
 
 

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

 

 

 

 

 

SCHOOL OF SCIENCE AND TECHNOLOGY 

 

 

 

PHY 201 

 

 

 

CLASSICAL MECAHNICS 

 



 
 

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

 

 

 

 

 

SCHOOL OF SCIENCE AND TECHNOLOGY 

 

 

 

PHY 201 

 

 

 

CLASSICAL MECAHNICS 

 

Course Code:                                              PHY201 

 

Course Title:                                               Classical Mechanics I 

 

Credit Value:                                              2 

 

Private Study Time:                                    2-3 hours per unit 

 

Course Writer:                                             Dr. M. O. Aku 

                                                                     Department of Physics, 

                                                                     Bayero University, 

                                                                     Kano 

                                                                     Nigeria  

 

 

Course Editor: 

 

 

 



 
 

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

 

 

 

 

 

SCHOOL OF SCIENCE AND TECHNOLOGY 

 

 

 

PHY 201 

 

 

 

CLASSICAL MECAHNICS 

 

 

 

 

Programme Leader: 

 

 

 

 

 

 

 

Course Coordinator:    

 

 

 

 

 

 

 



 
 

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

 

 

 

 

 

SCHOOL OF SCIENCE AND TECHNOLOGY 

 

 

 

PHY 201 

 

 

 

CLASSICAL MECAHNICS 

 

       

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

 



 

PHY 201 Contents i 

CONTENTS 
 

 

MODULE 1        MOTION IN CENTRAL FORCE FIELDS  -------------------------------------1 

 

Unit Vector Analysis  ---------------------------------------------------------------------------------------1 

1.0 Introduction -----------------------------------------------------------------------------------------------1 

2.0 Aims and Learning objectives:  ------------------------------------------------------------------------1 

3.1 Vector Position -------------------------------------------------------------------------------------------1 

3.2  Addition and Subtraction of vectors ------------------------------------------------------------------2 

3.3  Multiplying of a vector with another vector  --------------------------------------------------------2 

3.4 Gradient, Divergence and Curl -------------------------------------------------------------------------2 

Self Assessement Exercise -----------------------------------------------------------------------------------3 

4.0  Conclusion ------------------------------------------------------------------------------------------------3 

5.0  Summary --------------------------------------------------------------------------------------------------4 

6.0  Tutor-Marked Assignment (TMA) --------------------------------------------------------------------4 

7.0  References/Further Readings ---------------------------------------------------------------------------4 

 

Unit 2   Central – Conservative Forces ------------------------------------------------------------------5 

1.0 Introduction-  ----------------------------------------------------------------------------------------------5 

2.0 Aims and Learning objectives  --------------------------------------------------------------------------5 

3.0 Definition of Central forces -----------------------------------------------------------------------------5 

3.1  Properties of Central Force Fields ---------------------------------------------------------------------6 

3.2  Work Performed by Conservative force fields -------------------------------------------------------6 

3.3  Definition of Central Conservative Forces  ----------------------------------------------------------7 

3.4 Conservative theorems  ----------------------------------------------------------------------------------7 

3.4.1  Energy ---------------------------------------------------------------------------------------------------7 

3.4.2 Torque and Conservation of Angular momentum -------------------------------------------------7 

3.4.3  Impulse and Conservation of Linear momentum --------------------------------------------------8 

4.0  Conclusion ------------------------------------------------------------------------------------------------8 

5.0  Summary --------------------------------------------------------------------------------------------------8 

6.0  Tutor-Marked Assignment (TMA)---------------------------------------------------------------------9 

7.0  References/Further Readings  --------------------------------------------------------------------------9              

 

Unit 3 Kinematics in Polar  coordinates ---------------------------------------------------------- ----10 

1.0 Introduction   ---------------------------------------------------------------------------------------------10 

2.0 Aims and Learning objectives   -------------------------------------------- ---------------------------10 

3.0  Polar Coordinates ---------------------------------------------------------------------------------------10 

3.1  Velocity and acceleration components in polar coordinates --------------------------------------11   

4.0  Conclusion  ----------------------------------------------------------------------------------------------12 

5.0  Summary ------------------------------------------------------------------------------------------------12 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------12 

7.0  References/Further Readings -------------------------------------------------------------------------12 

 

Unit 4   Energy Conservation in Central – Conservative Force Fields --------------------------13 

1.0 Introduction  ---------------------------------------------------------------------------------------------13 

Aims and Learning Objectives -----------------------------------------------------------------------------13 

3.0  Radial Energy Equation -------------------------------------------------------------------------------13 

3.1  Energy Conservation Equation -----------------------------------------------------------------------14 



 

PHY 201 Contents ii 

3.2  Equation of Orbit ---------------------------------------------------------------------------------------14 

4.0  Conclusion ----------------------------------------------------------------------------------------------15 

5.0  Summary ------------------------------------------------------------------------------------------------15 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------15 

7.0  References/Further Readings -------------------------------------------------------------------------15 

 

Unit 5  Central – Conservative Force and Planetary Motion  ------------------------------------16 

1.0 Introduction  ---------------------------------------------------------------------------------------------16 

2.0 Aims and Learning objectives: ------------------------------------------------------------------------16  

3.0  Kepler’s Laws -------------------------------------------------------------------------------------------16 

3.1  Motion in an Inverse Square Law Force Field -----------------------------------------------------16 

Self Assessement Exercise ---------------------------------------------------------------------------------17 

4.0  Conclusion ----------------------------------------------------------------------------------------------17 

5.0  Summary ------------------------------------------------------------------------------------------------17 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------18 

7.0  References/Further Readings -------------------------------------------------------------------------18 

Solutions to TMA -------------------------------------------------------------------------------------------18  

 

 

MODULE 2   OSCILLATORY MOTION  -----------------------------------------------------------23 

 

Unit1  Linear Simple Harmonic Osillator -------------------------------------------------------------23 

1.0 Introduction ----------------------------------------------------------------------------------------------23 

2.0 Aims and Learning objectives:  -----------------------------------------------------------------------23 

3.0  Simple Harmonic Motion (SHM) --------------------------------------------------------------------23 

3.1  Examples of SHM --------------------------------------------------------------------------------------24 

4.0  Conclusion ----------------------------------------------------------------------------------------------25 

5.0  Summary ------------------------------------------------------------------------------------------------25 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------25 

7.0  References/Further Readings -------------------------------------------------------------------------25 

 

Unit 2 Conservation of Energy in SHM  ---------------------------------------------------------------26 

1.0 Introduction  ---------------------------------------------------------------------------------------------26 

2.0 Aims and Learning objectives:-------------------------------------------------------------------------26   

3.0  Energy of Simple Harmonic Motion -----------------------------------------------------------------26 

4.0  Conclusion ----------------------------------------------------------------------------------------------26 

5.0  Summary ------------------------------------------------------------------------------------------------26 

6.0  Tutor-Marked Assignment (TMA)  ------------------------------------------------------------------27 

7.0  References/Further Readings -------------------------------------------------------------------------27 

 

Unit 3 Damped Oscillatory Motion ---------------------------------------------------------------------28 

1.0 Introduction  ---------------------------------------------------------------------------------------------28 

2.0 Aims and Learning objectives: ------------------------------------------------------------------------28   

3.0  Damped Harmonic Motion: ---------------------------------------------------------------------------28 

4.0  Conclusion ----------------------------------------------------------------------------------------------29 

5.0  Summary ------------------------------------------------------------------------------------------------29 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------30 

7.0  References/Further Readings ------------------------------------------------------------------------30 

 



 

PHY 201 Contents iii 

Unit 4 Forced Oscillatory Motion   ---------------------------------------------------------------------31 

1.0 Introduction  ---------------------------------------------------------------------------------------------31 

2.0 Aims and Learning objectives: ------------------------------------------------------------------------31  

3.0  Forced Oscillations and Resonance: -----------------------------------------------------------------31 

4.0  Conclusion ----------------------------------------------------------------------------------------------32 

5.0  Summary ------------------------------------------------------------------------------------------------32 

6.0  Tutor-Marked Assignment (TMA) -------------------------------------------------------------------32 

7.0  References/Further Readings -------------------------------------------------------------------------32 

 

Unit 5 Coupled Oscillation  -------------------------------------------------------------------------------33 

1.0 Introduction  ---------------------------------------------------------------------------------------------33 

2.0 Aims and Learning objectives:-------------------------------------------------------------------------33   

3.0 Normal Frequencies and Normal Mode of Vibration: Two Body Oscillations -----------------33 

Self Assessement Exercise ---------------------------------------------------------------------------------34 

4.0  Conclusion ----------------------------------------------------------------------------------------------34 

5.0  Summary ------------------------------------------------------------------------------------------------34 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------34 

7.0  References/Further Readings -------------------------------------------------------------------------34 

Solutions to TMA -------------------------------------------------------------------------------------------35 

 

 

MODULE 3  LAGRANGE AND HAMILTONIAN MEACHANICS  --------------------------40 

 

Unit 1   Frame of Reference and Constraints of Motion -------------------------------------------40 

1.0 Introduction  ---------------------------------------------------------------------------------------------40 

2.0  Aim and Objectives ------------------------------------------------------------------------------------40 

3.0 Frames of References -----------------------------------------------------------------------------------40 

3.1 Constraints of Motion ----------------------------------------------------------------------------------40 

4.0  Conclusion ----------------------------------------------------------------------------------------------41 

5.0  Summary ------------------------------------------------------------------------------------------------41 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------41 

7.0  References/Further Readings -------------------------------------------------------------------------41 

 

Unit 2  Generalized Coordinates  -----------------------------------------------------------------------42 

1.0 Introduction  ---------------------------------------------------------------------------------------------42 

2.0  Aim and Objectives  -----------------------------------------------------------------------------------42 

3.0   Generalized Coordinates and Degrees od Freedom -----------------------------------------------42 

3.1 Definitions:-----------------------------------------------------------------------------------------------42 

3.2   Other Generalized Quantities ------------------------------------------------------------------------43 

4.0  Conclusion ----------------------------------------------------------------------------------------------43 

5.0  Summary ------------------------------------------------------------------------------------------------43 

6.0  Tutor-Marked Assignment (TMA) ------------------------------------------------------------------43 

7.0  References/Further Readings -------------------------------------------------------------------------43 

 

 

 

 

 

 



 

PHY 201 Contents iv 

Unit 3 Lagrange’s Mechanics  ---------------------------------------------------------------------------44 

1.0 Introduction ----------------------------------------------------------------------------------------------44 

2.0  Aim and Objectives ------------------------------------------------------------------------------------44 

3.0  Lagrange’s equations of motion ----------------------------------------------------------------------44 

4.0  Conclusion   ---------------------------------------------------------------------------------------------45 

5.0  Summary ------------------------------------------------------------------------------------------------46 

6.0  Tutor-Marked Assignment (TMA)-------------------------------------------------------------------46 

7.0  References/Further Readings -------------------------------------------------------------------------46 

 

Unit 4 Hamilton’s Mechanics   --------------------------------------------------------------------------47 

1.0 Introduction  ---------------------------------------------------------------------------------------------47 

2.0  Aim and Objectives ------------------------------------------------------------------------------------47 

3. 0  Hamilton’s Equation of Motion  ---------------------------------------------------------------------47 

4.0  Conclusion ----------------------------------------------------------------------------------------------48 

5.0  Summary ------------------------------------------------------------------------------------------------48 

6.0  Tutor-Marked Assignment (TMA)  ------------------------------------------------------------------48 

7.0  References/Further Readings  ------------------------------------------------------------------------48 

 

Unit 5  Between Newtonian, Lagrangian and Hamiltonian Mechanics     ----------------------49 

1.0 Introduction     -------------------------------------------------------------------------------------------49 

2.0  Aim and Objectives  -----------------------------------------------------------------------------------49 

3.0  Transformation of Newton’s Law from Vector to Scalar Notation  -----------------------------49 

3.1  Between Newtonian, Lagrangian and Hamiltonian Mechanics  ---------------------------------49 

Self Assessement Exercise -------------------------------------------------------------------------------- 50 

4.0  Conclusion  ----------------------------------------------------------------------------------------------50 

5.0  Summary ------------------------------------------------------------------------------------------------50 

6.0  Tutor-Marked Assignment (TMA)  -----------------------------------------------------------------50 

7.0  References/Further Readings  ------------------------------------------------------------------------51 

Solutions to TMA -------------------------------------------------------------------------------------------51 



 

PHY 201 Central Conservative Forces 1 

MODULE 1:        MOTION IN CENTRAL FORCE FIELDS 

 

The primary application of the theory of central-force motion is in astronomy. The motion of 

bodies which act under influence of a central force is extremely important physical problem 

which lies in motion of celestial bodies, such as planets, moons, comets, stars, etc. Artificial 

satellites orbiting the earth are a familiar part of modern technology; but how do they stay in 

orbit, and what determines the properties of their orbits?  In this module we shall discuss  

problems of  bodies that are encounterd in celestial mechanics. 

