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INTRODUCTION 

 

An integral equation is an equation in which an 

unknown function appears under an integral sign. Integral equation bear 

a very close kinship with differential equations and quite often, 

problems may be formulated either in differential form or in integral 

form. 

 

Very often, integral equations cannot be solved analytically and a 

numerical approach has to be adopted; particularly for equations over 

arbitrarily profiles. It is the desire of the author that through this course, 

you will be encouraged to develop an enquiring attitude towards integral 

equation and relate the lessons learnt in this course to the world around 

you. Furthermore; you are encouraged to build upon the lessons learnt in 

the prerequisite course to strengthen your understanding of the 

underlying principles at work in the application of integral equation.  

 

This course, MTH 423: Integral Equations, comprises a total of four 

modules and ten units as follows: 

 

Module 1 is composed of 3 Units 

Module 2 is composed of 2 Units 

Module 3 is composed of 3 Units 

Module 4 is composed of 2 Units 

 

In module 1, you will learn the preliminary concepts of linear integral 

equation; convert ordinary differential equations into integral equation 

and transformation of Sturm-Lowville problems to integral equation. 

You shall also learn how to classify linear integral equation and find 

approximate solutions to integral equation in Unit 3. 

 

In module 2, you shall learn that the Volterra integral equation is 

integral equation with an integration limit containing one of the 

variables of integration. You will learn to use the Resolvent Kernel to 

solve this class of integral equation. Also you shall discover that for 

many integral equations, you must carry out a Laplace Transformation 

to arrive at a solution; and that the consequence of this is the inverse 

transforms which implies Convolution.  

 

Module 3 will discuss the Fredholm Equations with Degenerate Kernels 

and the general method of finding solutions which will make you 

conversant with Eigen-functions, as well as Eigen-vectors and 

Symmetric Kernels. You will also learn how to easily represent a 

function by a series of orthogonal functions and expand K in Eigen-

functions. Of the several definitions and theorems which you will be 

introduced to, shall be those related to positive kernels and convergence 
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– a necessary condition for determining a solution for integral equation 

in deriving a numerical solution.  

 

Module 4 will take you through the processing of 1
st
 Eigen-value 

Integral Transforms via Laplace Transforms, Convolution Theorem and 

Inverse Laplace Transform.  The application of the transform and 

Fourier integral equations will be the concluding part of your study of 

MTH 423. 

 

COURSE AIM 
 

The aim of this course is to hone your understanding of integral 

equation, whilst acquainting you with the graphical and mathematical 

significance of integral equation and its relationship with partial 

differential equations. throughout the course, you shall be learn that for 

every analytical approach to integral equation solving, there is a 

numerical method, and indeed, that some intricately irregular multi-

variable profiles can only be resolved numerically All these are expected 

to motivate you towards further enquiry into this very interesting and 

highly specialised mathematical habitat. 

 

COURSE OBJECTIVES 
 

You are expected to conscientiously and diligently work through this 

course. Upon completion you should be able to: 

 

 explain the basic concepts underlying linear integral equation 

 investigate the equations which describe the displacement of a 

loaded elastic sting  

 treat the shop stocking problem 

 convert ordinary differential equations into integral equations 

 transform  Sturm Lowville problems to integral equation 

 work through a series of examples of transformations and 

conversions, and their solutions 

 classify linear integral equation 

 find approximate solutions for integral equation 

 recognise Volterra integral equation 

 identify the three types of Volterra integral equation 

 arrive at the Resolvent kernel of a Volterra equation 

 solve  convolution type kernels of the Volterra integral using 

Laplace transform 

 comfortably solve Fredholm equations 

 identify a Neumann series 

 solve Fredholm equations with degenerate kernels 

 derive the general method of solution of Fredholm equations 
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 work with Eigen functions and eigenvectors 

 prove that symmetric and continuous kernels that are not 

identically zero possess at least one Eigen value 

 write the Hilbert – Schmidt theorem 

 state the convergence theorem 

 prove that functions can be represented by series of orthogonal 

functions   

 expand K in a series of Eigen functions  

 define positive kernels  

 apply the convolution theorem  

 calculate the first Eigen value of an integral equation 

 use the variational formula 

 recognise integral Laplace transforms as transforms 

 derive the solution of integral equation using inverse Laplace 

transform 

 apply Laplace transform through worked examples 

 understand and solve integral equation by the method of Fourier 

integral transforms. 

 

WORKING THROUGH THE COURSE 
 

This course requires you to spend quality time to read. The course 

content is presented in clear mathematical language that you can easily 

relate to and the presentation style is adequate and easy to assimilate. 

You should take full advantage of the tutorial sessions because this is a 

veritable forum for you to “rub minds” with your peers – which provides 

you valuable feedback as you have the opportunity of comparing 

knowledge and “rubbing minds” with your course mates. 

 

COURSE MATERIALS 
 

You will be provided course materials prior to commencement of this 

course, which will comprise your Course Guide as well as your study 

units. You will receive a list of recommended textbooks which shall be 

an invaluable asset for your course material. These textbooks are 

however not compulsory. 

 

STUDY UNITS 
 

You will find listed below the study units which are contained in this 

course and you will observe that there are four modules. The first 

module comprises three units, the second has two units, the third has 

three units and the last module has two units. 
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Module 1  

 

Unit 1  Linear Integral Equation: Preliminary Concepts 

Unit 2 Conversion of Ordinary Differential Equations into 

Integral Equation 

Unit 3  Classification of Linear Integral Equation 

 

Module 2  

 

Unit 1  S2 Volterra Integral Equation 

Unit 2  Convolution Type Kernels  

 

Module 3  

 

Unit 1  Fredholm Equations with Degenerate Kernels  

Unit 2  Eigenfunctions and Eigenvectors  

Unit 3 Representation of a Function by a Series of Orthogonal 

Functions   

 

Module 4  

 

Unit 1  Calculation of 1
st
 Eigenvalue  

Unit 2  The Application of the Transform  

 

TEXTBOOKS 
 

Kendall, E. A. (1997). The Numerical Solution of Integral Equations of 

the Second Kind. Cambridge Monographs on Applied and 

Computational Mathematics. 

 

Arfken, G. & Hans, W. (2000). Mathematical Methods for Physicists. 

Port Harcourt: Academic Press.  

 

Andrei, D. P. & Alexander, V. M.  (1998). Handbook of Integral 

Equation. Boca Raton: CRC Press.  

 

Whittaker, E. T.  & Watson, G. N. (nd).  A Course of Modern Analysis. 

 Cambridge Mathematical Library. 

 

Krasnov, M., Kiselev, A. & Makarenko, G.  (1971). Problems and 

Exercises in Integral Equation. Moscow:  Mir Publishers.  

 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007). 

 "Chapter 19. Integral Equation and Inverse Theory". Numerical 

Recipes: The Art of Scientific Computing (3rd ed.). New York: 

Cambridge University Press.  
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ASSESSMENT 
 

Assessment of your performance is partly through Tutor-Marked 

Assessments which you can refer to as TMAs, and partly through the 

final examinations. 

 

TUTOR-MARKED ASSIGNMENT 
 

This is basically a continuous assessment which accounts for 30% of 

your total score. During this course, you will be given four tutor-marked 

assignments (TMAs) and you must answer three of them to qualify to sit 

for the final examinations. Tutor-Marked Assignments are provided by 

your course facilitator and you must return the answered TMAs back to 

your course facilitator within the stipulated period. 

 

FINAL EXAMINATION AND GRADING 
 

You must sit for the final examination which accounts for 70% of your 

score upon completion of this course. You will be notified in advance of 

the date, time and the venue for the examinations which may, or may 

not coincide with National Open University of Nigeria semester 

examination. 

 

SUMMARY 
 

Each of the four modules of this course has been designed to stimulate 

your interest in integral equation through associative conceptual 

building blocks in the study and application of integral equation to 

practical problem solving. 

 

By the time you complete this course, you should have acquired the 

skills and confidence to solve many integral equations. Make sure that 

you have enough referential and study material available and at your 

disposal at all times, and – devote sufficient quality time to your study. 

 

I wish you the best in your academic pursuits. 
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MODULE 1  

 

Unit 1  Linear Integral Equations: Preliminary Concepts 

Unit 2 Conversion of Ordinary Differential Equations into 

Integral Equations  

Unit 3 Classification of Linear Integral Equation Approximate 

Solutions  

 

 

UNIT 1  LINEAR INTEGRAL EQUATION: 

PRELIMINARY CONCEPTS 
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Linear Integral Equation: Preliminary Concepts 

3.1.1 Loaded Elastic String 

3.1.2 Shop Stocking Problem 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

In integral equations, an unknown function which is the subject seeking 

a solution always appears under an integral sign. These equations bear a 

close kinship with differential equations suggesting that a differential 

equation can be formulated as an integral equation and vice-versa. 

 

The analytical method remains the standard method of solving integral 

equations, however, where the analytical method fails; the equation can 

be solved numerically. 

 

Let us commence with two common problems to illustrate the basic 

concepts of linear integral equations; loaded elastic string and the shop 

stocking problem. 

 

 

 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
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 explain the basic concepts underlying linear integral equations 

 investigate the equations which describe the displacement of a 

loaded elastic sting  

 treat the shop stocking problem. 

  

3.0 MAIN CONTENT 
 

3.1 Linear Integral Equation: Preliminary Concepts 
 

Let us take a look at some problems, the types of which we encounter 

every day and which give rise to integral equation.  

