side of (1.32), we start with the fact that the spatial derivatives () 

and the time derivative can be interchanged.  We then use the last of 

Maxwell's equations to find 
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 (1.35) 

Combining (1.34) and (1.35), (1.32) on rearrangement can be written as 
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  (1.36) 

which we recognise as the three dimensional wave equation for each 

component of the electric field ( E


).  Comparing (1.36) with the standard 

result for a wave whose velocity is v , we obtain 
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Using the fact that the experimentally determined speed of light is also 

3.00 x 10
8
 m/s, we are lead to the inescapable conclusion that light is 

just one form of electromagnetic wave propagation.  When the 

electromagnetic disturbance is moving in a vacuum, we denote its speed 

by a special symbol, c. 

 

3.3 Wave Equation for 


B  
 

In a manner similar to those leading to equation (1.36), we can start with 

the last of Maxwell's equations to find the wave equation for the 

magnetic field.  Thus, 
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Finally, we have 
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  (1.39) 

This is the wave equation for the magnetic field. We notice that it is 

exactly the same form as the wave equation for the electric field 

equation (1.36).  

 

4.0 CONCLUSION  
 

Light waves are electromagnetic which comprise electric and magnetic 

vector fields perpendicular to the direction of propagation which 

implicitly is a three dimensional construct. 

 

5.0 SUMMARY 
  

Light is transverse electromagnetic waves with both electric and 

magnetic vectors. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Prove that light is electromagnetic waves? 

2. What is the orientation of the electric and magnetic field vectors 

of an electromagnetic wave relative to its direction of 

propagation? 

3. Are light waves one, two or three dimensional? 

4. Is gravity related in any way with electromagnetism? 

5. At what speed does electromagnetic wave travel through 

vacuum? 
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1.0 INTRODUCTION 
 

Light waves consist of electric and magnetic field oscillations occurring 

at right angle to the direction of energy transfer which qualifies light as 

transverse wave; and for transverse waves in matter the displacement of 

the medium is perpendicular to the direction of propagation of the wave. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 establish conclusively that light waves are transverse waves 

 know the ratio referred to as relaxation time of conducting 

medium 

 understand propagation of plane electromagnetic waves in non-

conducting media 

 describe the relationship between the wave number and the 

amplitudes of electric and magnetic components of 

electromagnetic waves 

 investigate the mechanism guiding the propagation of plane 

electromagnetic waves in conducting media 

 see why electric charges move almost instantly to the surface of 

perfect conductors when subjected to electromagnetic influence 

(skin effect). 
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3.0 MAIN CONTENT 

 

3.1 Lights as Transverse Waves 
 

We can also determine whether light waves are longitudinal or 

transverse waves.  Remember that longitudinal waves oscillate in the 

same direction as the direction of propagation, while transverse waves 

oscillate in a direction perpendicular to the direction of propagation.  For 

simplicity, let the direction of propagation be in the x direction.  Then 

E


 = E


 (x,t).  Now look at a Gaussian box oriented along the coordinate 

axes.  The flux is through the faces in the y-z planes, so Gauss's law 

becomes 

 




E

x

x  0 

From this, we see that the electromagnetic wave has no electric field 

component in the direction of propagation.  Thus, the electric field is 

exclusively transverse.  A similar argument can be used on Gauss's law 

for magnetic fields to show that it is also transverse to the direction of 

propagation.  In particular, Faraday's law tells us that 
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. (1.40) 

In other words, the time dependent magnetic field can only have a 

component in the z direction when the electric field is exclusively in the 

y direction.  From these, we see that, in free space, the plane 

electromagnetic wave is transverse. 

 

 

 

 

 

 

 

Fig. 2.1: A Rectangular Wave Guide 

 

3.2 Plane Electromagnetic Waves in Non-Conducting Media 

( 0 ) 
 

In a medium with values ,   for the electric constant and the magnetic 

permeability respectively, we have derived the Maxwell laws in (1.32) 

and (1.39) as  
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In region where there are no charge and current distributions, the terms 

on the right hand sides of (1.41) are absent and the fields E


 and 


B satisfy the free wave equations. 

The plane waves are particular solutions of (1.41) in regions where 

sources are absent. In the following we shall use complex notation and 

write the electric component of a plane wave as 

  )..(exp0 txkiEE 


 (1.42) 

 

The physical electric field measured in the laboratory is meant to be the 

real part of this expression. That is ).cos(0 txkEE 


. A similar 

expression holds for the magnetic field too with 0,


EE  replaced with 

0,


BB respectively. In this expression 0



E  is the amplitude of the electric 

field, 


k  is its wave vector and   ! its frequency. This monochromatic 

pulse is a solution when the frequency is linearly related to the 

magnitude 


 kk  of the wave vector


k , by the relationship vk , k is 

called the wave number and is related to the wave length by the 

relation


2
k . 

