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INTRODUCTION

An integral equation is an equation in which an
unknown function appears under an integral sign. Integral equation bear
a very close kinship with differential equations and quite often,
problems may be formulated either in differential form or in integral
form.

Very often, integral equations cannot be solved analytically and a
numerical approach has to be adopted; particularly for equations over
arbitrarily profiles. It is the desire of the author that through this course,
you will be encouraged to develop an enquiring attitude towards integral
equation and relate the lessons learnt in this course to the world around
you. Furthermore; you are encouraged to build upon the lessons learnt in
the prerequisite course to strengthen your understanding of the
underlying principles at work in the application of integral equation.

This course, MTH 423: Integral Equations, comprises a total of four
modules and ten units as follows:

Module 1 is composed of 3 Units
Module 2 is composed of 2 Units
Module 3 is composed of 3 Units
Module 4 is composed of 2 Units

In module 1, you will learn the preliminary concepts of linear integral
equation; convert ordinary differential equations into integral equation
and transformation of Sturm-Lowville problems to integral equation.
You shall also learn how to classify linear integral equation and find
approximate solutions to integral equation in Unit 3.

In module 2, you shall learn that the Volterra integral equation is
integral equation with an integration limit containing one of the
variables of integration. You will learn to use the Resolvent Kernel to
solve this class of integral equation. Also you shall discover that for
many integral equations, you must carry out a Laplace Transformation
to arrive at a solution; and that the consequence of this is the inverse
transforms which implies Convolution.

Module 3 will discuss the Fredholm Equations with Degenerate Kernels
and the general method of finding solutions which will make you
conversant with Eigen-functions, as well as Eigen-vectors and
Symmetric Kernels. You will also learn how to easily represent a
function by a series of orthogonal functions and expand Kin Eigen-
functions. Of the several definitions and theorems which you will be
introduced to, shall be those related to positive kernels and convergence
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— a necessary condition for determining a solution for integral equation
in deriving a numerical solution.

Module 4 will take you through the processing of 1% Eigen-value
Integral Transforms via Laplace Transforms, Convolution Theorem and
Inverse Laplace Transform. The application of the transform and
Fourier integral equations will be the concluding part of your study of
MTH 423.

COURSE AIM

The aim of this course is to hone your understanding of integral
equation, whilst acquainting you with the graphical and mathematical
significance of integral equation and its relationship with partial
differential equations. throughout the course, you shall be learn that for
every analytical approach to integral equation solving, there is a
numerical method, and indeed, that some intricately irregular multi-
variable profiles can only be resolved numerically All these are expected
to motivate you towards further enquiry into this very interesting and
highly specialised mathematical habitat.

COURSE OBJECTIVES

You are expected to conscientiously and diligently work through this
course. Upon completion you should be able to:

) explain the basic concepts underlying linear integral equation
investigate the equations which describe the displacement of a
loaded elastic sting

treat the shop stocking problem

convert ordinary differential equations into integral equations
transform Sturm Lowville problems to integral equation

work through a series of examples of transformations and
conversions, and their solutions

classify linear integral equation

find approximate solutions for integral equation

recognise Volterra integral equation

identify the three types of Volterra integral equation

arrive at the Resolvent kernel of a Volterra equation

solve convolution type kernels of the Volterra integral using
Laplace transform

o comfortably solve Fredholm equations

o identify a Neumann series

o solve Fredholm equations with degenerate kernels

o derive the general method of solution of Fredholm equations
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. work with Eigen functions and eigenvectors

. prove that symmetric and continuous Kkernels that are not
identically zero possess at least one Eigen value

) write the Hilbert — Schmidt theorem

o state the convergence theorem

o prove that functions can be represented by series of orthogonal
functions

) expand K in a series of Eigen functions

. define positive kernels

. apply the convolution theorem

. calculate the first Eigen value of an integral equation

J use the variational formula

. recognise integral Laplace transforms as transforms

. derive the solution of integral equation using inverse Laplace
transform

. apply Laplace transform through worked examples

. understand and solve integral equation by the method of Fourier

integral transforms.

WORKING THROUGH THE COURSE

This course requires you to spend quality time to read. The course
content is presented in clear mathematical language that you can easily
relate to and the presentation style is adequate and easy to assimilate.
You should take full advantage of the tutorial sessions because this is a
veritable forum for you to “rub minds” with your peers — which provides
you valuable feedback as you have the opportunity of comparing
knowledge and “rubbing minds” with your course mates.

COURSE MATERIALS

You will be provided course materials prior to commencement of this
course, which will comprise your Course Guide as well as your study
units. You will receive a list of recommended textbooks which shall be
an invaluable asset for your course material. These textbooks are
however not compulsory.

STUDY UNITS
You will find listed below the study units which are contained in this
course and you will observe that there are four modules. The first

module comprises three units, the second has two units, the third has
three units and the last module has two units.

57



MTH 423

INTEGRAL EQUATIONS

Module 1

Unit 1 Linear Integral Equation: Preliminary Concepts

Unit 2 Conversion of Ordinary Differential Equations into
Integral Equation

Unit 3 Classification of Linear Integral Equation

Module 2

Unit 1 S2 Volterra Integral Equation

Unit 2 Convolution Type Kernels

Module 3

Unit 1 Fredholm Equations with Degenerate Kernels

Unit 2 Eigenfunctions and Eigenvectors

Unit 3 Representation of a Function by a Series of Orthogonal
Functions

Module 4

Unit 1 Calculation of 1* Eigenvalue

Unit 2 The Application of the Transform

TEXTBOOKS

Kendall, E. A. (1997). The Numerical Solution of Integral Equations of
the Second Kind. Cambridge Monographs on Applied and
Computational Mathematics.

Arfken, G. & Hans, W. (2000). Mathematical Methods for Physicists.
Port Harcourt: Academic Press.

Andrei, D. P. & Alexander, V. M.

(1998). Handbook of Integral

Equation. Boca Raton: CRC Press.

Whittaker, E. T. & Watson, G. N. (nd). A Course of Modern Analysis.
Cambridge Mathematical Library.

Krasnov, M., Kiselev, A. & Makarenko, G.

(1971). Problems and

Exercises in Integral Equation. Moscow: Mir Publishers.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007).
"Chapter 19. Integral Equation and Inverse Theory". Numerical
Recipes: The Art of Scientific Computing (3rd ed.). New York:
Cambridge University Press.
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ASSESSMENT

Assessment of your performance is partly through Tutor-Marked
Assessments which you can refer to as TMASs, and partly through the
final examinations.

TUTOR-MARKED ASSIGNMENT

This is basically a continuous assessment which accounts for 30% of
your total score. During this course, you will be given four tutor-marked
assignments (TMASs) and you must answer three of them to qualify to sit
for the final examinations. Tutor-Marked Assignments are provided by
your course facilitator and you must return the answered TMAs back to
your course facilitator within the stipulated period.

FINAL EXAMINATION AND GRADING

You must sit for the final examination which accounts for 70% of your
score upon completion of this course. You will be notified in advance of
the date, time and the venue for the examinations which may, or may
not coincide with National Open University of Nigeria semester
examination.

SUMMARY

Each of the four modules of this course has been designed to stimulate
your interest in integral equation through associative conceptual
building blocks in the study and application of integral equation to

practical problem solving.

By the time you complete this course, you should have acquired the
skills and confidence to solve many integral equations. Make sure that
you have enough referential and study material available and at your
disposal at all times, and — devote sufficient quality time to your study.

| wish you the best in your academic pursuits.
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MODULE 1

Unit 1 Linear Integral Equations: Preliminary Concepts

Unit 2 Conversion of Ordinary Differential Equations into
Integral Equations

Unit 3 Classification of Linear Integral Equation Approximate
Solutions

UNIT 1 LINEAR INTEGRAL EQUATION:

PRELIMINARY CONCEPTS
CONTENTS

1.0  Introduction

2.0  Objectives

3.0 Main Content

3.1 Linear Integral Equation: Preliminary Concepts

3.1.1 Loaded Elastic String
3.1.2 Shop Stocking Problem

4.0 Conclusion

5.0 Summary

6.0  Tutor-Marked Assignment

7.0  References/Further Reading

1.0 INTRODUCTION

In integral equations, an unknown function which is the subject seeking
a solution always appears under an integral sign. These equations bear a
close kinship with differential equations suggesting that a differential
equation can be formulated as an integral equation and vice-versa.

The analytical method remains the standard method of solving integral
equations, however, where the analytical method fails; the equation can
be solved numerically.

Let us commence with two common problems to illustrate the basic

concepts of linear integral equations; loaded elastic string and the shop
stocking problem.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
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o explain the basic concepts underlying linear integral equations

) investigate the equations which describe the displacement of a
loaded elastic sting

. treat the shop stocking problem.

3.0 MAIN CONTENT

3.1 Linear Integral Equation: Preliminary Concepts

Let us take a look at some problems, the types of which we encounter
every day and which give rise to integral equation.

