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1.0 INTRODUCTION

In the previous courses in electromagnetism, yowuehkarnt the
concepts of electric field, electrostatic energyd ahe nature of the
electrostatic force. However, for reasons of sioipliwe confined, for
most parts, our considerations of these conceptstarges that are
placed in vacuum. For example, Coulomb's law oftedstatic force is
the electric field due to a distribution of chargggen in Unit 4; refer to
the situation in which the surrounding medium iswan. Of equal
importance is the situation in which the electrighénomenon occurs in
the presence of a material medium. Here we musindissh between
two different situations, as the physics of thesgatons is completely
different. The first situation is when the mediunsists of insulating
materials i.e., those materials which do not conhdelectricity. The
second situation corresponds to the case when #tBum consists of
conducting materials, i.e. materials like metalsohare conductor of
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electricity. The conducting materials contain gleas which are free to
move within the material. These electrons move utloe action of an
electric field and constitute current. We shalldsteonducting materials
and electric fields in conducting materials attaratage.

In the present unit, you will study the electrieldi in the presence of an
insulator. In these materials there are practicattyfree electrons or
number of such electrons is so small that the cotmaluis not possible.
In 1837, Faraday experimentally found that whennasalating material
— also called dielectric (such as mica, glass dygtgrene etc.) — is
introduced between the two plates of a capacitois found that the
capacitance is increased by a factor which is grettan one. This
factor is known as the dielectric constant (K) led taterial. It was also
found that this capacitance is independent of tiepes and size of the
material but it varies from material to material.the case of glass, the
value of the dielectric constant is 6, while forterait is 80. All the
electrons in these materials are bound to theipecs/e atoms or
molecules.

When a potential difference is applied to the iatais no electric
current flows; however, the study of their behaviouthe presence of
an electric field gives us very useful informatidine choice of a proper
dielectric in a capacitor, the understanding oftdeuefraction in quartz
or calcite crystals is based on such studies. ldhtaaterials, such as
wood, cotton, natural rubber, mica are some popebemples of
electric insulators. A large number of varietieptestics are also good
dielectrics.

Dielectric substances are insulator (or non-condgtsubstances as
they do not allow conduction of electricity throutjiem.

In this unit first, of all we will study a simple adel of dielectric
material and deduce a relationship between apgledd E and the
dipole momentp of a molecule/atom. You will learn about electric
polarisation in a dielectric material and defindgpisation vectoP. You
must have studied Gauss's law in vacuum. You vaW rapply it to a
dielectric medium. Here we will also introduce ytm a new vector
known as the electric displacement vedorAfter that we will discuss
the continuity oD andE at the interface between two dielectrics.

In recent years dielectric materials have becomgortant especially
due to their large scale use in electric and edeatrdevices. There is
high demand for the improvement of operating rdliigb of these
devices. Reliability of these devices is measuoed great extent by the
quality of electrical insulation. In the last secti you will study
dielectric strength and break down in dielectrics.
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In the next unit you will study the details of capars, especially the
capacitance of a capacitor, energy stored in acti@mpacapacitor with
dielectric, different forms of capacitors, etc.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. explain the behaviour of a dielectric in an electield

. deduce Gauss's law for a dielectric medium

. define dielectric polarisation and classify diélms as polar and
nonpolar

. explain Displacement Vector (D) and relate it te #iectric field
strength (E)

. define dielectric constant

. state and derive the boundary conditions on E and D

. explain dielectric strength and dielectric breakdow

3.0 MAIN CONTENT
3.1 Simple Model of the Dielectric Material

You must be aware that:

. every material is made up of a very large number of
atoms/molecules,

. an atom consists of a positively charged nucleus reegatively
charged particles, with electrons revolving around

. the total positive charge of the nucleus is baldnog the total

negative charge of the electrons in the atom, gottie atom, as a
whole, is electrically neutral w.r.t. any point peat outside the
atom,

. a molecule may be constituted by atom of the same, lor of
different kinds.

To understand the polarisation we shall consideruae model of the
atom. A simple crude model of an atom is shownign E.1.

Fig. 1.1 Model of an Atom
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The nucleus is at the centre, and the variousrelestrevolving around
it can be thought of as a spherically symmetriaidlof electrons. For
points outside the atom this cloud of electrons banregarded as
concentrated at the centre of the atom as a pbarge.

In most of the atoms and molecules, the centrgositive and negative
charges coincide with each other, whereas, in soméecules the
centres of the two charges are located at diffenemints. Such
molecules are called polar molecules.

Further, we note that in dielectrics, all the el@as are firmly bound to
their respective atoms and are unable to move abesty. In the

absence of an electric field, the charges inside rttolecules/atoms
occupy their equilibrium positions. The arrangenathe molecules in
a dielectric material is shown in Fig. 1.2.

Fig. 1.2 The arrangement of the atoms in a dieleatr material

The charge centres are shown coincident at theecaftthe sphere.
Keeping this picture of a dielectric in mind we klpsoceed to study its
behaviour in an electric field in the next section.

3.2 Behaviour of a Dielectric in an Electric Field
You have seen in Section 1.2 that in a dielectrad¢emal, the centres of

positive and negative charges of its atoms areddoncoincide at the
centre of the sphere. It is shown in Fig. 1.3.



PHY204 MODULE 1

Fig. 1.3 Atoms in which the centres of charges aincident with
the centre of the spheres

A charge experiences a force in the presence ogklaatric field.
Therefore, when a dielectric material is placedamelectric field, the
positive charge of each atom experiences a fomagathe direction of
the field and the negative charge in a directiopagge to it. This results
in small displacement of charge centres of the atommolecules. This
is also true of molecules whose charge centresadaaincide in the
absence of an electric field. The separation ofctierge centres due to
an applied field E is shown in Fig. 1.4.

Electric dipole moment per unit volume is knowrpagarisation

d

__-Q-h

Fig. 1.4 The separation of the charge centres due &n applied field
E.

This phenomenon is called polarisation. Thus wheanegectrically

neutral molecule is placed in an electric fieldgéts polarised, with
positive charges moving towards one end and negatiarges towards
the other. The otherwise neutral atom thus become§pole with a

dipole moment, which is proportional to electrieldi.

Now we consider another kind of molecule in whibk tharge centres
do not coincide as shown in Fig. 1.5.
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0

Fig. 1.5 A dielectric material in which charge centes do not
coincide

Due to this reason the molecule already possess#ipote moment.
Such materials are called polar materials. For suelterials, let the
initial orientation of the dipole axis be AOB asm in Fig. 1.6.

N '~

Force

Fig. 1.6 Molecule possessing a dipole moment

Now an electric fieldE is applied. This field pulls the charge centres
along lines parallel to its direction. Thus thectlie field exerts a torque
on the dipole causing it to reorient in the directof the field. In the
absence of an electric field these polar matertsnot have any
resultant dipole moment, as the dipoles of theedzifit molecules are
oriented in random directions due to thermal aigitat\Wwhen an electric
field is applied, each of these molecules reoriégstdf in the direction
of the field, and a net polarisation of the mafenasults. The
reorientation or polarisation of the medium is petfect again due to
thermal agitation. Thus polarisation depends botfield (linearly) and
temperature.

SELF ASSESSMENT EXERCISE 1

What are dielectrics? In what respects do theydifbom conductor?
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3.2.1 Non-Polar and Polar Molecules

We have considered two types of molecules. Onehiclwthe centre of
positive charges coincide with the centre of negattharges. The
molecule as a whole has no resultant charge. Mi@saf this type are
called Non-polar. Examples of Non-polar molecules ar, hydrogen,

benzene, carbon, tetrachloride, etc. The secoralig/fhe one in which
the centre of positive charges and the centre gatnes charges do not
coincide. In this case the molecule possesses mapent dipole

moment. This type of molecule is called a Polar étale. Examples of
polar molecules are water, glass, etc.

Thus we see that, a Non-polar molecule acquiregpal®Moment only

in the presence of an electric field: whereas iIRadar Molecule the
already existing dipole moment orients itself ire thirection of the

external electric field. Even in polar moleculdsere is some induced
dipole moment due to additional separation of chsrdowever this
effect is comparatively much smaller than the eastion effect and is
thus ignored for polar molecules.

3.2.1 Polarisation Vector P

Let us study the effect of an electric field on ielectric material by
keeping a dielectric slab between two parallelgdads shown in Fig.
1.7. The electric field is set up by connecting plates to a battery.