Using Gauss’ law ,0


E


and the Faraday’s law, 0
t

B
E







, one 

can immediately arrive at the following relations for the wave number 

and the amplitudes of the electric and magnetic components: 

 ,0. 0 


Ek ,   .
1

00



 EkB


 (1.43) 

 

Equation (1.35) state that the electric and magnetic fields of a plane 

wave are perpendicular to each other and both perpendicular to the 

direction of the propagation


 k
k

n
1

. 

 

3.3 Plane Electromagnetic Waves in Conducting Media 

( 0 ) 
 

Within a conductor the electric current density and the electric field are 

related by


 Ej   , from which it follows 

that 



 



Ej .. .  Then from the continuity equation one 

has 
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which is immediately solved to yield 
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 exp)0,(),(   (1.44) 

 

For good conductors 114 sec10 



 1 so that from the eqn. (1.36) we 

conclude that charges move almost instantly to the surface of the 

conductor. The ratio 



   is called the relaxation time of the 

conducting medium. For perfect conductors,  , so that the relaxation 

time is vanishing. For good, but not perfect conductors  _ is small and 

of the order of 1410 sec or so. For times much larger than the relaxation 

time there are practically no charges inside the conductor. All of them 

have moved to its surface where they form a charge density . Within a 

conductor the wave equation for the vector field 


E , see equation (1.41), 

becomes 
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Notice the appearance of a “friction” term 
t


 which was absent in the 

free wave equation. If we seek for monochromatic solutions of the 

form  tixEE 


exp)(


, then the equation above takes on the form 

   0)(22 


xEK , 

where )(2  iK  . This can be immediately solved to yield, for a 

plane wave solution travelling along an arbitrary direction 


n ~n, 

 ~E 

 = ~E 

    ttixEE  


exp)(


  (1.45) 

where 


 xn . . The constants  , , appearing in (1.45), have dimensions 

of 1length  and are functions of  . Their analytic expressions are not 

presented here. These can be traced in any standard book of 

electromagnetic theory. However we can distinguish two particular 

cases in which their forms are simplified a great deal. These regard the 

case of an isolator and the case of a very good conductor respectively. 
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For an insulator 0  and 0,   k  In this case (1.45) reduces to an 

ordinary plane wave which is propagating with wave vector knk


 . 

 

 

For a very good conductor, and certainly this includes the case of a 

perfect conductor, the conductivity is large so that the range of 

frequencies with     is quite broad. In this case the constants 

 , are given by 1  , where   is a constant called the Skin 

Depth , given by the following  expression 

   



2

   (1.46) 

Therefore we see from equation (1.45) that inside a good conductor: 

The field is attenuated in the direction of the propagation and its 

magnitude decreases exponentially 











exp~  as it penetrates into the 

conductor. The depth of the penetration is set by  Æ and is smaller the 

higher the conductivity, the higher the permeability and the frequency. 

As an example for copper 7108.5  mho 1m and the skin depth is 

cm3107.0   for a frequency MHz100 . It is important to point out 

that the magnetic field within the conductor is related to the electric field 

by the relation 

  





 En
i

H




2

1
 . (1.47) 

As in the case of non-conducting materials both 


E , 


H are perpendicular 

to each other and to the direction of propagation 


n . From (1.47), it is 

evident that the magnetic field has a phase difference of 045  from its 

corresponding electric component


E , due to the pre-factor i1 . 

 

4.0 CONCLUSION 
 

The propagation of light waves is affected by the medium through 

which it propagates. It is transverse by nature with plane 

electromagnetic waves in non-conducting media possessing 0 while 

plane electromagnetic waves in conducting media have a . 0  

 

5.0 SUMMARY 
 

A parametric constant  associated with material bear a distinct 

relationship with the propagation of light in different media, ranging 

from zero in non conducting media to a non-zero value in conducing 

media. 
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6.0 TUTOR-MARKED ASSIGNMENT 
 

1. “Light waves are transverse waves.” Explain. 

2. What do you understand by “relaxation time” of a conducting 

medium? 

3. Describe how plane electromagnetic waves are affected by 

perfectly non-conducting, and in perfectly conducting media. 
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1.0 INTRODUCTION 
 

In this unit we are going to take a close look at the behaviour of plane 

electromagnetic waves at the boundaries between media. At boundaries, 

electromagnetic wave is either reflected or refracted and in this unit we 

shall be looking at how conducting and non-conducting media affect the 

propagation of plane electromagnetic waves. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 qualify the phenomenon of reflection and refraction of plane 

waves at boundaries  

 distinguish between reflection and refraction at boundary 

between dielectrics and at the surface of conductors 

 solve problems involving electromagnetic boundary conditions 

 derive the laws of reflection and refraction 

 analyse the characteristics of monochromatic plane wave on a 

boundary 

 explain polarisation by reflection on a boundary between two 

dielectrics 
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 comfortably work with reflection coefficient.  