3.1.1 A Loaded Elastic String

g a-¢

O

A

Cr———

W

Consider a weightless elastic string as shown in the above figure,
stretched between two horizontal points O and A and suppose that a
weight W is hung from the elastic string and that in equilibrium the
position of the weight is at a distance £from O and at a depth Y below

OA. If W is small compared to the initial tension T in the string, it can
be assumed that the tension of the string remains T during the further
stretching. The vertical resolution of forces gives the equilibrium
equation

T(/¢) + T (m/(a-¢)-w=0

Where AO = a (1.1)

The drop Y due to a weight W situated a distance ¢ along the string
from O is given by

Y = W(a-¢)&/Ta (1.2)

The drop Y in the string at a distance x from O is given by
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Y =xy/¢, 0<x<¢é (1.3)
y = (a-x)n/la-¢) s<x<a (1.4)

Eliminating y, these two results can be written in the form

y = WG(x )T (1.5)

where
G(x,¢&) = x(a-¢&)a, 0<x<¢&
= £a-x)a, &£<x<a (1.6)

Suppose now that the string is loaded continuously with a weight
distribution W(x) per unit length, the elementary displacement at the

point distance x from O, due to the weight distribution over
ESXSEHOE IS

&y = W(EPs Gx &)T
0<xé<a (1.7)

On integrating, displacement due to the complete weight distribution is
given by

y(x) = T OaG(x, EW(E)dE,  O0<x<a (L.8)

Thus, the displacement of the string is given in terms of the weight
distribution. However, if we are given the displacement of the string,
what is the weight distribution?

In this case, we can sew site to equation. (1.8) the form

y(x) =(Ta)’| X[} a-E)W(E)+ - x)[ ¢ (D¢ |

(1.9)

Different this twice, we obtain
y(x) =(Ta)” w(x)
ie. W(x) = Tay"(x) (1.10)

3.1.2 The Shop Stocking Problem

A shop starts selling some goods. It is found that a proportion K(t)
remains unsold at time t after the shop has purchased the goods. It is
required to find the stock at which the shop should purchase the goods
so that the stock of the goods in the shop remains constant (all processes
are deemed to be continuous).
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Suppose that the shop commences business in the goods by purchasing
an amount A of the goods at zero time, and buys at a rate Q(t)
subsequently. Over the time interval

K(t-7)Q(z)dr (1.11)

Thus, the amount of goods remaining unsold at time t, and which was
bought up to that time, is given by

AK () + [[K(t-7)Q(r)dz (1.12)

This is the total stock of the shop and is to remain constant at its initial
value and so

AK () + [K(t-7)Q(r)dz (1.13)
And the required stocking rate Q(t)is the solution of this integral egn.

4.0 CONCLUSION

You have learnt the processes involved in the two illustrative problems.
It is easy to formulate similar solutions for a vast array of problems.

5.0 SUMMARY

The two problems presented demonstrate how to formulate and derive
an integral equation for a suitably structured problem. It also
demonstrates the process of solving the integral equation developed.

1. Apart from the Loaded Elastic String and the Shop Stocking
Problem, can you make a list of 5 different types of problems
which can be solved using integral equation?

2. A transport company distributed workshops within a metropolis
which receives and repairs its broken down vehicles. The
workshop manager discovers that he must always reroute a Y
(t)% of his workshop allocation of vehicles to alternative location
every day as he cannot accommodate them in his workshop
overnight, and he calls you in to tell him the optimum number of
requests for repairs he should entertain every day such that the
workshop is 100% utilised when all related processes are
assumed to be continuous. Formulate an integral equation to help
the workshop manager.
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UNIT 2 CONVERSIONS OF ORDINARY
DIFFERENTIAL
EQUATIONS INTO INTEGRAL EQUATIONS

CONTENTS

1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1 Conversion of Ordinary Differential Equations into
Integral Equations
3.2 Transformation of Sturm Lowville Problems to Integral

Equation
4.0  Conclusion
5.0 Summary

6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

There are many ordinary differential equations which can be converted
into corresponding integral equations and we shall proceed to study how
these transformations can be carried out; particularly in the classical
case of the Sturm Lowville problems and a host of others illustrative of
this transformation process.

20 OBJECTIVES

At the end of this unit, you should be able to:

) convert ordinary differential equations into integral equations
o transform Sturm Lowville problems to integral equations
o work through a series of examples of transformations and

conversions, and their solutions.
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3.0 MAIN CONTENT

3.1 Conversion of Ordinary Differential Equations into
Integral Equations

y*(x)+a,(x) y'(x)+ 2, (x) y(x) = F (x)  (1.14)

with the initial condition,

y0) = yo. ¥y'(0) =y, (1.15)
Let w(x) = y*(x) (1.16)
Then, y'(x) = J'OX (udu +y, (1.17)
—jxu (u)du + y,x + y, (1.18)

Substituting the relations 1.16 to 1.18 into the differential equation, it
follows that

w(x) + [ lay()+a,(¢) (x=u)]w(u) du

= (%)= vy, (%) — y;x a,(x) - ypa,(x) (1.19)

Equation (1.19) can be written in the form
p(x) + [ K u)p()d = g(x)  (1.20)

Which is an integral equation for y(x)

Example 1.1

Form the integral equation corresponding to
yt+2yt+y=0, y(0)=1 y(0)=0

Solution
Let v, =p(x) v =M>

:_[ u)w(u)du +1

Thus, w(x) +2x_[X u du+.[X (x—u)(u)du+1=0

i.e. y(x +I (Bx-u)w(u) +1 =0

3.2  Transformation of Sturm - Linville Problems to Integral
Equation
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A problem which is associated with an expression of the form

Ly = % (P(x)%) —q(x)y, x <x<x, (1.21)

and boundary condition of the form

aly(xl) + blyl(xl) =0 (1-22)
azy(xz) +b, yl(xz)zo

is said to be of Sturm-Lowville type.

There are two problems which are of interest here, namely:
and

are continuous in the interval x <x<x,, and in additionP(x)has a
continuous derivative and does not vanish.

The differential equation (1.23) corresponds to a displacement y caused
by some forcing function f, and the differential equation (1.24) forms
together with the boundary condition, an Eigenvalue problem.

Suppose that Q,, Q,are solutions of the equation Ly =0
with  a,Q,(x,)+b, Q,(x,)=0

a,Q, (x,)+b,Q,"(x,)=0  (1.25)

then,
0 = Qz LQl_Ql I—Qz
d dey ) d (,dd,
- Qz&(Paj 2 dx(F’ dx]
d dQ,  dq,
B dx(P (Qz dx % dx D
Thus,

dQ dd
P L —Q, —2%| = constant (1.26
(Qz dx N dx] (1.26)

Using the method of variation of parameters, look for a solution of the
form
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y(x) =% (X) Q (X) + 2, (X) Q, (X) (1.27)
where z, and z, are to be determined.

Thus,
y' =21 Q +2; Q, +2,Q +2,Q; (1.28)

Let 2z'Q +2z.Q, =0, sothat
Ly = S [P (Q )+ 2 () Q)]
—q(x) (2)z,(x) Qu(x) + 2, (x) Q, (x))
= PZQ+2Q) (129

Since LQ, =LQ, =0

Thus, z, and z, are given by the solutions of equations
7Q +2Q, =0 (1.30)
Pz Q +2 Q)= f(x) (1.31)

1 fQ 1 -1
Whence, z," = B g LA SN O
M e -0 7 Ploor-oq) P

The denominator in these two expressions is constant by (1.26) and by a
suitable scaling of ¢, and ¢, may be taken as —1.

Thus,

Zi:_szy Z; = le (133)
It follows that

z(x) = -[QU)f(du (134

2,00 = [[Q(u) f(u)du(1.35)

where the unspecified limits of integration are the equivalent of the
arbitrary constants of integration and are determined by the necessity of
y satisfying the boundary condition.

Now,

ay+by =a(zQ +2,Q,)+b (lell + zng) (1.36)
Since 22 Q+2, Q, =0
Also alQl(Xl) +b, Qll (Xl) =0 (1.37)

Hence,
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0= aiy(xl) + blyl(xl) =1, (Xl) (a1Q2 (Xl) + lezl(Xl ))
(1.38)

First let us assume that neither Q,norQ, satisfies both boundary
condition, hence, it follows that z, (x,) =0 and so

X) :LX Q(u) fu)du  (1.39)
Similarly,

ay+ bz yl = & (ZlQl ZzQz)+ bz (leQl + ZlQll + Z;Qz + ZzQzl)
= 4 ('ZlQl + ZzQz)"' bz (ZlQll + ZzQ;)
= 2,(2,Q, +b,Q})+2,(@,Q +b,Q/)

Since a, Q,(x, )+ b,Q"(x,)=0,we have

0 =a, y(Xz ) +b, yl(Xz ) =7 (Xz ) (ale (Xz ) + bZQll (X2 ))

Thus, it follows that z,(x,)=0 and so

) = _j Qz )du
j u)du (1.39)
Hence
y(x) = zl( )Ql( ) 2(X)Q, (x)
( ) du +Q2 _[ Ql
y(x) = j:c;(x, u) f(u)du (1.40)

where

G(x,u) = QU)Q,(x) x <u<x (1.41)
The quantity G(x,u) is termed the Green’s fin associated with the
operate L and the boundary condition specified.

We would see that the Eigenvalue problem (1.24) defined and the
boundary condition (1.25) can be reformulated as the integral equation

y(x) +/1LX:G(X, u)r(u) y(u)du = 0 (1.42)

by just replacing f(x)by Ar (x) y(x).
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Let us now consider the case where one of the solutions ¢ and Q,of
Ly =0 do satisfy both boundary condition while the other will not

satisfy either boundary condition. Then, following the provided
argument, if follows that

) = QW ['vl)+ W +y()[ Q)i (143)

X

where x and g are arbitrary and here w(x)does not satisfy either
boundary conditions.