 

3.1.1 A Loaded Elastic String 
 

 

 

 

 

 

 

 

 

 

 

 

Consider a weightless elastic string as shown in the above figure, 

stretched between two horizontal points O and A and suppose that a 

weight W is hung from the elastic string and that in equilibrium the 

position of the weight is at a distance  from O and at a depth Y below 

OA. If W is small compared to the initial tension T in the string, it can 

be assumed that the tension of the string remains T during the further 

stretching. The vertical resolution of forces gives the equilibrium 

equation  

 

     OWaTT    

 

Where aAO   (1.1) 

 

The drop Y due to a weight W situated a distance   along the string 

from O is given by  

   TaaWY   (1.2) 

 

The drop Y in the string at a distance x  from O is given by 

 

O A 

Y 

W 

Q a

β  

η 

  
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   xyxY 0,  (1.3) 

     axaxay   ,  (1.4) 

 

Eliminating y, these two results can be written in the form 

 

   TxGWy ,  (1.5) 

where  

       xaaxxG 0,,  

     axaxa   ,  (1.6) 

 

Suppose now that the string is loaded continuously with a weight 

distribution  xW  per unit length, the elementary displacement at the 

point distance x  from O, due to the weight distribution over 

  x  is  

  

     TxGWy  ,  

 ax  ,0  (1.7) 

 

On integrating, displacement due to the complete weight distribution is 

given by  

       axdWxGTxy
a

 
 0,,

0

1   (1.8) 

 

Thus, the displacement of the string is given in terms of the weight 

distribution. However, if we are given the displacement of the string, 

what is the weight distribution? 

 

In this case, we can sew site to equation. (1.8) the form  

 

            




   

 x a

x
DWxaWaxTaxy

0

1


 (1.9) 

 

Different this twice, we obtain 

      xWTaxy
111 

  

i.e.    xyTaxW 11  (1.10) 

 

3.1.2 The Shop Stocking Problem 
 

A shop starts selling some goods. It is found that a proportion  tK   

remains unsold at time t after the shop has purchased the goods. It is 

required to find the stock at which the shop should purchase the goods 

so that the stock of the goods in the shop remains constant (all processes 

are deemed to be continuous). 
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Suppose that the shop commences business in the goods by purchasing 

an amount A of the goods at zero time, and buys at a rate  tQ  

subsequently. Over the time interval  

 

      dQtK   (1.11) 

 

Thus, the amount of goods remaining unsold at time t, and which was 

bought up to that time, is given by  

 

       dQtKtAK
t

 
0

 (1.12) 

 

This is the total stock of the shop and is to remain constant at its initial 

value and so  

        dQtKtAK
t

 
0

  (1.13) 

 

And the required stocking rate  tQ is the solution of this integral eqn. 

 

4.0 CONCLUSION  
 

You have learnt the processes involved in the two illustrative problems. 

It is easy to formulate similar solutions for a vast array of problems. 

 

5.0 SUMMARY 
 

The two problems presented demonstrate how to formulate and derive 

an integral equation for a suitably structured problem. It also 

demonstrates the process of solving the integral equation developed. 

 

1. Apart from the Loaded Elastic String and the Shop Stocking 

Problem, can you make a list of 5 different types of problems 

which can be solved using integral equation? 

 

2. A transport company distributed workshops within a metropolis 

which receives and repairs its broken down vehicles. The 

workshop manager discovers that he must always reroute a Y 

(t)% of his workshop allocation of vehicles to alternative location  

every day as he cannot accommodate them in his workshop 

overnight, and he calls you in to tell him the optimum number of 

requests for repairs he should entertain every day such that the 

workshop is 100%  utilised when all related processes are 

assumed to be continuous. Formulate an integral equation to help 

the workshop manager. 
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UNIT 2  CONVERSIONS OF ORDINARY 

DIFFERENTIAL 

 EQUATIONS INTO INTEGRAL EQUATIONS  
 

CONTENTS 

   

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Conversion of Ordinary Differential Equations into 

Integral Equations 

3.2 Transformation of Sturm Lowville Problems to Integral 

Equation 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

There are many ordinary differential equations which can be converted 

into corresponding integral equations and we shall proceed to study how 

these transformations can be carried out; particularly in the classical 

case of the Sturm Lowville problems and a host of others illustrative of 

this transformation process. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 convert ordinary differential equations into integral equations 

 transform  Sturm Lowville problems to integral equations 

 work through a series of examples of transformations and 

conversions, and their solutions. 
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3.0 MAIN CONTENT
  

3.1 Conversion of Ordinary Differential Equations into 

Integral Equations  
 

            xfxyxaxyxaxy  2

1

1

11  (1.14) 
 

with the initial condition,  

 

    1

1

0 0,0 yyyy   (1.15) 

 Let    xyx 11  (1.16) 
 

Then,     1
0

1 yduuxy
x

    (1.17) 

       01
0

yxyduuuxxy
x

     (1.18) 

 

Substituting the relations 1.16 to 1.18 into the differential equation, it 

follows that 

            duuuxxaxax
x

 
0

21   

        xayxaxyxayxf 202111   (1.19) 

 

Equation (1.19) can be written in the form  

        xgduuuxKx
x

  
0

,  (1.20) 

 

Which is an integral equation for  x  

 

Example 1.1 
 

Form the integral equation corresponding to 

  

     00,10,02 1111  yyyxyy  

 

Solution 

 Let    duuyxy
x

x 
0

111
,   

     1
0

  duuuxy
x

  

 

Thus,         012
00

  duuuxduuxx
xx

  

 i.e.
 

      013
0

  uuxx
x

  

3.2 Transformation of Sturm - Linville Problems to Integral 

Equation 
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A problem which is associated with an expression of the form 

 

     21, xxxyxq
dx

dy
xP

dx

d
Ly 








  (1.21) 

 

and boundary condition of the form 

 

     01

1

111  xybxya   (1.22) 

      02

1

222  xybxya  

 

is said to be of Sturm-Lowville type. 

 

There are two problems which are of interest here, namely: 

 

   21 xxxxfLy   (1.23) 

and 

   210 xxxyxrLy    (1.24) 

 

 are continuous in the interval 21 xxx  , and in addition  xP has a 

continuous derivative and does not vanish. 

 

The differential equation (1.23) corresponds to a displacement y caused 

by some forcing function ,f  and the differential equation (1.24) forms 

together with the boundary condition, an Eigenvalue problem.  

 

Suppose that 21, QQ are solutions of the equation 0Ly   

 

with        0111111  xQbxQa  
  

    02

1

22222  xQbxQa  (1.25)  

 

then,  

 21120 LQQLQQ   

 


















dx

dd
P

dx

d
Q

dx

d
P

dx

d
Q 2

1
1

2


 

 

















dx

dQ
Q

dx

dQ
QP

dx

d 2
1

1
2  

Thus,  











dx

dd
Q

dx

dQ
QP 2

1
1

2  constant  (1.26)  

 

Using the method of variation of parameters, look for a solution of the 

form 
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         xQxzxQxzxy 2211   (1.27) 

 

where 21  and zz  are to be determined. 

 

Thus,  

 1

22

1

112

1

211
11 QzQzQzQzy    (1.28) 

 

Let     ,02

1

21

1

1  QzQz  so that  

            xQxzxQxzxP
dx

d
Ly 1

21

1

11   

             xQxzxQxzzxq 2211   

  1

2

1

2

1

1

1

1 QzQzP   (1.29) 

 

Since 021  LQLQ  

 

Thus, 1z  and 2z  are given by the solutions of equations 

 02

1

21

1

1  QzQz  (1.30) 

    xfQzQzP  1

2

1

2

1

1

1

1  (1.31) 

  

Whence, 
   1

21

1

12

11

21

21

1

12

21

1
QQQQP

fQ
z

QQQQP

fQ
z







  (1.32) 

 

The denominator in these two expressions is constant by (1.26) and by a 

suitable scaling of 1  and 2  may be taken as 1 . 

Thus,  

 ,2

1

1 fQz           1

1

2 fQz   (1.33) 

It follows that  

       duufuQxz
x

x 21  (1.34) 

       duufuQxz
x

p 12  (1.35) 

 

where the unspecified limits of integration are the equivalent of the 

arbitrary constants of integration and are determined by the necessity of 

y  satisfying the boundary condition. 

Now, 

   1

22

1

11122111

1

11 QzQzbQzQzaybya    (1.36) 

 Since 02

1

2

1

1  QzQz  

 Also     01

1

11111  xQbxQa   (1.37) 

 

Hence, 
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           1

1

21121121

1

1110 xQbxQaxzxybxya 

 (1.38) 

 

First let us assume that neither 1Q nor 2Q  satisfies both boundary 

condition, hence, it follows that   012 xz  and so  

 

       duufuQxz
x

x 1
12

 (1.39) 

Similarly, 

 

    1

222

1

2

1

111

1

1222112

1

22 QzQzQzQzbQzQzaybya   

     1

22

1

11222112 QzQzbQzQza   

     1

12121

1

22222 QbQazQbQaz   

 

Since     ,02

1

2222  xQbxQa we have  
 

            2

1

12212212

1

2220 xQbxQaxzxybxya   
 

Thus, it follows that   021 xz  and so 
 

       duufuQxz
x

x
2

21  

              duufuQ
x

x
2

2   (1.39) 

Hence  

           xQxzxQxzxy 2211   

             duufuQxQduufuQxQ
x

x

x

x  
1

2

1221  

     
2

1

,
x

x
duufuxGxy  (1.40) 

 

where 
 

     xQuQuxG 21,     xux 1  (1.41) 

The quantity  uxG ,  is termed the Green’s fin associated with the 

operate L and the boundary condition specified. 