 

3.0 MAIN CONTENT 

 

3.1 Reflection and Refraction of Plane Boundary of Plane 

Waves  
 

In reality, plane electromagnetic waves frequently encounter obstacles 

along their propagation paths: hills, buildings, metallic antennas aimed 

at receiving the messages the waves carry, objects from which they are 

supposed to partly reflect. In such cases, the wave induces conduction 

currents in the object (if the object is metallic), or polarisation current (if 

the object is made of an insulator). These current are, of course, sources 

of a secondary electromagnetic field. This field is known as scattered 

field, and the process that creates it is known as scattering of 

electromagnetic waves. The objects or obstacles are called scatters. 

 

When plane waves are incident on a boundary between different media, 

some energy crosses the boundary, and some is reflected. In other 

words, when a plane electromagnetic is incident on a planar boundary 

between two media, one of these waves is radiated back into the half-

space of the incident wave: this wave is known as the reflected wave. 

There is also a wave in the other half-space (except in the case of a 

perfect conductor), propagating generally in a different direction from 

the incident wave; it is therefore called the refracted or transmitted 

wave. We define transmission and reflection coefficients to quantify the 

transmission and reflection of wave energy. These coefficients are 

properties of the two media. The transmission and reflection coefficients 

are determined by matching the electric and magnetic fields in the 

waves at the boundary between the two media. 

 

In this session, for easy understanding, we shall consider: 

 

•  Boundary conditions on electric and magnetic fields. 

•  Boundary conditions on fields at the surfaces of conductors. 

•  Monochromatic plane wave on a boundary: 

–  Directions of reflected and transmitted waves (laws of 

reflection and refraction) 

–  Amplitudes of reflected and transmitted waves (Fresnel’s 

equations) 

–  The special case of a boundary between two dielectrics 

–  The special case of the surface of a conductor 

•  Monochromatic plane wave: 

–  Total internal reflection 

•  Reflection coefficient for a conducting surface. 
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3.2 Electromagnetic Boundary Conditions 1: Normal 

Component of 


B  
 

We can use Maxwell’s equations to derive the boundary conditions on 

the magnetic field across a surface. Electromagnetic shows that the 

normal component of current, electric displacement, and magnetic 

induction should be continuous when cross a material interface or 

boundary; while the tangential component of the electric field and the 

magnetic field should be continuous across the material interface. Let us 

take the magnetic boundary condition as the example to illustrate the 

calculation. From the Gaussian theorem we have 

  
.  SdBdVB


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1:  Illustration of the Electromagnetic Boundary Conditions 
 

By making a small disc with the thickness of Δh and its central line is 

coincident with the boundary of two media (Figure 6) we have 

  
.0 dVB



 

This coincides with the Maxwell’s equation (M4): 

  0 B


  (2.1) 

integrate over the volume of the pillbox, and apply Gauss’ theorem: 

  0.  


V S
dSBdVB


   (2.2) 

where V is the volume of the pillbox, and S is its surface. We can break 

the integral over the surface into three parts: over the flat ends (S1 and 

S2) and over the curved wall (S3): 

  0...
321

 


SSS
dSBdSBdSB


  (2.3) 
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In the limit that the length of the pillbox approaches zero, the integral 

over the curved surface also approaches zero. If each end has a small 

area A, then equation (2.3) becomes: 

 021  ABAB nn   (2.4) 

or 

             nn BB 21   (2.5) 

In other words, the normal component of the magnetic field B


 must be 

continuous across the surface.  By using similar approaches, the general 

conditions on electric and magnetic fields at the boundary between two 

materials can be summarised as follows: 

 

Boundary Condition Derived from… Applied to… 

nn BB 21   0 B


 pillbox 

tt EE 12   

t

B
E







  

Loop 

 nn DD 12  




D


 
Pillbox 

JHH tt  12  

 DJH


 
Loop 

 

Static electric fields cannot persist inside a conductor. This is simply 

because the free charges within the conductor will re-arrange themselves 

to cancel any electric field; this can result in a surface charge density,  . 

We have seen that electromagnetic waves can pass into a conductor, but 

the field amplitudes fall exponentially with decay length given by the 

skin depth,  : 

  



2

  (2.6) 

As the conductivity increases, the skin depth gets smaller. Since both 

static and oscillating electric fields vanish within a good conductor, we 

can write the boundary conditions at the surface of such a conductor: 

  
0,

0,0

21

21





nn

tt

DD

EE


 

Lenz’s law states that a changing magnetic field will induce currents in a 

conductor that will act to oppose the change. In other words, currents are 

induced that will tend to cancel the magnetic field in the conductor. This 

means that a good conductor will tend to exclude magnetic fields. Thus 

the boundary conditions on oscillating magnetic fields at the surface of a 

good conductor can be written: 

  
.0,

0,0

21

21





tt

nn

HJH

BB
 

We can consider an “ideal” conductor as having infinite conductivity. In 

that case, we would expect the boundary conditions to become: 
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.0,

0,

0,0

0,0

21

21

21

21









tt
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  

Strictly speaking, the boundary conditions on the magnetic field apply 

only to oscillating fields, and not to static fields. But it turns out that for 

superconductors, static magnetic fields are excluded as well as 

oscillating magnetic fields. This is not expected for classical “ideal” 

conductors. 