Since both yand Q satisfy the boundary condition, if follows that

0 =ay(x) +b,y'(x)=(aw(x)+ by () [ QU)T (Wdu  (1.44)
0 = a y(Xz ) +b, yl (Xz ) = (az‘//z (Xz ))_[i Q(U) f (u)du (1-45)

w(x) does not satisfy either boundary condition and so if follows that
from (1.44) B = x, and from (1.45) we have

.[Xz Q(u)f(u)du =0 (1.46)

and the solution is only possible when this relation exists between f
and Q. Thus, the integral equation formulation becomes

y = AQ(x) + J'XXZG(X, u) f(u)du (1.47)

Where  +e A = J'Xlw(u) f(u)du is an arbitrary constant and

G(x,u) = Qu)w(x) X <U<X
= Q(X)w(u) x<u<x, (1.48)
Example 1.2

Find an integral equation formulation for the problem defined by

2
d Y 4y =f(x) ngﬁ%, y=0 at x=0, and y=0 at

dx?
K=/
Solution
2
The solutions of d Z + 4y =0 which satisfy the boundary condition at
X

x =0and x:% are Sin2x and Cos2x respectively.
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MTH 423
Neither satisfies both boundary conditions.

W SIN 2X + 2 C0S 2X

Let, vy =
y' = w'sin2x + z' cos 2x + 2wcos 2x 2z sin 2x
2WCos X — 2zsin 2x if w'sin x + z' cos2x =0

1= 2wl cos 2x — 2zt sin 2x — 4wsin 2x — 4z cos 2x

y
Thus,
yt+dy=f
becomes
2W' cos2x — 2zsin2x = f
whence,
1 1 - 1 1
z- =—=f sin 2x, w == f cos2x
2 2
Thus,
1 ¢x . 1 ex
2(x) = —EJ f(u)sin2udu and w(x) = E-[ f (u)cos 2udu

€0S 2X _[X f (u)s2udu

sin2x px
y == L}f(u)cosZudu -

Now y=0 at x=0,s0 that

10 .
0=0- EL f (u)sin 2udu.

a =0

Also, y=0 at x=”4, so that

A
0 _Ejﬂ f(u)cos2udu —0

Thus,
—Zsin ZXL% f (u) cos 2udu — % cos 2x_|'0X f (u)sin 2udu
I%G(x,u) f(u)du

0

where G(x,u)=_—1c052xsin2u 0<u<x
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-1 .
= T
5 sin2xcos2u XSUS/.

4
Example 1.3
Transform the problem defined by
3;2’ +dy =0

when y = 0 at x=0 and y' =0 at x =1 into integral equation form.

Solution

The solution to this problem is

fen Lt A:{MT =123 -

= sin
y 2

2
The two solutionsz 2’:0 which satisfy the boundary conditions are
X

respectively y =xand y =1. (neither satisfies both b.c)

Following through the usual process, it follows that the solution of
d’y
dx?
y = x_|‘1X f(u)du +J.X0uf(u)du

= f(x) under the boundary condition specified is

and so the integral formulation is
y(x) = /IEK(x,u)y(u)du

where
K(x,u) = x 0<x<u [1<u<x
= u <x< <u<
Example 1.4
2
Transform the problem by 'y | y = f(x)

dx?
and the boundary condition y=0 at x=0 and x=x into integral
equation form and indicate what condition must be satisfied by f (x).

Solution
2

d’y

Now sinx satisfies the equation ~+y=0 and both boundary
X

condition

73



MTH 423 INTEGRAL EQUATIONS

d’y

X2

The second solution of the differential equation +y=0 IS cosx,

and this satisfies neither boundary conditions
Let y =zsinx+ wcos x

Following the same process, it follows that
y = sin xjxcosu f(u)du + cos x Isinu f (u)du

Now vy is to vanish at x =0, and so the limit of integration on the second
integral is zero y must also vanish x =z and it follows therefore, that

y(7) COSHIOSinU f(u)du =0

Thus, for a solution to be possible
J'Oﬁsinu f(u)du =0

and y(x) = Asinx+ J.O”G(X, u) f(u)du

where A is arbitrary and
G(x,u) =—sin u cos x 0O<u<u
= —sinxcosu X<Uu<r.

4.0 CONCLUSION

A Sturm-Lowville differential equation with boundary conditions may
be solved by a variety of numerical methods on most occasions;
however, there are situations where it becomes necessary to carry out
intermediate calculations.

5.0 SUMMARY

Ordinary differential equations can be transformed into integral
equations.

6.0 TUTOR-MARKED ASSIGNMENT

1. Transform the problem defined by y’’ — Ky = 0 when y=0 at x=2
and y’=0 at x=4 into integral equation?

2. A Sturm-Lowville type problem can be associated with an
expression of the form

Ly = % (P(x)%) —q(x)y, x <x<x, (1.21)

Write down the form of the second boundary condition when the first is
of this form.
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aly(xl) + blyl(xl) =07
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1.0 INTRODUCTION

Integral equations are classified according to Limits of integration,
placement of unknown function and nature of known function. These
result in Fredholm and Volterra equations on the one hand and integral
equations on the other hand. Finally, the homogeneous and non-
homogeneous fall into the last class, making a total of eight distinct
classes of integral equations.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

) classify linear integral equations
) find approximate solutions for integral equations.

3.0 MAIN CONTENT
3.1 Classification of Linear Integral Equation

Let K(x, y) be a function of two variables xand y defined and let f(x)
and Q(x) be two functions of the variable x continuous in the interval
a < x <h, which are connected by the functional equation

f(x) = Q(x)—4 [K(x y)Q(y)dy (1.49)

The functional equation (1.49) is called a linear integral equation of the
2" kind with the kernel K (x,y). In this equation, every continuous find

Q(x)is transformed into another continuous find f(x);  the
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transformation is linear, since to ¢, Q, +¢,Q,, there corresponds to the
analogous combination c, f, +c, f,.

If the find f(x) vanishes identically, we are dealing with a homogenous
integral equation. If a homogenous equation possesses a solution other
than the trivial solution Q =0, the solution may be multiplied by an
arbitrary constant factor and may therefore, be assumed normalised.

If Q.Q,,---,Q, are solutions of the homogenous equation, then, all

linear combinationC, Q, +---+C, Q, are solutions.

It can also be proved that linearly independent solutions of the same
homogenous internal equation are orthornormal. A value 4 for which
the homogenous equation possesses non-vanishing solutions is called an
Eigenfunction of the kernel for the Eigenvalue A . Their number is finite
for each Eigenvalue.

The integral equation J:J K(x, y)Q(y)dy = f(x) (1.50)
1*' kind. The integral equation

Q(x)=4 .[:K(x, y)Q(y)dy + f(x), a<x<b (1.51)

is termed a Fredholm equation of the 2™ kind.
If K(x,y)=0 y>x, (1.52)
the kernel is said to be of Volterra type.

The integral equation

[Kxy)Qydy = f(x)a<x (1.5)
is termed a Volterra integral equation of the 1* Kind.
If K(x,y) = K(y—x), the kernel is said to be of convolution form.

The integral equation
Q(x) = 2 IOXK(X, y)Q(y)dy + f(x) a<x (1.54)

is termed a Volterra integral equation of the 2™ kind.
In general, it is a Volterra integral equation of the integral equation of
the 2" kind.

If we differentiate equation (1.53) w.r.t x, it follows that

K0 Q0 + [PE o)ay = 1) (155)

If K(x, x) is non-zero, it is possible to divide through by it, and it is clear
that it is an associated Volterra integral equation of the 2™ kind.
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The kernel is said to be symmetric.
if K(x,y) = -Kl(y,x)

The kernel is said to be anti-symmetric
if K(x,y) = K(y,x)

The kernel is said to be Hermitian
if K(x,y) = K(y,x)

3.2  Approximate Solutions
We split the interval into n equal sub-interval, and suppose that we may
write approximately

K(x,y) = Krs(r— <x<

where Krs are constants.
Similarly, when we write

f(x) = f, [r—_léxﬁj

n n
the equation (1.54) becomes

Q) = f,+23K, [ Q(y)dy (1.56)

r-1 r
— < X< —
n m

This shows thatQ also will be a step find taking the values Q,, say.

Equation (1.56) becomes
Q —%ZKrS Q =f  (L57)
s=1

Let K be the nxnmatrix with elements K and let Qbe n vectors,
n

then, we have W4

(1-4K)Q = f (1.58)

The system has thus been reduced approximately to a set of linear
algebraic equations. For these, the theory is well-known and a
computational solution is straight forward.

In a sense, the solution of (1.54) may be regarded as the limit of (1.57)
asn — oo,

Exercises
Solve the equations:
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M QK -2[xQy)dy = ¥

- 1
(i) Q(x) + | e'Q(t)dt = x Q(0)=0
approximately at the parts. x=0,%,1 and y=0, %,1
Compare your results with the exact solution in case (ii).

4.0 CONCLUSION
Linear integral equations can be classified into several groups and sub-

groups such as: Fredholm, Hermitian, Volterra integral equation and
those integral equations which are either symmetric or anti-symmetric.

5.0 SUMMARY

Linear integral equations can be classified according to their common
characteristics.