 

We would see that the Eigenvalue problem (1.24) defined and the 

boundary condition (1.25) can be reformulated as the integral equation 

 

        0,
2

1

  duuyuruxGxy
x

x
  (1.42)  

 

by just replacing  xf by    .xyxr  
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Let us now consider the case where one of the solutions 1 and 2Q of 

0Ly  do satisfy both boundary condition while the other will not 

satisfy either boundary condition. Then, following the provided 

argument, if follows that 

 

             duufuQxduuuxQxy
x

x

x  


  (1.43) 

 

where x  and   are arbitrary and here  x does not satisfy either 

boundary conditions.  

 

Since both y and Q  satisfy the boundary condition, if follows that 

 

            duufuQxbxaxybxya
x



1

1

1

111111

1

1110  (1.44) 

          duufuQxaxybxya
x



2

2222

1

2220  (1.45) 

 

 x  does not satisfy either boundary condition and so if follows that 

from (1.44) ,x  and from (1.45) we have  

 

    0
2

1

 duufuQ
x

x
 (1.46) 

 

and the solution is only possible when this relation exists between f  

and .Q  Thus, the integral equation formulation becomes  

      duufuxGxQAy
x

x
2

1

,  (1.47) 

Where       +e     duufuA
x

x
1

 is an arbitrary constant and  

       xuQuxG ,  xux 1  

   uxQ   2xux    (1.48) 

Example 1.2 

 

Find an integral equation formulation for the problem defined by 

  
4

04
2

2

 xxfy
dx

yd
,  0y  at ,0x  and 0y  at 

4
x  

 

Solution  

The solutions of 04
2

2

 y
dx

yd
 which satisfy the boundary condition at 

0x and 
4

x  are xSin2  and xCos2 respectively. 

 



MTH 423               INTEGRAL EQUATIONS 

72 

Neither satisfies both boundary conditions. 

 

Let,  xzxwy 2cos2sin   

 xzxwxzxwy 2sin22cos22cos2sin 111   

      02cossin if 2sin2cos2 11  xzxwxzxw  

    xzxwxzxwy 2cos42sin42sin22cos2 1111   

 

Thus,  

  fyy  411  

 

becomes  

  fxzxw  2sin22cos2 1  

 

whence, 

  ,2sin
2

11 xfz   xfw 2cos
2

11   

Thus,  

      uduufxz
x

2sin
2

1



 and     uduufxw
x

2cos
2

1



 

 

     udusuf
x

uduuf
x

y
xx

2
2

2cos
2cos

2

2sin
 


 

 

Now ,0at  0  xy so that 

 

      .2sin
2

1
00

0

uduuf


 

0   

 

Also, ,
4

at  0  xy  so that 

    02cos
2

1
0

4

  uduuf



 

.
4

      

 

Thus, 

     uduufxuduufxy
x

x
2sin2cos

2

1
2cos2sin

2

1

0

4

 


 

     duufuxG
4

0
,



 

 

where     uxuxG 2sin2cos
2

1
,


   xu 0  
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     ux 2cos2sin
2

1
  .

4
 ux  

 

Example 1.3 

 

Transform the problem defined by 

  0
2

2

 y
dx

yd
  

when 0y  at 0x  and 01 y  at 1x  into integral equation form. 

 

Solution  

 

The solution to this problem is 

  
   

2

2

12
,

2

12
sin 







 








 nxn
y      ,3,2,1n  

The two solutions 0
2

2


dx

yd
 which satisfy the boundary conditions are 

respectively xy  and 1y . (neither satisfies both b.c) 

 

Following through the usual process, it follows that the solution of 

   xf
dx

yd


2

2

 under the boundary condition specified is  

     duufuduufxy
x

x

 
0

1
 

 

and so the integral formulation is  

       duuyuxKxy 
1

0
,   

where  

  
 

1             

0,





xuu

uxxuxK









0

1

ux

xu
 

 

Example 1.4 

Transform the problem by  xfy
dx

yd


2

2

 

and the boundary condition 0y   at 0x  and x  into integral 

equation form and indicate what condition must be satisfied by  xf . 

 

Solution  

Now xsin  satisfies the equation 0
2

2

 y
dx

yd
 and both boundary 

condition  



MTH 423               INTEGRAL EQUATIONS 

74 

The second solution of the differential equation 0
2

2

 y
dx

yd
 is ,cos x  

and this satisfies neither boundary conditions  

Let xwxzy cossin   

 

Following the same process, it follows that  

     duufuxduufuxy
x

x

  sincoscossin  

Now y is to vanish at ,0x  and so the limit of integration on the second 

integral is zero y  must also vanish x  and it follows therefore, that 

      0sincos
0

 duufuy


  

 

Thus, for a solution to be possible 

    0sin
0

 duufu


 

and      duufuxGxAxy 


0
,sin  

 

where A  is arbitrary and  

    xuuxG cossin,   uu 0  

  ux cossin  . ux  

 

4.0 CONCLUSION  
 

A Sturm–Lowville differential equation with boundary conditions may 

be solved by a variety of numerical methods on most occasions; 

however, there are situations where it becomes necessary to carry out 

intermediate calculations. 

5.0 SUMMARY 
 

Ordinary differential equations can be transformed into integral 

equations. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Transform the problem defined by y’’ – Ky = 0 when y=0 at x=2 

and y’=0 at x=4 into integral equation? 

2. A Sturm-Lowville type problem can be associated with an 

expression of the form 

     21, xxxyxq
dx

dy
xP

dx

d
Ly 








  (1.21) 

 

Write down the form of the second boundary condition when the first is 

of this form. 
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    01

1

111  xybxya ? 
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UNIT 3  CLASSIFICATION OF LINEAR INTEGRAL  

EQUATION 
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Classification of Linear Integral Equation 

3.2 Approximate Solutions 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor- Marked Assignments 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Integral equations are classified according to Limits of integration, 

placement of unknown function and nature of known function. These 

result in Fredholm and Volterra equations on the one hand and integral 

equations on the other hand. Finally, the homogeneous and non-

homogeneous fall into the last class, making a total of eight distinct 

classes of integral equations. 

 

2.0 OBJECTIVES 
  

At the end of this unit, you should be able to: 

 

 classify linear integral equations 

 find approximate solutions for integral equations. 

 

3.0 MAIN CONTENT 
 

3.1 Classification of Linear Integral Equation 
 

Let  yxK ,  be a function of two variables x and y  defined and let  xf  

and  xQ  be two functions of the variable x  continuous in the interval 

,bxa   which are connected by the functional equation  

       dyyQyxKxQxf  ,  (1.49) 

 

The functional equation (1.49) is called a linear integral equation of the 

2
nd

 kind with the kernel  yxK , . In this equation, every continuous find 

 xQ is transformed into another continuous find  ;xf   the 
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transformation is linear, since to ,2211 QcQc   there corresponds to the 

analogous combination .2211 fcfc    

 

If the find  xf  vanishes identically, we are dealing with a homogenous 

integral equation. If a homogenous equation possesses a solution other 

than the trivial solution ,0Q   the solution may be multiplied by an 

arbitrary constant factor and may therefore, be assumed normalised. 

If nQQQ ,,, 21    are solutions of the homogenous equation, then, all 

linear combination nn QCQC 11  are solutions. 

 

It can also be proved that linearly independent solutions of the same 

homogenous internal equation are orthornormal. A value     for which 

the homogenous equation possesses non-vanishing solutions is called an 

Eigenfunction of the kernel for the Eigenvalue  . Their number is finite 

for each Eigenvalue.  

 

The integral equation      xfdyyQyxK
b

a
 ,   (1.50) 

1
st
 kind. The integral equation  

       xfdyyQyxKxQ
b

a
  , ,  bxa   (1.51) 

is termed a Fredholm equation of the 2
nd

 kind.  

If   ,0, xyyxK    (1.52) 

the kernel is said to be of Volterra type. 

 

The integral equation 

     xfdyyQyxK
x

a
 ,  xa    (1.5) 

is termed a Volterra integral equation of the 1
st
 Kind. 

If    ,, xyKyxK   the kernel is said to be of convolution form. 

 

The integral equation 

        xaxfdyyQyxKxQ
x

 0 ,    (1.54) 

is termed a Volterra integral equation of the 2
nd

 kind.  

In general, it is a Volterra integral equation of the integral equation of 

the 2
nd

 kind. 

 

 

If we differentiate equation (1.53) w.r.t ,x  it follows that  

   
 

   xfdyyQ
x

yxK
xQxxK

x

a

1,
, 




   (1.55) 

 

If  xxK ,  is non-zero, it is possible to divide through by it, and it is clear 

that it is an associated Volterra integral equation of the 2
nd

 kind. 
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The kernel is said to be symmetric. 

 if    xyKyxK ,,    

 

The kernel is said to be anti-symmetric  

 if    xyKyxK ,,   

 

The kernel is said to be Hermitian  

 if    xyKyxK ,,   

 

3.2 Approximate Solutions  
 

We split the interval into n equal sub-interval, and suppose that we may 

write approximately 

   















n

s
y

n

s

n

r
x

n

r
KyxK rs

1
,

1
,  

where Krs  are constants. 

Similarly, when we write  

   












n

r
x

n

r
fxf r

1
 

the equation (1.54) becomes  

   dyyQKfxQ
n

s

rsr

n
s

n

s 





1
1

  (1.56) 

  
m

r
x

n

r


1
 

 

This shows thatQ  also will be a step find taking the values ,rQ  say. 

Equation (1.56) becomes 

rs

n

s

rsr fQK
n

Q  
1


  (1.57) 

Let K  be the nn matrix with elements 
n

K rs  and let Q be n  vectors, 

then, we have W4 

  fQKI    (1.58) 

 

The system has thus been reduced approximately to a set of linear 

algebraic equations. For these, the theory is well-known and a 

computational solution is straight forward. 

 

In a sense, the solution of (1.54) may be regarded as the limit of (1.57) 

as n . 