 

3.3 Waves on Boundaries 
 

We now apply the boundary conditions to an electromagnetic wave 

incident on a boundary between two different materials. We shall use 

the boundary conditions to derive the properties of the reflected and 

transmitted waves, for a given incident wave. Consider a 

monochromatic wave incident at some angle on a boundary. We must 

consider three waves: the incident wave itself; the reflected wave, and 

the transmitted wave on the far side of the boundary. 

The electric field components for these waves can be written 

(respectively): 

  ).(
0),(







rkti

II
IIeEtrE

   (2.7) 

  ).(
0),(







rkti

RR
RReEtrE

   (2.8) 

  ).(
0),(







rkti

TT
TTeEtrE

   (2.9) 

 

Let us first consider the time dependence of the waves. The boundary 

conditions must apply at all times: for example, the tangential 

component of the electric field, tE


  must be continuous across the 

boundary at all points on the boundary at all times. This means that all 

waves must have the same time dependence, and therefore: 

    TRI   (2.10)     

 

Reflection at a boundary cannot change the frequency of an incident 

monochromatic wave. Some surfaces reflect some wavelengths better 

than others, which is why they can appear coloured under white light; 

but the frequency of the light does not change. 
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3.4 Laws of Reflection and Refraction 
 

Now let us consider the relationships between the directions in which 

the waves are moving. We shall find that these relationships are just the 

laws of reflection and refraction that we are familiar with from basic 

optics. However, our goal is now to derive these laws from Maxwell’s 

equations, by applying the boundary condition waves across boundaries. 

We start from the fact that the boundary conditions must be satisfied at 

all points on the boundary. This means that the waves must all change 

phase in the same way as we move from one point to another on the 

boundary. Since the phase of each of the waves at a position 


r  is given 

by 


rk . , where 


k  is the appropriate wave vector, we must have: 

  


 pkpkpk TRI ... , (2.11) 

where 


p  is any point on the boundary. 

 

For simplicity, let us choose our coordinates so that the boundary lies in 

the plane z = 0. Then any point 


p on the boundary can be written: 

  )0,,( yxp 


  (2.12) 

Now we can (without loss of generality) further specify the coordinate 

system so that 


Ik lies in the x − z plane, i.e. the y component of 


Ik  is 

zero: 

  )cos,0sin( , IIIII kkk 


  (2.13) 

where I  is the angle between the direction of travel of the incident 

wave and the boundary. 

Now let us apply equation (2.11): 

 


 pkpkpk TRI ...                                  

to points on the boundary with x = 0, i.e. )0,,0( yp 


. We find: 

  TyRyIy kkk  . (2.14)  

Therefore, the directions of the incident, reflected and transmitted waves 

all lie in the plane y = 0. Now let us consider points on the boundary 

with y = 0, i.e. )0,0,(xp 


.  This time, using equation (2.11) gives: 

 IITxRxIx kkkk sin   (2.15) 

which (since the vertical components of the wave vectors are all zero) 

can be written: 

 TTRRII kkk  sinsinsin  . (2.16)  
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But since the incident and reflected waves are travelling in the same 

material with the same frequency, the magnitudes of the wave vectors 

must be the same: 

  
RI kk  . (2.17) 

Combining equations (2.15) and (2.16) we find: 

             
RI              (The law of reflection) (2.18) 

  
I

T

T

I

k

k






sin

sin
       The law of refraction (Snell’s law)

 (2.19) 

 

3.5 Reflection and Refraction at a Boundary between 

Dielectrics 
 

As an example, consider a monochromatic wave incident on a boundary 

between two dielectrics (e.g. air and glass). Since the conductivity is 

zero on both sides of the boundary, the wave vectors of all waves must 

be real. 

Also, we have: 

  1v
k I




, 2v
kT




  (2.20) 

Where 1v  is the phase velocity in medium 1, and 2v  is the phase velocity 

in medium. 2. 

 
2

1

sin

sin

v

v

T

I 



 (2.21) 

We define the refractive index n of a material as the ratio of the speed of 

light in a vacuum to the speed of light in the material: 

v

c
n   (2.22) 

Then equation (2.21) can be written: 

 
1

2

sin

sin

n

n

T

I 



  (2.23) 

This is the familiar form of Snell’s law. 

 

3.6 Reflection and Refraction at the Surface of a Conductor 

For a wave incident on a conductor, 


Tk will be complex: 

  


  ikT   (2.24) 

For a good conductor (i.e. 2   ): 
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2

22
    (2.25) 

so: 

  22

22

 


Tk   (2.26)    

Applying the law of refraction (2.19): 

  1
sin

sin

1

2 








I

T

T

I

k

k
   (2.27) 

where we have assumed that 12   . Since the largest value of Isin is 

1, equation (2.27) tells us that 0sin T , so the direction of the 

transmitted wave in a good conductor must be (close to the) normal to 

the surface. 