We limit our discussion to a homogeneous and ipatrdielectric. A
homogeneous and isotropic dielectric is one in Wwhile electrical
properties are the same at all points in all dioest The applied electric
field displaces the charge centres of the constituaolecules of the
dielectric. The separation of the charge centretiaavn in Fig. 1.7. We
find that the negative charges of one moleculedfdlee positive charges
of its neighbour. Thus within the dielectric bodlye charges neutralise.
However, the charges appearing on the surfaceeofligdectric are not
neutralised. These charges are knowR@arisation Surface Charges
The entire effect of the polarisation can be actediior by the charges
which appear on the ends of the specimen. The uméace charge,
however, is bound and depends on the relative atisphent of the
charges. It is reasonable to expect that the velatisplacement of
positive and negative charges is proportional t® #verage fieldE
inside the specimen.
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Fig. 1.7: Effect of an Electric field on a dielectic material by
keeping a dielectric slab between two parallel plats

From Fig. 1.7, we find that these polarisation gearappear only on
those surfaces of the dielectric which are perprddr to the direction
of the field. No surface charges appear on faceallphto the field.
Such a situation occurs only in the special case refctangular block of
dielectric kept between the plates of a parall@teplcondenser. It is
shown later in this section that surface densitgafnd charges depends
on the shape of the dielectric material.

The polarisation of the material is quantitativeligcussed in terms of
dipole moment induced by the electric field. Redadit the moment of a
dipole consisting of chargesand-q separated by a displacemehis
given byP = —qd. It is known from experiments that the inducedotkp
moment p) of the molecule increases with the increase enaherage
field E. We can say that is proportional tde

or p=aE (1.1)

wherea is the constant of proportionality known lslecular/Atomic
Polarisability. Let us now define a new vector quantity which sheall
represent byP and shall call it polarisation of the dielectric just
polarisation. PolarisatioR is defined as the electric dipole moment per
unit volume of the dielectric. It is important toote that the term
polarisation is used in a general sense to desevieg happens in a
dielectric when the dielectric is subjected to atemal electric field. It

Is also used in this specific sense to denote ijp@led moment per unit
volume.

Let us first consider a special casengdolarised molecules each with a
dipole momenp present per unit volume of a dielectric and |éttla
dipole moments be parallel to each other. Then fiteerdefinition of P

P=np

1C
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From the above definition, units Bfare

Coulombm _ Coulomb _

m3 m?

Units of P = Cm™

In generalP is a point function depending upon the coordindtesuch
cases, where the ideal situation mentioned aboveoissatisfied, we
would consider an infinitesimal volumé throughout which all thg's

can be expected to be parallel and write the eguati

AP : : .
P—Allvnpoizzl:V (N is the number of dipoles in volunvg@  (1.1a)

HereV is large compared to the molecular volume but sic@hpared
to ordinary volumes. Thus, althoughis a point function, it is a space
average op. The direction op will, of course, be parallel to the vector
sum of the dipole moment of the molecules withinin such a case
where thep's are not parallel, as in a dielectric that hasmpmolecules,
Eq. (1.1a) still holds as the defining equation gor

SELF ASSESSMENT EXERCISE 2

Show that the dipole moment of a molecule p andlibele moment per
unit volume are related by

P=np
wheren is the number of molecules per unit volume of dmeectric.
To understand the physical meaningPpfwe consider the special case

of a rectangular block of a dielectric materiallehgth L and cross-
sectional ared. Fig. 1.8 represents such a block.

— e — —

!
+ + 4+ 4+ + HD

Fig. 1.8 Surface polarisation charges on a rectan¢ar block of
dielectric

11
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Fig. 1.8a Surface polarisation charges. Actual ddacement of charge on
right is dxcosé

Let p be the surface density of polarisation charges, the number of
charges on a unit area or charge/unit area on uhiace. The total
number of polarisation charges appearing on thiecei= Ao

Induced dipole moment Ao L (1.2)

Volume of the slab AL
By definition dipole moment per unit volumeP=

Induced dipole moment PAL (1.3)
Now we can compare the magnitudes of Egs. (5.2)(&r8) to obtain
the magnitud€ of the polarisation vector to be

P=0o, (1.4)
Thus, the surface density of charges appearing lba faces
perpendicular to the field is a measurePpthe polarisation vector. Eq.
(1.4) is true for a special geometry when the digie material is a
rectangular block. For a block shown in Fig. 118asurface on the right
IS not perpendicular t®. The normal unit vectornj to the surface
makes an anglé with P. If the charges are displaced by a distahce
the effective displacement xcosé for the surface on the right. itfis
the number of charged particle aq the charge on each particle, then
the surface charge density is given by

0, =nqdxcosd =P[n =P, (1.5)
where q is the positive charge on each atom/molecule Bnds the
component oP normal to the surface on the right. This also shoxy
no charges appear on the surfaces parallel toppked field (¢ = 90°)
and on the left side of the block the angle betweandn, the unit

12
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vector normal to the surface is 180°; the surfabarge density is
negative.

For an ideal, homogeneous and isotropic dieledtnie,polarisatiorP is
proportional to the average field E, i.e.,

P = xe,E (1.6)

Where y=P/¢,E and is known as electrical susceptibility. This

relation is related to Eg. (1.1); Eq. (1.1) refer®ne molecule, whereas
Eqg. (1.6) refers to the material. Thus the latsea imacroscopic version
of Eq. (1.1). The constard, is included for the purpose of simplifying

the later relationships.

The relation (1.6) requires th& be linearly related to the average
(microscopic) field. This average field would bee texternal applied
field as modified by the polarisation surface clestgThe susceptibility
is a characteristic of the material and gives tleasare of the ease with
which it can be polarised, it is simply related d4ofor the nonpolar
materials.

From SAE 1P =np using Eq. (1, 4), we get
o,=np
The dipole moment per atom in this case qldxcosd

3.3 Gauss' Law in a Dielectric

You have studied Gauss law in vacuum. Here, wel shadify and
generalise it for dielectric material. Consider tweetallic plates as
shown in Fig. 1.9. LeE, be the electric field between these two plates.
Now, we introduce a dielectric material between pheges. When the
dielectric is introduced, there is a reductionhe electric field, which
implies a reduction in the charge per unit aremc&ino charge has
leaked off from the plates, such a reduction canobly due to the
induced charge appearing on the two surfaces otliglectric. Due to
this reason, the dielectric surface adjacent tqutsitive plate must have
an induced negative charge, and the surface adjdcethe negative
plate must have an induced positive charge of eqagnitude. It is
shown in Fig. 1.9.

13
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Fig. 1.9 Induced charges on the faces of a dieleictin an external
field

For the sake of simplicity, you consider the chaogethe surface of
dielectric material as shown in Fig. 1.9a. Now wmplg Gauss' flux
theorem to a region which is wholly within the éetric such as the
Gaussian volume at region 1 of Fig. 1.9a.

Fig.1.9a Gaussian volumes at 1 and 2 inside a diefec. The
displacement of charges at the surfaces perpendieulto the applied
field is shown

The net charge inside this volume is zero evenghahis material is
polarised. The positive charges and negative ckaaige equal. For this
volume the flux of field through the surface is@eWe can write

[EMES= [ xPES=0 (1.7)

surfaceatl S

This shows that "lines" d? are just like lines oE except for a constant
(&,)- Instead of this Gaussian volume, suppose we daakéher one at

region 2. In this Gaussian volume one surfacesslethe dielectric and
the other is outside it The curved surface is pelrtd the lines of field
(E or P). For the surface of this Gaussian volume outidematerial P

IS nonexistent. However, lines Bf must terminate inside the Gaussian
volume. Hence the net flux d? is finite and negative as shown in
Fig.1.9a since the component Bfnormal to the surface, i.e? and

14
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o ,the surface charge density are equal to each otheagnitude, the
surface integral

PIHS = P,dS=-0,dS (1.8)

:—qp

Where q, is the charge inside the Gaussian volume. Thusfjukeof P

is equal to the negative of the charge includethenGaussian volume.
Notice the difference in the flux & and the flux okE.

Now we can generalise Gauss’ flux theorem. Sinee effects of
polarised matter can be accounted for by the pmaton surface
charges, the electric field in any region can batee to the sum of both
free and polarisation charges. Thus in general

[E@s="(q, +q,) (1.9)

closedsurface 0

where g, represents free charges amgdthe polarisation charges.