 

 

Unit 1  Vector Analysis 

 

1.0 Introduction 

Physics makes use of equations, formulas, and vectors. A vector is a special type of quantity in 

which there are two components: magnitude and direction. Vectors are used commonly in 

physics to represent phenomena such as force, velocity, and acceleration. (Vectors are 

customarily written in boldface, as opposed to variables, constants, and coefficients, which are 

usually written in talics). A simple example is the motion of an airplane; to describe this motion 

completely, we must say not only how fast the plane is moving, but also in what direction. The 

speed of the airplane combined with its direction of motion together constitute a vector quantity 

called velocity. In contrast, real numbers, also called scalars, are one-dimensional (they can be 

depicted on a line); they have only magnitude. Scalars are satisfactory for representing 

phenomena or quantities such as temperature, time, and mass.  

 

The discusssion of motion in two or three dimensions is vastly simplified only  when concept of 

vector calculus is introduced. In this unit you will need to refresh your knowledge of vector 

concepts from elementary mathematics before proceeding.  

 

2.0 Aims and Learning objectives   

By the end of this unit students should be able to  manipulate vectors fluently including use of 

scalar and vector quantities in physics.  

 

3.1 Vector Position  

 

 

  

 

r
0 

z 

x 

y 

0 

• p(x,y,z) 

The point P is in cartesian coordinates and has no 

direction, such quantity is called scalar. 

 

However,  op  is a position vector which defines 

the position of the point p from the origin. 
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   

zkyjxi

zyxfvectorpositionrop

ˆˆˆ

,,




 

 

The letters kji ˆ,ˆ,ˆ  (could also be written in bold  i, j, k) are called ‘unit vectors’ 

   and  

r
2
 = x

2
 + y

2
 + z

2 

In general, 

unit vector =  
r

r
 

When the point p coincides with origin 0, )(0 zeror  , this particular vector  op  = 0  is called 

‘zero vector’ 

 

3.2  Addition and Subtraction of vectors 

 Vectors can be added or subtracted. Consider  two vectors  a  and b  ( could also be denoted 

using arrows a


 and  b


  or  using the cap  â  and b̂ )  

a = ax i + ay j + az k      and       b  = bx i + by j + bz k   

a  + b  =  b  + a   

 

3.3  Multiplying of a vector with another vector 

      Consider  two vectors  a  and b , 

1. Scalar product (Dot product) 

        a  . b   = a b cosθ     (scalar result)   

        If a  is perpendicular to  b ,                  a  . b   = 0   

        Note:  i.i = j.j = k.k = 1    and   i.j = j.k = k.i = 0 

 

2. Cross product 

        a  x b   = a b sinθ     (vector result)  

       a  x b  =  - b  x a   

        If a  is parallel   b ,                  a  x b   = 0   

3.  Tripple product 

     (a) scalar triple product 

                               ( a  x b ). c   = coscbxa     

                                 ( a  x b ). c   =  (b  x c ). a     =   baxc .      

         (b)  vector triple product 

        baccabcxbxa ..   

 

 

  3.4 Gradient, Divergence and Curl 

         Fields  are quantities which are function of position in space. 

    There are two types of fields: scalar field , denoted ϕ(x,y,z) or  r  and vector field, denoted  
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     A  (x,y,z) or  rA . Both are functions of position in space 

 

Define a symbol 

z
k

y
j

x
idel














 ˆˆˆ  

 (i)     graddel      ≡  gradient of the scalar field ϕ 

                                       























z
k

y
j

x
i ˆˆˆ  

                                       
z

k
y

j
x

i















 ˆˆˆ                    ≡ gradient of a scalar gives a vector 

 

 

          (ii)      Divergence of vector  A   ( can also be Â , A


 etc.) is 

ADivA  .    ( divergence of  A ) 

                              =   zyx AkAjAi
z

k
y

j
x

i ˆˆˆ.ˆˆˆ 





















 

                                                            =  
z

A

y

A

x

A zyx














                  ≡ gives scalar quantity 

 

         (iii)       ACurlAx    =   zyx AkAjAix
z

k
y

j
x

i ˆˆˆˆˆˆ 





















 

                                                      =   

zyx AAA

zyx

kji













ˆˆˆ

              ≡   which will give a vector quantity 

 

Self Assessement Exercise 

1.  For what values of q are the two vectors A = i + j + qk  and B = qi – 2j + 2qk parallel to each 

     other? 

 

2. A particle of mass m is subjected to a force F = kx where k is a constant. At x = 0 its velocity  

     is v0. Show that at x = 2, its velocity will be 
m

k
vv

42

0   

 

3.  The velocity of a moving particle is given by kctjbtiav ˆˆˆ 1  in which a, b, and c are  

      constants. Find r 

 

4.0  Conclusion 

Vectors can be manipulated in the same manner as done with quantities in mathematics; addition, 

subtraction, multiplication, etc. These techniques are used in a range of unseen      mathematically 

applied problems in physics. 
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5.0  Summary 

We treated how to add, subtract and multiply vectors, including taking the dot, divergence and 

cross product of vectors. 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 1.1    

  If   kjiA ˆ4ˆ3ˆ2    and kjiB ˆ3ˆ4   

        (i) calculate A – B  (ii) calculate A curl B  (iii) evaluate A dot B   and  

        (iv) verify that (A•B)
2
 + (A X B)

2
 = A

2
B

2 

Question 1.2    

    Find the angle between the two vectors kjiA ˆ4ˆ5ˆ6   and kjiB ˆ3ˆ2ˆ   

 

7.0  References/Further Readings 

 

Fowles, G. R. and Cassiday, G. L. (1993) Analytical Mechanics, 5th Ed., Saunders College   

              Publishing, New York. 
 
Goldstein, H. (1959) Classical Mechanics,  Addison-Wesley Publishing Company, Inc. New York. 

 

http://www.scienceaid.co.uk/physics/forces.html  (Sept. 2009) 
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Unit 2   Central – Conservative Forces 

 

1.0 Introduction 

All forces are either conservative or nonconservative. A force that offers the oppportunity of 

conversion between kinetic and potential energies is a conservative force. An essential feature of 

conservative forces is that their work is always reversible. The work of a conservative force can 

always be represented by a potential energy function, but work of nonconservative forces cannot. 

A central force is a conservative field, that is, it can always be expressed as the negative gradient 

of a potential: A force that can be derived from a potential energy V(r) that only depends on the 

distance to the source is called central. As a consequence of being conservative, a central force 

field is irrotational, that is, its curl is zero. Since the central force is conservative the energy of the 

planet must be a constant over the orbit. The gravitational force, electric force between charges 

and spring force in elevator are examples of central forces  

 

Defintions of Central, Conservative and Central-conservative forces are teated in this unit. The 

physical meaning of gradient of a vector will also be seen. The necessary and sufficient 

conditions for a force field to be conservative and some quick tests are also touched. 

 

2.0 Aims and Learning objectives:   

  By the end of the unit students should be able: 

• to know what central, conservative and central-conservative forces are.  

• mathematically understand the conservative theorems of energy, linear momentum and angular  

  Momentum.  

 

3.0 Definition of Central forces 

An external force is said to be central if it is always directed towards or away from a fixed point, 

called ‘the centre of force’. 

A force whose line of action is always directed toward a fixed point. The central force may attract 

or repel. The point toward or from which the force acts is called the center of force. If the central 

force attracts a material particle, the path of the particle is a curve concave toward the center of 

force; if the central force repels the particle, its orbit is convex to the center of force. Undisturbed 

orbital motion under the influence of a central force satisfies Kepler's law of areas. 

 

If we choose the origin to be at this centre, this means that  F  is always parrallel to r  

 

 
 

 

y 

x 
0 

r  

Mathematically, 

  1rrfF   

where  
r

r
r 1     ≡ unit vector 

 

If    0rf     is attractive 

     0rf   is repulsive 

 

• m 

Figure 1.2: A particle in a plane 
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3.1  Properties of Central Force Fields 

If a particle moves under the action of a central force field; 

(a)  The angular momentum of the particle is conserved 

        

(b)  The path (or orbit ) of the particle must be  a plane curve. 

        i.e.   the particle moves in a plane curve 

         proof:  

       Central force field     1rrfF      where 1r  is unit vector 

  01  rrfxrFxr ,       
dt

vd
mamF   

0
dt

vd
mxrFxr     (since 0Fxr ) 

So    0vxr
dt

d
m                 0vxr

dt

d
 

    ),(tan sayhtconsvxr   

  hrvxrr ..   

i.e      hrvrxr ..   

    hrv ..0              (since 0rxr ) 

hr .0            r  is perpendicular to h    (i.e r   ┴ h ) 

Hence the motion of a particle under the influence of a central force takes place in a plane. 

 

 

3.2  Work Performed by Conservative force fields 

From everyday experience, work is related with the magnitude of the force acting during 

performing a work and the magnitude of the displacement of the body from one point to another. 

In general, work does depend on the path taken between any two points. 

Let V be a scalar fuction such that 

VF     ,                           where      maF      ≡  force field  (a vector space) 

 

 
 

 dzkdyjdxiV
z

k
y

j
x

irdV
z

k
y

j
x

iW
p

p

p

p

ˆˆˆˆˆˆˆˆˆ 2

1

2

1














































   

Figure 1.3: Moving particle from point p1 to p2 

rd  

• p2 

 

p1 

• 

 

 rF  

1r

x 
2r

x 

x 

y 

z 

We want to find the work W, done by the force F in moving a 

particle from point p1 to p2 

  
2

1

2

1

p

p

p

p
rdVrdFW  
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      2121

2

1

2

1

VVpVpVVdVW
p

p

p

p
   

V1 and V2 are potential energies (or simply potentials) at point p1 and p2 respectively. 

 

We see here that the work done is independent of the path transversed by the particle. 

 

If the work done by a force field in moving a particle from one point to another point is 

independent of the path joining the points, then the force field is said to be conservative. 