 

Exercises  

Solve the equations:  
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(i)     2
1

0
2 xdyyQxyxQ    

(ii)       00
1

0
 

 QxdttQexQ tx  

approximately at the parts. 1,,0  and 1,,0 2
1

2
1  yx   

Compare your results with the exact solution in case (ii). 

 

4.0 CONCLUSION  
 

Linear integral equations can be classified into several groups and sub-

groups such as: Fredholm, Hermitian, Volterra integral equation and 

those integral equations which are either symmetric or anti-symmetric. 

 

5.0 SUMMARY 
 

Linear integral equations can be classified according to their common 

characteristics. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. In how many ways can integral equations be classified? 

2. What type of integral equation has a fixed (constant) limit of 

integration? 

3. Distinguish a Volterra type of integral equation from a Fredholm 

integral equation. 

4. A homogeneous equation is identically non-zero. True or False? 
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MODULE 2 
 

Unit 1  S2 Volterra Integral Equations 

Unit 2  Convolution Type Kernels  

 

 

UNIT 1  S2 VOLTERRA INTEGRAL EQUATIONS 
 

CONTENTS 
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3.0 Main Content 
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5.0 Summary 
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1.0 INTRODUCTION 
 

Volterra integral equations have integration limit which include the 

variable as opposed to the Fredholm integral in which the integration 

limits are constants. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 recognise Volterra integral equations 

 comprehend that  there are the three types of Volterra integral 

equations 

 arrive at the Resolvent kernel of a Volterra equation. 

 

3.0 MAIN CONTENT 
 

Volterra integrals are characterised by the limit of integration being one 

variable and of which there are three types. A common solution to 

Volterra integrals is to employ the formalism known as the Resolvent. 

 

3.1 Volterra Integral Equations 
 

A kernel  yxK , is said to be of Volterra type if 

  xyyxK  ,0, (2.1) 
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There are three types of Volterra integral equations. 
 

These are: 

 

(i) The equation of the first type. 

     dyyQyxKxf
x

 0
,   (2.2) 

(ii) The equation of the second type.  

       xfdyyQyxKxQ
x

 0 ,  (2.3) 

(iii) The homogenous equation of the second type.  

     dyyQyxKxQ
x


0

,   (2.4) 

 

The following properties arise:  
 

(i) It is necessary for consistency in the equation of the first kind i.e. 

  00 f  

(ii) Any solution to the equation of the second kind cannot be correct 

unless    00 fQ   

(iii) If K  is non-singular, there are no Eigenvalue and Eigenfunctions 

associated with the homogenous equation (2.4) 

(iv) The equation of the first type can be differentiated to give the 

equivalent equation 

   
 

   xfyQ
x

yxK
xQxxK

x
1

0

,
, 




    (2.5) 

 

Example 2.1 

 

Solve the integral equation 

       x
x

eduyQyxxQ  0 cos3  

 

Solution  

 

Here     100  fQ  

 

Differentiating w.r.t x , it follows that  

         x
x

c
edyyQyxxQxQ   sin331  

 

Thus,     410301  QQ  

 

Differentiating w.r.t x  again, we have 

         x
x

edyyQyxxQxQ  0
111 cos33   

     xexQxQ 23 1   
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This equation can simply be solved thus: 

     xexQxQQ 23 111   

 

Consider the homogenous equation 

 03 111  QQQ  

Let 
2

5

2

3
,0132  mmmeQ mx  

 

Example 2.2 

 

Solve the integral equation 

        dyydyxxxQ
x

 
0

211  

 

Solution  

 

Differentiating once, it follows that     100  fQ  

      dyyQxQxQ
x


0

1 2  

     20101  QQ  

 

Differentiating again, we have  

      xQxQxQ 2111   

i.e. 02111  QQQ    

Let     02102, 2  mmmmeQ mx   

2or   m  

 xx eBeAQ 2   

 

3.2 Resolvent Kernel of Volterra Equation  
 

Let us consider the equation:  

       xfdyyQyxKxQ
x

 0 ,   (2.6) 

 

We can set about the solution by guessing that at least for small x  the 

integral term will be small. First approximation is then  

   xfxQ 0   (2.7) 

So that        dyyQyxKyQyxK
xx

0
00

,,    

    dyyfyxK
x


0

,  (2.8) 

The second approximation  ,1 xQ  is then 

         dyyfyxKxfxQ
x

0
0

1 ,   

                 dyyfyxKxf
x

0
0

,   (2.9) 
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Repeating the argument, we obtain a sequence of approximations. 

        dyyQyxKxfxQ n

x

n 1
0

,    (2.10) 

 

Write equation (2.10) in the form 

  1nn QKfQ   (2.11) 

So that    21 nn QKfQ   (2.12) 

Therefore,     211 nnnn QQKQQ   (2.13) 

Now set 100  and  nnn

n QQQf   (2.14) 

then, 

   

 1

1

n

n

n

n K    

i.e.  

 11    nK nn   (2.15) 

Now,     xfxQ 0  

        dyyfyxKx
x


0

1 ,  

           zdzzxKdyyyxKx
xx

1
0

1
0

2 ,,     

        dyyfyzKzdzxK
zx


00

,,  

        zdyzKzxKdyyf
xx

,,
00 

 

              yxKyf
x

,2
0   (2.16) 

 where     zdyzKzxK
x

y
,,2   

 

By repetition of the argument, we have  

     dyyfyxKx
x

nn 
0

,   (2.17) 

Where    yxKyxK ,,1   and  

      zdyzKzxKyxK n

x

y
n ,,,1   (2.18) 

 Also, from equation ,1 nnn

n QQ  so that 

      00121

0

1 QQQQeQQ nn

n

r

nnr

r  



   

    nQ  (2.19) 





n

r

r

r

nQ
0

   (2.20) 

 

By considering equation (2.20), (2.17), we have  

       dyyyxKxfQ
x n

r

r

r

n 







  


0

1

,  

 00 Q  (2.21) 
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Thus, it is plausible to suppose that  

     xQxQ n
n 

 lim   

     dyyfuxKxf
x

r

r 







  




0

1

,   (2.22) 

      dyyfyxRxf
x


0

,,    (2.23) 

where    yxKyrR r

r

r ,, 1

0







  .  (2.24) 

The function R  is called the Resolvent kernel. 

Let us now determine the conditions under which the power series on 

the right hand side of equation is convergent. 

 

Suppose that over ,,0 lyx    KyxK ,  

 

Then,  

      
x

y
zdyzKzxKyxK ,,,2  

          yxKyxyxK  22   (2.25) 

Also     ,0,2 yxK   xy   

 

Similarly, 

       
x

y
zdyzKzxKyuK ,,, 23  

     yxyxKzdzxK
x

y
 

233

2

1
  (2.26) 

and   yxyxK  ,0,3  

 

Proceeding in this way, it follows that:  

  
 

  yxyxK
n

yxK
nn

n 



1

1
1

1
,   (2.27) 

        yx  0  

Thus, the series  yxKn

n ,  is dominated by the series with the n
th

 term  

 
 

  1

!1






nn
n

yxK
n


   (2.28) 

now ,2lyx   and so the later series is dominated by the series with n
th

 

term  

 
 

  1
2

!1





n
n

lK
n

K
  (2.29) 

 

This is the typical term of an exponential series and so it follows that the 

series 2.23 for  ,, yxR  always converge. 
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The uniqueness of the solution follows easily because, if    xQxQ BA ,  

are both solution, then,  

          dyyQyQyxKxQxQ BA

x

AA 
0

,,   (2.30) 

Since the resolvent kernel series converges for all values of  is the 

original kernel n  bounded. 

 

This is equivalent to saying that there is no Eigenvalue. Thus, 

   xQxQ Bn   

 

Example 2.3 

 

Solve the integral equation  

        vu

x y

ddvuQvyuxyxfyxQ ,exp,,
0 0     

   vyuxvuyxK  exp,;,1  

      111111

2 ,,,,,,,;, dydxvuyxKyxyxKvuyxK
x

u

u

v   

       vyuxvyuxdydxvyux
y

v

x

u
  expexp 11  

Similarly, 

 

          1111

3 exp,;, dydxyyxxvyuxvuyxK
x

u

y

v
     

        11

2

1 12

exp dyyyxxvyux
x

u

y

v

x    

 

   



























2222
exp

22
2

22
2 v

vy
y

y
u

xu
x

xvyux  

       vyuxvyux  exp
2

1 22

2
 

Hence, 

   
   

  
 vyux

u

vyux
vuyxK

nn

n 







exp
!1

,;,
2

11

 

and so 

     





1

,;,,,;,
u

n vuyxKvuyxR  

   
   

 








0
2

!
exp

u

xu

u

vyux
vyux  

The solution is therefore, given as 

          dudvvufvuyxRyxf
x

o

y

o
,,;,,yx,Q    
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4.0 CONCLUSION  
 

Certain properties arise as a consequence of the three types of Volterra 

integrals. 

 

5.0 SUMMARY 
 

There are three types of Volterra integral equations, and can be solved 

using the Resolvent kernel. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. How many different type of Volterra Integrals are there. 1, 2, 3 or 

4? 

2. Which of these three is a Volterra integral equation of the first 

type? 

 

 
     dyyQyxKxf

x

 0
,  

      dyyQyxKxQ
x


0

,  

        xfdyyQyxKxQ
x

 0 ,  

 

3. And which is a Volterra integral of the third type? 
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UNIT 2     CONVOLUTION TYPE KERNELS  
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Convolution Type Kernels 

3.2 Fredholm Equations 

3.3 Lemma 3.1 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Laplace transformation serves as a powerful tool in the solving of 

integral equations. Convolution, the inverse of Laplace transformation, 

is necessary to transform the solution back to the originating domain. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 describe how convolution type kernels of the Volterra integral 

can be solved using Laplace transform 

 solve Fredholm equations 

 identify a Neumann series. 