SELF ASSESSMENT EXERCISE 3

Two parallel plates of area of cross section ofchf0are given equal
and opposite charge afox10~ C. The space between the plates is filled
with a dielectric material, and the electric fieldthin the dielectric is
3.3 x 10° V/m. What is the dielectric constant of the digliecand the
surface charge density on the plate?

Using Gauss' theorem for vectors this surface matetan be converted
into a volume integral. Thus the above equatiorobers

[OE)av = gij.(pf +p,)dV (1.10)

\%

where p,and p, are respectively the free and bound charge dessiti
As this is true for any volume, the integrands barequated. Thus

edIE=p; +p, (1.11)

The flux of p through the closed surface is given by (See equdti8)

[ PriS=-q,=~[ p,dv

15
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which can be written using Gauss' flux theorem

gUIE= p, -0OP
U EUIE+TIP = p,
Oi(e,E+P) = p;
gib = p; (1.12)

where D = ¢,E +Pis known as the electric displacement vector. (Note
that 1.12 is already Gauss's Law.)

SELF ASSESSMNENT EXERCISE 4
Show that Eqg. (1.12) reduces to Eqg. (1.11) wiRenO.
The dimension oD is the same as that Bf The units oD are C [in2.

From Egs. (1.12) and (1.10) we observe that thecsoofD is the free
charge densityp, , whereas the source Bfis the total charge density

Iof + pp .
When we writeP = ¢,E (see Eq. 1.5), we have
D=1+ yx)¢E (1.13)

Where g, = (1+ x) is known as the relative permittivity of the memiiu
Another usual form of electric displacement ve@ads given by

D=¢E (1.14)
wheree =¢.&,.

Eq. (1.14) provides the relation between ElectigpldcementD and
electric fieldE.

SELF ASSESSMENT EXERCISE 5

Consider two rectangular plates of area of a cresstion of
645x10™ m°. Each is kept parallel to the other. The sepandiigtween,
them is2x10°m and a voltage of 10V is applied across thesegpldt a
material of dielectric constant 6.0 is introducedthim the region
between the two plates, calculate:

16



PHY204 MODULE 1

0] Capacitance

(i)  The magnitude of the charge stored on eaakepl
(i)  The dielectric displacemeim

(iv)  The polarisation

3.4 Displacement Vector D

It is one of the basic vectors for an electricdiglat depends only on the
magnitude of free charge and its distribution.

In Section 1.4, we introduced a new veddoand called it Displacement
Vector (or)Electric Displacement

We found (see Sec. 1.4) that the electric displacens defined by
D =¢,E+P; Gauss' law in dielectric is given WyldS=q,dV. For an

isolated charge, kept at the centre of a dielectric sphere of radiuge
find that the Gauss' flux theorem gives (being aecaf spherical
symmetry)

(4rr®)(D) =q

Which gives
D=qr /4mr? (1.15)
[ D=cEwe getE =qr /4mer? (1.16)

From (1.16) it follows that the force F, betweermtehargesy, and q,,
kept at a distance r in a dielectric medium is gilsg

Fe (1.17)

and the expression for the potentgaht a distance from q is
¢ =qlamEr (1.18)

When we compare Eq. 1.16 with the correspondingesgon forE in
free space, Eq. 1.17 and 1.18 show similar expmassior Coulomb
force and potentials. We may find that in all thegpressionsg, has

been replaced by in a dielectric medium.

17
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SELF ASSESSMENT EXERCISE 6

Two large metal plates each of area 1 sq. metre é&ach other at a
distance one metre apart. They carry equal andsiigpcharges on their
surfaces. If the electric intensity between theqdas 50 newton per
coulomb, calculate the charge on the plates.

With this background, we may wrongly conclude thator a dielectric
medium is same &8 for free space. It is therefore important to diear
distinguish between these two vector quantities:

. E is defined as the force acting on unit chargesspective of
whether a dielectric medium is present or not. dtto be
calculated taking into account the free or exteomarges as well
as the induced charges of the medium. On the dtardD is
defined asD = ¢,E + P, and it is a vector like electric field, but is

determined only by free or external charges. Notenf Eqs.
(1.15) and (1.16) that the value Dfdoes not depend upon the
dielectric constant while the value & as well as the force
between the charges involee

. The quantityj DS is usually referred to as the electric flux

through the element of arets. For this reasom is also known
aselectric flux density. From the integral form of Gauss' law in
dielectrics, we find that the total flux ig, through an area
surrounding a charge], and this flux isunaltered by the
presence of a dielectric medium. This is not tnueghie case of
total flux of electric intensity, since

jEms:

S

[l Ne)

. SinceD is a vector, we may draw lines of displacemanthie
same way as we draw the lines of force. The nurabénes of
displacement passing through a unit area is prigmaitto O).
These lines of displacement begin and end onlyrea ¢harges,
since the origin oD is the conduction charges/charge density
(see Section 1.4).

Again by using Gauss' law it can be shown easibt thhe lines of
displacement are continuous in a space containlmfree charges. In
other words, at the boundary of two dielectricsthiére are no free
charges the lines oD are continuous, while the lines & are not
continuous because lines of electric force can endboth free and
polarisation charges. This behavioudb&ndE is dealt with in a greater

18
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detail in the next section. These rules are coathim two Boundary
conditions at the interface between two dielectrexia.

3.5 Boundary Conditions on D and E

We wish to determine the relationships tBsandD must satisfy at the
interface between two dielectrics. Here, we wikwase that there are
only polarisation charges at the interface i.eiceithe dielectrics are
ideal they have no free electrons, and thus tieen® iconduction charge
at the interface. Later, these boundary conditiasils be useful for
proving laws of reflection and refraction of elestragnetic waves. Now
we will determine the boundary condition for vedior

Boundary conditions give the way in which the basctors change
when they are incident on the surface of discoitynim dielectric
behaviour.

Boundary Condition for D

We apply the Gauss' law for dielectrics to a sroglinder in the shape
of a pill box which intersects the boundary betwgea dielectric media
and whose axis is normal to the boundary.

Fig. 1.10 shows the cylinder. Let the height of pilebox be very small
compared to its cross sectional area. The conioibub j D @S comes

from the components & normal to the boundary. That is,

£
€

Dn]
[ Drds = D,,dS-D,dS (1.19)
Fig. 1.10 Boundary condition for D between two dielctric media

where D, and D,, are the normal components Bfin media 1 and 2
respectively.D,, is opposite to the direction of the normald8in the

medium(s,) . Furtherj D[S = O since there are no free charges on the

boundary surface.

U D, =D (1.20)

nl n2

19
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Thus the normal components of electrical displacemesctors are
continuous across the boundary (having no freegetsr

D[dS=DI(ndS wheren is the unit vector along the outward drawn
normal to the areadS. This representation gives the boundary
condition asn[D, =nI(D,

which gives Eq. (1.20). Otherwise the boundary domts becomes

D, cosd, = D, cosb,

where 6, and 6, are the angles betweem and D, and n and
D,respectively.

Boundary condition for E

We shall make use of the conservative nature oélbetric field in this
case. To obtain the boundary condition Erwe calculate the work
done in taking a unit charge around a rectanguaap IABCDA, Fig.
1.11 shows such a loop. The sides BC and AC ofldbp are very
small. As the work done in taking a unit chargenea closed path is
zero (conservative force)

fED@ =0 (1.21)

ABCDA

&

52
A B
Fig. 1.11 Boundary condition for E between two diglctric media

Let E,and E,, be the tangential components®fn the media 1 and 2
respectively as shown in Fig. 1.11. Then,

[E@l = [E.di- [E.dI (1.22)
AB CD

ABCDA
wherel = AB = CD.
Using Eq. 1.21 in Eg. 1.22 we get

E.=E, (1.23)

2C
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Eg. 1.23 states that the tangential component efellectric field is
continuous along the boundary. Note that to cateulaork done, we
need force, which is related to the electric field.

The boundary condition contained in Eq. (1.23) rbaywritten in the
vector form as

nxE = nxE,

where E,, E, are the corresponding electric fields amds the unit
vector normal to the boundary.

SELF ASSESSMENT EXERCISE 7

Prove Eq. 1.23a using equation 1.23. Using theovedéentity.

§EE@|: j (DxE)mds:—j O(nxE)dS

Surface
Note on Eg. 1.23a

We write Eq. (1.23a) as

E,sing, = E,sing, (1.23b)

where 6, and 6, are the angles between and E, andn and E,
respectively in the media 1 and 2.