Precondition: 

VF   

  0 VxFx  

 

Note. 

•    It can be  shown that the force field F(r) is conservative implies that   0.  drrF  

•   0.  drrF  for any closed path implies  ‘there exists a function V(r) such that   

     rVrF  ’ 

• F  is conservative if  curl F = Fx   =  0 

 

 

3.3  Definition of Central Conservative Forces: 

These are forces which exibit both the properties of conservative and central forces. Central 

forces are always conservative 

 

 

3.4 Conservative theorems 

 

3.4.1  Energy 

The work done W by net force on a particle by displacing it from an initial potential V1 to a final 

potential V2 equals the change in the particle’s kinetic energy from T1 to T2 

W = V1 – V2 

W = T2 – T1 

  Equating the two equations, 

V1 – V2  =  T2 – T1 

i.e.  V1 + T1   =  V2  + T2  = 
 
 constant 

T + V = K.E + P.E = E (total energy) 

This result is known as the work - energy theorem. 

 

 

3.4.2 Torque and Conservation of Angular momentum 

When the net external torque acting on a system is zero, the total angular momentum of  the 

system is constant (conserved). 

Torgue, N is the moment of the force 

   vmxr
dt

d
vm

dt

d
xrFxrN          using vector identity 
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                                                                   pxr
dt

d
  

 momentumangularLpxr   

 

dt

Ld
N   

If  N  = 0                                                     0
dt

Ld
 

        L  = constant   (implies L is conserved) 

 

 

dt

Ld
FxrN   

Here r  is parallel to F            0Fxr      i.e. 0N  

                             0
dt

Ld
                        tconsL tan   (means is conserved) 

 

 

3.4.3  Impulse and Conservation of Linear momentum, p 

The change in momentum of a particle during a time interval equals the the impulse of the net 

force that acts on the particle during that interval.  

Impulse of the force =   122
2

1

2

1 1

2

1

pppdptdt
dt

pd
dtF

t

t

t

t t

t

t
    = rate of change in momentum 

 

dt

pd
F   

If  F  = 0                                                     0
dt

pd
 

        p  = constant   (implies p is conserved) 

This result is known as impulse - momentum theorem 

 

 

Conclusion 

The wok done in moving a particle from one point to another in a conservative force field is 

independent of the path taken. Energy, linear and angular momentum are conserved during 

motion in central conservative field. 

 

5.0  Summary 

A central force is always directed along the line connecting the centre of two bodies, it is 

conservative and the potential is derivable from it. The motion of a particle in a central force field 

always takes place in a plane. Central force motion occurs in celestial bodies and nuclear 

interaction. 
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6.0  Tutor-Marked Assignment (TMA) 

Question 2.1    
  Find out if the force given below is conservative and hence determine the potential energy for   

     it:          2223333 3,2,2 yxazFyzayFyzaxF zyx   

 

Question 2.2    

  Find the component of the force for the potential energy 32 zaxyV   

 

 

7.0  References/Further Readings 

Fowles, G. R. and Cassiday, G. L. (1993) Analytical Mechanics, 5th Ed., Saunders College   

              Publishing, New York. 
 
Goldstein, H. (1959) Classical Mechanics,  Addison-Wesley Publishing Company, Inc. New York. 

 

http://www.scienceaid.co.uk/physics/forces.html  (Sept. 2009) 
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• 

z 

Z 

Y 

X 

x 

r
θ 

ρ 
ϕ 

θ 

There are two types of polar coordinates: 

 cylindrical and spherical polar coordinates. 

ρ comes in only in terms of cylindrical 

cartesian (x,y,z) 

cylindrical  (ρ,ϕ,z) 

spherical  (r,θ,ϕ ) 
 

Unit 3 Kinematics in Polar  coordinates 

 

1.0 Introduction 

Mechanics often includes the study of the motion of particles along curves; this is known as 

kinematics. In problems with particular symmetries, it is often convenient to use non- Cartesian 

co-ordinates. In particular, in the case of axial or spherical symmetry, we may use cylindrical 

polar co-ordinates ρ, ϕ, z, or spherical polar co-ordinates r, θ, ϕ. These co-ordinates, though 

curvilinear, are still orthogonal in the sense that the three coordinate directions at each point are 

mutually perpendicular.These are related to Cartesian co-ordinates. In this unit, kinematics is 

considered in terms of polar coordinates.  

 

2.0 Aims and Learning objectives:   
  By the end of the unit students should be able: 

• evaluate velocity and acceleration components in terms of polar coordinates.  

 

3.0  Polar Coordinates 

One can migrate from one coordinate system to another 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1: Relation between cartesian and polar coordinates 

Cartesian Cylindrical Spherical 

x ρcosϕ rsinθcosϕ 

y ρsinϕ rsinθsinϕ 

z z rcosθ 

 

In the Newton’s second law of motion 

 F = ma ,        
dt

dv
a   

This is in the cartesian coordinates. 

We wish to change it to spherical polar coordinates 

From x, y, z         in cartesian, we get the velocity components  vx, vy and vz 

From r, θ, ϕ         in spherical polar, we get the velocity components  vr, vθ, vϕ    

 

 

Figure 1.4: Polar coordinates 

From pythagorean theorem, we have 

 

 222 zyxr   
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3.1  Velocity and acceleration components in polar coordinates    

In many practical problems, potential energy function is spherically symmetric; it depends only 

on the distance from the origin given by:  

          2222 zyxr   , and 

 2222

zyxr vvvv   

                       =  

222




























dt

dz

dt

dy

dt

dx
 

In polar coordinates, 

                                            cossinrx  ,          cossin


 r
dt

dx
                        (Note:  

dt

dr
r 


) 

                                             sinsinry  ,          sinsin


 r
dt

dy
 

                                            cosrz  ,                 cos


 r
dt

dz
 

Therefore 

 

  
2

2222

2

22222

2

222

2

cossincossin

cossinsincossin

cossinsincossin











































r

r

r

rrrvr







 

2

2


 rvr                                


 rvr  

For vθ 

 

     cossinrx  ,          


coscosr
d

dx
  

        sinsinry  ,            


sincosr
d

dy
  

cosrz  ,                  


sinr
d

dz
  

and proceeding as we did for vr, we get 


  rv                where 
dt

d
 


 

and for vϕ, 


  sinrv                  where  
dt

d
 


 

 

So 

 
2

22

2

2

2

2

2222

sin










rrrv

vvvv r
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Since the force acting on the particle is a central conservative force, the path selected by the 

particle would be a two dimensional plane. 

Let it be the xy plane then, 


 rvr
 



  rv  

0v  

and 

          
2

2

2

2


 rrv               vvv r   

                                             11 


 rrrv              where 1r  and 1   are unit vectors 

acceleration can be derived to be 

11

2

2  

























rrrrra  

 

conservatism and associated potential  

 

4.0  Conclusion 

One can transform from one coordinate system to another; in this case from cartesian to polar.  

 

5.0  Summary 

The velocity and acceleration components for a two dimensional motion in a central conservative 

fields were obtained. 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 3.1    

Given that 


















sin

1
ˆ

1
ˆˆ

r
e

r
e

r
er  in spherical coordinates, show that the inverse 

square law of force in three dimensions re
r

k
F ˆ

2 






 
  is conservative 

 

7.0  References/Further Readings 

Fowles, G. R. and Cassiday, G. L. (1993) Analytical Mechanics, 5th Ed., Saunders College   

              Publishing, New York. 
 
Goldstein, H. (1959) Classical Mechanics,  Addison-Wesley Publishing Company, Inc. New York. 

 

http://www.scienceaid.co.uk/physics/forces.html  (Sept. 2009) 
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Unit 4   Energy Conservation in Central – Conservative Force Fields  

 

 

1.0 Introduction 

 For a particle moving under any central, conservative force, information about the radial motion 

may be obtained from the radial energy equation., which results from eliminating the time 

derivative of θ with respect to time from equations of a particle motion in central conservative 

force field.  

In this unit, we shall consider conservatism and associated potential by using polar coordinates to 

determine the total energy using initial conditions.  

 

2.0 Aims and Learning Objectives 

  By the end of the unit students should be able: 

• mathematically treat conservation of energy and angular momentum in planar motion to get the  

   Radial and conservation  energy equations. 

 

3.0  Radial Energy Equation 

    For a motion of particle  in a central conservative force field, equation of motion is: 

 








































11

2

1

2

)(

 rrrrrm

forceveconservaticentralrrfamF

 

  

                    














 2

rrmrf                                 (1)           and 



  rr 20                            (2) 

Now, 

 rVF       (conservative force) 

   rVrrf 1  

   drrfrV      (potential) 

 

K.E  +  P.E  =  E  (toatal energy) 

i.e.      

  
















Edrrfrrm
2

2

2

2

1
                               (3) 

Angular momentum  pxrL      ( cartesian coordinates) 

From 











 rmrm 20 , we get  


 2mrL                               (4)    (polar coordinates) 

Eliminating 


  from equations (3)  and (4),        
2mr

L




  we have 

  


Edrrf
mr

L
rm

2

22

22

1
          or      ErV

mr

L
rm 


2

22

22

1
 

This is the Radial energy equation. 
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3.1  Energy Conservation Equation  

 For a particle which moves in a central force field described by a potential function, it  

 posseses spherical symmetry and angular momentum and total energy are conserved.  

 

                                                  1rrfF      ,      ( 1r   ≡ unit vector)  is a central conservative force 

                                                 ErV
mr

L
rm 


2

22

22

1
 

                                                  


 2mrL       

Let        
r

u
1

 ,   
 d

dr

rd

du
2

1
        

 d

du
r

d

dr 2       


 



 d

du
r

d

dr 2  

 


 







 d

du
r

d

dr

dt

d

d

dr

dt

dr
r 2  



 2mrL          
2mr

L




  

Now 

  ErV
mr

L
rm 


2

22

22

1
 

Substituting for 


r  and multiplying by 
2

2

L

m
, we have 

                                                VE
L

m
u

d

du









2

2

2
2


       ---- Energy  Conservation  Equation 

 

This equation can be integrated to obtain the equation of the orbit in any of the following the 

forms 

r = r (θ)  

r = r (t) 

θ = θ(t) 

 

3.2  Equation of Orbit 

If we eliminate time from the equations of motion, we get the path of the particle. 

 

 rfrrm 














 2

                                (1)       

            02 











 rrm                                   (2) 

From         02 











 rrm   , we have   

022 











 rrr
r

m
,       02 







 

r
dt

d

r

m
,           02 







 

r
dt

d
 

i.e.                                                 ),(tan2 hsaytconsr 


  
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hr 


2         2

2
hu

r

h




  

Substituting for  


  in     rfrrm 














 2

  we get,   rfrhrm 







 


32  

Now, 

u
r

1
                








 d

du
h

d

dr

r

h

d

dr

dt

d

d

dr

dt

dr
r 



2
 

2

2
22





 d

ud
uh

dt

d

d

du
h

d

d

d

du
h

dt

d
r

dt

d
r 






























 

 rfrhrm 







 


32  becomes,    

 


















u
fuh

d

ud
uhm

132

2

2
22


  or  

222

2

1

umh

u
f

u
d

ud













 

This is the equation for the path of the particle. 

Note: 

This equation can be applied to find path of particle that the force involved is directed towards a 

centre (that is ellipse, circular, parabolic, hyperbolic,  etc.). 