 

3.0 MAIN CONTENT 
 

3.1 Convolution Type Kernels  
 

If the kernel of the Volterra integral is of the form  ,yxK  the equation 

is said to be of convolution type and may be solved by using the Laplace 

transform. The method of solution depends upon the well known result 

in Laplace transform that: 

     dxdyyGyxFe
x

oo

px

 


      

     dxxGedxxFe
o

px

o

px







   (2.36) 

The term         
x

o

x

o
dyyxGyFduyGyxF  (2.37) 

is the convolution, (faltung) of the two functions  xF  and  .xG  
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Let us denote   ,dxxGe
o

px




 the Laplace transform of  xG  byG . 

 

Consider the integral equation of the first kind. 

      dyydyxKxf
x

 
0

 (2.38) 

 

On taking the Laplace transform, it follows that,  

 QKF   (2.39) 

Thus kfQ , (2.40) provided the transforms exist. 

 

The solution is found by finding the inverse transform of Q . It is also 

possible to solve the inhomogeneous Volterra equation of the 2
nd

 kind 

with the convolution kernels in exactly the same way. 

 

The equation  

         dyyyxkxfx
x

o  QQ transforms into 

 QQ KF   

where   fK
1

1Q


  (2.41) 

and  xQ  may be found. 

 

Example 2.5 

 

Solve the integral equation 

     xdyydyxx
x

o
cos1sin   

Note that the equation in self-consistent  

Taking the Laplace transform, we have 

  
 22

222

2222

1
Q

















 pp

pp

pp

p

pp
 

Thus,  
 
  22

22

22

222

Q















 







p

p

ppp

p
 

Therefore, x



 cosQ

22








 
  

Example 2.6 

 

Solve the integral equation 

      axxdyayyyx
x

o
cossin2QQ   
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Solution  
 

Taking the transform if follows that 

 
 222

22

22

2
QQ

ap

ap

ap

a















  

         ff
dp

d
xfx

n

u
u

12 NB  

Thus,  axax cossinQ  are the two possible solutions  

 

Example 2.7 

 

Solve the integral equation 

      dyyexx
x

o

yx


 QQ 33   

 

Solution  

 

It follows that 

Q
3

1

4

!3
Q




pp
 

4

!3

3

1
1Q

1

pp













  

Hence,  
















4

1
1

4

!3

4

!3

4

3
Q

pppp

p
 

        
 44

!3

4

!3




ppp
 

 



x

yx dyyex
0

343Q  

 

Example 2.8 

 

Solve the integer-differential equation   

       1QQ 1211  
 dyyex

x

o

yx  

where      oooo  1Q,Q  

 

Solution  
 

Taking the Laplace transforms, it follows that 

 
  






















22

2

1

2
Q

1

2

Q
Q

pp

p

PP

P
P   

and 
    pppppp

21

1

2

1

1

1

1
Q

2222









  
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Hence, 

    22Q  xexex xx  

Cossection 

  
pp

p
p

1

2
Q 2 










   

 i.e.  
 

pp

pp 1

2

1
Q

2













 

 
   2222 1

1

1

323

1

2
Q

















pppppp

p
 

     xexx 323Q xex  

 

[Reuse partial fraction] 

 

NB:  
   2222 111

2











p

D

p

C

p

B

p

A

pp

p
 

 
223223 222 DpcpcpBBpBppAApApp   

 

3.2 Fredholm Equations 
 

The Volterra equations considered are a special case of the equation. 

            xoxfdyyyxkx Q,Q
1

0
  (3.1) 

 

Evidently, the special case is where   oyxk , for xy       

We shall take the interval  1,0  as standard and for simplicity write the 

integrals without the limit. 

 

Put           xxxfx 2

2

1Q   (3.2) 

where        dyyfyxkx ,1  

       dyyyxkx 12 ,    

        dzzfzykdyyxk  ,,  

      dyyfyxk ,2  

and       dzyzKzxKyxK ,,,2   

        dyyfyxKx uu ,  

where  

        dzyzkzxKyxK uyu ,,,   

The series (3.2) is called the Neumann series just as we consider the 

series for the Resolvent kernel.  

        yxkyxKyxR ,,;, 2    (3.3) 
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This series may be proved convergent for a certain sample of values of 

  under a variety of conditions. We consider one set of these 

conditions. 

 

3.3 Lemma 3.1  
 

Suppose  yxK ,  is continuous and 

   MyxK

yo

xo 



 ,

1

1

sup

  

 

Then, the series (3.3) is uniformly convergent for  .1 M  It is 

continuous and the series may be integrated term by term. Also, 

 ;, yxR  is for each  yx,  an analytic function of the complex variable 

  inside .1 M  

 

Proof 

 We have 

      
2

2 ,,,
o

dzyzKxxKyxK  

      yzKzxK ,,sup  

       2,sup,sup MyzKzxK   

 

By repeating this, we get 

   n

n MyxK ,  (3.4) 

Then, the series (3.3) is dominated by .nnM The result follows as 

before by Weierstrass .M  test in region .1M The analyticity is 

obvious since we are considering each  yx,  the given series 

nna  where  yxKa nn , . The radius of convergence is not less 

than 1M . Note that in this case we have only proved convergence for 

,1 M  whereas the Volterra equations are true for all  finite. 

 

Example 3.1     

 

Consider the integral equation: 

      xfdyyx
o

 
1

QQ   

In this case,   1, yxK  and   1, yxKn  

Thus,  
1

1
;,


 



 


or

ryxR  
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Also,   .1,sup yxK  Since 
1

1


 has a pole at 1, the result may not in 

general be extended to smaller M  

 

If  
1

,Q
o

dxxA  and integrate over  ,1,0  the equation 

      xfdyyx  QQ   

      dxxfAdxxfA  


1

0

1

0 1

1
1


  

Suppose first that .1 Then,  

        dxxfxfAxfx
o


1

1
Q




  

 

The equation had thus a unique solution. 

Suppose on the other hand that .1   

Then, from the equation     dxxfA
o
1

1   the original equation will 

only have a solution if   .0
1

 dxxf
o

 

 

If f does not satisfy this condition and ,1  the equation has an infinite 

number of solutions     cxfx Q  where c is a constant and 1  if 

an Eigenvalue with corresponding Eigenfunction Q  constant. 

 

Theorem 3.1  

Suppose K  is continuous in the square 
1

1:





yo

xoS
 and set .sup MK

s

  

The Resolvent kernel R is given by 

   





0

1 ,;,
r

r

r yxKyxR   (3.5) 

Where the series is uniformly convergent for 1 m  

R is continuous and the series may be integrated term by term. In the 

domain  where  is analytic. The following relation holds 

         dzyzRzxKyxRyxK  ;,,;,,   

     dzyzKzxR ,;,   

 

Suppose that f is integrable, then, the unique solution for  of  

(3.1) is 

        dyyfyxRxfx 
1

0
;,Q   
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4.0 CONCLUSION  
 

Convolution type integrals may be solved by the use of Laplace 

transform provided the transform exists. 

 

5.0 SUMMARY 

 

It is possible to determine if a Volterra integral is of the convolution 

type and then solve it using the method of Laplace where the final 

solution is found by finding the inverse transform. This applies also to 

the inhomogeneous Volterra equation of the 2
nd

 kind which convolution 

kernels can be solved in exactly the same way. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. State the name of the integral equation in which the integration 

limits are constants and do not include the variable? 

2. What is the relationship between F(x), G(x) and this term? 

         
x

o

x

o
dyyxGyFduyGyxF  
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MODULE 3   
 

Unit 1  Fredholm Equations with Degenerate Kernels  

Unit 2  Eigenfunctions and Eigenvectors  

Unit 3 Representation of a Function by a Series of Orthogonal 

Functions   

 

 

UNIT 1 FREDHOLM EQUATIONS WITH  

 DEGENERATE KERNELS  
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Fredholm Equations with Degenerate Kernels 

3.2 The General Method of Solution 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Fredholm integral equations are integral equations in which the 

integration limits are constants which do not include the variable; and 

whose solution gives rise to Fredholm theory, the study of Fredholm 

kernels and Fredholm operators. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 Solve Fredholm equations with degenerate kernels 

 Derive the general method of solution of Fredholm equations. 

 

3.0 MAIN CONTENT 
 

3.1 Fredholm Equations with Degenerate Kernels  
 

Consider the Kernel of the form: 

 

     ybxayxK p

n

p

p



1

,  (3.6) 
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where x  is finite, and the ra  and rb  form linearly independent sets. A 

kernel of this character is termed a degenerate kernel. 

Also, consider the integral equation of the first kind 

      dyyyxKxf Q,    

        dyyybxa p

n

p

p Q
1




  (3.7) 

 

1. We note that no solution exist unless  xf  can be written in the 

form  


n

p

pp xaf
1

 (3.8) 

 This is essential for the equation to be self-consistent. 

2. The solution is indefinite by any function  y  which is 

orthogonal to all the  ybp  over the range of integration. 

 

Example 3.2 

 

The integral equation 

      



  xodyyyxx sin2exp  is not self-consistent and so 

does not have a solution. 

 

This is because  

       dyyyxdyyyx  







 cossinsin  

    



 dyyyx sincos  

which is a of form xBxA cossin   

 

3.2 The General Method of Solution 

 

Look for a solution of the form 

    yby q

n

q

q



1

  (3.9) 

If it exists, it will be a solution and if it is possible to add   y  to it.  

 

The solution proceeds as follows in the integral equation. 