This is yet another form of the boundary conditidfe write Eq. 1.23b
as

&sinel =&sin6?2

gl 2

or
D;sing, _ & (1.23¢)
D,sing, &,

Eq. (1.23c) implies that the tangential componérid @ not continuous
across the boundary.

SELF ASSESSMENT EXERCISE 8

Show that the normal component & is discontinuous across a
dielectric boundary.
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3.6 Dielectric Strength and Breakdown

We have seen that under the influence of an extate&tric field,
polarisation results due to the displacement ofctieage centres. In our
discussion, we have treated the phenomenon asaaticeprocess. A
question that arises in our minds is, "what woulgen if the applied
field is increased considerably? One thing thatestain is that the
charge centres will experience a considerable nmulliorce. If the
pulling force is less than the binding force betwdlee charge centres,
the material will retain the dielectric propertydaon removing the field
the charge centres will return to their equilibriymositions. If the
pulling force just balances the binding force, ttiarges will just be
able to overcome the strain of the separation aydséight imbalance
will loosen the bonds between the electrons andhtledeus. A further
increase of the applied field will result in thepaeation of the charges.
Once this happens the electrons will be accelerdtbd fast moving
electrons will collide with the other atoms and tiply in number. This
will result in the flow of conduction current. Tih@nimum potential that
causes the charge separation is known agrdgkdown potential and
the process is known as ttielectric breakdown.

Breakdown potential varies from substance to sulsstalt also depends
on the thickness of the dielectric (thickness messalong the direction
of the field). The field strength at which the éetric is about to break
down is known as th®ielectric Strength. It is measured in kilovolts
per metre. Knowledge of the breakdown potentialesy important for

practical situations, as in the use of capacitorsectrical circuits.

When a dielectric is subjected to a gradually iasmeg electric

potential, a stage will be reached when the elactiothe constituent
molecule is torn away from the nucleus. Now theledigic breaks

down, viz., loses its dielectric properties, andgibe to conduct

electricity.

The breakdown voltage is the applied potential edéhce perunit
thickness of the dielectric when the dielectrid jugakdown.

4.0 CONCLUSION

In this unit we have examined the behaviour of etitics and the
deduction of Gauss’s law. In addition, we have aixm@d the terms,
dielectric breakdown and dielectric strength ad weldefined dielectric
constant.
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5.0 SUMMARY

When an electric field is applied to an insulatingaterial, it gets
polarised. This means that a dipole moment is edeat the material.
This dipole moment is also exhibited as a surfé@@ge density.

Electric dipole moment per unit volume is knowrpasarisation.

At the atomic level, the polarisation of a mediuakds place in two
ways, as there are two kinds of molecules: polat aonpolar. In
nonpolar molecules the centres of positive and ting&harges lie at
the same point and their inherent dipole momenérs.

In polar molecules the positive and negative chacgatres lie at
different points and consequently there is an iahedipole moment
associated with the molecules, though the net ehafghe molecule is
zero.

For a dielectric medium, it is convenient to intnod another vector
related toE andP, This is called the displacement vedibdefined as

D=¢gE+P

For the analysis of dielectric behaviour, the ielatbetween the

polarisation vector P and the total electric fields important. For an

ideal, homogeneous and isotropic dielectric, thegitn is expressed as
P=&,x.E

The constaniy, is known as the electric susceptibility of the imeal

The constantr, corresponding to the susceptibilify, is known as the

atomic (or molecular) polarisability when we coresidhe polarisation
of a single atom (or molecule).

In a polarised piece of a dielectric, the volumarge densityp, (= -
div P) and the surface charge density are given byP[n or P,.
The presence of dielectric leads to the modificatnd the Gauss' law.

It's modification is

f&,DMdS=q

whereq is the total unit free or external charge
ordivD = p
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whereD depends only on the magnitude of free charge atdtdition.

The general relation between the vectbrsE and P can be used to
define the dielectric constant K and permittivitg of dielectric

medium. Using the permittivity, the relation betweeD, P andE can
be expressed in the linear form

D=¢E
P=e(k-DE =(e-¢&,)E

The vectors E and D satisfy certain boundary camiton the interface
between two dielectric media. These conditions are:

(i) The tangential component & is the same on each side of the
boundary, i.e.E, =E, and

(i)  The normal component oD is same on each side of the
boundary, i.e.D, =D,,

Dielectric strength is the applied potential diffiece per unit thickness
of the dielectric when the dielectric just breaksvd.

6.0 TUTOR-MARKED ASSIGNMENT
(1) Calculate the relative displacement of theleus of the molecule
modelled in Fig. 1.12 (spherically symmetric molegwvhen it is

subjected to an external electric field and henseolarisability.

(2)  Suppose two metallic conducting plates @t las shown in Fig.
1.13.

Fig. 1.12: Model of atom. Fig. 1.42

The area of cross section of each plate is Z.@md they are I8 apart.
The potential difference between them in vacwyms 3000 volts, and
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it decreases to 1000 volts when a sheet of digdedtrcm thick is
inserted between the plates. Calculate the follgwin

(@)  The relative permittiviti of the dielectric,

(b)  its permittivity, £,

(c) its susceptibilityy,

(d) the electric intensity between the plates acuum (here it is
given that Intensity = Voltage across the platefAiof Cross

section,
(e) the resultant electric intensity in the diéliec
)] the electric intensity set up by the boundbdrges.

T+'+
(4

|t
I €=—%

g
| —+
§ =——%
b —
D —

e

a) Two conducting plates (b) Two conducting plates
without dielectric with dielectirc
Fig. 1.13 Two metallic conducting plates (a) and {bwith dielectric
material.

(3) Consider two isotropic dielectric mediumrida? separated by a
charge free boundary as shown in Fig. 1.14

- i -

r l‘:z

Fig. 1.14: Line of force across the boundary betweewo dielectrics

Now, an electric vectoE, goes from medium 1 and enters into medium
2. Ifi is the angle of incidence amnds the angle of reflection, prove that

tani _ &

tanr &,

(4) Show that the polarisation charge density atititerface between
two dielectrics is

& 76
&

p'=&, nLE,
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1.0 INTRODUCTION

You have studied in your earlier classes that titergial of a conductor
increases as the charge placed on it is increddathematically we
write

QUg¢ orQ==C¢ (2.2)
whereC is the proportionality constant.

We call this constant C the capacity or capacitai¢e also call any
device that has capacitance a the capacitor (cerderYou are already
familiar with this device.

We change the capacitance in our radio-transistatewoperating the
'tuning' knob and get the radio station of our choCapacitors are used

in many electrical or electronic circuits, they yide coupling between
amplifier stages, smoothen the output of power kegppThey are used
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in motors, fans, in combination with inductanceptoduce oscillations
which when transmitted become radio signals/TV aligretc. Besides
these, capacitors have a variety of applicationselectric power
transmission.

In the present unit, we shall learn about capac#arcapacitors of
different forms, energy stored in a capacitor, #reworking principle
of a capacitor. We have studied the macroscopipegstes of dielectrics
in Unit 1. Here we will study the effect on the aapance of a
capacitor, when a dielectric is placed between tthe plates of a
capacitor. Then we will introduce some practicglasators.

In next unit we will study the microscopic propesiof the dielectrics.
2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define capacitance of a capacitor

. describe capacitors of different geometries and ainbt
mathematical expression for their capacitance

. able to calculate the energy stored in a capacitor

. describe the effect of introducing a dielectric enatl in a
capacitor

. obtain expressions for the effective capacitancegroluping a
number of capacitors in series and in parallel

. describe practical capacitors such as a guard osedeand an

electrolytic capacitor.
3.0 MAIN CONTENT
3.1 Capacitance

A capacitor or a condenser is an electronic defocestoring electrical
energy by allowing charges to accumulate on metatep. This
electrical energy is recovered when these chargeslbbwed to move
away from these plates into the circuit of whick ttapacitor forms a
part. Any device which can store charges is a gagaéor example, an
insulated conducting spherical shell of radiusan store charges; hence
it can be used as a condenser. Let us see howksws a capacitor. If a
chargeQ is placed on it, the outer surface of the shellobses an
equipotential surface. The potential of the outafaxe of the shell is
given by
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_Q
o= 4rE,R (2.2)

with infinity as zero potential. Instead of infipitve can regard the
ground (earth) as zero potential. Then the capamstaf this shell (w.r.t.
ground) is

c =2 = 4%,R Coulomb/Volt (2.3)
¢

The unit of capacitance C in Sl system is the farad
Farad = Coulomb/Volt (2.4)
If R =100 cm in the above spherical shell its capacitiarads is

(47®,)100=1.1x10"° Farad

Thus it is clear from this that if a capacitor aslte made with one unit
(farad) capacity it has to have huge dimensions®(0in the above
case). Practical forms of condensers have smakmiions and smaller
units such as picofarad@™* Farad) and microfarad ¢x10° Farad) are
more commonly used. The symbolic representatican cdpacitor is

0—| |—o.