6.0 TUTOR-MARKED ASSIGNMENT

1. In how many ways can integral equations be classified?

2. What type of integral equation has a fixed (constant) limit of
integration?

3. Distinguish a Volterra type of integral equation from a Fredholm
integral equation.

4. A homogeneous equation is identically non-zero. True or False?

79



MTH 423 INTEGRAL EQUATIONS

7.0 REFERENCES/FURTHER READING

Andrei, D. P. & Alexander, V. M. (1998). Handbook of Integral
Equations. Boca Raton: CRC Press.

Arfken, G. & Hans, W. (2000). Mathematical Methods for Physicists.
Harcourt: Academic Press.

Kendall, E. A. (1997). The Numerical Solution of integral Equations of
the Second Kind. Cambridge Monographs on Applied and
Computational Mathematics.

Krasnov, M, Kiselev, A. & Makarenko, G. (1971). Problems and
Exercises in Integral Equations. Moscow: Mir Publishers.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007).
"Chapter 19. Integral Equations and Inverse Theory". Numerical
Recipes: The Art of Scientific Computing. (3rd ed.). New York:
Cambridge University Press.

Whittaker, E. T. & Watson, G. N. (nd). A Course of Modern Analysis.
Cambridge Mathematical Library.

80



MTH 423 MODULE 4

MODULE 2
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UNIT 1 S2 VOLTERRA INTEGRAL EQUATIONS
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1.0 INTRODUCTION
Volterra integral equations have integration limit which include the
variable as opposed to the Fredholm integral in which the integration

limits are constants.

20 OBJECTIVES

At the end of this unit, you should be able to:

) recognise Volterra integral equations

o comprehend that there are the three types of Volterra integral
equations

o arrive at the Resolvent kernel of a VVolterra equation.

3.0 MAIN CONTENT

Volterra integrals are characterised by the limit of integration being one
variable and of which there are three types. A common solution to
Volterra integrals is to employ the formalism known as the Resolvent.

3.1 Volterra Integral Equations

A kemmel K(x, y)is said to be of Volterra type if
K(x,y)=0, y>x(2.1)
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There are three types of Volterra integral equations.

These are:

(i) The equation of the first type.
f(x) =[ K(x y)Q(y)dy (2.2)
(i)  The equation of the second type.

Q) = A[K(xy) Qly)dy +f(x)  (23)
(ili)  The homogenous equation of the second type.

Qx) =2 [K(xy)Qydy  (24)

The following properties arise:

(i) It is necessary for consistency in the equation of the first kind i.e.
f(0)=0

(i) Any solution to the equation of the second kind cannot be correct
unless Q(0) = f(0)

(ili)  If K is non-singular, there are no Eigenvalue and Eigenfunctions
associated with the homogenous equation (2.4)

(iv)  The equation of the first type can be differentiated to give the
equivalent equation

|qx@Quy+g9%%ﬁwa4%@ (2.5)

Example 2.1

Solve the integral equation
Q(x) =3 [ cos (x—y)Q(y)du + ¢’

Solution
Here Q(0) = f(0) = 1

Differentiating w.r.t x, it follows that
Q'(x) = 3Q(x) —3LXsin (x—y)Q(y)dy +e*

Thus, Q'(0) = 3Q(0)+1 4

Differentiating w.r.t x again, we have
Q(x) = 3 Q'(x) - 3[ cos(x—y)Q(y)dy +e’
= 3Q'(x) - Q(x) + 2¢
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This equation can simply be solved thus:
Q™ -3 Q'(x) + Q(x) = 2¢*

Consider the homogenous equation
Qll _ 3 Ql + Q — 0
LetQ = e™=m*-3m+1=0, m=

J5

+ X7
2

N W

Example 2.2

Solve the integral equation
Q(x) = x+1+ LX(1+2 (x—y))d(y)dy

Solution

Differentiating once, it follows that (Q(0)= f (0)

Q'(x) =+Q(x)+2 _[OXQ(y)dy
Q'(0) = 1+ Q(0) =2
Differentiating again, we have

Q(x) = Q'x) +2Q(x)
ie. Q%-Q'-2Q0 =0

Let Q=e™, m*-m-2 =0 (m+1)(m+2)=0

- or2
Q = Ae”*+Be*

= m

3.2 Resolvent Kernel of Volterra Equation

Let us consider the equation:

Q) —Af K(x y)Q(y)dy =f(x)  (26)

MODULE 4

We can set about the solution by guessing that at least for small x the

integral term will be small. First approximation is then

Qo (X) = f(X) (2.7)
So that IOXK(X, y)Q(y)+J'OXK(x, y)Q, (y)dy

= [Kxy)f(yay (28
The second approximation Q,(x), is then

QM = 10 + 2] K y) fo(y)dy

= f() + 2 [K(xy)fly)dy 29)
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Repeating the argument, we obtain a sequence of approximations.
Q) = f(x) +A[K(xy) Quy)dy (210

Write equation (2.10) in the form

Q = f+[KQ, (2.11)

Sothat Q,, = f + A[KQ,, (212)

Therefore, Q, -Q,, = 4 [K(Q,,-Q,,) (2.13)
Now sety, = f = Q, and Ay, =Q,-Q,, (2.14)

then,
Py, = A[KAI Y,
e
= [Ky,, nz=1 (215)
Now, Qo() - f()

vi(x) = [K(xy) t(y)dy
j X, y) w,(y)dy= _[ X, ), (z)dz
= [ Kb z)dz [K (@ y) f(y)d
= _[ dy.[0 x,z z, y dz
= [ 1)K, (xy) (2.16)
where K, = _[y(x, z)K(z,y)dz

By repetition of the argument, we have
vo(x) = [ K, (xy)f(y)dy (217)
Where K, (x,y) = K(x y)and

Koa (X, y) = LXK(X, z)K, (2, y)dz (2.18)
Also, from equation A"y, = Q, —Q,, S0 that
Zz'wr Q -Qui)+(Ers Qo)+ +(Q-Q)+Q
- Q, (219
Q, Zm (2.20)

By considering equation (2.20), (2.17), we have
Q= 16 +[[ [ K, )]+ ey
(lPo = Qo) (2-21)
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Thus, it is plausible to suppose that
Q(x) = lim Q,(x)

= f(x) + J: {iKr(x,u)}+f(y)dy (2.22)

= f(x) —/1'[ x,y, 1) f(y)dy (2.23)
where R(r, y) Zﬂr 1 (xy). (2.24)

The function R is called the Resolvent kernel.
Let us now determine the conditions under which the power series on
the right hand side of equation is convergent.

Suppose that over 0<x, y<I,|K(x, y)|<K

Then,
a6 y) =| [ K(x 2K (& y)az,
< K2(x-y) = (x—y)K* x>y (2.25)
Also K, (x,y) =0, y > X

Similarly,

j K, (x, 2)K(z, y)dz‘
(x—z)dz:% (x—yy x>y (2.26)

and K, (x,y)=0, x<y

Proceeding in this way, it follows that:
1 ) o
| K, (x y)|< o= (x—y)™ x>y (2.27)

=0 X<y
Thus, the series 2" K, (x, y) is dominated by the series with the n™ term
in n-1
— K" (x- 2.28
D) (x=y)"" (2.28)

now [x—y| < 21, and so the later series is dominated by the series with n"
term

(21K )™ (2.29)

(n—1)

This is the typical term of an exponential series and so it follows that the
series 2.23 for R(x, y, A) always converge.
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The uniqueness of the solution follows easily because, if Q,(x), Qg (x)
are both solution then,

Q. (%) = K y)(Qa(y) Qs (y)ay) (2:30)

Since the resolvent kernel series converges for all values of Ais the
original kernel n bounded.

This is equivalent to saying that there is no Eigenvalue. Thus,

Qn(x) = QB(X)
Example 2.3

Solve the integral equation
Qlx,y) = f(xy) I _[exp X—U+Yy+Vv)Q(u,v) d,d,
K(x y;uv):exp(x u+y— v)

(x, y;u,v) .[_[ X, Y, X', y K(xl, yl,u,v)dxldyl

= op (x-u+y-v) .[u dedy =(x—u)(y-v)ep (x—u+y-v)
Similarly,

K, (X, y;u,v) = J‘:J‘Vy exp (Xx—u+y-v) [(x—xl)(y—yl)]dxldyl

- exp(x—u+y—v).|‘vy<xxl lz)|X(y y)dy

2 2 2 2
_ _ _ 2 _X _ Uillyve oY i
=exp (x—u+y V)KX S Zj(y W ZH

1 2 2
= 2—2(x—u) (y-v)* &p (x—u+y-v)

Hence,
. _ =)y =) vy
K, (x y;u,v) = = exp ( y-Vv)
and so
R(x, y;u,v,) = —ui: K, (x, y;u,Vv)
C en(xus vy S o) (v
= - ( y )Z(; T

The solution is therefore, given as
Qxy) = f(xy)-[ [ R(xy;uv) f(u,v)dudv

0 JO
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4.0 CONCLUSION

Certain properties arise as a consequence of the three types of Volterra
integrals.

5.0 SUMMARY

There are three types of Volterra integral equations, and can be solved
using the Resolvent kernel.

6.0 TUTOR-MARKED ASSIGNMENT

1. How many different type of Volterra Integrals are there. 1, 2, 3 or
4?

2. Which of these three is a Volterra integral equation of the first
type?

(0 = [ K (x ) Q(y)ay

QW) = 2 [K(xv)Qly)ay
Q) = 4 ['K(xy) Qy)dy +f(x)

3. And which is a Volterra integral of the third type?
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1.0 INTRODUCTION
Laplace transformation serves as a powerful tool in the solving of
integral equations. Convolution, the inverse of Laplace transformation,

IS necessary to transform the solution back to the originating domain.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

) describe how convolution type kernels of the Volterra integral
can be solved using Laplace transform

) solve Fredholm equations

) identify a Neumann series.