 

       dyyyxKxf  ,  (3.10) 

        dyybybxaxaf qqp

n

p

p

n

p

pp 


 
11

  (3.11) 

  



n

q

pq

n

p

p xa
1

1

1

  (3.12) 

Where     dyybyb qppq    (3.13) 



MTH 423          MODULE 4 

97 

and so the s  are defined by 

 npf q

n

q

pqp  


1
1

  (3.14) 

 

Since the 
pb  are linearly independent, the determinant pq  does not 

vanish and the 
q can be found uniquely. Also,  y  in such that  

     0,  dyyxKy  (3.15) 

 

Example 3.3 

 

Consider the solution of the integral equation  

     



  xdyyyxxx sincos2sin3  

Now   xyyxyx cossincossinsin   

and so there is consistency  

 

Note also that 







 1

1
coscos

mif

mifo
dymyy






 

  











  1

1
sincos

mif

mifo
dymyy  

   

















   1

1
sinsin

1

10
cossin

mif

mifo
dymyy

mif

mif
dymyy










 

 

Hence, the integral equation in indefinite by a quantity of the form    

    





2

sincos
n

no nydnnyCCy  

Since     odyyxy  sin



  

 

Now, look for a solution of the form 

   yByAy sincos    

     dyyByAyxdyyyx  









 sincoscossinsin  

     



dyyByAyx sincossincos  

   xBxA cossin   

   xx cos2sin3   
 

Thus, 


3A  and 


2B  

    yyyd sin2cos3   
 

Note that the process is similar to the idea of finding the particular 

integral and complementary function in differential equation theory. 
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The solution  

       yyy sin2cos3   

 

May be termed a particular solution while the  y  a complementary 

function.  

 

4.0 CONCLUSION  
 

Fredholm equations can be solved by applying the method of degenerate 

kernel. 

 

5.0 SUMMARY 
 

Fredholm integral equations have limits which are constants and not the 

variable as in the Volterra integral equations. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. What kind of kernel is of the form      ybxayxK p

n

p

p



1

,  

where x  is finite, and ra  and rb  form linearly independent sets? 

2. Why does       



  xodyyyxx sin2exp  not have a 

solution 
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UNIT 2   EIGENFUNCTIONS AND EIGENVECTORS  
 

CONTENTS 

 

1.0 Introduction 
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3.1 Eigenfunctions and Eigenvectors 

3.2 Symmetric Kernels 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Many homogeneous linear integral equations may be viewed as 

the continuum limit of Eigenvalue equation. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 work with Eigenfunctions and Eigenvectors 

 prove that symmetric and continuous Kernels that are not 

identically zero possess at least one Eigenvalue. 

 

3.0 MAIN CONTENT 
 

3.1 Eigenfunctions and Eigenvectors  
 

Eigenfunction and Eigenvectors associated with the equation:  

       dyydybxax p

n

p

p



1

  (3.16) 

can be found as follows 

Rewrite (3.16) in the form 

         dyyybxay p

n

p

p  



1

 (3.17) 

This equation satisfied by any function  y  such that  

     odyyybp    (3.18) 

and ,o  but in general, we shall ignore such functions, any 

Eigenfunction must be of the form 

    xax p

n

p

p



1

  (3.19) 
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Thus        dyyaybxaxa q

n

q

qp

n

p

pp

n

p

p 



111

  (3.20) 

Whence  pq

n

q

qp K



1

  (3.21) 

     dyyaybK qppq   (3.22) 

 

Example 3.4 

 

Find the Eigenvalue and Eigenfunction of the system defined by: 

      11
1

  xodttxtx
o

   

 

Solution  

 

Let      dttxtxx o
o

o 1

1

1 1     

  xo

o 


















322

11 



  

 

Whence (equating coefficients)  

    oo 
2

1 1  

  oo 







 11

32



 

Thus,    
4

1
3

1
2   

  528   

and     134:527,1 o  

 

Consider now the solution of the integral equation  

        xfdyyyxKx    ,  (3.23) 

 

Where in this case K  in degenerate, any solution will be of the form: 

      xfxax p

n

p

p  



1

 

(Substituting, we have) 

         xfdyyybxa p

n

p

p   



1

 

           xfdyyfyaybxa
n

q

qqp

n

p

p 







 

 11

  

        dyyaybxa qq

n

p

n

q

pp   
 


1 1
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        xfdyyfybxa p

n

p

p  
1

 

Set      dyyaybk qppq    

and      dyyfybf pp   

Thus,      xfxax p

n

p

p  



1

  

     xffkxa
n

q

pqpq

n

p

p 







 

 11

  

pq

n

q

pqp fK  



1

 (3.24) 

i.e. pq

n

q

pqp fK  



1

 (3.25) 

The above equations is a finite system of linear algebraic equations with 

matrix  .pqkA     

 

The solution depends on whether or not det  A is zero. 

 Set     A  det   

 

Then,    is a polynomial of degree n . If    is not a roof of  , then, 

(3.23) has a unique solution. 

 

If you write pqd  for the cofactors you will have: 

 
  p

n

p

pqq fd



1

1


  (3.26) 

The solution of equation (3.23) is then, 

                dyyfybdxaxfx
n

q

qpq

n

p

p 





11

1
  

          dyyfyxxf 


 ;,
1

 (3.27) 

Where  

      ybxadyx q

n

p

n

q

ppq 
 


1 1

;,   (3.28) 

and  
 
 









;,
;,

yx
yxR  (3.29) 

is the Resolvent kernel 

i.e.         dyyfyxRxfx   ;,  (3.30) 
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Examples 3.5 

 

Solve the integral equation: 

       xfdttxtx
o

  
1

1  

Let    xfxx o  1  

           xfdttftxt o
o

  1

1

1   

     xffxf o

oo 
















 1

11

322





  

Where   dttftf
o

r

r 
1

 

 

Equating powers of x  and solving for o  and 1  if follows that: 

      1

22 6341216 ffoo    

      1

22

1 11261216 ffo    

 

The Eigenvalue, are given by the roots of the equation  

 012162    

If  is one of the Eigenvalue, say ,528  a solution is possible only if 

     












1

527
2

528

o
dxxxfO  

and the solution is indefinite by an arbitrary multiple of 

  x527134    

 

3.2 Symmetric Kernels   
 

   xykyxK ,,    and  K  is continuous  

 

Theorem 3.2 

Let  yxK ,  be symmetric and continuous (and not identically zero). 

Then, K  has at least one Eigenvalue. 

 

Proof    

We note that the iterated kernels  yxku ,  are also symmetric and not 

identically zero. 

 

Suppose result is not true. 

Let us assume that  ,;, yxR  the Resolvent kernel is an integral function 

and the series is also convergent for all, .   may be integrated term by 

term. 
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Now set,   dxxxKU nn ,    

Then, .......4

4

2

2   UU  is absolutely convergent. 

Now, we have     dxdxxzKzxKU mnmn ,,   

and    dxdzzxKU nn  ,2

2                                                                  

(3.40) 

 

Now,      odxdzzxKzxK nn  

2

11 ,,   

i.e. 

oUUU nnn   22

2

222

2 2   (3.41) 

for all real  ,  

2222

2

2  nnn UUU  (3.4.2) 

Form equation (3.40) none of nU 2  is zero as nK  is not identically zero. 

 
22

2

2

22



 
n

n

n

n

U

U

U

U
 

Now, consider series n

nU 2

2  assumed convergent. 

The ratio of term is 

  2

2

22

2

2

22

22 




n

n

n

n

n

U

U

U

U 



    

This ration is 2

2

4 
U

U
  from  (3.43) 

Thus, for ,12

2

4 
U

U
the forms in the (3.44) series are non-increasing, so 

as it is a series of positive terms, the series is divergent. This is a 

contradiction.  

Thus, we have seen that poles of  ;, yxR  correspond to Eigenvalue 

and so K has at least one Eigenvalue. 

From the equation (3.44) ,12

2

4 
U

U
 the smallest Eigenvalue 1  is such 

that 

  
2

4
1

U

U
  (3.45) 

Theorem 3.3 

 

If  yxk ,  is symmetric and continuous, the: 

 number of Eigenfunctions corresponding to each Eigenvalue is 

finite 

 Eigenfunction corresponding to different Eigenvalue are 

orthogonal  

 Eigenvalue is real. 

 



MTH 423               INTEGRAL EQUATIONS 

104 

4.0 CONCLUSION  
 

Eigenvalues and Eigenfunctions can be found for integral equations of 

the form        dyydybxax p

n

p

p



1

 . 

 

5.0 SUMMARY 
 

Many homogeneous equations can be solved by determination of their 

Eigenvalue. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Under what Sturm-Lowville problem assumptions are 

Eigenfunction corresponding to different Eigenvalue orthogonal? 

2. Solve? 
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UNIT 3 REPRESENTATION OF A FUNCTION BY A 

SERIES OF ORTHOGONAL FUNCTIONS   
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3.0 Main Content 
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1.0 INTRODUCTION 
 

In this unit, we shall take a look at orthogonality of systems and show 

that Fourier coefficients exist for continuous orthogonal systems and 

that orthogonal system can be represented by a series of orthogonal 

functions. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 state the Hilbert-Schmidt theorem 

 state the Convergence theorem 

 prove that functions can be represented by series of orthogonal 

functions   

 expand K in a series of Eigenfunctions  

 define positive kernels.  
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3.0 MAIN CONTENT 
 

3.1 Representation of a Function by a Series of Orthogonal 

Functions  
 

3.1.1 Lemma 3.4 
 

Let  n  be an orthogonal system, and let f be continuous. 

Set     dxxxf nn    (3.46) 

Then,   dxxfn  22  (3.4.7) 

and s

n

1  are known as the Fourier’s coefficient. 