 

SELF-ASSESSMENT EXERCISE 

 

i. Derive (from Maxwell’s equations) the boundary conditions on 

electric and magnetic fields at the interface between two media. 

ii.  Apply the boundary conditions on electric and magnetic fields to 

derive the laws of reflection and refraction. 

iii.  Energy and Momentum. 

 

We shall use Maxwell’s macroscopic equations in (M1, M2, M3, M4), 

on the energy and momentum of the electromagnetic field and its 

interaction with matter. 

 

4.0 CONCLUSION  
 

We have seen in this unit that at plane boundaries, plane waves can 

either be reflected or refracted and that the reflection or refraction 

satisfies electromagnetic boundary conditions specific to the boundary 

media interface. 

 

The behaviour of electromagnetic plane waves at these boundary 

conditions is subject to the laws of reflection and refraction while the 

boundaries may be dielectric or conductive. 

 

5.0 SUMMARY 
 

Plane electromagnetic waves are affected by boundaries in a manner 

subject to the nature of the boundary material. 
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6.0 TUTOR-MARKED ASSIGNMENT 
 

1. State any two important laws which govern the propagation of 

plane light waves at the plane boundary between two media. 

2. What does Fresnel’s Law state? 

3. Derive an expression for Snell’s Law. 
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MODULE 3  
  

Unit 1 Energy Theorem in Maxwell’s Theory 

Unit 2 Radiation from Extended Sources 

 

 

UNIT 1  ENERGY THEOREM IN MAXWELL’S 

THEORY 

 
CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 The Energy Theorem in Maxwell's Theory 

3.2 The Momentum Theorem in Maxwell's Theory 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Electromagnetic waves have associated energy and momentum and we 

shall be considering both Maxwell’s energy and momentum theorems in 

explaining these phenomena. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain the energy theorem in Maxwell’s electromagnetic theory  

 state why the energy theorem is also known as Poynting’s 

theorem 

 quantify the momentum theorem in Maxwell's electromagnetic 

theory 

 explain the term electric volume force 

 write an expression for the Maxwell stress tensor 

 analyse relative electric permittivity. 
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3.0 MAIN CONTENT 

 

3.1 The Energy Theorem in Maxwell's Theory 
 

Scalar multiplying (M1) by 


H , (M2) by 


E  and subtracting, we obtain 

  
























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











EjDEBH
t

t

D
EjE

t

B
H

HEEEEH

2

1

)()()(

  (6.24)(3.1) 

Integration over the entire volume V and using Gauss’ theorem (the 

divergence theorem), we obtain  

')(''
2

1 233 xdnHExdEjxdDEBH
t

AVV



 












  (6.25)(3.2) 

But, according to Ohm’s law in the presence of an electromotive force 

field, the linear relationship between the current and the electric field is  

 














 EMF

EEj    (6.26)(3.3) 

which means that 

 
''' 33

2
3 xdEjxd

j
xdEj

V

EMF

VV

 

















  (6.27)(3.4) 

Inserting this into equation (3.2)  

 

power Radiated  energy   Field  heat   Joule power  electric Applied        

i.e.

')('
2

1
'' 233

2
3




















 xdnHExdDEBH
t

xd
j

xdEj
AVVV



(6.28)(3.5) 

 

Which is the energy theorem in Maxwell’s theory also known as 

Poynting’s theorem? 

 

It is convenient to introduce the following quantities: 
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 (3.6) 

where Ue is the electric field energy, Um  is the magnetic field 

energy, both measured in J, and 


S  is the Poynting vector (power flux), 

measured in 2/ mW . 

 

3.2 The Momentum Theorem in Maxwell's Theory 
 

We now investigate the momentum balance (force actions) in the case 

that a field interacts with matter in a non-relativistic way. For this 

purpose we consider the force density given by the Lorentz force per 

unit volume


 BjE  

 

Using Maxwell’s equations (M1-M4) and symmetrising, we obtain 
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  (3.7) 

One verifies easily that the ith vector components of the two terms in 

square brackets in the right hand member of (3.7) can be expressed as 
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and 






















































ijii

iiii

HBBH
xx

H
B

x

B
HHBHB 

2

1

2

1
)()(  (3.9) 

respectively. 

Using these two expressions in the ith component of equation (3.7) on 

the preceding page and re-shuffling terms, we get  
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 (3.10) 

Introducing the electric volume force evF  via its ith component 
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 (3.11) 

And the Maxwell stress tensor T  with components 

 ijiiijiiij HBBHDEDET 
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We finally obtain the force equation 
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If we introduce the relative electric permittivity k  and the relative 

magnetic permeability  mk  as 

 


 EEkD  0   (3.14) 
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We can rewrite (3.13) as 
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Where 


S  is the Poynting vector defined in equation (3.6). Integration 

over the entire volume V yields 



MTH 417            ELECTROMAGNETIC THEORY 

94 

 

Stress momentum Fieldmatter on the Force
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This expresses the balance between the force on the matter as the rate of 

change of the electromagnetic field momentum and the Maxwell stress. 