3.0 MAIN CONTENT
3.1 Convolution Type Kernels

If the kernel of the Volterra integral is of the form K(x - y), the equation

Is said to be of convolution type and may be solved by using the Laplace
transform. The method of solution depends upon the well known result
in Laplace transform that:

J:O e P _LX F(x—y)G(y )y dx
:f e ™ F(x)dx J.: e ™ G(x)dx (2.36)

The term J.OX F(x—y)G(y)du = _LX F(y)G(x—y)dy (2.37)
is the convolution, (faltung) of the two functions F(x) and G(x).
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Let us denote f e " G(x) dx, the Laplace transform of G(x) byG .

Consider the integral equation of the first kind.

f(x) = [ Kx-y)dlydy  (238)

On taking the Laplace transform, it follows that,
F=K Q (239

Thus Q =f/k, (2.40) provided the transforms exist.

The solution is found by finding the inverse transform of Q. It is also

possible to solve the inhomogeneous Volterra equation of the 2™ kind
with the convolution kernels in exactly the same way.

The equation
QX) = f(x) + [ k(x-y)Q(y)dytransforms into
Q

Q = F+K
where Q = (1-K)" f  (2.41)
and Q(x) may be found.

Example 2.5

Solve the integral equation

.[OX sinx (x—y)d(y)dy = 1-cospx
Note that the equation in self-consistent
Taking the Laplace transform, we have

a -l . p _ prpop

p2 +6¥2 p p2 2

. ﬂz(pz +a2) a 52 —a? D
Thus, = = — +

T3 p(p?+5?) ~ p

2 2
Therefore, Q = a+(ﬁ —“ Jcos,b’x
Example 2.6

Solve the integral equation
[ Qix-y)[Qly)-2sinay]dy = xcos ax
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Solution

Taking the transform if follows that
= |= 2a _pr-a’
Q{Q p2+a2} - (p2+a2)2

(NB) [ F(x)) = (-2 - |f (1))

dp
Thus, Q = sinax = cos axare the two possible solutions

Example 2.7

Solve the integral equation

Q) = % + [ eV Q(y)dy
Solution

It follows that
3! 1

p-4
3! 3!
= — +
p p4(p-4)

Q= x® + jox ‘) y3 dy
Example 2.8
Solve the integer-differential equation

Q"(x) + LX 2 QY(y)dy =1
where Q(0) = o, Q'(0) = o

Solution

Taking the Laplace transforms, it follows that

— PQ 1 — p-2

p? — == = — =

T h2 e (Q pz(p—l)Z]

_ 2 12
andQ = ——— = _ + - 4+ £
p’(p-1°  (p-2° p-1 p* p
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Hence,

Cossection

NB:

= p-2 = Ap’-2p°A+Ap+Bp®—-2Bp+B+cp®—cp®+ Dp?
3.2 Fredholm Equations
The Volterra equations considered are a special case of the equation.

Qx) - 2 [k(xy)Qy)dy = f(x) (0<x<)(3.)

Evidently, the special case is where k(x, y)=ofor y>x
We shall take the interval (0,1) as standard and for simplicity write the
integrals without the limit.

Put Qx) = f(x) + Ay, (x)+ 2w, (x)+ (3.2
where y,(x) = [k(xy) f(y)dy
wo(x) = [k y)y,(y)dy
= [k(x y)dy [k(y,2)f(z)dz
= fk, (x y) f ( )dy
and K, (xy) = I K(z, y)dz
w,(x) = IK (x, y) f(y)dy

where

Ku(xy) = [K,(x2) K y)a
The series (3.2) is called the Neumann series just as we consider the
series for the Resolvent kernel.

~R(x,y;4) = K(x, y)+ 1 k, (x, y) + (3.3)
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This series may be proved convergent for a certain sample of values of
A under a variety of conditions. We consider one set of these
conditions.

3.3 Lemma3.l

Suppose K(x, y) is continuous and
sup

Then, the series (3.3) is uniformly convergent for || < M. It is

continuous and the series may be integrated term by term. Also,
R(x, y; A) is for each (x, y) an analytic function of the complex variable

A inside 4] < M7

Proof
We have

|K2 (X, Y]

‘ LZ K(x, x)K(z, y) dz‘

sup| K(x, z)K(z, y)
sup|K(x, z) sup|K(z, y] < M?

IA

IA

By repeating this, we get

K, (x,y] < M" (3.4)
Then, the series (3.3) is dominated by Zi”M".The result follows as
before by Weierstrass M. test in region |AM|<1.The analyticity is

obvious since we are considering each (x,y) the given series
Z a, A, where a, =K, (x,y). The radius of convergence is not less

than M. Note that in this case we have only proved convergence for
|4 < M™, whereas the Volterra equations are true for all A finite.

Example 3.1

Consider the integral equation:
Qx) - 4 [ Qy)dy = f(x)
In this case, K(x, y)=1and K, (x, y)=1

> 1
Thus, R(x,y; 1) = — A=
us, R(x, y; 1) rZ:O: 1
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Also, sup|K(x, y)} = 1. Since ﬁ has a pole at 1, the result may not in

general be extended to smaller M

If A = Ll Q(x) dx, and integrate over (0,1), the equation
Qx) - 2Qy)dy = f(x)
1 1
AL-2) = [ (x)dx = A=
Suppose first that 1 =1.Then,

Q) = F(x) + A = 1)+ [ Flxkx

The equation had thus a unique solution.
Suppose on the other hand that 2 =1.

Then, from the equation Al—1) = jl f(x)dx the original equation will

0

0.

only have a solution if j: f (x) dx

If f does not satisfy this condition and 2 =1, the equation has an infinite
number of solutions Q(x) = f(x)+c where cis a constant and 1 =1 if
an Eigenvalue with corresponding Eigenfunction Q = constant.

Theorem 3.1
i i i S:0<x<1
Suppose K is continuous in the square and set sup [K| =
0< Yy <1 s
The Resolvent kernel R is given by
_R X Y, ﬂ’ Zﬂ’r r+l X y (35)

Where the series is uniformly convergent for [4| < m™

Ris continuous and the series may be integrated term by term. In the
domain ﬁ where ﬁ Is analytic. The following relation holds

K(x,y) + R(x, y; 4) = AIK(X, Z)R(z, y; 1) dz
= ﬂIR(x, z; A) K(z, y)dz

Suppose that fis integrable, then, the unique solution for A eﬁ of
(3.1)is
Q(x)= -2 _[ X, y; A1) f(y)dy
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4.0 CONCLUSION

Convolution type integrals may be solved by the use of Laplace
transform provided the transform exists.

5.0 SUMMARY

It is possible to determine if a Volterra integral is of the convolution
type and then solve it using the method of Laplace where the final
solution is found by finding the inverse transform. This applies also to
the inhomogeneous Volterra equation of the 2" kind which convolution
kernels can be solved in exactly the same way.

6.0 TUTOR-MARKED ASSIGNMENT

1. State the name of the integral equation in which the integration
limits are constants and do not include the variable?
2. What is the relationship between F(x), G(x) and this term?

[ Fx=y)G(y)du = [ F(y)G(x-y)dy

7.0 REFERENCES/FURTHER READING

Andrei, D. P. & Alexander, V. M. (1998). Handbook of Integral
Equations. Boca Raton: CRC Press.

Arfken, G. & Hans, W. (2000). Mathematical Methods for Physicists.
Port Harcourt: Academic Press.

Kendall, E. A. (1997). The Numerical Solution of integral Equations of
the Second Kind. Cambridge Monographs on Applied and
Computational Mathematics.

Krasnov, M., Kiselev, A. & Makarenko, G. (1971). Problems and
Exercises in Integral Equations. Moscow: Mir Publishers.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007).
"Chapter 19. Integral Equations and Inverse Theory". Numerical
Recipes: The Art of Scientific Computing. (3rd ed.). New York:
Cambridge University Press.

Whittaker, E. T. & Watson, G. N. (nd). A Course of Modern Analysis.
Cambridge Mathematical Library.

94



MTH 423 MODULE 4

MODULE 3

Unit 1 Fredholm Equations with Degenerate Kernels

Unit 2 Eigenfunctions and Eigenvectors

Unit 3 Representation of a Function by a Series of Orthogonal
Functions

UNIT 1 FREDHOLM EQUATIONS WITH
DEGENERATE KERNELS

CONTENTS

1.0  Introduction

2.0  Objectives

3.0 Main Content
3.1  Fredholm Equations with Degenerate Kernels
3.2  The General Method of Solution

4.0  Conclusion

5.0 Summary

6.0  Tutor-Marked Assignment

7.0  References/Further Reading

1.0 INTRODUCTION
Fredholm integral equations are integral equations in which the
integration limits are constants which do not include the variable; and

whose solution gives rise to Fredholm theory, the study of Fredholm
kernels and Fredholm operators.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o Solve Fredholm equations with degenerate kernels
o Derive the general method of solution of Fredholm equations.