 

Proof:  

Take any .N  consider 

     Odxxxf
N

nn 







 



2

1

  (3.48) 

i.e.       odxxxfxf
n

nn

n

n 







  

1

2

1

2 2   

i.e.   



N

ndxxf
1

22   (3.49) 

On noting that N is arbitrary  

    



1

xxf nn  (3.50) 

We now consider that coefficients, ,n give the best fir in the sense that 

      dxxCxf nn

2

    (3.51) 

is a minimum. 

The answer is that ,nnC   the Fourier coefficients. 

To see this, set 

    dxCxf nnn

2

    (3.52) 

    dxxf nnn

2

    (3.53) 

Then, we show that .nn  For we have, 

       22 2 nnnn CdxfCdxxf   

     
22 2
nnn CCdxxf   

         222 2 nnn dxxf   

      

nnnnnnn CC  222  

      oC nn

2
  (3.54) 
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As asserted.  

 

Definitions 3.5 

 

The set of orthogonal system  n  is said to be complete if 

    odxxf nn
n

 


2

lim   (3.55) 

for every continuous function  .xf In this case, the Bessel’s inequality 

becomes an equality  

i.e.     22

ndxxf   

If  n  is complete, we can then roughly represent any function as a sum  

    nnxf     

the convergence being in the sense of  (3.55) 

 

3.2 Expansion of K in Eigenfunctions   
 

We examine the possibility of expanding K  as a series of 

Eigenfunctions. 

Consider 

    yyxK nn ,  

where      nn dyyyxK   ,  

i.e.  xnnn  1  

Then, we will have 

  
   


n

nn yx
yxK




,  (3.56) 

This is valid independent of completeness of  n  

 

3.2.1 Definitions 3.6 (Positive Kernels) 
 

A kernel is said to be positive if  

         odxdyyxyxKT    ,,   (3.57) 

for all   such that   odxx 
2  (3.58) 

It is easily to see that Eigenvalue are strictly positive. 

 

3.2.2 Theorem 3.7: Convergence 
 

If  yxK ,  is positive, then 

 
   





1

,
n

nn yx
yxK




 

the series being absolutely and uniformly convergent.  
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3.2.3 Theorem 3.8: Hilbert – Schmidt Theorem  
 

Suppose  xf  can be written in the form  

       dyyyxKxf  ,  (3.59) 

where K  is symmetric and continuous,  

Then  nnf   where the series is absolutely and uniformly 

convergent and  

     dxxxf p

b

a
p    (3.60) 

 

A convergence of the above theorem is another formula for the 

Resolvent .R    

Consider the equation: 

        xfdyyyxKx    ,  (3.61) 

Then, 

     dyyyxkf   ,  

Thus,  f  satisfies the condition of theorem 3.8 and we can write 

       nnxfx   

where         dxxxfx nn     

       dxxxf nnn    

 

Multiply 3.61 by  xn  and integrate and change order of integration. 

This given  

           dyyyxkdxxdxxx nn     ,  

     dxxxf n  (3.62) 

Thus, n

n

n

n 



   

i.e. ,n

n

n

n 






  Hence, n

n

n 






  

     xxfx n

n

n 



 


  

i.e.      xxfx n

n

n 



 


  (3.63) 

 

This gives the solution of 3.61 in terms of the Eigenfunctions of  .xn  

From 3.63, we have 
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         dyyfyxfx n

n

n




 



   

  
   

  dyyf
yx

xf
n

nn

  














  

       dyyfyxRxf   ;,  

Where  
   





n

nn yx
yxR




;,  (3.64) 

 

4.0 CONCLUSION  
 

Fourier’s coefficients exist for orthogonal systems which are 

continuous. 

 

5.0 SUMMARY 
 

The Hilbert-Schmidt theorem states that when a kernel is positive, a 

series can be derived which is absolutely and uniformly convergent, and 

kernel can be represented by a series of Eigenfunctions.  

  

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Derive an expression for the Fourier coefficient of the continuous 

orthogonal system n ? 

2. Show that the orthogonal system  n  is complete  if  

    odxxf nn
n

 


2

lim  ? 

 That is, Bessel’s inequality becomes an equality. 

3. If         odxdyyxyxKT    ,, , can we deduce if the 

associated kernel is positive or negative? Prove it? 
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MODULE 4  
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st
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UNIT 1  CALCULATION OF 1
ST

 EIGENVALUE  
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1.0 INTRODUCTION 
 

Transforms are used to solve equations for which transforms exist while 

the inverse transform is a convolution. Suitable conditions exist for the 

transform of a convolution to become the point-wise product of 

transforms which means that convolution in one domain is the point-

wise multiplication in another domain. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 apply the convolution theorem  

 calculate the first Eigenvalue of an integral equation 

 use the Variational Formula 

 recognise Integral Laplace Transforms as Transforms 

 derive the solution of integral equations using inverse Laplace 

Transform. 
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3.0    MAIN CONTENT 
 

3.1 Calculation of 1
st
 Eigenvalue  

 

The modes of vibration in systems are often of great importance. A 

powerful and simple method for finding them is provided by variational 

formula. 

Let ...,, 21   be Eigenfunctions and ...21    be the corresponding 

Eigenvalue.  

Set  

         dxdyyxyxKJ   ,,    

Suppose now that   is arbitrary. Then, by the linear formula 

  
   

n

nn yx
yxK




,    

We have: 

  
   

    dxdyyx
yx

J
n

nn





 


,  

    
n

n

n

n







 22

 

Then,     2

1

2
1

, n

n

nJ 



  

    dxx 2

1

1



  (Bessel equation) 

 

 


,

2

1
J

dxx
  (3.65) 

 

where 1  is the smallest Eigenvalue and   is arbitrary. Similar results 

may be obtained for the higher Eigenvalues. However, the first is 

usually, the most important.   is chosen to make  ,J  a maximum 

and a normal function. 

 

This given an estimate of a bound for 1  which usually is fairly 

accurate. 

 

Example 3.7 

 

Consider the kernel T in the square  

 1,1  yoxo  where  

  
 

 








11

11
,

yxoxy

xyoyx
yxT  
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By differentiating the equation 

       0,
1

  dyyyxx
o

  

If is easy to see that if reduces to  

       oox  1,0"   

The Eigenfunction are xnsin2 (normalized and Eigenvalue are 

 2
 nn   

The linear formula given 

   





1

22

sinsin
2,

n n

ynxn
yx




 

We shall now consider the application of 3.65 to the determination of 1
st
 

Eigenvalue  

  869.92

1    

First guess 1  

       dxdyyxydyxJ
o

x

o x   



 

1 1

11,   

 
12

1
  

We get 12

12

1
1

1   

Second guess  3tRi   

 

Choose   to be a step function 0 except for  1xo  where 

.   

Choose   normalised. Then,   2

1

21


   one find that 

    2821
12

1
,  J  

This has a maximum at ,
8

1
  when 

  
32

3, J  

Then, 67.10
3

32

32
3

1
1   

 

The estimate is considerably improved, and the choice of a nose 

complicated   will lead to a nose accurate estimate. 

 

3.2 Integral Transforms: Laplace Transforms  
 

If  tf  is throughout piecewise, continuous, bounded variation and of 

exponential order, i.e. ,oM  so,   

   sot

o eMtf   
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and if we define     dttfesF
o

st




  (4.1) 

S may be complex, then,  sF  is known as the Laplace transform of 

f and is defined when the integral is absolutely convergent for some so, 

then, it is also for S  such that Res > Redo  

 

The largest half-plane in which the integral is absolutely convergent is 

called the half-plane of convergence. The following hold in this half-

plane: 

 

i. £  abgaf  £   g£bf   (4.2) 

ii.        ofSsFStf nn 12
£  .    oF n 1...

 (4.3) 

iii.     asFtf ate£  (4.4) 

iv.       sF
ds

d
tft

n

n
nn 1£   (4.5) 

  toF  denotes limit from right  

 

3.3 Convolution Theorem  
 

We define a new function  th  by  

      gfduutfugth
t

o
   (4.6) 

 th  is called the convolution product of f and g  and is written gf  so 

that we have 

     
 

 
o o

stst dtgfedtthe  (4.7) 

        sCsFduugedttfe
o

su

o

st

1 





  

  

3.4 Inverse Laplace Transform  

        dssFsFtf
ic

ic
i







2

1
£ 1-  (4.8) 

      sFexF st  of polesat ofresidues  

 

Where C is some real number which is greater than the real part of all 

the poles of  .sF  We can however use any other alternative method to 

obtain  .tf  

 

4.0 CONCLUSION  
 

Kernel can be solved by applying Laplace transform if the transform 

exists. 
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5.0 SUMMARY 
 

Laplace transform is defined only when an integral is absolutely 

convergent and the largest half-plane in which the integral is absolutely 

convergent is called the half-plane of convergence. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Write an expression for the kernel T in the square defined below 

and find its first Eigenvalue? 

 
2. Do you recognise the transform below?  Which transform is it? 

     dttfesF
o

st




   

3. What is the relationship between an inverse Laplace transform 

and a convolution? 

 

7.0 REFERENCES/FURTHER READING 
 

Andrei, D. P. & Alexander, V. M.  (1998). Handbook of Integral 

Equations. Boca Raton: CRC Press.  

 

Arfken, G. & Hans, W. (2000). Mathematical Methods for Physicists. 

Port Harcourt: Academic Press.  

 

Kendall, E. A. (1997). The Numerical Solution of integral Equations of 

the Second Kind. Cambridge Monographs on Applied and 

Computational Mathematics. 

 

Krasnov, M., Kiselev, A. & Makarenko, G.  (1971). Problems and 

Exercises in Integral Equations. Moscow:  Mir Publishers.  

 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007). 