The above example of a spherical conductor as actap is given only
to illustrate the concept. However, the most comsnarsed practical
form of condensers always has a system of two nséiéts (circular,
cylindrical or rectangular) kept close to each othath an insulator
separating the two sheets. This system has théyatnl have larger
capacity without having the corresponding largenehsions. You will
learn more about this in detail in the next section

3.2 The Parallel Plate Capacitor or Condenser

This is the simplest and most commonly used forna @bndenser. A
parallel plate condenser consists of two rectamgoitacircular sheets
(plates) of a metal arranged parallel to each oteeparated by a
distanced. The value ofd is usually very small and an insulating
material is normally inserted between the two sheSee Fig. 2.1. A
charge Q (positive) placed on the upper plateitigis equally on this
plate to make it an equipotential surface. The lopkate is shown
grounded. The lower plate is therefore at groundeml (zero
potential). Because of electrostatic induction ajuaké amount of
negative charge appears on the upper side of terlplate. This
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induced negative charge pulls up almost all thatipescharge placed
on the upper plate to the lower side of the uppetep Thus the electric
field now gets confined to the space between tleeplates: the positive
charge acting as sources and the negative chargmlagthe lines of
force originate on the positive charges and enchegative charges).
The induced negative charge is equal lo the amolipbsitive charge
because of the zero field requirement inside thdenzd of the
conducting sheets. Besides, both the metal sheetseguipotential
surfaces. The lines of force field lines are norioathese sheets except
at edges. See Fig. 2.1. Since all the field linegirate from the upper
plate and end on the lower plate, the value ofdleetric field, E is
uniform in the spacebetween the plates except at the edge. The edge
effects are negligible if the area of the platesisdarge compared t.
SinceE is uniform the potential difference between the erpand the
lower plates is given by

———3 A

Q
LI AL UL AL LL LALLM L Ll riid i
(@EIZIZIZIRIIDE

[ 7 iiriirzrzriz i 'JF

¥ e

—
—
_—

Fig. 2.1 Parallel plate condenser A and B are the atal plates
separated at a distanc&l'.
¢, —¢, =—-Eldl =Ed

where ¢,, ¢ refer to the potentials of upper and lower plates
respectively. As the lower plate is earthed,

¢=0; ¢, =Ed (2.5)
To evaluateE let us use Gauss's theorm. Suppose we evaluate the

electric flux for a closed cylindrical surface EFGiflbase are& with
its axis normal to the plate. See Fig. 2.2
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\ Y

One of the horizontal surfaces is inside the matal the other in the
space between the plates; the curved faces arbbepawahe field lines.
There is no flux through EF as the field inside tbaducting surface is
zero. Similarly, there is zero flux through EH aR®G as the curved
surfaces of the Gaussian cylinder are paralldieditld lines.

| 4|
| =&+

L*—*—‘f—*-ci
| il

Fig. 2.2 Gaussian closed cylinder EFGH

| 4 |
o

|+
|-+

Since the potential is defined as the work doneupér
charge, the work done in moving a small chadye
against a charge potentialwill be work done =@ q.
But ¢ =q/C.

The total work done in charging a capacitor to Q
coulombs is given by

2C

Q 2
Total work done :jq?dq -a
0

The flux through the surface HG of area S is eqoatS. SinceE is
along the normal to the area, hence, we can applys§& theorem.
According to Gauss theorem

Es=> g=2 (2.6)

where, g is the charge per unit area on the condenser.plte
potential ¢, of the upper plate i€d from Eq (2.1). The total chardge

is oA

C=

2.7)

A YLO)

A
d

By keeping a small value fat, the capacityC can be increased. In the
above derivation we have taken the medium betwkemptates to be
vacuum. The above arrangement has the advantathe electric field
being unaffected by the presence of other charge®mductors in the
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neighbourhood of the capacitor. Moreover, if theaak of the plates is
much greater thar the correction for the capacitance due to the
nonuniform field at the edges is negligible.

SELF ASSESSMENT EXERCISE 1

Suppose we have the distance of separation bettieeplates, what
happens to the capacitance?

SELF ASSESSMENT EXERCISE 2

Find the charge on a 1000 pF capacitor when chameadvoltage of 24
V.

In the next subsection you will learn about the rgpestored in a
capacitor.

3.2.1 Energy Stored in a Capacitor

The work doneW in assembling a charg®@ by adding infinitesimal
increments of charge is given by:

w :gw (2.8)

Where ¢ is the final potential of the charged body. In tese of a

capacitor of capacitance C, this work, done inipia@ charge on the
capacitor must also be given by similar expressien,

W :%ng (2.9)

This can be written in terms of the capacitatceQ/¢ as

2
W :Ean2 -9 Joules.
2 2C

This work is stored up in the electric field asepital energy.
SELF ASSESSMENT EXERCISE 3

Show that in a parallel plate capacitor of afeand the separation of
plates by a distanagin vacuum the energy stored in the (space) volume

of the electric field between the plates is givgn%ﬁga
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3.3 Parallel Plate Capacitor with Dielectrics

When a dielectric slab is inserted between the lighrplates of a
condenser the capacity increases. The polarisddctiie slab ABCD
(see Fig. 2.3) reduces the electric field E insieedielectric by a factor
(1/¢&,) wheree, is the relative permittivity as discussed in tastlunit:
This can be proved by computing the electric fig3ydusing Gauss' law
for electric displacement) inside the dielectric ABCD. Recall the
Gaussian cylinder used in evaluatiign Section 2.2. The flux dD is
now given by (only free charges contribute to tlie)f

|

T 4+ + + + + + +

— — ——— —— — —

Fig. 2.3 Dielectric slab between capacitor plates
DS=0S (2.11)
as the bound surface charges do not contributagdltix and
D = ¢,6E (2.12)
for an isotropic uniformly polarised dielectric. d$the field

E=_Y9 (2.13)
ELE,

The potential difference between the plates is letju&d, whered is
now the thickness of the slab filling the entirasp between the plates.
The capacitance now becomes

C===__"=-"07r"_ (214)

The value of the capacitan€eincreases by the factar, which is the
relative permittivity of the dielectric material.

From Eg. (2.14) we note that the capacitance airallel plate capacitor

increases with the increase in surface af@af the plates and also with
the decrease of the distance separating the plates.
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The effect of introducing a dielectric in betweée plates increases the
capacitance *{ ¢, > 1). Thus the inclusion of a dielectric enables t

capacitor to hold more charges at a given potedtfédrence between
the plates.

We rewrite Eg. (2.14) as
C=¢,Ald/¢g,) (2.15)

and compare it with Eqg. (2.7). We find that a diélie of thicknessd
has an equivalent free space thickrid$s,). This observation will be

useful later when we deal with the capacitor in alththe space in
between the plates is only partially filled witldielectric.

SELF ASSESSMENT EXERCISE 4

Find the capacitance of the parallel plate capaatmsisting of two
parallel plates of area 0.04mach and placetb™m apart in free space.