3.0 MAIN CONTENT

3.1 Fredholm Equations with Degenerate Kernels

Consider the Kernel of the form:

K(xy) = 3 a,(x)b,(y) (36)

p=1

95



MTH 423 INTEGRAL EQUATIONS

where x is finite, and the a, and b, form linearly independent sets. A

kernel of this character is termed a degenerate kernel.
Also, consider the integral equation of the first kind

f(x) = [K(x y)Q(y)dy
= 3 2,00 [b,(y)Qy)dy @)

p=1
1. We note that no solution exist unless f(x) can be written in the
form>’ f a (x) (3.8)
p=1

This is essential for the equation to be self-consistent.
2. The solution is indefinite by any function w(y) which is

orthogonal to all the b_(y) over the range of integration.

Example 3.2

The integral equation
exp (2x) = j” sin(x+y)@(y)ddy o<x<z is not self-consistent and so
does not have a solution.

This is because
j: sin(x+y) ¢(y)dy = sinx _[j cos y #(ydy

+ COSX Jw siny ¢(y)dy
which is a of form Asin x + Bcos x

3.2 The General Method of Solution

Look for a solution of the form
#y) = D ¢, b,(y) (3.9)
g=1

If it exists, it will be a solution and if it is possible to add (y) to it.

The solution proceeds as follows in the integral equation.

f(x) = 2[K(x y)g(y)dy (3.10)
i:lfp a(x) = A i:lap(x) [b,(¥) X by (y)dy (3.11)

- YWY fud @12

p=1

Where B,, = A[b,(y)b,(y)dy (3.13)
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and so the ¢, are defined by

foo = > Bud, 1<ps<n (3.14)
q=1

Since the b, are linearly independent, the determinant \ﬂpq\ does not
vanish and the ¢, can be found uniquely. Also, w(y) in such that

[p(y)K(x y)dy = 0  (3.15)
Example 3.3

Consider the solution of the integral equation
3sinx+2cosx = _[_” sin(x+y)g(y)dy —z<x<zx

Now sin (x+y) = sinxcosy +siny cos x
and so there is consistency

- if m=1
Note also thatj cosycosmydy = oft m=
i zif m=1
. ) oif m=#1
j cosysinmydy = { .
i {ﬂ' if m=1

Oif m=1
7z if m=1

oif m=1

r sinysinmydy:{ —
- T =

r sinycosmydy = {

Hence, the integral equation in indefinite by a quantity of the form

w(y) = C, + i [C, cosny + dn sinny]

n=2
Since J‘_” w(y) sin (x+y)dy= o
Now, look for a solution of the form
#(y) = Acosy + Bsiny
f sin(x+y)g(y)dy =sinx f cos y (Acos y + Bsin y)dy
+ COSX f siny (Acosy+Bsiny)dy

= JI A sinx+ 7B cosx
3sin X + 2¢cos X

Thus, A = 3 ande/
T T
d(y) = (3cosy + 2siny)/z

Note that the process is similar to the idea of finding the particular
integral and complementary function in differential equation theory.
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The solution
#(y) =(3cosy + 2siny)/z

May be termed a particular solution while they(y) a complementary
function.

4.0 CONCLUSION

Fredholm equations can be solved by applying the method of degenerate
kernel.

5.0 SUMMARY

Fredholm integral equations have limits which are constants and not the
variable as in the Volterra integral equations.

6.0 TUTOR-MARKED ASSIGNMENT
1. What kind of kernel is of the form K(x,y) = Zn: a,(x)b,(y)

p=1
where x is finite, and a, and b, form linearly independent sets?

2. Why does exp (2x) = J.” sin(x+y)@(y)ddy o<x<z nothave a
solution
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1.0 INTRODUCTION

Many homogeneous linear integral equations may be viewed as
the continuum limit of Eigenvalue equation.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

. work with Eigenfunctions and Eigenvectors
. prove that symmetric and continuous Kernels that are not
identically zero possess at least one Eigenvalue.

3.0 MAIN CONTENT
3.1 Eigenfunctions and Eigenvectors

Eigenfunction and Eigenvectors associated with the equation:
#(x) = 2] a,(x)b,(y)d(y)dy (3.16)
p=1

can be found as follows
Rewrite (3.16) in the form

ugly) = jz”_;, a,(x)b, (y) #(y)dy (3.17)

This equation satisfied by any function ¢(y) such that

[o,)ely)dy = o (318)
and x=o0, but in general, we shall ignore such functions, any
Eigenfunction must be of the form

o) = Y 4ak) (319
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Thusggép a,(x) = /12 a,(x) [b, (y z¢q (y)dy (3.20)
Whence b, = i ¢, K, (3.21)

Koy = 4] bp(q;aq(y)dy (3.22)
Example 3.4

Find the Eigenvalue and Eigenfunction of the system defined by:
o(x) = Af @ra)plt)dt  o<x<1

Solution
Let ®(x) = ¢, + 4x _zj xt) (¢, + ¢t )t

- fnrt) et - 8]
Whence (equating coefficients)

(1-1)¢, +1% = 0

2 -

Thus, (1-1) (A—) - EA
A = 8152
and 4.4 = —(7x52): (4+3)

Consider now the solution of the integral equation
#x) = A[K(xy) gly)dy + f(x)  (3.23)

Where in this case K in degenerate any solution will be of the form:
p(x) = 2 Z (x) ¢, + f(x)
(Substituting, we have)

= 4] Zl a, (x)b,(y)gly)dy + f(x)

n

A a,(x)b, {AZ% . }dy + f(x)

p=1

ziap leb (v) g, dy

p=1
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- 3a,00]5,0) 1(5)dy + 10
Set Ky, = A[by(y)ay(y)dy
and £, = [b,(y) 1(y)dy

Thus, ¢(x) = 23 a,(x)4, + f(x)
. Aiap(x){}ti K., ¢q+fp}+f(x)
L g = AY Ky gt f, (3.24)

ie. g, — 2 Z;qu ¢, = f, (3.25
g=.

The above equations is a finite system of linear algebraic equations with
matrix A = (k,, )

The solution depends on whether or not det (I1—1A)is zero.
Set (1) = det(I-1A)

Then, (1) is a polynomial of degreen. If 1 is not a roof of (1), then,
(3.23) has a unique solution.

If you write d , for the cofactors you will have:

1 n
=—=>d,_f 3.26
¢q 80(/1); pg " p ( )
The solution of equation (3.23) is then,

600 = 109+ 22" 2a,00,2) [ 0,(v) F(y)

= () = Ap@)]" [olx v;2) f(y)dy (3.27)
Where

P yi2) = -3 Y d.a,(x) b(y) (3.28)

p=1l g=1

and R(x,y; 1) = +5O(X_yﬂ) (3.29)

o(2)
is the Resolvent kernel
i.e. g(x) = f(x)—/I'fR(x, y; 1) f(y)dy (3.30)
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Examples 3.5

Solve the integral equation:
o(x) = 2 @+xt)p)dt + f(x)
Let ¢(x) = @, +@x+ F(x)
= A[ @rxt)[g, + gt + )] dt+ £ (x)

_ ) o
= /1(¢0+2 + foj + Ax(2+3+flj+f(x)

Where f, = [ t'f(t) dt

Equating powers of x and solving for ¢, and ¢, if follows that:
4, (%2 -164+12) = [-44(1-3)f, +64° f,]
422 —164+12) = [64 f, —122(1-1) 1]

The Eigenvalue, are given by the roots of the equation
A -164A+12 = 0

If 4is one of the Eigenvalue, say 8++/52, a solution is possible only if
O = J;l f(x) 8+£/§ —(7+\/5_2)x}dx

and the solution is indefinite by an arbitrary multiple of

4+\/l_3—(7+\/5_2)x

3.2  Symmetric Kernels
K(x,y) = k(y,x) and K is continuous

Theorem 3.2
Let K(x,y) be symmetric and continuous (and not identically zero).

Then, K has at least one Eigenvalue.

Proof
We note that the iterated kernels k,(x, y) are also symmetric and not

identically zero.

Suppose result is not true.
Let us assume that R(x, y; 1), the Resolvent kernel is an integral function

and the series is also convergent for all, 2. may be integrated term by
term.
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Nowset, U, = [K, (x, x)dx

Then, U, + UA* +.... is absolutely convergent.
Now, we have U, = ﬂ K, (x, z) K, (z, x)dxdx
and U, = J.J. KZ2 (x, z) dxdz

(3.40)

Now, H [a K., (x 2)- BK , (x2)] dxdz=>o0

e

a?U,,., —2apfU,, + U, , >0 (3.41)

for all real «, g

U22n < U2n+2 U2n—2 (342)

Form equation (3.40) none of U,, is zero as K is not identically zero.
U2n+2 > UZn
U2n U2n—2

Now, consider series > 2*"U,, assumed convergent.

The ratio of term is
U2n+22/2n+2 _ U

Z2n+2 92

2
UZnK U2n

This ration is > % A% from (3.43)
2

Thus, for % A% >1,the forms in the (3.44) series are non-increasing, so

2
as it is a series of positive terms, the series is divergent. This is a
contradiction.
Thus, we have seen that poles of R(x, y; A) correspond to Eigenvalue

and so K has at least one Eigenvalue.

From the equation (3.44) % A% >1, the smallest Eigenvalue 4, is such

2

A < \/3—74 (3.45)

Theorem 3.3

that

If k(x, y) is symmetric and continuous, the:

o number of Eigenfunctions corresponding to each Eigenvalue is
finite

o Eigenfunction corresponding to different Eigenvalue are
orthogonal

o Eigenvalue is real.
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4.0 CONCLUSION

Eigenvalues and Eigenfunctions can be found for integral equations of
the form ¢(x) = /1.[2 a,(x)b,(y)d(y)dy.
p=l

5.0 SUMMARY

Many homogeneous equations can be solved by determination of their
Eigenvalue.