 

For a given central force, increasing the velocity causes the orbit to change from a circle to an 

ellipse to a parabola to a hyperbola, with the changes occurring at certain critical velocities. For 

example, if the speed of the Earth (which is in a nearly circular gravitational orbit) were increased 

by about a factor of 1.4, the orbit would change into a parabola and the Earth would leave the 

Solar System. 

 

4.0  Conclusion 

From the radial energy equation and the energy conservation equation and  using polar 

coordinates, the path or differential equation of orbit can be obtained by integrating.  

 

5.0  Summary 

This differential equation of orbit can be applied to find path of particle that the force involved is 

directed towards a centre (that is ellipse, circular, parabolic, hyperbolic,  etc.). 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 4.1    
Consider the family of orbits in a central potential for which the total energy is constant. Show 

that if a stable circular orbit exist, then the angular momentum associated with this orbit is larger 

than that for any other orbit of the family. 

 

7.0  References/Further Readings 

Fowles, G. R. and Cassiday, G. L. (1993) Analytical Mechanics, 5th Ed., Saunders College   

              Publishing, New York. 
 
Goldstein, H. (1959) Classical Mechanics,  Addison-Wesley Publishing Company, Inc. New York. 

 

http://www.scienceaid.co.uk/physics/forces.html  (Sept. 2009) 
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Unit 5  Central – Conservative Force and Planetary Motion 

 

1.0 Introduction 

We now turn to the problem of determining the orbit of a particle moving under a central 

conservative force. The motion under the influence of a central force is an extremely important 

problem in the motion of celestial bodies, such as planets, moons, comets ete. Undisturbed orbital 

motion under the influence of a central force satisfies Kepler's law of areas. When satelite moves 

in a circular orbit, the centripetal acceleration is provided by the gravitational attraction of the 

earth. Kepler’s laws describe more general case: elliptical orbit of a planet around the sun or a 

satellite around a planet 

Kepler’s laws will be reviewed and the orbits of a planet surrounding a heavy sun explained. The 

differential equation for orbit of motion in an inverse square law force field is derived. 

 

2.0 Aims and Learning objectives   
By the end of the unit students should be able: 

establish that Kepler’s laws are just consequences Newton’s laws of gravitation and that of 

motion.  

 

3.0  Kepler’s Laws  

Kepler's three laws of planetary motion can be described as follows: 

 The paths of planets about the sun are elliptical in shape, with the center of the sun being 

located at one focus. (The Law of Ellipses)  

 An imaginary line drawn from the center of the sun to the center of the planet will sweep 

out equal areas in equal intervals of time. (The Law of Equal Areas)  

 The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes 

of their average distances from the sun. (The Law of Harmonies)  

 Of course, Kepler’s Laws originated from observations of the solar system. It should be known  

that these laws are consequences of Newton's laws of gravitation and of Motion.   

3.1  Motion in an Inverse Square Law Force Field 

   Let us consider the central conservative force F given by 

    

    1rrfF      ,      ( 1r   ≡ unit vector)   
2r

k
rf   

i.e.                                                               
21

ku
u

f 







 

So 

222

2

222

2

1

mh

k

umh

ku

umh

u
f

u
d

ud















 

Thus differential equation for orbit of motion in an inverse square law force field is  

22

2

mh

k
u

d

ud



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Given that a particle is continuously subjected to a force directed toward a fixed central point, 

and that the magnitude of the force is inversely proportional to the square of the particle’s 

distance from that central point, the usual way of determining the motion of the particle is by 

solving the appropriate differential equation. In this way it can easily be shown that the particle’s 

path will be a conic, i.e., an ellipse, hyperbola, or parabola, with the central point located at one 

focus, and that the line from the central point to the particle sweeps out equal areas in equal 

times. 

SELF ASSESSEMENT EXERCISE 

1.  What do you understand by a  central conservative force field? A particle of mass m moves  

      according to the equations:

ctz

bty

atxx







3

2

0

 

      (i) Find the angular momentum L at any time t. 

      (ii) Find the force F and from it, the torque, N acting on the particle. 

      (iii) Verify that the angular momentum theorem NFXr
dt

Ld 


  

 

2. The potential energy function for the force between two atoms in a diatomic molecule can be  

     expressed approximately as  
612 x

b

x

a
xV   where a and b are positive constants and x is the  

      distance of separation between the two atoms. 

      (i) at what values of x is V(x) equal zero  

      (ii) at what values of x is V(x) a minimum 

      (iii) determine the force between the atoms 

 

3.  Calculate the velocity vector in spherical polar coordinates. 

     Assuming that a central conservative force is acting on a particle so that the path selected is on 

     xy plane, show that the acceleration componenets are: 
2

 rrar     and  


  rra 2  

 

4.  Show by means of the substitution 
u

r
1

  that the differential equation for the path of the  

        particle in a  central field is 
222

2

1

umh

u
f

u
dt

ud










  

 

4.0  Conclusion 

  We established mathematically that Kepler’s Laws which originated from observations of the 

solar system are just consequences of Newton's laws of gravitation and of Motion. 

5.0  Summary 

We saw that Newton's law of graviation is example of a central force field. The orbits of a planet 

surrounding a heavy sun as described by  Kepler's laws, we showed that Kepler’s  second law 

followed from conservation of angular momentum and the  third law is a consequence of the 

inverse square force law  
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6.0  Tutor-Marked Assignment (TMA) 

Question 5.1    
 Show mathematically that Kepler’s laws of planetary motion are just consequences of  

    Newton’s laws of universal gravitation and motion. 

 

Question 5.2    

 A particle moves under the influence of a central force given by  
nr

k
rf


 .  If the particle’s  

   orbit is circular and passes through the force centre, show that n = 5 
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MODULE 1    Solutions to TMA   

 

Unit 1 

question 1.1 

    kjiA ˆ4ˆ3ˆ2    and kjiB ˆ3ˆ4   

        (i) A – B = (2i – 4i) + (3j – j) + (4k – 3k) = -2i + 2j + k 

(ii) 
           122ˆ616ˆ49ˆ3.41.2ˆ3.24.4ˆ1.43.3ˆ

314

432

ˆˆˆ

 kjikji

kji

BxA
 

                 =  5i + 10j – 10k 

 

(iii)  (A•B)
2
 + (AXB)

2
 =  [(2i + 3j + 4k) x (4i + j + 3k)]

2  
+ (5i + 10j – 10k)

2
 

                                     =  (2.4 + 3.1 + 4.3)
2
 + {5.5 + 10.10 + (-10).(-10)} 

                                     =  (23)
2
 + (25 + 100 + 100) = 529 + 225 = 754 

       A
2
B

2
 = (2i + 3j + 4k)

2
(4i + j + 3k)

2 
= (4 + 9 + 16) (16 + 1 + 9) = 29 x 26 = 754 

 

Question 1.2 

 kjiA ˆ4ˆ5ˆ6   and kjiB ˆ3ˆ2ˆ    and we know cosBABA   by    

       definition 

       So    77456 222 A   and    14321 222 B  

       and   A•B = (6i+ 5j + 4k)(i + 2j + 3k)  = 6 + 10 + 12 = 28                              

                                                 
11

8

1477

28
cos 




xBA

BA
         01 5.31

11

8
cos 














   
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Unit 2 

 Question 2.1  

A force F is conservative if the curl of F is zero. i.e 0XF  

  Now            2223333 3,2,2 yxazFyzayFyzaxF zyx   

           kyxazjyzayiyzaxFkFjFiF zyx
ˆ3ˆ2ˆ2ˆˆˆ 2223333   

           

     

   

   

   








































































3333

22233

33222

2223333

22

32

23

322

yzax
y

yzay
x

k

yxaz
x

yzax
z

j

yzay
z

yxaz
y

i

yxazyzayyzax

zyx

kji

FX

      

              kaxyaxykaxzaxzjayzayziFX ˆ6606666 222222    

0XF          hence force is not conservative, therefore potential energy cannot be determined in 

this case   

 

Question 2.2  

The force F and potential energy V are related by the expression  

     

 

 
zyx kFjFiF

zaxykaxyzjziay

zaxy
z

k
y

j
x

iVF





























22332

32

32   

Hence force components are : 
22332 3,2, zaxykFaxyzjFziayF zyx   

and 
22332 3ˆ2ˆˆ zaxykaxyzjzayiF   

 

Unit 3 

Question 3.1   

The force re
r

k
F ˆ

2 






 
  is conservative if 0 FX  and   

So, 

        

00

ˆˆˆ

sin

1

2

2

r

k
r

eee

r
FX

r


















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Now  

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
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
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
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
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









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0

ˆ
1

ˆ
sin

1
22


















 












 




 
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r
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r

k
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We have shown that re
r

k
F ˆ

2 






 
  is conservative since we evaluated  0 FX  

 

 

 

Unit 4 

Question 4.1  

The total energy, E is related to the potential, V(r) by the expression 

  ErV
mr

L
rm 


2

22

22

1
 

From which  

  









 2

22

2

1
2 rmrVEmrL  

E and V(r) are the same for all orbits and the different values of angular momentum, L result only 

from different values of 
2

2

1 

rm . 

For stable circular motion, 0


r  and for all other motions 0


r  

Therefore for non-circular motions, 0


r  and L is smaller than for the circular case. That is, L for 

circular motion is the largest among the family. 

 

 

Unit 5 

Question 5.1 

 Kepler's First Law  

From conservation of angular momentum 
2mr

L

dt

d



                                     (1) 

Since the central force is conservative the energy of the planet must be a constant over the orbit  

tcons
r

GMmmv
E tan

2

2

  
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Figure 1.5: Sketch of orbit 

r  
a 

θ 

Force centre 

     2a 

Substituting for the velocity in polar coordinates 

2

2

2

2



















dt

d
mr

dt

dr
mmv


  and using (1),  

22

22
22

rm

L

r

GM

m

E

dt

dr









                                   (2) 

Equations (1) and (2) allow us to find the orbits. We can for example, solve (2) for dr/dt and 

integrate to find r(t). We can also divide the equations for 
dt

dr
 ,  

dt

d
 and integrate to get an 

equation for the orbit.  

 

Kepler's Second Law  

This law is a consequence of the conservation of angular momentum in a central force field.  

Recall from the definition of the vector product vXrmL   

and the fact that L  is constant, and must stay in a plane. Let us use polar coordinates (r, θ) in 

this plane. We have for the velocity 


e

dt

d
re

dt

dr
v r

ˆˆ   

Hence, the magnitude of the angular momentum is  
dt

d
rL

2  

In a time interval dt, the area swept by the vector per unit time is just  tcons
dt

d
r tan

2

1 2 


 

 

 Kepler's Third Law  

Dividing Newton's second law by the mass of the planet we find the equation of motion  

                                                             
2r

rGM

dt

dv
  

The period T will depend on G, some parameter describing the orbit (such as the semi-major axis 

a), and the mass of the sun.  
 GaMT   

Using the method of dimension, we get  

GM

a
constT

3
2 .  