A capacitor is shown in Fig. 2.4 in which a dietecslab of thickness
is inserted between the plates kept apart at ardietl. We write the
capacitance of this capacitor, on the basis ofetipgivalent free space
thickness of the dielectric. We find the free sptekness between the
plates Xd —-t), wheret is the thickness of the dielectric material. This

IS equivalent tot/e, in free space. The capacitor of Fig. 2.4 is

equivalent to a capacitor with free space betwéenplates, with the
separation ofld -t +t/¢,) . We write the expression for the capacitance

as

c=_ SA (2.16)
d-t+t/e

't [t S N l
Cs

—

Fig. 2.4
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t

(d-aeiky)

}

I

Fig. 2.5 The equivalent capacitor
Now we will obtain Eq. (2.16) with another simpleetinod. Let the
voltage across the capacitor which is shown in Eid.be V. When a
dielectric of thicknesst' is introduced between the two plates of the

capacitor, the distance between the positive patdhe capacitor and
the upper surface of the dielectric is s@yand from lower surface of

dielectric to negative plate of the capacitordis Now assume that the
voltage between positive plate and upper surfagbeftielectric isv,,
the voltage between upper and the lower surfaddetlielectric isv,

and the lower plate of the dielectric to the negaplate of the capacitor
is V,. The total voltagev across capacitor is the sum of these three

voltages i.e.,
V=V, +V, +V,
Let E be the field inside the dielectric. Then
V, =d,E, V,Ext/e, andV, =d,E
V =(d, +d,)E+Ext/¢,
From the figure
d=d, +d, +t
d, +d, = (d -t)
From the above equation we get
V =(d-t)E+Ext/¢,
Using Eq. (2.5), we get that in this case

d=[(d-t)+t/¢,]
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From Eqg. (2.15), we get

C = gO_A
d
EA
[(d-1)+t/]

We can also find that the ratio of the capacitamitk dielectric between
the plates to the capacitance with free space leshee plates is equal
to the relative permittivity, viz.,

6 = Capacitwith dielectricbetweerplates
" Capacitwith freespacéetweerplates

The relative permittivities £ ) of some of the most common materials
are given in Table 2.1.

Table 2.1: Relative permittivity (&,) of some common materials

Air 1.0006
Castor Oil 4.7
Mica 5-9

Glass 4.5-7.00
Bakelite  4.5-7.5
Paper 2-2.3
Porcelain 5.5
Quartz 15
Water 81

SELF ASSESSMENT EXERCISE 5

A dielectric of relative permittivity 3 is fillednito the space between the
plates of a capacitor. Find the factor by which tepacitance is
increased, if the dielectric is only sufficientfibup 3/4 of the gap.

3.3.1 Voltage Rating of a Capacitor

Capacitors are designed and manufactured to opexiata certain
maximum voltage, which depends on the distance dmtwhe plates of
the capacitor. If the voltage is exceeded, thetelas jump across the
space between the plates and this can result mgrenmt damage to the
capacitor. The maximum safe voltage is called tbhekimg voltage. The
capacity and the working voltage (WV) is markedloa capacitor in the
case of bigger capacitors and indicated by theucobode (similar to

36



PHY204 MODULE 1

that of resistance) in the case of capacitors Ilgavow values of
capacitance.

3.4 Capacitance of a Cylindrical Capacitor

In Section 2.3, we have calculated the capacitarica parallel plate
capacitor. Another important form of capacitor isydéindrical capacitor.
This is shown in Fig. 2.6a. A section of this camads shown in Fig.
2.6b. It is made up of two hollow coaxial cylindricconductors of radii
a andb. The space between the cylinders is filled with eletitric of
relative permittivitye, . Practical forms of such capacitors are:

(1) a coaxial cable, in which the inner conaucis a wire and the
outer conductor is normally a mesh of conductingeveeparated
from the inner conductor by an insulator (usualBspc).

In Fig. 2.6b, the direction of the field lines &dral, viz., normal to the

surface of the cylinder. Small lines in between tthe cylinders, show

the direction of fixed line.

Fig. 2.6: (a) Cylindrical capacitor {b) cross sdwn of the
cylindrical capacitor

(i)  the submarine cable, in which a copper aatdr is covered by
polystyrene (the outer conductor is sea water)ce&inoth the
inner and outer cylinders are conductors, theyeap@potential
surfaces. The field is radial (normal to the swfaof the
cylinder): Because of cylindrical symmetry we camd that the
capacitance is proportional to the length of thénder (as the
length increases, the area of the plot incread¥'s).shall now
find the capacitance per unit length of the capacit

A B
e AR
______\r' : o

f— 1 — c

Fig. 2.7 Gaussian surface ABCD

Let the charge per unit length placed on the irmyénder of the

capacitor beA. The outer cylinder is grounded. An equal and
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opposite amount of charge appears on the innerdfittee outer
cylinder. This is because of the zero field in tmnductor. To
evaluate the field let us consider a coaxial closglindrical
surface ABCD of unit length and of radiusSee Fig. 2.7. The
electric field is normal to the inner cylindricalréace and is also
confined to the space between the cylinders. Tine df electric
displacement vecto, through the bottom and top surfaces of
this Gaussian cylinder ABCD is zero Bsis parallel to these
faces. The flux oD is only through the curved surface of ABCD
and asD is normal to this at all points; the flux througjs
closed Gaussian surface is given by

DldS= (2nr)DIJl (2.17)

Now D =g, E for isotropic uniformly polarised dielectrics. Ugin
Gauss' law we get

2nrD = 2nr)g,c, E= A (2.18)
where A is the free charge enclosed by the Gaussian surfac

Thus

E= A

= (2.19)
27Tr €€,

To find the capacitance, we require the poteniiéince between the
two cylinders. The expression for potential diffeze is given by

¢=~|Edr (2.20)
b
Four our case, Eq. (2.20) becomes

¢, — ¢, = — | Edr

T —

b
:j A dr
© 27T EE,
A pdr
2ITELE, I T

ra
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=_4 In(b/a) (2.22)
21T E,E

r

As the outer cylinder is grounded, = 0.

Now, capacitance per unit lengt, is given by

2TE &€
Al = o7 2.23
b In(b/ a) ( )

Note: In the expression for the capacitance pett lemgth of a
cylindrical capacitor, Eq. (2.23), we find that ttegpacitance depends on
the ratio of the radii and on their absolute values

SELF ASSESSMENT EXERCISE 6

Two cylindrical capacitors are of equal length amave the same
dielectric. In one of them the radii of the inn@daouter cylinders are 8
and 10 cm, respectively and in the other they aaadl5 cm. Find the
ratio of their capacitances.

3.5 Capacitors in Series and Parallel

In Section 2.5, we have seen the method of findiegcapacitance per
unit length of a cylindrical capacitor. We multiplige capacitance per
unit length by the length for cylindrical capacgomand get the
capacitance. Now we can consider a cylindrical ciypaof length 2
units as consisting of two cylindrical capacitofsinit length joined end
to end so that the inner cylinders are connectgdther and the outer
cylinders also get connected similarly. This iswhan Fig. 2.8.

@ ey ——b — lwmin ——p —— lms —»

—>»
U ) =

Fig. 2.7 A long cylindrical capacitor seen as a pﬁcular
combination of unit cylindrical capacitor

We find immediately that in such a combination tttearge on the
capacitor is doubled and so the capacitance is dtsibled since the
potential difference remains constant. Two cap&gitoonnected in
parallel (symbolic representation) are shown in Biga.
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~_

G C;'

Fig. 2.8a Two capacitors connected la parallel

In this combination, we find that

. the potential difference between the plates remhiesame;
. the charge on each capacitor adds up (more ar@aikble for
storing charges).

We can find an equivalent capacitor that holds same charge when
kept at the same potential difference as the coatioins of the
capacitors. The capacitance of that capacitor amvinas theEffective
Capacitance of the combination. Before we proceed further, voéen
that capacitors can be grouped or combined in anotlay too. Here
alternate plates of the capacitors are connectedhé¢o succeeding
capacitor so that they form a series. Fig. 2.9 shithw combination; it is
known as combination of capacitors in series.

G Cy Cs
| | | | | |
| | | | |

Fig. 2.9 Capacitors in Series

If a voltage source is connected across the twapéatds of the first and
last capacitors of the series, equal charges wvéllinduced in each
capacitor whereas the potential difference acrassh ecapacitor will
depend upon its capacitance.

We shall find the mathematical formulas for the ieglent capacitance
of the combination of capacitances in parallel enseries.
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3.5.1 Combination of Capacitors in Parallel

Fig. 2.10 shows the combination of three capacitogarallel.

Fig. 2.10 Capacitors in parallel

Here, C,, C, and C, are the capacitances of the individual capacitors,
Q,, Q, and Q, are respectively the charges on them gnds the

potential difference between the plates of eaclaci&. We takeC to
be the effective capacitance of the combinatiore #al chargeQ of

the parallel combination is equal to
Q=Q +Q, +Q;
Since¢ is same for this equivaledt of the parallel combination,

Q+Q,+Q;

C:Q:
@ @

-2,
» ¢ @
=C,+C,+C, (2.24)

Thus the effective capacitance of the parallel doatibn of capacitor is
equal to the sum of the individual capacitances.