6.0 TUTOR-MARKED ASSIGNMENT

1. Under what Sturm-Lowville problem assumptions are
Eigenfunction corresponding to different Eigenvalue orthogonal?
2. Solve?

1
d(x) = ;-1[ (1+xt)gp(t)dt + mf(x); 0<x =1
i)
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1.0 INTRODUCTION

In this unit, we shall take a look at orthogonality of systems and show
that Fourier coefficients exist for continuous orthogonal systems and
that orthogonal system can be represented by a series of orthogonal
functions.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. state the Hilbert-Schmidt theorem

o state the Convergence theorem

o prove that functions can be represented by series of orthogonal
functions

o expand K in a series of Eigenfunctions

o define positive kernels.
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3.0 MAIN CONTENT

3.1 Representation of a Function by a Series of Orthogonal
Functions

3.1.1 Lemma 3.4

Let {¢, } be an orthogonal system, and let f be continuous.
Set o, = .f] f(x) g, (x)dx (3.46)
Then, > a2 < [ %(x)dx (3.4.7)

and «.° are known as the Fourier’s coefficient.

Proof:
Take any N. consider

J {f(x)‘i a, eﬁn(X)}2 x>0  (3.48)
i.e. J.{fz(x)—Z Z::an [ ()¢ (x) + Z::anz} dx > o

e [ f2(x)ax > ZT:af (3.49)
On noting that N is arbitrary
f(x) = a4 (x)(350)
We now consider that co;fficients, a,,give the best fir in the sense that

[[fx) - >c, g0 ax (3.51)

IS a minimum.
The answer is that C, = «,, the Fourier coefficients.

To see this, set
L= [[f0 - Yc,a] & (352
I = j[f(x) - > a, ¢n]2 dx  (3.53)

Then, we show that 1), > 1, .For we have,
o= [f(Jdx - 2>°C, [fg d+ >Cr
'[fz(x)dx -2Ya,C, +>C
I, = Ifz(x)dX—ZZaf + 20(,?
I -1 = Z[Cf —aﬁ) - 2a, (Cn—an)]
= Y (C,-a,)) = 0o (354)
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As asserted.
Definitions 3.5

The set of orthogonal system {g, } is said to be complete if

. 2

imﬂf(x)—Zan 6] dx =0  (3.55)
for every continuous function f(x).In this case, the Bessel’s inequality
becomes an equality

ie.  [fP()dx = Do

If {,} is complete, we can then roughly represent any function as a sum

fx) = Ya.é,

the convergence being in the sense of  (3.55)
3.2 Expansion of Kin Eigenfunctions

We examine the possibility of expanding K as a series of
Eigenfunctions.
Consider

Kx.y) = D, ¢(y)
where '[K(x, y)é,(y)dy = @,
ie. o, = A'¢,(x)

n

Then, we will have

K(X, y) — Z¢n(xl¢n(y) (356)

This is valid independent of completeness of {4, }

3.2.1 Definitions 3.6 (Positive Kernels)

A Kernel is said to be positive if

T(.¢) = [[K(xy) g(x)g(y)dxdy > o (3.57)
for all ¢ such that [¢°(x)dx=0 (3.58)
It is easily to see that Eigenvalue are strictly positive.

3.2.2 Theorem 3.7: Convergence

If K(x,y) is positive, then
K(X, y) — i ¢n(xl¢n(y)

the series being absolutely and uniformly convergent.
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3.2.3 Theorem 3.8: Hilbert — Schmidt Theorem

Suppose f(x) can be written in the form

f(x) = [K(xy)gly)dy (359
where K is symmetric and continuous,
Then f = > a, ¢, where the series is absolutely and uniformly

convergent and

a, = [ f(x)g,(x)dx  (3.60)

A convergence of the above theorem is another formula for the
Resolvent R.

Consider the equation:
#x) - A[K(xy) gy)dy = f(x)  (3.61)
Then,
p—f = Afk(x y)g(y)dy
Thus, ¢ — f satisfies the condition of theorem 3.8 and we can write
gx) - f(x) = Da, 4
where a, = [[g(x) - ()] ()
= B — 7 = | 1(

Multiply 3.61 by ¢ (x) and integrate and change order of integration.
This given

J#) g, (x)dx — 2 [4(x)ax [k(x, y) ¢, (y)dy
= jf()¢n()dx (3.62)
Thus, B, - /Zf“ =
Le. B, = 1/114 Hence, o, = in}:i Y
#(x) = f(x
ie.  4(x) an — () (363

This gives the solution of 3.61 in terms of the Eigenfunctions of ¢, (x).
From 3.63, we have
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px) = -2 Z — [ay)
- f(x)—ﬂ{z"’“;_—;y}f(y)dy

= f()-2]R(x, y'ﬂ)f(y)dy

Where R(x, y; 1) z¢ . /1 (3.64)

4.0 CONCLUSION

Fourier’s coefficients exist for orthogonal systems which are
continuous.

5.0 SUMMARY

The Hilbert-Schmidt theorem states that when a kernel is positive, a
series can be derived which is absolutely and uniformly convergent, and
kernel can be represented by a series of Eigenfunctions.

6.0 TUTOR-MARKED ASSIGNMENT

1. Derive an expression for the Fourier coefficient of the continuous
orthogonal system{g, }?

2. Show that the orthogonal system {4, } is complete if
Ilmj )-> e, & " dx = 07

That is, Bessel’s 1nequahty becomes an equality.
3. IfT@¢) = [[Kxy) #(y)dxdy > o, can we deduce if the

associated kernel is posmve or negative? Prove it?
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1.0 INTRODUCTION

Transforms are used to solve equations for which transforms exist while
the inverse transform is a convolution. Suitable conditions exist for the
transform of a convolutionto become the point-wise product of
transforms which means that convolution in one domain is the point-
wise multiplication in another domain.

20 OBJECTIVES

At the end of this unit, you should be able to:

apply the convolution theorem

calculate the first Eigenvalue of an integral equation

use the Variational Formula

recognise Integral Laplace Transforms as Transforms

derive the solution of integral equations using inverse Laplace
Transform.
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3.0 MAIN CONTENT
3.1 Calculation of 1*' Eigenvalue

The modes of vibration in systems are often of great importance. A
powerful and simple method for finding them is provided by variational
formula.

Let ¢, ¢,,... be Eigenfunctions and |4,|<|4,| <...) be the corresponding

Eigenvalue.
Set

I(¢) = [[Kx y)apx)g(y)dxdy
Suppose now that ¢ is arbitrary. Then, by the linear formula

K(x y) = M
We have:
1.4) = IIZ¢n(:3¢n(y) 400 4y iy
Be ik

Then, J (4, ¢) < Z’B” < ﬁZﬂj

where 4, is the smallest Eigenvalue and ¢ is arbitrary. Similar results
may be obtained for the higher Eigenvalues. However, the first is
usually, the most important. ¢ is chosen to make J (4, ¢#) a maximum
and a normal function.

This given an estimate of a bound for A, which usually is fairly
accurate.

Example 3.7

Consider the kernel T in the square
0<x<1 o<y<1 where

T(xy) = L-x)y o<y<x<1
¥ = l-y)x o<x<y<1
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By differentiating the equation
1
X) = A[ T(x y)gly)dy = 0
If is easy to see that if reduces to
¢+ 2¢(x) = 0 ¢lo) = ¢1) = 0
The Eigenfunction are +/2sinnzx (normalized and Eigenvalue are
2 = (nz)’
The linear formula given

xy _ 22 smn;zxsmnzzy

We shall now conS|der the appllcatlon of 3.65 to the determination of 1%
Eigenvalue

(4 =% = 9.869)
First guess ¢ =

I ¢) = j[l xJ. ydy+xj dy}d
1
12

We get A = /1 = 12
12

Second guess (R, t,)

Choose ¢ to be a step function ¢=0except for o<x<l-a where
¢ = P
Choose ¢ normalised. Then, B = (1—2c) one find that

I(p @) = é (L+2a —8a?)

This has a maximum at « = %, when

= T

Then, 4, < — = 32 _ 10.67

_%2 3

The estimate is considerably improved, and the choice of a nose
complicated ¢ will lead to a nose accurate estimate.

3.2 Integral Transforms: Laplace Transforms

If f(t) Is throughout piecewise, continuous, bounded variation and of
exponential order, i.e. 3 M_, so, >

ft) < M, e
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and if we define F(s) = [* e™ f(t)dt (4.1)

Smay be complex, then, F(s) is known as the Laplace transform of
f and is defined when the integral is absolutely convergent for some so,
then, it is also for S such that Res > Redo

The largest half-plane in which the integral is absolutely convergent is

called the half-plane of convergence. The following hold in this half-
plane:

i £{af +bg} = af{f} + bE{g} (4.2)

i.  £{f20)} = s"F(s)-s"* flo7) . . —F™ (o)
ii.  £f*ft) = F(s—a) (4.4)

nd"
() = (1 = F)  (45)
F(o') denotes limit from right

3.3 Convolution Theorem

We define a new function h(t) by

h(t) = f g(u) f(t—u)du = f=*g (4.6)
h(t) is called the convolution product of fand g and is written f *gso
that we have

[ e*ht)dt = [ e (fxg)at (4.7)

= .[:O e f(t)dt f egludu = F(s)C,(s)
3.4 Inverse Laplace Transform

ft) = £F6) = — [ F(s)ds (48)

27z-i c—ioo

= Y residues of F(x)e* at polesof F(s)}
Where C is some real number which is greater than the real part of all
the poles of F(s). We can however use any other alternative method to
obtain f(t).
4.0 CONCLUSION

Kernel can be solved by applying Laplace transform if the transform
exists.
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5.0 SUMMARY

Laplace transform is defined only when an integral is absolutely
convergent and the largest half-plane in which the integral is absolutely
convergent is called the half-plane of convergence.