Question 5.2  
  

 

 

 

 

 

 

 

 

 

For a central force motion, equation of orbit is given by  
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222

2

1

umh

u
f

u
d

ud













 

But 
r

u
1

  so0 

 
2

2

2

2 11

mh

rfr

rrd

d 











            (1) 

 

From Figure 1.5, equation of orbit is  

r = 2acosθ                           (2)  

Putting eqn (2)  in (1) we have, 

   
2

2

2

2 cos2

cos2

1

cos2

1

mh

rfa

aad

d 













 

 

 

i.e 

 

But, 

 











 3

2

2

1

2

2

cos

sin2

cos

1

cos

sin
cos 












d

d

d

d
 

Therefore, 

  






2

2

2

3

2

cos
4

cos

sin2

cos

2

2

1
rf

mh

a

a











  

Form which, 

 
 

  55

2

2

2

53

2

53

222

53

22

33

2

cos2

8

8

8

cos4cos4

sincos

cos4
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cos4 r

k
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a

a

a

mh

a

mh

a

mh

a
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rf

























 

where hmak 28  ≡ constant 

Comparing   
5r

k
rf


  we just got with   

nr

k
rf


        n = 5 
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MODULE 2: OSCILLATORY MOTION 

 

Many kinds of motion repeat themselves over and over: the vibration of a quartz crystal in a 

watch, the swinging pendulum of a grandfather clock, the sound vibrations produced by an organ 

pipe and the back-and-forth motion of the pistons in a car engine. This kind of motion is called 

periodic motion or oscillation. 

 

A body that undergoes periodic motion always has a stable equilibrium position. When it is 

moved away from this position and released, a force or torque comes into play to pull it back 

toward equilibrium. There are many oscillatory systems; the vibrations of molecules and 

interaction between atoms, oscillations of an electrical circuit and springs. There is reciprocal 

nature of correspodence between mechanical compliance and electrical capacitance.  

 

Unit1  Linear Simple Harmonic Osillator 

 

1.0 Introduction 

The linear simple harmonic oscillator (SHO) is the foundation of the theory of oscillations. We 

discuss equilibria in physical systems and how small oscillations about equilibria can in most 

cases be described by the SHO equation.This unit deals with a range of simple harmonic 

oscillatory phenomena, explaining the general techniques for analysing and predicting them. 

 

 

2.0 Aims and Learning objectives   

By the end of this unit students should be able to; 

find the linear approximation to any dynamical system near equilibrium and also know how to 

derive and solve the wave equation for small oscillations.  

 

3.0  Simple Harmonic Motion (SHM) 

If one displaces a system from a position of stable equilibriun, the system will move back and 

forth, that is, it will oscillate about the equilibrium position. The   maximum displacement is 

called the amplitude, A. 

The time, T, to go through one complete cycle is called the period of oscillation and its inverse is 

called the frequency, f. 

T
f

1
  

 

For many systems, if the amplitude is small enough, the restoring force F is directly proportional 

to the displacement from equilibrium x  and satisfies Hook’s law, given by: 

F = - kx 

where k is a positive constant known as the force constant and has units of N/m (or kg/s
2
). 

The motion of such system is called simple harmonic motiom (SHM). We can compute the 

motion  using Newton’s second law ( F = ma) to have  


 xm
dt

xd
mkx

2

2

 

The solution of this equation gives the displacement, x  as a function of  time, t. 

The general solution is of the form  

   tAx cos  

where ϕ is called the phase and it defines the initial displacement cosAx   
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  


tAx
dt

dx
sin  and     



tAx
dt

xd
cos2

2

2

 

 


 xm
dt

xd
mkx

2

2

 becomes 

      tAmtkA coscos 2  

2mk             



k

  

The equation of a simple harmonic motion is thus 

0


x
m

k
x               or          02 



xx   

 

By definition, after a period T later the motion repeats itself, therefore: 

  ttAttATtAtAx  sinsincoscoscoscos  \ 

This equation can be solved if we set 

 2T          frequencyangularf
T

 


 2
2

 

 

 

 

Simple harmonic motion along a straight line can be represented by the projection of uniform 

circular motion along a diameter of a reference circle.  

The projection of the motion of a particle  along y-axis implies that the particle  also exhibits 

simple harmonic motion. Therefore, the uniform circular motion can be considered as a 

combination of two simple harmonic motions, one along the x-axis and the other along y-axis, 

with the two differing in phase 90
o
. 

 

3.1  Examples of SHM 

Several examples of SHM or SHO (simple harmonic motion or simple harmonic oscillation) 

exist, three, each with its equation of motion, are presented below  in Figures 2.1 (a), (b) and (c) 

 

  

a.  A Simple Pendulum 

l 

x 

mg 

 

 

θ 

• 

The equation of motion is 

l

g

mgmlor
l

x
mgxm






2

00





 



 

PHY 201 Damped  Harmonic Motion 25 

 
 

 
 

4.0  Conclusion 

Linear Simple harmonic motion along a straight line can be represented by the projection of 

uniform circular motion along a diameter of a reference circle. Several oscillatory systems exist 

that exibit and their equations of motion can easily be established. 

 

5.0  Summary 

To prove a simple harmonic motion, the following steps are very important: 

• Draw a free body diagram, showing all the forces acting on it at any instant. 

• Denote the direction of the acceleration 
2

2

dt

xd
ora  in that of increasing x.  

• Apply Newton’s secon law, F = ma 

• Evaluate an expression for the acceleration a, and compare with with  a = - ωx
2 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 1.1 

Show that the equation 

     tatx cos    

where  a > 0, ω > 0 and ϕ are constants, is indeed a solution to equation of a simple harmonic 

motion. Sketch the graph of this equation and explain in details how you could obtain the 

amplitude, period and frequency. 

 

7.0  References/Further Readings 

Pain, H. J. (1999) The Physics of Vibrations and Waves, 5th Edition, John Wiley & Sons,  

         Chichester UK. 

 

Crawford Jr, F. S. (1968) Waves, Berkeley Physics Course, Vol. 3, McGraw-Hill, New York NY. 
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c.  An electrical LC resonant circuit 

m 

x 

m

k

kxxm






2

0


 

b. A maas m on a frictionless plane connected by a spring to a wall 
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Unit 2 Conservation of Energy in SHM 

 

1.0 Introduction 

A number of energy conserving physical systems that exhibit simple harmonic oscillation about a 

stable equilibrium state exist. One of the main features of such oscillation is that, once excited, it 

never dies away. However, the majority of the oscillatory systems which we generally encounter 

in everyday life suffer some sort of irreversible energy loss due; for instance, to frictional or 

viscous heat generation whilst they are oscillating. We shall examine the conservation of the 

mechanical energy involved in a linear SHM.  

 

 2.0 Aims and Learning objectives:   

By the end of this unit students should be able to; 

find the expressions for the kinetic and potential energies of a SHM and also establish that total 

energy remains constant during a SHM.  

 

3.0  Energy of Simple Harmonic Motion 

Energies in  a simple harmonic motion are: 

kinetic energy,  K.E =   


tAmxmmv 222

2

2 sin
2

1

2

1

2

1
 and  

potential energy, P.E =     tkAkx 222 cos
2

1

2

1
  

So total energy is  

E = K.E + P.E =      tkAtAmkxmv 2222222 cos
2

1
sin

2

1

2

1
   

                        =  2

2

1
kA               (For a spring mass: km 2 ) 

 

The time average kinetic energy and time average potential energy are expressed as: 


 


Tt

t
dtxm

T
EK

2

2

11
.   and 

           



Tt

t
dtkxEP 2

2

1

2

1
.     respectively. 

where T is the period of oscillation. 

4.0  Conclusion 

  In the absence of non-conservative forces, the total mechanical energy of a SHM is constant.  

 

5.0  Summary 

The energy oscillates back and forth between K.E and P.E, in such a way that the sum remains 

constant. In reality, however, most systems are affected by non-conservative forces. 
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6.0  Tutor-Marked Assignment (TMA) 

Question 2.1 

A simple harmonic oscillator consists of a 100g mass attached to a spring whose force constant is 

10
4
 dyne/cm. The mass is displaced a distance of 3cm and released from rest. Calculate  the 

following quantities: 

(a)  the natural frequency 

(b)  the period 

(c) the total energy 

(d) the maximum velocity 

 

Question 2.2 

The oscillator in the above problem is set into motion by giving it an initial velocity of 10
-2

 ms
-1

 

at its equilibrium position. Calculate; 

(a) the maximum displacement 

(b) the maximum potential energy 

 

Question 2.3 

Considering a simple harmonic oscillator, calculate the time averages of the kinetic and       

potential energies over one cycle and show that the two quantities are equal. 

 

7.0  References/Further Readings 

Pain, H. J. (1999) The Physics of Vibrations and Waves, 5th Edition, John Wiley & Sons,  

         Chichester UK. 

 

Crawford Jr, F. S. (1968) Waves, Berkeley Physics Course, Vol. 3, McGraw-Hill, New York NY. 
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Unit 3 Damped Oscillatory Motion  

 

 

1.0 Introduction 

Most simple harmonic oscillators in the real world are damped – mechanical oscillators, electrical 

oscillators, etc. We assume that a damping force linear in velocity is applied to the harmonic 

oscillator. For a mechanical oscillator, this could be a frictional force. For an electrical oscillator, 

this could be a resistive element. We investigate the effect of damping on the SHO 

 

2.0 Aims and Learning objectives:   
By the end of this unit students should be able to; 

derive and solve the wave equation for damped oscillatory motions which is due to dissipative 

non- conservative forces.  

 

 

3.0  Damped Harmonic Motion:  

 In real systems, the dissipative forces (non- conservative forces) retard the oscillatory motion by 

causing amplitude to decrease. Consequently, the mechanical energy of the system diminishes 

with time. Thus, the oscillatory motion of the system is damped.  

The non – conservative force ( called damping force) is approximately equal  

- r v = 


 xr  

r is a constant giving the damping strength and v is the velocity. 

The equation of  a damped harmonic oscillatory motion is  

0
2

2

 kx
dt

dx
r

dt

xd
m                  or             0



xrxm  

The solution of the differential equation 

0


xrxm  

is of the form 

    


tAetx

t

cos  

For simplicity, let’s take x = A at t = 0, then ϕ = 0 

If we plug the solution  

   tAetx

t

 cos


  

into Newton’s second law, we get the damping time, τ as 

r

m2
     

and the angular frequency, ω as 

 20

0

1
1


   

where 
m

k
0  is the un-damped angular frequency 

The larger the damping constant r the shorter the damping time τ. There are three damping 

regimes as indicated in Figure 2.2: 

(a)   underdamped            (b) critically damped       (c) overdamped 
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Underdamping, the system oscillates with steady decreasing amplitude when it is displaced and 

released. In critical damping, the system no longer oscillates but returns to its equilibrium 

position without oscillation when it is displaced and released. For overdamping, there is no 

oscillation but the system returns to equilibrium more slowly than with critical damping.   

 

4.0  Conclusion 

Critical damping is of practical importance in recording instruments such as ballistic 

galvanometer which experiences sudden impulses and are required to return to zero displacement 

in  minimum time. 

The degree of damping a mechanical system is important for example, a good suspension system 

of a car should be slightly undercritically damped to ensure comfortable ride. 

 

 

5.0  Summary 

In a damped oscillatory motion the following points must be remembered: 

•  When the retarding force is much smaller than the restoring force, the oscillatory character of  

    the motion is preserved but the amplitude decreases in time, with the result that the motion  

    ultimately ceases. Any system that behaves in this manner is called a damped oscillator. 

•  During the damped oscillatory motion, the amplitude decays exponentially with time.  

•  In the absence of retarding force, the system oscillates with its natural frequency. 

•  If the system is so viscous that the retarding force is greater than the restoring force then the  

    system is over damped.  