This equation is called the momentum theorem in Maxwell’s theory. 

In vacuum (3.17) becomes  
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Stress momentum Fieldmatter  on the Force Maxwell   

or 

 '2FieldMech xdTP
dt

d
P

dt

d

S
n




  (3.19) 

4.0 CONCLUSION  
 

Here, the energy theorem in Maxwell’s electromagnetic theory has been 

established through the Poynting’s theorem and the momentum theorem. 

We discovered the term electric volume force and derived an expression 

for the Maxwell stress tensor while at the same time qualified relative 

electric permittivity. 

 

5.0 SUMMARY 
 

Electromagnetic waves convey energy and possess momentum. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. State the energy theorem and list five practical applications of 

this theorem. 

2. Describe Poynting’s Vector and relate it to solar radiation. 

3. Does light wave have momentum? If it does, quantify it 

mathematically. 
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UNIT 2     RADIATION FROM EXTENDED SOURCES 
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Radiation from Extended Sources 

3.2 Radiation from Charges Moving in Matter 

3.3 Derivation of the Lorentz Transformation 

3.4 Further Assignments 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Electromagnetic propagation in material medium can be radically 

different from propagation through vacuum as electromagnetism is 

affected by media and it is reasonable to simplify the propagation 

properties of electromagnetic waves by considering the geometry of the 

radiating source. 

 

2.0 OBJECTIVES 
  

At the end of this unit, you should be able to: 

 

 appreciate that there are radiation from extended sources 

 write down the macroscopic Maxwell equations 

 analyse collisional interaction between charge carriers 

 describe anisotropic and birefringent medium 

 explain how charges moving in matter radiate electromagnetic 

waves 

 derive the Lorentz transformation 

 state why the combination of two Lorentz transformations must 

be a Lorentz transformation. 

 

3.0 MAIN CONTENT 
 

3.1 Radiation from Extended Sources 
 

Certain radiation systems have a geometry which is one-dimensional, 

symmetric or in any other way simple enough that a direct calculation of 

the radiated fields and energy is possible. This is for instance the case 
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when the current flows in one direction in space only and is limited in 

extent. An example of this is the linear antenna. 

 

3.2  Radiation from Charges Moving in Matter 
 

When electromagnetic radiation is propagating through matter, new 

phenomena may appear which are (at least classically) not present in 

vacuum. As mentioned earlier, one can under certain simplifying 

assumptions include, to some extent, the influence from matter on the 

electromagnetic fields by introducing new, derived field quantities 


D  

and 


H according to 

 


 EkExtD 0),(    (4.1) 

 


 HkHxtB m 0),(  . (4.2) 

Expressed in terms of these derived field quantities, the Maxwell 

equations, often called macroscopic Maxwell equations, take the form 

as shown previously[M1-M4] Assuming for simplicity that the electric 

permittivity   and the magnetic permeability  , and hence the relative 

permittivity k  and the relative permeability mk  all have fixed values, 

independent on time and space, for each type of material we consider, 

we can derive the general telegrapher’s equation 

 
)0,0,0(

2

2

2

2

















t

E

t

EE


  (4.3) 

In describing (1D) wave propagation in a material medium, it is known 

that the existence of a finite conductivity, manifesting itself in a 

collisional interaction between the charge carriers, causes the waves to 

decay exponentially with time and space. 

 

Let us therefore assume that in our medium 0  so that the wave 

equation simplifies to 

 
)0,0,0(

2

2

2

2












t

EE


  (4.4) 

If we introduce the phase velocity in the medium as 

 
mm kk

c

kk
v 

00

11


  (4.5) 

Where, according to Equation (1.29), 
00

1


c is the speed of light, 

i.e., the phase speed of electromagnetic waves in vacuum, then the 

general solution to each component of equation (4.4) on the previous 

page 
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 ),()( tvgtvfEi       i = 1,2,3.  (4.6) 

The ratio of the phase speed in vacuum and in the medium 

 nckk
v

c
m

def  

 


 (4.7) 

is called the refractive index of the medium. In general n is a function 

of both time and space as are the quantities k,, and mk . If, in addition, 

the medium is anisotropic or birefringent, all these quantities are rank-

two tensor fields. Under our simplifying assumptions, in each medium 

we consider n = Const for each frequency component of the fields. 

Associated with the phase speed of a medium for a wave of a given 

frequency   we have a wave vector, defined as 

 










v

v

v
kvkkk





def  

 (4.8) 

Consider the case of the vacuum where we assume that 


E  is time-

harmonic, i.e., can be represented by a Fourier component proportional 

to  tiexp , the solution of equation (4.4) can be written 












)xk(expEE 0 ti   (4.9) 

Where now 


k  is the wave vector in the medium given by equation (4.8). 