3.5.2 Combination of Capacitors in Series

Fig. 2.11 shows the combination of three capacitoseries.

j— Q(Qy +Q+Q3)
T C

4, ¢

L

Fig. 2.11 Capacitors In series and the equivalenapacitors
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Here C,, C, and C, are the capacitances of the individual capacitors.
The application of a voltage will place a charg® on one plate which
induces a charge Q on the other plate. The intermediate plates acquire
equal and opposite charges, because of electmstatuction. The
potential drop across each will be inversely prtipoal to its
capacitance. (Sinc€ =Q/¢ gives¢=Q/C, snce Q is fixed ¢ 01/C).
Thus ¢, ¢,and ¢,, the potential drops across the capacitors arb suc
that ¢, 01/C,, ¢, 01/C, and ¢, 01/C,. Now we replace the capacitors
by a single capacitor of capacitanCethat holds the charg® when
subjected to a potential differenge= ¢, + ¢, + ¢,. This capacitanc€ is

known as the effective capacitance of the comlmnatiVe now write
C=Q/¢g or1/C=¢/Q.But ¢ =¢ +¢, +¢,. Therefore,

(2.25)

Thus for capacitors connected in series the recgiso of the
capacitances add up to give the reciprocal of tfeeteve capacitance.

SELF ASSESSMENT EXERCISE 7
Determine the equivalent capacitance of the netwbdws in Fig. 2.12

and the voltage drop across each of the capacitahe series of
capacitors.

o€ % 30
st NS s wl L, € ¥ -
| | |2 | - 9
a1 (I T AR
G G Cy C
Fig. 2.12
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SELF ASSESSMENT EXERCISE 8

Calculate the effective capacitance of three capacarranged in such a
way that two of themC, and C, are in series and the third,, is in

parallel with this series combination.
3.6 Stored Energy in a Dielectric Medium

In Section 2.3.1, we have studied that the enetgsead in a parallel
plate capacitor is given as

1
u=>cC
¢

We know that

Y,
d
and
¢=Ed

or

!:15052 (sincev=Ed)
v 2

This is the energy per unit volume.

When a dielectric of relative permittivity, fills the space between the
plate of the capacitor, then the effective capaceas given by

E,6, A

v

d

Caie =
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The energy stored in a capacitor with a dielectraterial is given by

u 1 )
—==¢,E Ald =u
u 2 0“r ( )

In the case of a parallel plate condenser, theggnstored per unit
volume is%goEz, which becomes%,sog,E2 :%EED with the dielectric

material. Wherd® is the electric displacement in the dielectric. e
considered here the case of a linear dielectricrevBeandD are in the
same direction. However, there are dielectrics ImcWwE andD are not
in the same direction. Thus the energy stored petr wolume in a
dielectric medium is given by

%E D Joules/rh (2.26)

3.7 Practical Capacitors

We shall now study some of the capacitors thatcaramonly in use.
Capacitors may be broadly classified into two geouye., fixed and
variable capacitors. They may be further classifeedording to their
construction and use. The following are the classibns of the
capacitor.

Types of Capacitor
|

I 1
Fixed Capacitor Variable Capacitor
|
I 1A v 1 1 i N
Paper Mica Ceramic  Electrolytic Gauge capacitor Gauge type  Trimmer
Capacitor capacitor  capacitor  capacitor of tube type capacitor of  capacitor
receivers transistor

receivers

Now, we will discuss each type of the capacitor byp@ne.
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3.7.1 Fixed Capacitors

These have fixed capacitance. These are essenpaligllel plate

capacitors, but compact enough to occupy less spatieeir make they
consist of two very thin layers of metal coatedtlom surface of mica or
paper having a uniform coating of paraffin. The anaz paper forms the
dielectric between the conductors. They are shawfig. 2.13.

———— ——— ———— —— —

Fig. 2.13 Fixed capacitors

This arrangement is rolled up to the compact fodaually they are

piled up in parallel to give a large capacitancleough paraffin-waxed

paper capacitors are cheaper, they absorb a goodrdraf power. For

this reason these capacitors are usadternating current circuits, radio-
sets, etc.

3.7.2 Ceramic Capacitors

These are low loss capacitors at all frequenciesai@ic materials can
be made to have very high relative permittivityr Egample, teflon has
&, = 8 but by the addition of titanim the value fbecomes 100 and on
adding barium titanate the value gf may be increased to 5,000. Each
piece of such dielectric is coated with silver be two sides to form a
capacitor of large capacitance. Yet another adgantath the ceramic
dielectrics is that they have negative temperatarefficient. Ceramic
capacitors are widely used in transistor circuits.

3.7.3 Electrolytic Capacitors

An electrolytic capacitor consists of two electread aluminium, called
the positive and the negative plates. The posijilaée is electrolytically
coaled with a thin layer of aluminium oxide. Thisating serves as the
dielectric. The two electrodes are in contact thiouhe electrolyte
which is a solution of glycerine and sodium (oraste of borates, for
example, ammonium borate). There are two types lettrelytic
capacitors—the wet type and the dry type.
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In the wet type the positive plate (A) is in thenoof a cylinder to
present a large surface area. This is immersedhenetectrolyte (E)
contained in a metal can (M). This can act as aatig plate. It is
shown in Fig. 2.14.

In the dry type both plates are in the form of l@tgps of aluminium

foils. Aluminium oxide is deposited electrically ame (A) of the foils.

This is kept separated from the other (B) by cotianze (C) soaked in
the electrolyte. It is then rolled up to a cylirg#i form. The oxide films
on aluminium offer a low resistance to current medalirection and a
very high resistance in the other direction. Herae electrolytic

capacitor must be placed in a DC circuit such thatpotential of the
oxide plate is always positive relative to the otpkate. It is shown in
Fig. 2.15

Fig. 2.15 Dry type electrolytic capacitor

3.7.4 Variable Air Capacitor/Gang Capacitor

A very common capacitor whose capacitance can bedvaontinuously

is used for tuning in a radio station. The capaeitthis capacitor can be
uniformly varied by rotating a knob (different fosnof such a type of
capacitor are shown in Fig. (2.16)).
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CTHTLILD

QT I TID

Fig. 2.16 Variable air capacitor

The capacitor consists of two sets of semicircalaminium plates. One
set of plates is fixed and the other set of platas be rotated with the
knob. As it is rotated, the moving set of plateadgrally gets into (or
comes out of) the interspace between the fixedTset.area of overlap
between the two sets of plates can thus be unijovaried. This
changes the capacitance of the capacitor. Thestwden the plates acts
as the dielectric. Usually it consists of two comglers attached to the
same knob (ganged). When the knob is rotated thatia of C in both
the plates takes place simultaneously. This is lyideed in wireless
sets and electronic circuits. See Table 2.1 foomparative range of
voltages for different types of condensers.

SELF ASSESSMENT EXERCISE 9

What is a variable capacitor? Give an example wérmable capacitor
with a solid dielectric.

3.7.5 Guard Ring Capacitor

In Section 2.2 we calculated the capacitance of aaaliel plate
condenser. We neglected the nonuniformity of eledtld at the edges.
It is possible to get over the problem of edge @by using a guard
ring capacitor. In this capacitor a ring R is usedund the upper plates
of the parallel plate capacitor. The inner diametethe ring is slightly
larger than the diameter of the capacitor plate diameter of the other
capacitor plate is equal to the outer diametehefring. Now the edge
effects are absent as far as the plates and acem@d. In estimating
the capacitance of the guard ring capacitor, we thk effective area of
the plates as equal to the sum of the area oflgte A and half the area
of the gap between A and R.

In Table 2.2, the capacity range, max. Rating wgatand use of
different types of capacitors are shown.
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4.0 CONCLUSION

In unit 2, we have defined and described capacdodsexpressions for
their capacitance have been obtained. The effdctslding dielectric
materials on their properties have been highlighwbde their practical
uses have been described.

5.0 SUMMARY

. Any device which can store charge is a capacitbe dapacity of
capacitor is given by,

C=

| |0

£oh
d

Where the symbols have their usual meaning.

Type of Capacitance RangMax. Rating |Remarks

Dielectric Voltage

Paper 250 pF-10u F 150KV Cheap, used in circuits
where losses are not
important.