•  Irrespective of the case whether the system is over damped or under damped, the friction is 

    present and the energy of the oscillator eventually falls to zero. The lost mechanical energy  

    dissipates into internal energy in the retarding medium. 
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Figure 2.2: Sketch of damping wave function 
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6.0  Tutor-Marked Assignment (TMA) 

Question 3.1 

Consider an electrical circuit consisting of an inductor, of inductance L, connected in series with 

a capacitor, of capacitance C, and a resistor, of resistance R. Such a circuit is known as an LCR 

circuit, for obvious reasons. Show that the current in the circuit execute damped harmonic 

oscillations.  

 
 

 

 

 

7.0  References/Further Readings 

Pain, H. J. (1999) The Physics of Vibrations and Waves, 5th Edition, John Wiley & Sons,  
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Figure 2.3:  LRC circuit 
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Unit 4 Forced Oscillatory Motion 

 

1.0 Introduction 

So far we have considered an oscillator in isolation: initial conditions are imposed and then the 

system evolves, perhaps with damping. Frequently in reality we happen upon driven oscillators, 

oscillators that are exposed to a continuous driving force – e.g., a driven LRC circuit. The 

oscillator’s evolution is modified by the existence of the additional driving force. There are many 

situations in which a system may be driven by a regular or irregular external force. For example, 

machinery may vibrate its local enviroment; an electromagnet may vibrate the cone of a 

loudspeaker, an electrical current may drive  the oscillator in a watch. Sometimes we may wish to 

suppress the vibrations, while in other situations we may wish to enhance them. We investigate 

the effect of driving forces on the SHO. 

 

 

2.0 Aims and Learning objectives   

 By the end of this unit students should be able to; 

•use an external oscillatory force in Newton’s second law to get an equation of a driven damped 

oscillation. 

• to know that when the system executing forced oscillation behaves in such a way that its natural 

frequency becomes equal to the frequency of oscillation, the system is said to be in resonance. 

 

 

3.0  Forced Oscillations and Resonance: 

When an oscillatory system is acted upon by an external force we say that the system is driven 

(or forced).To compensate the energy loss in the system in a damped system due to the retarding 

forces, an external force is applied. This force acts in the direction of motion of the oscillator and 

does a positive work on the system. As a result of which, the amplitude of motion remains 

constant when the energy input per cycle exactly equals the energy lost due to damping. The 

system which oscillates in this manner experiences forced oscillation. 

 

Consider an external oscillatory force    tFF dcos0  

where F is varying force with time t, F0 driving force and ωd  driving angular frequency. 

Newtos’s second law for the system becomes 

tFkx
dt

dx
r

dt

xd
m dcos02

2

     or   tFkxxrxm dcos0


 

Again, if we try a solution of the form 

   tAtx dcos  

and plug into the Newton’s second law, we get the amplitude that has a resonance form 

 

 
2

22
2

0

0

m

r
m

F
A

d
d

d








  

 

When the system executing forced oscillation behaves in such a way that its natural frequency 

becomes equal to the frequency of oscillation, the system is said to be in resonance. At resonance, 

the applied force remains in phase with the velocity so that the power transferred to the system is 

of maximum value.  
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The soldiers marching on a bridge are asked to break the steps to avoid the resonance condition 

or else it collapses after hitting its resonant frequency. 

Resonance not only occurs in mechanical systems but also in electrical circuits. Microwaves with 

frequency similar to the natural frequency of vibration of water molecules are used in microwave 

oven. When food is placed in the oven, the water molecules of the food resonant, absorbing 

energy from the microwaves and consequently get heated up. 

Magnetic resonance imaging systems have greatly improved medical diagnoses in present day 

technology. 

  

4.0  Conclusion 

Sometimes we may wish to suppress the vibrations, while in other situations we may wish to 

enhance them, all these we employ driving forces on the SHO and mathematically investigate the 

effects to get the equation for the motion for forced oscillations. 

 

5.0  Summary 

When the system executing forced oscillation behaves in such a way that its natural frequency 

becomes equal to the frequency of oscillation, the system is said to be in resonance. Many 

mechanical systems and electrical circuits experience resonance phenomena. 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 4.1 

Consider an LCR circuit consisting of an inductor, L, a capacitor, C, and a resistor, R, connected 

in series with an emf of voltage V(t). Show that the current in this arrangement will execute 

forced or driven damped harmonic oscillations. Name one application of an LRC circuit. 

 

7.0  References/Further Readings 

Pain, H. J. (1999) The Physics of Vibrations and Waves, 5th Edition, John Wiley & Sons,  
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Unit 5 Coupled Oscillation 

 

1.0 Introduction 

Coupled simple harmonic oscillators are physically important and seen everywhere in nature. The 

electromagnetic field at any point in space can be considered a simple harmonic oscillator, but 

Maxwell’s Equations couple the oscillator at one point to the oscillators everywhere else in space.  

Coupled oscillations are critical in particle physics and also use when discussing rigid-body etc 

 

2.0 Aims and Learning objectives   

By the end of this unit students should be able to; 

•to establish equations of motion for  two coupled oscillatory systems (normal modes) and other 

similar physical systems. 

• solve the differential equations to obtain the normal frequencies. 

 

3.0 Normal Frequencies and Normal Mode of Vibration: Two Body Oscillations  

A vibration involving only one independent variable, say  x (or y),  is called a normal mode of 

vibration and has its own normal frequency. 

Consider the coupled oscillations, when two masses are connected with each other by strings and 

oscillating together, Figure 2.4                                     

 

 
 

 

The masses are placed on a frictionless track and joined up by ideal strings as shown in the 

figure. There are two kinds of motion which distinguish themselves by being very simple and the 

two differential equations of motion are: 

 

  ixmixxk

ixmixxk

ˆˆ2

ˆˆ2

221

112








 

If we solve the two equations we will obtain two frequencies each corresponding to the kind of 

motion. 

 In one kind of motion x1 and x2 remain equal and the whole system oscillates back and forth 

without the stretching of the middle string. In this kind of motion the frequency of oscillation is 

given by,  

 
In the other kind of motion, x1 and x2 remain exactly opposite and the motion is like “in and out” 

type.  In this case, the net restoring force on the body is three times as compared to the previous 

case and thus the frequency of oscillation of the system is given by,  

 
 

 

Figure 2.4: coupled system 
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Self Assessement Exercise 

1.  A simple harmonic oscillator consists of a 100g mass attached to a spring whose force  

       constant is 10
4
 dyne/cm. The mass is displaced a distance of 3cm and released from rest.  

       Calculate  the following quantities: 

       (a) the maximum displacement 

       (b) the maximum potential energy 

 

2.   (a) Define Normal frequencies and Normal modes 

        (b) What do you understand by forced frequency and resonance? 

        (c) Show that the function  tAtAy  sincos   can be written as    tCy cos  

               where 22 BAC    and 







 

A

B1tan  

 

3.  A mass of 2 kg is attached to a spring of elasticity constant 8 Nm
-1

. At time t = 0, the mass   

       is displaced to a position x = 0.2m and released from rest. Find the position x of the mass as  

       a function of time t. 

 

4.0  Conclusion 

In two coupled body system, there are two kinds of motion which distinguish themselves by 

being very simple each with its differential equation of motion. Each of the equations could be 

solved to get the normal frequencies. 

 

5.0  Summary 

A vibration involving only one independent variable, say  x (or y),  is called a normal mode of 

vibration and has its own normal frequency. The simple motion of the two-body coupled 

oscillator is called normal modes. They have the property that when the system starts motion in 

one of these modes then it will continue in that mode. 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 5.1 

Consider the LC circuit pictured in Figure 2.4 below.  How many normal modes of oscillation 

will be there? 

 
 

 

7.0  References/Further Readings 

Pain, H. J. (1999) The Physics of Vibrations and Waves, 5th Edition, John Wiley & Sons,  

         Chichester UK. 

 

Crawford Jr, F. S. (1968) Waves, Berkeley Physics Course, Vol. 3, McGraw-Hill, New York NY. 

Figure 2.5:  LC coupled circuit 
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MODULE 2 Solutions to TMA 

 

Unit 1 

Question 1.1 

The equation of a SHM is given by kxmx 


                 (1) 

Now                                                     tatx cos                            (2)   

Therefore     


tax sin   so that   


tax cos2  

Substituting we have,  

     tkatam coscos2               (3) 

It follows that equation (3)  is indeed a solution to equation (1) provided 
m

k
   

 

Figure 2.6:  Wave sketch 

Figure 2.6 shows a graph of versus obtained from Equation (2). The type of behavior shown 

here is called simple harmonic oscillation. It can be seen that the displacement oscillates 

between x = -a and x = +a . Here, a is termed the amplitude of the oscillation. Moreover, the 

motion is repetitive in time (i.e., it repeats exactly after a certain time period has elapsed). In fact, 

the repetition period is 
w

T
2

  

This result is easily obtained from Equation (1) by noting that is a periodic function of 

with period 2π: i.e., cos(θ + 2π) = cosθ. It follows that the motion repeats every time ωt increases 

by  2π: i.e., every time t increases by 


2
. The frequency of the motion (i.e., the number of 

oscillations completed per second) is 




2

1


T
f  

It can be seen that  ω is the motion's angular frequency; i.e., the frequency f converted into 

radians per second. Of course, f is measured in Hertz--otherwise known as cycles per second. 

Finally, the phase angle, ϕ, determines the times at which the oscillation attains its maximum 

displacement, . In fact, since the maxima of occur at , where is an 

arbitrary integer, the times of maximum displacement are  















2
max nTt  

Clearly, varying the phase angle simply shifts the pattern of oscillation backward and forward in 

time.  
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Unit 2 

Question 2.1 

2
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(b) Period 
f

T
1

  = sec63.
10

2



 

(c)   JxJoulesxxergxscmgmxxxkAE 374424242 105.410105.4105.4/105.4310
2

1

2

1    

(d) The max. velocity is attained when the total energy of oscillator equals the kinetic energy. 

m

kA
vkAmv

2

max

22

max
2

1

2

1
  

 

 

Question 2.2 

 (a) Maximum displacement x0 is achieved when the total energy equals the potential energy 

00

2

0

2

0
2

1

2

1
v

k

m
xkxmv      where v0 is initial velocity 

(b)                        2

0max
2

1
. kxEP   

 

Question 2.3 

The position and velocity for a SHO are given by 

tAx 0sin    and  tAx 00 cos


         where 
m

k
0  

The time averages of the kinetic and  potential energies are: 

 
4

cos
2

1

2

11
.

2
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2 


mA
dttmA

T
dtxm

T
EK
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t
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t
 

 

    

where 
0

2




T           and 

 
44
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2

1

2
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2

0
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0

22 


mAkA
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 

  since   
m

k
0  

 

                EPEK ..   
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Unit 3 

Question 3.1 

 

 
Suppose that  I(t) is the instantaneous current flowing around the circuit. The potential 

differences across the inductor and the capacitor are   


IL  and  
C

Q
, respectively. Here, Q is the 

charge on the capacitor's positive plate, and  


QI . Moreover, from Ohm's law, the potential 

difference across the resistor is V = IR. Now, Kichhoff's second circuital law states that the sum 

of the potential differences across the various components of a closed circuit loop is zero. It 

follows that  

0


C

Q
RIIL  

Dividing by , and differentiating with respect to time, we obtain  

02

0 


III   

where 
LC

1
0      and 

L

R
  

 

Comparison with the Equation of a Damped motion,  0


xrxm , reveals that 

02

0 


III   is a damped harmonic oscillator equation. Thus, provided that the resistance is 

not too high (i.e., provided that  
2

0  , which is equivalent to  
C

L
R 2 , the current in the 

circuit executes damped harmonic oscillations of the form [cf,      


tAetx

t

cos ] 

   





teItI

t

cos2
0  

where I0 and ϕ are constants and 
4

2
2

0


  . 