With these definitions, the vacuum formula for the associated magnetic 

field, 

 








 E
1

E
1

EB kk
v

k





 (4.10) 

is valid also in a material medium (assuming, as mentioned, that n has a 

fixed constant scalar value). A consequence of a 1k  is that the electric 

field will, in general, have a longitudinal component. It is important to 

notice that depending on the electric and magnetic properties of a 

medium, and, hence, on the value of the refractive index n, the phase 

speed in the medium can be smaller or larger than the speed of light: 

 
kn

c
v


    (4.11) 

Where, in the last step, we have used eqn. (4.8). If the medium has a 

refractive index which, as is usually the case, dependent on frequency , 

we say that the medium is dispersive. Because in this the group velocity 

        
k

vg






  (4.12) 

Has a unique value for each frequency component, and is different from 

v'. Except in regions of anomalous dispersion, v' is always smaller than 

c. In a gas of free charges, such as a plasma, the refractive index is given 

by the expression 
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2

2

2 1)(





p
n    (4.13) 

Where 

             




 


m

qN
p

0

2

2
   (4.14)                         

is the plasma frequency. Here m and N  denote the mass and number 

density, respectively, of charged particle species . In inhomogeneous 

plasma, )(


 xNN   so that the refractive index and also the phase and 

group velocities are space dependent. As can be easily seen, for each 

given frequency, the phase and group velocities in plasma are different 

from each other. If the frequency   is such that it coincides with p at 

some point in the medium, then at that point v while 0gv  and 

the wave Fourier component at   is reflected there. 

 

3.3  Derivation of the Lorentz Transformation 
 

In most cases, the Lorentz transformation is derived from the two 

postulates: the equivalence of all inertial reference frames and the 

invariance of the speed of light. However, the most general 

transformation of space and time coordinates can be derived using only 

the equivalence of all inertial reference frames and the symmetries of 

space and time. 

 

The general transformation depends on one free parameter with the 

dimensionality of speed, which can be then identified with the speed of 

light c. This derivation uses the group property of the Lorentz 

transformations, which means that a combination of two Lorentz 

transformations also belongs to the class Lorentz transformations. 

 

The derivation can be compactly written in matrix form. However, for 

those not familiar with matrix notation, we may also write it without 

matrices. 

 

3.4 Further Assignments 
 

1) Let us consider two inertial reference frames O and O’. The 

reference frame O’ moves relative to O with velocity v along the 

x axis. We know that the coordinates y and z perpendicular to the 

velocity are the same in both reference frames: y = y’ and z = z’. 

So, it is sufficient to consider only transformation of the 

coordinates x and t from the reference frame O to x’ = fx(x; t) and 

t’ = ft(x; t) in the reference frame O’. From translational 

symmetry of space and time, we conclude that the functions fx(x; 
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t) and ft(x; t) must be linear functions. Indeed, the relative 

distances between two events in one reference frame must depend 

only on the relative distances in another frame:  

            ,, 212121 ttxxfxx x 





 

  212121 , ttxxftt t 





  (5.1) 

Because equation (5.1) must be valid for any two events, the 

functions fx(x; t) and ft(x; t) must be linear functions. Thus 

            
DtCxt

BtAxx





'

' ,
 (5.2) 

Where A, B, C and D are some coefficients that depend on v. In 

matrix form equations (5.2) are written as  

 































t

x

DC

BA

t

x
'

'  (5.3) 

 

With four unknown functions A, B, C and D of v. 

 

2) The origin of the reference frame O’ has the coordinate x’ = 0 

and moves with velocity v relative to the reference frame O, so 

that x = vt. Substituting these values into equation (5.2), we find 

B = -vA. Thus, the first equation of equations (5.2) has the form 

  ,' vtxAx   (5.4) 

 

So we need to find only three unknown functions A,C and D of v. 

 

3) The origin of the reference frame O has the coordinate x = 0 and 

moves with velocity -v relative to the reference frame O’, so that 

x’ = -vt’. Substituting these values in equations (5.2), we find D = 

A. Thus, the second part of equations (2) has the form  

  tExAAtCxt '  (5.5) 

Where we introduced the new variable E=C/A. 

 

Let us change to the more common notation A . Then 

equations (5.4) and (5.5) have the form 

  ,' vtxx    (5.6) 

  tExt  ' , (5.7) 

or in matrix form 

              
.

1

1
'

'
















 
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












t

x

E

v

t

x


 (5.8) 
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Now we need to find only two unknown functions v and Ev of v. 

 

4) A combination of two Lorentz transformations also must be a 

Lorentz transformation. 

 

Let us consider a reference frame O’ moving relative to O with 

velocity v1 and a reference frame O’’ moving relative to O’ with 

velocity v2. Then 

  
 
 ,

,

''

22

''

'

2

'

2

''

txEt

tvxx

vv

v








  

 
 ,

,

11

'

11

'

txEt

tvxx

vv

v








 (5.9)  

This can also be put in the matrix form as done earlier. 