 "Chapter 19. Integral Equations and Inverse Theory". Numerical 

Recipes: The Art of Scientific Computing. (3rd ed.). New York: 

Cambridge University Press.  

  

Whittaker, E. T.  & Watson, G. N. (nd).  A Course of Modern Analysis. 

 Cambridge Mathematical Library. 



MTH 423               INTEGRAL EQUATIONS 

116 

UNIT 2  THE APPLICATION OF THE TRANSFORM 

 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 The Application of the Transform 

3.2 Fourier Integral Equations 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Laplace and Fourier integral transforms are used to solve integral 

equations for which the transform exists and this is demonstrated in this 

unit via worked examples. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 apply Laplace transform through worked examples 

 solve integral equations by the method of Fourier integral 

transforms. 

 

3.0 MAIN CONTENT 
 

3.1 The Application of the Transform  
 

Example 4.1 

 

Solve the equation: 

 ote t   65 111  

     1,2 1  oo   

Now, let    s £  so that 

         12£ 21211  sssooss    

and  
1

1
£




s
e t  

 
1

1
625122




s
sss   

i.e.  
1

1
1125652




s
ss   
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i.e.  
     321

12132 2






sss

ss
s  

 

Hence, the poles are not 3,2,1   

 

The residue at 1s  is    



  



  s

ss

ss 1Re  

  tt ee  




2

1

21

121132
 

That is 2  is te 26   

and 3 is te 3

2

9   

Thus,     ttt eeet 32 912
2

1     

 

Example 4.2 

 

Consider the Volterra equation: 

          
x

o
xgdyyfyxkxf  

 

We want to use Laplace transform to get a solution.  

 

The equation can be written in the form of 
  gfkf   

 

Take the Laplace transform of both sides to give 

  gfkf     

 i.e.  
k

g
fgkf




1
1  

Thus, 

 dse
k

g

k

g
f st

i

 













12

1

1
£ 1-


  

 

Take   tetk  for example, then 

  
1


s

sk


 

But   
k

k

k 


 1
1

1

1
 

 






















k

gk
g

k

g
f

1
£

1
£ 1-1-   

  ghg
s

g
g 1-1- £

1
£ 















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Where    







1s
h  and  teh   1  

 

Hence, 

           duugexgxf
x

o

ut


  1 . 

 

Example 4.3 

 

Solve the partial differential equation 

 

 otLxoo
tx










,

2

2

2

2 
 

   xooox,  

  lxooox
t





,


 

  ototo ,  

  otatl
x





,


 

 

Here we want a solution for ot   and for a finite range of re. Take 

Laplace transform w.r.e t  (since the t interval is semi-infinite) 

 

Write    dttxesx st ,,
0

 


   

 

Take the Laplace transform to give  

     0,,
2

2

02

2

0
















 dttx
t

edttx
x

e stst 
 

But    dttxe
x

dttx
x

e stst ,,
02

2

2

2

0



















 

  sx
x

,
2

2







 

and        0,0,,, 2

2

2

0
x

t
xSsxsdttx

x
e st












 



 

  sxS ,2  

 

from the boundary condition 

 

Hence, we get 

    0,, 2

2

2





sxSsx

x



  

 

This is now an ordinary differential equation for  and to solve it, we 

need two boundary conditions, we have 
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   0,0 s  

and     dtt
x

es
x

st ,,
0













 
 

 
s

a
dtae st  




0
 

 

We this, solve the following system  

     0,, 2

2

2





sxSsx

x



 

   0,0 s   and 
 

s

a

dx

sd


,
 

 

The solution is  

     sxsBsxsA coshsinh   

 

From the first boundary condition   0sB and from the second 

condition, we have  

  
s

a
slSsA cosh  

  
sls

a
sA

cosh2
  

 

Here,  
sls

sxa
sx

cosh

sinh
,

2
  

and    dse
sls

sx

i

a
tx st

r


1 cosh

sinh

2
,

2
  

 

where  lies to the sight of the poles. The integral has poles at 0s  and 

at the zeros of slcosh . Consider first 0s  

 

  
   


















 

2
1

6

1
,

23

2

slsx
sx

s
esx st   st1  

   2

2
0

1
ssx

s
  

Simple pole at 0s with reside .x  

 

Now, consider points whose 0cosh ls  

 
 

l

ni
S

2

12 
  

The poles are simple once. We may use the formula: 

 
 
 ag

af
s

as 1
Re 


  

Thus, 
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 

   

   







 







 








 








2

12

2

2

2

12

Re
2

2

12

2

12

in
Sinh

l

iin

e
l

xin
Sinh

s

l

tn

l

in

i

s 

 





 

 
 

   

  in

e
l

ixn
Sinh l

tn
i

n

2

2

12

2
12

2

12

14










 




 





 

 

Evidently, poles are complex conjugates, so we require twice the seal 

part. Hence, 

  
 

 

 











 






0
22 2

12

12

18
,

n

n

l

xn
Sin

n

al
axtx




  

 

The Laplace transform is suitable for problems with a semi-infinite 

domain for the independent variable. It is also necessary that the 

(differential) equation should have constant coefficients. 

 

3.2 Fourier Integral Equations 
 

If  xf is a continuous function, then,  

    dwwFexf iwx







2

1
 (4.10) 

where     duufewF iwu







2

1
 (4.11) 

Equation 4.11 gives the solution of the integral 4.10 for F and vice 

versa. If  xf  is seal, using the odd property, of sin wresin and the even 

property of ,cos wre  we have, if  

     xdwwwrexf 







 



0,cos
2

0

2
1




 (4.12) 

Then, 

     wdxxfwxw 







 



0,cos
2

0

2
1


  (4.13) 

 w  and  xf  are  the inecos transforms of one another. If  

     xdwwwxxf 







 



0,sin
2

0

2
1




 (4.14) 

Then, 

     wdxxfwxw 







 



0,sin
2

0

2
1


  (4.15) 

   xfw  and   are the sine transforms of one another. 
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Example 4.1 

 

Solve the integral equation 

   0,cos
022


 



adwwwx
xa

a
  

   


















 dx

xa

eia

i
dx

xa

wxa
w

iwx

220 22

2

2

1cos2


  

because wresin  is odd in x  

 

 

Evaluation of the integral by the methods of the complex integral 

calculus given 

   0,   wew wa  

 

Example 4.2 

 

Solve the integral equation 

    dwwwxx  



0

cos  

  x is an even function of x  

 

Because the inverse of a inecos transform is another 

inecos transformation, we look for a solution of the form 

 

      xVxUx   

where     












0
cos

2 2
1

dwwUwxxV


 

Thus,  

       dwwUwxxUx 












0
cos

2 2
1


  

     dwdttUwtwUwx 
 






















0 0
cos

2
cos

2
1


  

    xUdwwUwx 



2

1

0 2
cos











  

This is true if 
2

1

2











 Thus, to ,

2 2
1












  there corresponds a 

solution      ,
2

  toand 
2

1












xVxU  there corresponds a solution 

   xVxU  . 
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This solution will be valid, provided all the integrals exist; U is 

arbitrary. In this case, the two Eigenvalues ,
2 2

1












  there exist an 

infinite of Eigenfunctions. 

 

Example 4.3 

 

Solve the integral equation  

       dyyxyxfx 


 












0
cos

2 2
1

 

If ,1  there will not in generally be any solution. 

This follows example 4.2 

 

Take the transform of the equation to give  

      xdyyfxydyyxy 

























00
cos

2
cos

2 2
1

2
1

 

It follows that  

        xdyyfxyxfx 


 2

0
cos

2 2
1









 



 

i.e. 

         dyyfxyxfx 












0

2 cos
2

1
2

1


  

and this solution is valid provided that the integral converge. Now, if 

01 2   and  xf is a function such that 

     0cos
2

0

2
1









 



dyyfxyxf


  

It follows that  x  can be any function for which the integral converge. 

 

SELF-ASSESSMENT EXERCISE 

  

(1) Solve the integral equation. 

    0sin
022


 



adwwwx
ax

x
  

(2) Find the Eigenvalues and Eigenfunctions of the integral equation. 

     dyyxyx 



0

sin   

(3) Find the solution of the integral equation.  

      0,sin
0

 


 adyyxyex ax   

  22   

(4) Find the integral equation:  

   


 
 022

0adttfe
aP

P pt  
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(5) Solve the integral equation: 

         dyyyxKxfx 



   

(6) Solve the integral equation: 

  
 

 



 


 yx

dyyg

ax 

11
2

 

 

4.0 CONCLUSION  
 

Transforms are a useful mathematical tool for solving integral equations 

for which the applicable transforms exist.  

  

5.0 SUMMARY 
 

A Laplace transformation is applicable for problems with a semi-infinite 

domain for the independent variable. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Solve    

 

2. Solve   

 

7.0 REFERENCES/FURTHER READING 
 

Andrei, D. P. & Alexander, V. M.  (1998). Handbook of Integral 

Equations. Boca Raton: CRC Press.  
 

Arfken, G. & Hans, W. (2000). Mathematical Methods for Physicists. 

Port Harcourt: Academic Press. 
 

Kendall, E. A. (1997). The Numerical Solution of integral Equations of 

the Second Kind. Cambridge Monographs on Applied and 

Computational Mathematics. 
 

Krasnov, M., Kiselev, A. & Makarenko, G.  (1971).  Problems and 

Exercises in Integral Equations. Moscow:  Mir Publishers.  
 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007). 

 "Chapter 19. Integral Equations and Inverse Theory". Numerical 

Recipes: The Art of Scientific Computing (3rd ed.). New York: 

Cambridge University Press.   
 

Whittaker, E. T.  & Watson, G. N. (nd). A Course of Modern Analysis. 

 Cambridge Mathematical Library. 