We conclude that when a small amount of resistance is introduced into an LC circuit the 

characteristic oscillations in the current vary exponentially at a rate proportional to the resistance.  

Multiplying Equation 0


C

Q
RIIL  by  I, and making use of the fact that  



 QI , we obtain  

02 


C

Q
QRIIIL  

which can be rearranged to give 
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2RI
dt

dE
  

where   
C

Q
LIE

2
2

2

1

2

1
  

 

Clearly,  is the circuit energy: i.e., the sum of the energies stored in the inductor and the 

capacitor. Moreover, the circuit energy decays in time due to the power dissipated via Joule 

heating in the resistor. Note that the dissipated power is always positive: i.e., the circuit never 

gains energy from the resistor. 

 

 

Unit 4 

Question 4.1 

Let  I(t) be the instantaneous current flowing around the circuit. Now, according to Kichhoff's 

second circuital law, the sum of the potential drops across the various components of a closed 

circuit loop is equal to zero. Thus, since the potential drop across an emf is minus the associated 

voltage, we obtain  

 

where IQ 


. 

Suppose that the emf is such that its voltage oscillates sinusoidally at the angular frequency ω > 

0, with the peak value V0 > 0, so that  

 
Dividing by , and differentiating with respect to time, we obtain  

 

where 
LC

1
0     and  

L

R
  

 

 

Comparison with reveals that this is a driven damped harmonic 

oscillator equation. It follows, by comparison with the analysis contained in the previous section, 

that the current driven in the circuit by the oscillating emf is of the form  

 
where 

  2
1

22222

0

0

0







 L

V

I  
















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0
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LRC circuits are often employed as analogue radio tuners. In practice, the values of and are 

fixed, whilst the value of is varied (by turning a knob which adjusts the degree of overlap 

between two sets of parallel semicircular conducting plates) until the signal from the desired 

radio station is found. 

 

 

Unit 5 

Question 5.1 

 

 

 
 

According to Kichhoff's first circuital law, the net current flowing into each junction is zero. It 

follows that I3 = (I1 + I2). Hence, this is a two degree of freedom system whose instantaneous 

configuration is specified by the two independent variables I1(t) and I2(t). It follows that there are 

two independent normal modes of oscillation. 
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MODULE 3:   LAGRANGE AND HAMILTONIAN MEACHANICS 

 

It may be difficult or even impossible to obtain explicit expressions for forces of constraint by 

applying Newtonian procedure. In order to circumvent some of the practical difficulties which 

may arise in attempts to apply Newtonian mechanics to particular problems, alternative 

procedures are necessary. This alternative methods are contained in Hamilton’s princiciple and 

the equations of motion which result from the application of this principle; the Lagrange’s 

equations of motion. The Lagrange’s equations can be obtained in a variety of ways. We are 

accustomed to thinking of mechanical systems in terms of vector quantities such as force, 

velocity, angular momentum, torque, etc., but in Lagrangian formulation, the equations of motion 

are obtained entirely in terms of scalar operations. 

 

 

Unit 1   Frame of Reference and Constraints of Motion 

 

1.0 Introduction 

Constraints are restrictions imposed in the free motion of a particle ( or a system of particles). 

Imposing constraints on a system is simply another way of stating that there are forces present in 

the problem that cannot be specified directly, but are known in term of their effect on the motion 

of the system. In order for Newton’s laws of motion to have meaning, a reference frame 

(coordinate system) which is fixed in space with respect to the distant fixed stars must be chosen 

with respect to which the motions of bodies can be measured 

 

2.0  Aim and Objectives 

By the end of this study unit students will be able to: 

• distinquish between ‘inertia frame of reference’ and ‘non-inertal frame of reference’ 

• know how to impose contraints on a system in order to simplify the methods to be used in      

solving physics problems 

 

3.0 Frames of References 

A frame of reference may refer to a coordinate system or set of axes within which to measure the 

position, orientation, and other properties of objects in it, or it may refer to an observational 

reference frame tied to the state of motion of an observer. It may also refer to both an 

observational reference frame and an attached coordinate system, as a unit.  

 

Newton realized that in order for the laws of motion to have meaning, a reference frame 

(coordinate system) which is fixed in space with respect to the distant fixed stars must be chosen 

with respect to which the motions of bodies can be measured. A reference frame is called an 

inertial frame of reference if Newton’s laws indeed hold in that frame. 

If Newton’s laws hold in one reference frame then they also hold in any other reference that is in 

uniform motion (i.e., it is not accelerating) with respect to the first system. 

Non-inertial frame of reference, which is not fixed in space, is a moving coodinate system such 

as the one attached to a falling body or one that is rotating and therefore accelerating. 

 

3.1 Constraints of Motion 

Constraints are restrictions imposed in the free motion of a particle ( or a system of particles).  

e.g. A system of particles, inter particle distance is constant. The motion may be restricted 

geometrically in a sense that it must stay on a certain definite surface or curve or to be along a 

specified path and the motion is said to be constrained. 



 

PHY 201 Constraints of Motion 41 

The total force acting on a particle moving under constraint is  

RF
dt

dv
m   

where v is velocity, F is external force, R is force of constrained which is the reaction of the 

constraining agent. 

There are two types of constraints: 

1. Holonomic constraints are those that can be represented as a functions of position vector and  

     time  example, ϕ(r1,r2,r3,-------rn,t) 

2. Non – Holonomic constraints are those that cannot be represented as functions of position  

    vector and time    example,  x  

 

 

4.0  Conclusion 

If Newton’s laws hold in one reference frame then they also hold in any other reference that is in 

uniform motion (i.e., it is not accelerating) with respect to the first system. 

 

5.0  Summary 

A frame of reference may refer to a coordinate system or set of axes within which to measure the 

position, orientation, and other properties of objects in it. Constraints are restrictions imposed in 

the free motion of a particle ( or a system of particles). 

 

 

6.0  Tutor-Marked Assignment (TMA) 

    

 Question 1.1 

  A particle of mass 2 units moves along space curve whose position vector is given as a  

    function of time t by 

              r = (2t
3
 + t )i + (3t

4
 – t

2
)j – 12t

2
k 

Find   a) the velocity 

          b)  the momentum 

          c)  the acceleration 

          d)  the force acting on it at any time t 
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Unit 2  Generalized Coordinates 

 

1.0 Introduction 

The use of generalized coordinates may considerably simplify a system's analysis. They reduce 

the total number of degrees of freedom available to the system.The  choice of generalized 

coordonates eliminates the need for the constraint force to enter into the resultant system of 

equations. When you describe a system in terms of generalized coordinates, you pick the 

coordinates with the goal of completely describing the motion of the system in the fewest number 

of coordinates. 

 

2.0  Aim and Objectives 

In this unit students will be able to: 

•   know that coordinate systems such as cartesian, polar or any other in physics are each, a   

     special case of what is called  ‘’Generalized Coordinates’ 

•  derive other generalized quantities like generalized velocity, generalized momentum,  

   generalized force, etc. 

 

3.0   Generalized Coordinates and Degrees od Freedom 

Consider the  position of a particle p in cartesian or polar coordinates or  consider  the 

coordinates of a system of particles as shown below; 

 

 
 

All these three coordinate systems discussed above and many others are only special cases of  

what is called generalized coordinate systems. 

Transformation from one coordinate system to another coordinate is very possible; example 

from cartesian (x,y,z) to polar (r,θ)                            x = rcosθ , y = rsinθ and   
x

y1tan   

3.1 Definitions: 

    A minimum number n (designated q1,q2,q3, .........., qn) of coordinates is required to specify  the 

configuration of a given system. These coordinates are known as Generalized Coordinates. 

 

    Each independent way by which a system may acquire energy is called degrees of freedom   

  and the number of coordinates n is known as the number of degrees of freedom of the system. 

 

A particle describe by (x,y,z) has 3 degrees of freedom. A systen of particles (having N number 

of particles) will have 3N degrees of freedom (for holonomic systems). 

 

Thus the generalized coordinates  in  

(a) cartesian (q1,q2,q3) are normally represented as (x1, y1,z1) 

 

(a) cartesian                                  (b) polar                                    (c) particles system  

21 rrr   

r2 

r1 
R 

θ 

r 

z 

y 

x 

p(x,y,z) 

• 

 

p(x,y,z) 

• 
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(b) polar (q1,q2)  (r,θ)   

(c) system of particles (q1,q2)                             (R, ∆r)               (Note ∆r = r1 – r2) 

 

Note: 

q1 = q1(x1,y1,z1,x2,y2,z2,x3,y3,z3,-------------,xN,yN,zN)  and  x1 = x1(q1,q2,q3,---------,q3N) 

q2 = q2(x1,y1,z1,x2,y2,z2,x3,y3,z3,-------------,xN,yN,zN)  and  x2 = x2(q1,q2,q3,---------,q3N) 

 

 

q3N = q3N(x1,y1,z1,x2,y2,z2,x3,y3,z3,-------------,xN,yN,zN) and  zN = zN(q1,q2,q3,---------,q3N) 

 

 

3. 2   Other Generalized Quantities 

Generalized coordinate  qk 

Generalized velocity  
kq



 

Generalized momentum  

k
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T
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   where T is kinetic energy 
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4.0  Conclusion 

The knowledge of concepts of generalized coordinates and generalized quantities is very 

important in  formulating the Lagrange’s and Hamilton’s equations of motion. 

 

5.0  Summary 

Coordinate systems such as cartesian, polar or any other in physics are each, a  special case of 

what is called  ‘’Generalized Coordinates’ 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 2.1 

Suppose the position vector of a particle is given by cktbjtbir ˆcosˆsinˆ    

(i) Show that the distance from the origin remains a constant given by  2

1
22 cbr   

(ii) Show that the particle transverse its path with constant speed v = bω 

(iii) Find the acceleration, a 

(iv) Show that the acceleration, a is perpendicular to the velocity, v. 
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Unit 3 Lagrange’s Mechanics 

 

 

1.0 Introduction 

               

 

2.0  Aim and Objectives 

• know the importance of concepts such as generalized coordinates and constrained motion.  

• derive the Lagrange’s equations of motion  

• test the elegance and power of the Lagrange method in problem solving as being done using  

  Newton method. 

 

 

3.0  Lagrange’s equations of motion 

To obtain a more general form of Lagrange’s equations,  

Kinetic energy,                          
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If again, the system is a conservative one,  
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The definition of the Lagrangian is 
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The kinetic energy, T is a function of both kq   and   


kq  but the potential energy is a function of 

only position kq , not velocity 
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and we finally have, 
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These are the Lagrange’s equations of motion, also known as the Euler – Langrange equations. 

 

There is one Lagrange equation for each generalized coordinate qi. When qi = ri (i.e. the 

generalized coordinates are simply the cartesian coordinates), it is straightforward to see that the 

Lagrange’s equations reduce to Newton’s second law. 

The above derivation can be generalized to a system of N particles. There will be 6N generalized 

coordinates, related to the position coordinates by 3N transformation equations. In each of the 3N 

Lagrange’s equations, T is the total energy of the system, and V the total potential energy. 