 

For a general Lorentz transformation, the coefficients in front of x 

in equation (5.6) and in front of t in equation (5.7) are equal, i.e. 

the diagonal matrix elements in equation (8) are equal.  

 

If we substitute for 'x and 't in the first equation of equation (5.9), 

we obtain 

 
    

    .1

1

211112

''

212112

''

tvExEEt

tvvxvEx

vvvvv

vvv








 (5.10) 

Similarly, equation (5.10) must also satisfy this requirement: 

 1221 11 vEvE vv           
1

1

2

2

vv E

v

E

v
  (5.11) 

In the second equation (5.14), the left-land side depends only on 

v2, and the right-hand side only on v1. This equation can be 

satisfied only if the ratio v/Ev is a constant a independent of 

velocity v, i.e. 

             
a

v
Ev  , (5.12) 

Substituting equation (5.12) into equations (5.6) and (5.7), as 

well as (5.8), we find 

  ,' vtxx v      tx
a

vt v  '  (5.13) 

or in the matrix form  

             















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 
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










t

x

a

v
v

t

x
v 1

1

'

'


 (5.14) 

Now we need to find only one unknown function v , whereas the 

coefficient a is a fundamental constant independent on v. 

 

5) Let us make the Lorentz transformation from the reference frame 

O to O’ and then from O’ back to O. The first transformation is 
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performed with velocity v, and the second transformation with 

velocity -v. The equations are similar to equations (5.10): 

 

 

,

,

''

''









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
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tx
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v
t

tvxx

v

v





 (5.15)  

Substituting x’ and t’ from the first equation (5.15) into the 

second one, we find 

   ,1
2

x
a

vx vv        
a

vt vv

2

1   .  (5.16) 

Equation (5.15) must be valid for any x and t, so 

 

a

v
vv 2

1

1



    (5.17) 

Because of the space symmetry, the function v  must depend 

only on the absolute value of velocity v, but not on its direction, 

so v = v . Thus we find 

 

a

v
v

2

1

1



  (5.18) 

6) Substituting equation (5.18) into equations (5.13) and (5.14) , we 

find the final expressions for the transformation as 

 ,

1
2

'

a

v

vtx
x




         ,

1
2

'

a

v

tx
a

v

t




  (5.19)     

Which, can also be put in the matrix form. 

 

Equations (5.19) and its matrix equivalent have one fundamental 

parameter a, which has the dimensionality of velocity squared. If 

a < 0, we can write it as 

 2ca   (5.20) 

Then equations (5.19) and its matrix equivalent become the 

standard Lorentz transformation: 

 ,

1
2

'

a

v

vtx
x




     ,

1
2

'

a

v

tx
a

v

t




   (5.21)     

It is easy to check from equation.(5.21) that, if a particle moves 

with velocity c in one reference frame, it also moves with 

velocity c in any other reference frame, i.e. if x = ct then x’ = ct’. 

Thus the parameter c is the invariant speed. 

 

Knowing about the Maxwell’s equations and electromagnetic 

waves, we can identify this parameter with the speed of light. It is 
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straightforward to check that the Lorentz transformation (5.21) 

and matrix equivalent preserves the space -time interval 

     ,222'2' xctxct   (5.22) 

or it has the Minkowski metric. 

If  ,a  then equations (5.22) and (5.21) produce the non-relativistic 

Galileo transformation:    

  ,' vtxx         tt '  (5.23) 

or in matrix form 

             
.
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t

xv

t

x                                                          

If a > 0, we can write it as 2a . Then equations (5.19) describe a 

Euclidean space-time and preserve the space-time distance: 

     222'2' xtxt    (5.24). 

 

Problem 1: 

(A) By examination of (23) show that 

 
2

T


   (26) 

Where T is the time for the electric field to complete one cycle at a fixed 

z. That is, where T is the temporal period. 

 

(B) By examination of (23) show that  

 
2

k



  (27) 

Where   is the wavelength (that is, the spatial period) of the wave.  

 

(C) By examination of (23) show that the phase velocity of this wave 

is indeed / .k  

 

Problem 2: 

Use equation (17) above to show that the magnetic field b  

corresponding to the electric field (23) has the form, 

0 0

1
ˆcos( )b E t kz y

c
     (28) 

To solve this problem, substitute (23) into the right hand side of (17) and 

then integrate to find the magnetic field. (Don’t just show that (28) 

depends upon substitution alone.) In integrating, be careful to keep 

track of the limits. 
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4.0 CONCLUSION  
 

When electric charge moves through matter, their electromagnetic 

properties differ from that of the same charges were they to move 

through a vacuum. 

 

5.0 SUMMARY 
 

Electromagnetic property is a function of medium and propagation is 

subject to radiation geometry. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Is the propagation of electromagnetic waves affected by vacuum? 

2. Describe how matter influences electromagnetic waves. 

3. When are macroscopic Maxwell’s equations most applicable? 

4. Explain the phenomenon known as collisional interaction 

between the charge carriers. 

5. From which postulates is the Lorentz transformation derived? 

State them. 
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