6.0 TUTOR-MARKED ASSIGNMENT

1. Write an expression for the kernel T in the square defined below
and find its first Eigenvalue?
-1<x<2 0<y<3

2. Do you recognise the transform below? Which transform is it?
F(s) = r e f(t)dt
3. What is the relationship between an inverse Laplace transform

and a convolution?
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UNIT 2 THE APPLICATION OF THE TRANSFORM
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1.0 INTRODUCTION

Laplace and Fourier integral transforms are used to solve integral
equations for which the transform exists and this is demonstrated in this
unit via worked examples.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

) apply Laplace transform through worked examples
) solve integral equations by the method of Fourier integral
transforms.

3.0 MAIN CONTENT
3.1 The Application of the Transform
Example 4.1

Solve the equation:
P +5 ¢t +6p = e t=o0
#0) = 2, ¢'(0) =1
Now, let £(¢) = ¢(s) so that
£y’ = s’ — sg0)-4'(0)=5%(s)- 251

1
—t _

and E{e } = o1

. s?§-2s— 5 — 5 -

. s2§-25-1+ 5(s4 —2) + 6¢ el

. 9 - 1

i (s2+55+6)F = 25+ 11+
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o 2s? +13s +12
e g(s) = (s+1)(s+2)(s+3)

Hence, the poles are not -1, -2, -3

lod

The residue at s=-1is Res,__, =¢®¢1_

2-113+12 1
——— "' = “e
1x2 2
Thatis -2 is 6e™
and —3is — 2 e
2
Thus, ¢(t) = l{e’t +12e —9e
Example 4.2

Consider the Volterra equation:

0= kex-y) iy = g(x)

We want to use Laplace transform to get a solution.

The equation can be written in the form of
f—k+f =g

Take the Laplace transform of both sides to give
f —kf =g

1 i_eSt ds

Take k(t) =
— A
K(s) = >
0=
But L_ = 1+L_
1-Kk 1-k
o= £1{i_} _ £'1{g+k—g_}
1-Kk 1-
: A0 = _
- £ = g+£4h
e
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Where h = and h = 1e®t

Hence,
f(x) = g(x)+)tj: e g(u)du.

Example 4.3

Solve the partial differential equation

2 2
a9 _ 99 _ (o<x<L, t=o0)

Ox? ot?

#(x,0) = o 0<xX</
%(x,o) =0 o<x<I
¢(,t) = o t>0
%f(l,t) = a t>0

Here we want a solution for t >0 and for a finite range of re. Take
Laplace transform w.r.e t (since the t —interval is semi-infinite)

Write ¢(x, s)= .Looe‘“gé(x, t)dt

Take the Laplace transform to give
s O°f > 09
[e ‘y(x, tydt— [ e ‘—2(x,t)dt =0

® st 62¢ _ i —st
But [ e v “(x,t)dt = ke #(x,t)dt
= )
and [e™ f(x Ot = s 5(x,s)—8¢(x,0)+%(x,0)
= S ¢(x, s)

from the boundary condition

Hence, we get

79 (1,5) - 57 7(x,9)=0

This is now an ordinary differential equation for ¢ and to solve it, we
need two boundary conditions, we have
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#(0,s) =0
B gy - [eul?
and —~ (ts) =[e aX(ﬁ,t)dt
= jwae’“dtzg
0 s

We this, solve the following system
bt
fo (x,8)-S? 4 (x,5) =0
ang 92(6:8) _
dx

$(0,5)=0 =

a
S

The solution is
¢ = A(s)sinh sx + B(s)cosh sx

From the first boundary condition B(s)=0and from the second
condition, we have

A(s)S cosh sl = %

a
Als) = — &
(s) s? coshsl
Here, ¢(x,s) = asinh sx
PO s2 coshssl
and g(x,t) = 2> SN SX_ o g

27 . s* cosh sl

wherez lies to the sight of the poles. The integral has poles at s=0 and
at the zeros of coshsl. Consider first s=0

#(x,s)e” :i[sx+ (%) +} {1_%} L+ st ]

S2
1
= 7 [sx + 0(32)]
Simple pole at s =0with reside x.
Now, consider points whose cosh Is =0
+i(2n+ )z

2l
The poles are simple once. We may use the formula:

S:

Res =
s=a gl(a)

Thus,
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Sinh [(Zn +1)i7zx} ol

2l
S:F(azgus)m = 2 =\e 2 2 1)
2 4( n+|)|7r} Sinh {( n+ )m}
2l 2
. i(2n+1)7zt
n Sinh[(zn +1)7z1x}e .
_ Ay
7’ (2n +1)2i

Evidently, poles are complex conjugates, so we require twice the seal
part. Hence,

#(x,t) =ax _i_az'i (0 Sin[@ﬂﬂ)nx}

n=0 (Zn + 1)2 2l

The Laplace transform is suitable for problems with a semi-infinite
domain for the independent variable. It is also necessary that the
(differential) equation should have constant coefficients.

3.2 Fourier Integral Equations

If f(x)is a continuous function, then,

£(x) W (w)dw (4.10)

-l
where F(w) \/_ [Ce

Equation 4.11 gives the solution of the integral 4.10 for F and vice
versa. If f(x) is seal, using the odd property, of sin sinwreand the even

property of coswre, we have, if

f(x) = (%YZ I:coswre gw)dw, 0<x (4.12)

£ (u)du (4.11)

Then,
2"
d(w) :(—) L coswx f(x)dx, 0<w  (4.13)
T
¢(w) and f(x) are the cosine transforms of one another. If
%
f(x) = (E} Jmsinwx gw)dw, 0<x (4.14)
T 0
Then,
2"
¢(w)=(—] IO sinwx f(x)dx, 0<w (4.15)
T

#(w) and f(x) are the sine transforms of one another.
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Example 4.1

Solve the integral equation

aza - = J;mcoswx¢(w)dw, a>0
+X

2 ¢~ acoswx 1 = 2iae™
#w) =(;j-[0 a’+x° x =2_7zi-[—°°a2+x2 dx

because sinwre is odd inx

Evaluation of the integral by the methods of the complex integral
calculus given
gw) = e™, w>0

Example 4.2

Solve the integral equation
#(x) = ﬂj:coswx #(w)dw
#(x)is an even function of x

Because the inverse of a cosinetransform is  another
cosine transformation, we look for a solution of the form

#x) = U(x)£V(x)
where V(x) = (%j% J:Ocoswxu(w)dw

Thus,
d(x) = U(x)=* (%j% Lwcoswxu(w)dw

y) J.Ow COS WX {U (w) + [%)% J':cosvvt U (t)dt} dw

ﬂ_[: cos wx U (w)dw + (gj%ﬂ U(x)

% %
This is true if 1=+ (EJ Thus, to 4 =[Ej , there corresponds a
T T

%
solution U(x)+V(x) and to;t:—(gj , there corresponds a solution

U(x)-V(x).
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This solution will be valid, provided all the integrals exist; U is

%
arbitrary. In this case, the two Eigenvalues A=+ (E) , there exist an
T

infinite of Eigenfunctions.
Example 4.3

Solve the integral equation

%
2 00
#(x) = f(x) + A(—j J:) cos xy ¢(y)dy
T
If 2=+1, there will not in generally be any solution.

This follows example 4.2

Take the transform of the equation to give

@% [ cosxy gy Xy (E)y Jy cosxy £(yky + 2 4(x)

It follows that

00 = 100 + 2 2] ey 1)y 7000

%
(- 2)g(x) = f(x)+/1(%j J?cosxy f(y)dy
and this solution is valid provided that the integral converge. Now, if
1-4 =0 and f(x)is a function such that
%
f(x)+ A E) Iwcosxy f(y)dy =0
T 0

It follows that ¢(x) can be any function for which the integral converge.

SELF-ASSESSMENT EXERCISE

(1)  Solve the integral equation.

X o

el _[0 sin wxg(w)dw a>0

(2)  Find the Eigenvalues and Eigenfunctions of the integral equation.
#x) = A[ sinxy gy)dy

(3)  Find the solution of the integral equation.

d(x) = e + ﬂfsin xy #(y)dy, a>0

A’ #2
(4)  Find the integral equation:
P R
S —joe f(t)dt a>0
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(5)  Solve the integral equation:

#x) = F0)+4 [ Klx=y)g(y)dy
(6)  Solve the integral equation:
1 _ 1 g(y)dy

(x+a)’ 7 x-y
40 CONCLUSION

Transforms are a useful mathematical tool for solving integral equations
for which the applicable transforms exist.

5.0 SUMMARY

A Laplace transformation is applicable for problems with a semi-infinite
domain for the independent variable.

6.0 TUTOR-MARKED ASSIGNMENT

n\'-:lz+:a:E
b

1. Solve _rum sinwx@(w)dx, 0 <b <m

2 sowe @) =4[, sinwt ¢(Fdf
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