 

Note:  

In practice, it is easier to solve a problem using the Euler – Lagrange equations than  Newton’s 

laws. This is because not only may more appropriate generalized coordinates qi be chosen to 

exploit symmetrics in the system, but constraint forces are replaced with simpler equations. 

 

 

4.0  Conclusion 

In practice, it is easier to solve a problem using the Euler – Lagrange equations than  Newton’s 

laws. This is because not only may more appropriate generalized coordinates qi be chosen to 

exploit symmetrics in the system, but constraint forces are replaced with simpler equations. 

5.0  Summary 

To set up an equation of motion: 

(i) find T and V 

(ii) L = T + V 
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(iii) substitute in the Lagrange’s equation 

(iv) solve the equation and you are done. 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 3.1 

Consider a point mass m falling freely from rest. Derive the equation of motion through the  

Lagrange formulation. 

 

Question 3.2 

Obtain the Lagrangian equation of  motion for a 1-D harmonic oscillator, supposing that there is 

a damping force which is proportional to the velocity and that the system is non-conservative. 
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Unit 4 Hamilton’s Mechanics 

 

 

1.0 Introduction 

The Hamiltonian formulation, just like the Lagrangian, is reformulations of Newtonian 

mechanics and also provide simple techniques for deriving equations of motion using energy 

relations. 

 

2.0  Aim and Objectives 

At the end of this unit students will be able to: 

• know the importance of concepts such as generalized coordinates and constrained motion.  

• derive the Hamilton’s equations of motion also known as ‘canonical equations of Hamilton’ 

• test the elegance and power of the Hamilton method in problem solving as being done using  

  Newton method. 

 

  

3. 0  Hamilton’s Equation of Motion 

For a system of particles each having mass mα described by a set of generalized coordinates qα, 

the classical Hamiltonian function is defined by 






















 tqqLqpH
n

,,
1





  

where 






 

 qqL ,  is Lagrangian. 

Now taking the total differential 

dt
t

L
qd

q

L
dq

q

L
dpqqdpdH














































  







q

L
 is the definition of the generalized momentum pα and from Lagrange’s equation 

















































p
q

L

q

L
p

dt

d

q

L

q

L

dt

d
0  

So we have 





p

q

L







       and       










p
q

L
 

Therefore the total differential of the classical Hamiltonian becomes 
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From which we have the following equations 
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These equations are called the Hamilton’s equations of motion.They are also known as canonical 

equations of Hamilton 

 

4.0  Conclusion 

Hamiltoian, just like the Lagrangian, is reformulations of Newtonian mechanics and also provide 

simple techniques for deriving equations of motion using energy relations. 

 

 

5.0  Summary 

The Hamiltonian method differs from the Lagrangian method in that instead of expressing 

second-order differential constraints on an n-dimensional coordinate space (where n is the 

number of degrees of freedom of the system), it expresses first-order constraints on a 2n-

dimensional phase space.
 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 4.1 

A particle moves in the x-y plane under the influence of a central force depending only on its 

distance from the origin. Set up the Hamiltonian and get the equations of motion. 

 

Question 4.2 

A particle of mass m moves in one dimension under the influence of a force 

 
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
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t

e
x

k
txF

2
,  

where k and τ are positive constants. Compute the Lagrangian and Hamiltonian functions. 

Compare the Hamiltonian and total energy, and discuss the conservation of energy for the 

system. 

 

7.0  References/Further Readings 

Fowles, G. R. and Cassiday, G. L. (1993) Analytical Mechanics, 5th Ed., Saunders College   

              Publishing, New York. 
 
Goldstein, H. (1959) Classical Mechanics,  Addison-Wesley Publishing Company, Inc. New York. 

 

http://www.scienceaid.co.uk/physics/forces.html  (Sept. 2009) 

 
http://www.academics.hamilton.edu/physics/smajor/Courses (Sept. 2009)  



 

PHY 201  Solutions to TMA of Module 3 
 

49 

Unit 5  Between Newtonian, Lagrangian and Hamiltonian Mechanics 

 

1.0 Introduction 

Lagrangian mechanics and Hamiltonian mechanics are two important and more abstract 

alternative formulations of classical mechanics. They bypassed the concept of "force", instead 

referring to other physical quantities, such as energy, for describing mechanical systems. 

Lagrange’s and Hamilton's equations provide a new and equivalent way of looking at classical 

mechanics. 

 

2.0  Aim and Objectives 

By the end of this study unit, students will be able to: 

• see how concept of ‘force’ in Newtonian mechanics is transformed into physical quantity of    

energy for use in Lagrangian and Hamiltonian mechanics 

• see that the Newtonian, Lagrangian and Hamiltonian mechanics provide equivalent looks into  

  classical mechanics. 

 

3.0  Transformation of Newton’s Law from Vector to Scalar Notation 

Newton’s law, which is in vector notation can be transformed to scalar.  The force F on a particle 

is 
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This is just Newton’s law transformed from vector notation to scalar in cartesian coordinates with  

T = kinetic energy and V = potential energy 

 

 

 

3.1  Between Newtonian, Lagrangian and Hamiltonian Mechanics 

Classical mechanics is concerned with the set of physical laws governing and mathematically 

describing the motions of bodies and aggregates of bodies geometrically distributed within a 

certain boundary under the action of a system of forces. 

The initial stage in the development of classical mechanics is often referred to as Newtonian 

mechanics, and is associated with the physical concepts employed by and the mathematical 

methods invented by Newton himself.  
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Lagrangian mechanics is a re-formulation of classical mechanics that combines conservation of 

momentum with conservation of energy.  

 

Hamiltonian mechanics is a reformulation of classical mechanics that arose from Lagrangian 

mechanics, a previous reformulation of classical mechanics.  

 

 

Self Assessement Exercise 
 

1.  Write down expressions for the following quantities and explained the meaning of each  

     symbol involved: (i) generalized velocity (ii) generalized force  (iii) generalized kinetic energy 

 

2.  Explain the terms  ‘Generalized coordinates’ and ‘Degrees of freedom  ’  

 

3.  Distinquish between Holonomic and Non-holonomic constraints. 

.      Give the generalized coordinates which are applicable to the motion of each of the following: 

      (i) A particle moving in a plane under the influence of a force directed towards the origin. 

      (ii) A disk rolling on the horizontal xy plane constrained to move so that the plane of the disk  

            is always vertical. 

 

4. Write down the Lagrange’s equation of motion for a 

       (i) conservative system. 

       (ii) non-conservative system. 

 

5.  Obtain the Hamiltonian equation of  motion for a 1-D harmonic oscillator, supposing that  

       there is a damping force which is proportional to the velocity and that the system is non- 

       conservative. 

 

6. (a) set up the Lagragian for a simple pendulum; 

      (b) solve the resulting equation to find the motion of the pendulum. 

 

7. Write three sentences on what you understand on Newtonian mechanics, Lagrangian  

       mechanics and Hamiltonian mechanis; bringing the siimilarities and differences. 

 

 

4.0  Conclusion 

Each of the 3 mechanics of Newton, Lagrange and Hamilton can be preferred to the other to 

describe mechanical system, depending on convenience. 

 

5.0  Summary 

Hamiltonian mechanics is a reformulation of Newtonian mechanics that arose from Lagrangian 

mechanics, a previous reformulation of Newtonian mechanics. 

 

6.0  Tutor-Marked Assignment (TMA) 

Question 5.1 

Consider a particle of mass m which moves freely in a conservative force field whose potential 

energy function is V. Find the Hamiltonian function and show that the canonical equations of 

motion reduce to Newton’s equations ( use rectangular coordinate) 
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MODULE 3 Solutions to TMA 

 

Unit 1 

Question 3.1 

          a) the velocity, v = 
dt

dr
  = (6t

2
 + 1)i + (12t

3
 -2t)j – 24tk  

          b)  the momentum, p = mv = 2 x v = 2 x [(6t
2
 + 1)i + (12t

3
 -2t)j – 24tk]  

                                                                  = (12t
2
 + 2)i + (24t

3
 – 4t)j – 48tk  

          c)  the acceleration, a = 
dt

dv
 = 12ti + (36t

2
 – 2)j -24k 

          d)  the force acting on it at any time t, F = ma = 2 x [12ti + (36t
2
 – 2)j -24k] 

                                                                                    = 24ti + (72t
2
 – 4)j – 48k 

 

 

 

Unit 2 

Question 2.1 

 (i) distance,   222222222222 cossinˆcosˆsinˆ cttbcktbjtbirr    

                              22 cb   

(ii) velocity vector,  tbjtbi
dt

rd
v  sinˆcosˆ   

        bbtbjtbivvvelocity  2222222222 sinˆcosˆ,  

(iii) acceleration vector, tjbtbi
dt
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                  22222222222
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(iv) To show that a is perpendicular to v, we only verfy if 0av  
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       Hence , we have shown that the acceleration is perpendicular to the velocity. 
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Unit 3 

 

Question 3.1 

Take x to be the coordinate, which is 0 at starting point. 

The kinetic energy is  2
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  which is the same result we know when filling in the force in Newton’s law 

 

 

 

Question 3.2 

For a 1 –D harmonic oscillator, the Lagrange’s  equation for conservative systen is  

























k
k

q

L

q

L

dt

d
 

But if system is non-conservative , it is modified to be  
k

k

k

q

L
Q

q

L

dt

d



























 

2

2

2

1

2

1
mxxmVTL 



 

 and we have  








xm

x

L
  and kx

x

L





 

Since non-conservative force is present, then  there is 


 xcQk   

and Lagrange’s equation becomes 

 kxxcxm
dt

d








 

                  0


kxxcxm  

which is the familiar equation of the damped harmonic oscillator that we know. 
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Unit 4 

 

Question 4.1 

In polar coordinates we choose (r,θ) as the generalized coordinates since it is a 2-D problem 
















 2

2

2

2

1
rrmT    and    rVV   

m

p
rrm

r

T
p r

r 









 

2

2

mr

p
mr

T
p 
 













 

   rV
r

p
p

m
rV

rm

pr

m

p
mVTH r

r 






















2

2
2

42

22

2

2

2

1

2

1   

m

p

p

H
r r

r









                    (1) 

2mr

p

p

H 



 







                 (2) 

rm
r

H
p r

2





                     (3) 

0










H
p                           (4) 

 

 

Question 4.2 

The potential energy V which gives the force  










 

t

e
x

k
txF

2
,  must satisfies the 

relation 
x

V
F




  






t
t

t

e
x

k

x

ke
dxe

x

k
FdxV
































   2
 

The Lagrangian is thus 



t

e
x

k
xmVTL




2

2

1
 

The Hamiltonian is given by 

L

x

L
LxpH x 










 

So that 



t

e
x

k
xmH




2

2

1
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The Hamiltonian is equal to the total energy, T + V, because the potential does not depend on 

velocity, but the total energy of the sysytem is not conserved because H contains the time 

explicitly. 

 

 

Unit 5 

Question 5.1 

The Hamiltonian equation can be written as 






















 tqqLqpH
n

,,
1





             (1) 

The Lagrangian (using rectangular coordinate) is  

VzyxmL 














 222

2

1
              (2) 

Linear momentum in rectangular coordinates 












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










 zm
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L
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y

L
pxm

x

L
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Hence using (1) and (3) 

VzyxmVzyxmzmymxmH 













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


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






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


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













 222222222

2

1

2

1
          (4) 

Equation (4) is the total energy of the particle. 

From the canonical equations 
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H
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
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V
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y

V
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,   

These are just Newton’s equations 

 