Mica 25 pF-.25uF 2KV High quality, used in low
circuit

Ceramic |0.5 pF-0.01uF 500 KV High quality used in low
loss precision circuit
where miniaturisation is
important

Electrolytic |1 4 F-1000 u F 600 V at smalUsed where large

(Aluminium capacitance |capacitance is needed.

Oxide)

. The energy stored in a capacitor is given by

2
W :EC¢2: QL Joules
2 2C

The symbols have their usual meanings.

. If you introduce an insulator of thicknessbetween the two
plates of a capacitor, then the resultant capasigyven by

C=g,Alld-t+t/g,)

. The maximum safe voltage is called rating voltafya capacitor.

48



PHY204 MODULE 1

6.0

(1)

(2)

3)

The capacitance of a cylindrical capacitor, pet lamgth is given
27E &,

by
In(b/ a)

If two capacitorsC, and C, are connected in series, then the

L C.C
resultant capacity is given by =—2"2_
pacity is g by C +C,

The resultant capacity of two capacito® and C,, when
connected in parallel is given liy=C, +C,

The energy stored in a dielectric medium is givgn%tE (D

Practical capacitors are made in different ways,stat the
particular application. Layers of conducting foildapaper rolled
up give a cheap form of capacitor, mica and mesdl dtands
high electric field but are more expensive. Eldgtio capacitors,
in which the dielectric is a very thin oxide filmeplosited
electrolytically, give very large capacitance. @ei@ capacitors
are useful in transistor circuits where voltages law but small
size and compactness are very desirable.

TUTOR-MARKED ASSIGNMENT

A capacitor hasn similar plates at equal spacing, with the
alternate plates connected together. Show thatapscitance is
equal to(n-1e,e, A/ID.

What potential would be necessary betweerpérallel plates of
a capacitor separated by a distance of 0.5cm ieradittat the
gravitational force on a proton would be balancgdhe electric
field? Mass of proton 2.67x107'kg.

A capacitor is made of two hollow concentrietal spheres of

radii a and b (b>a). The outer sphere is earthed. [Sg. 2.18.
Find the capacity.
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(4)

(5)

7.0

Fig. 2.18

In the arrangement shown in Fig. 2.19, find talues of the
capacitances such that when a voltage is appli¢deea the
terminals A and B no voltage difference is set ugiween
terminals C and D.

Fig. 2.19

Two capacitors one charged and the other ugelaare joined in
parallel. Show that the final energy is less tHaninitial energy
and derive the formula for the loss of energy imte of the
initial charges and the capacitances of the twaciéqs.
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1.0 INTRODUCTION

In Unit 1, we have studied the macroscopic (averdghaviour of a

dielectric in an electric field. We also found thae field is altered

within the body of the dielectric. This can be aated for by the

charges appearing on the surface of the dieleatrithe case of an
isotropic material. In Unit 2, the macroscopic stuaf the dielectric

behaviour was used to study the increase of caestin a condenser
when a dielectric is placed between the platek@tbndenser.

In the present unit, we will describe the microscopicture of a
dielectric in which we will define the local fielcE,..), and the average

macroscopic field inside the dielectri€,(). Further, we will derive the

relationship between the local field and the maxwpg: field. We will
also study the effects of polarisation in nonpa@ad polar molecules
and derive the famous Clausius-Mossotti formula gotarisation of
these molecules. Then we will derive Clausius-Mtssguation for a
gas. We will also study the relationship betweemampsability and
relative permittivity. After that, we will derivene relationship between
polarisability and refractive index. As you knovatitapacitors are used
in alternating fields, so we will also study thdeet of an alternating
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field on a dielectric. In the last section of thisit we will study the role
of dielectrics in our daily life.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define the local field and relate it with polarisat

. find the macroscopic field within the dielectriccarelate it to
polarisation.

. relate the macroscopic electric field, the localdi and the
microscopic field within the dielectric,

. write Clausius-Mossotti equation for a liquid andas,

. establish a relationship between polarisability #Refractive
index,

. discuss the role of dielectrics in dally life.

3.0 MAIN CONTENT

3.1 microscopic picture of a dielectric in a unifom electric
field-review

In Unit 1 you have studied the average (macrosgopeahaviour of
dielectrics. In this section, we will study the nascopic picture of a
dielectric in a uniform electric field. Let us caasr a dielectric in a
uniform electric field as shown in Fig. 3.1.

o Bk
G =)
b LI

Fig. 3.1 A molecule in a dielectric medium

In an electric field, the electrons and atomic eudf the dielectric
material experience forces in opposite direction®e know that the
electrons in a dielectric cannot move freely asaiconductor. Hence
each atom becomes a tiny dipole with the positivé megative charge
centres slightly separated. Taking the charge a#iparasa, the charge
as g the dipole momenp in the direction of field associated with the
atom or molecule
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p=ga (3.1)

Eqg. (3.1) gives the dipole moment induced in tlerdiolecule by the
field. Hence we call it thenduced dipole moment If there aren such
dipoles in an element of volumé of the material, we can define the
polarisation vectoP as the (dielectric) dipole moment per unit volume
as

_ npVv

P=7y

Within the dielectric the charges neutralise eatfep the negative
charge of one atom/molecule is neutralised by thetipe charge of its
neighbour. Thus within the bulk of the materiale tlklectric field
produces no charge density but only a dipole mordensity. However,
at the surface this charge cancellation is not detepand polarisation
charge densities of opposite signs appears at we durfaces
perpendicular to the field. Now what is the consswpe of the
appearance of polarisation charges?

The consequence of this is that the electric firfide the dielectric is
less than the electric field causing the polamsatiThe polarisation
charges give rise to an electric field in the opjeogirection. This field
opposes the electric field causing polarisatiors #hown in Fig. 3.2.

"_.!Ef_fiL?fF‘_'

e e
> Srteryieit

¥ —t

-

TTTITT
L]

TI

.d
Fig. 3.2 Field Inside a dielectric

Hence we conclude that inside the dielectric, thexage electric field is
less than the electric field causing polarisatiddowever, the
macroscopic or average field is not a satisfactogasure of the local
field responsible for the polarisation of each atom

Let us denote the field at the site or locatiorihaf atom or molecule as

thelocal field. In the next section, we will calculate the localdiinside
a dielectric.
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3.1.1 Definition of Local Field

In this section we will define the local field indgelectric material. This
is the field on a unit positive charge kept at@aten or site from which
an atom or molecule has been removed provided ther @harges
remain unaffected. Fig.3.3 shows a site in a unmifgmpolarised medium
from which a molecule/atom is removed when all ottterges are kept
intact at their positions.

Fig. 3.3A site in a uniformly polarised medium

The extent of the charge separation depends om#gmnitude of the
local field. Hence we conclude that the inducedoldipmomentp, is
directly proportional to the local fiel& .. Thus we have,

P=aE,, (3.3)

Where a is the constant of proportionality and is known as
atomic/molecular polarisability and,,. the local field.

loc

To use Eg. (3.3) we require the valuesf .

3.2 Determination of local field: electric fields in cavities of a
Dielectric

The polarisation of dense materials such as ligaidd many solids
changes the electric field inside the material. Tibkl experienced by
an individual atom/molecule depends on the poladsaof atoms in its
immediate vicinity. The actual value of the fieldries rapidly from
point to point. Very close to the nucleus it is ywdrigh and it is
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relatively small in between the atoms/molecules.t&éyng the mean of
the fields over a space containing a very largebarmof atoms one gets
the average value of the field.

SELF ASSESSMENT EXERCISE 1

Show that the field at the centre of a sphericaltgdfilled with air) is
zero.

The field experienced by an individual atom/molecnilay be called the
local field, which is different from the averagelfl. The local field is
the one which causes the polarisation of the alidm.average field can
be expressed ag/d whereV is the potential difference between two
points of a dielectric, distartt apart. (as one obtains the field between
the plates of a parallel plate condenser). Thenasiton of local field is
not so easy. Let us consider three different cawitd find the local field

in a dense dielectric, which has been uniformlyapséd. See Fig. 3.4.

/// ,7 / -

/ //7%
f// /(//
// i /////

0d)
Fig. 3.4 The field in a slot cut in a dielectric deends on the shape
and orientation of the slot E shown Is the averagkeld

The directions of electric (average) fidddandP are shown in Fig. 3.4.
Suppose we cut a rectangular slot ABCDEFGH as )iro{&ig. (3.4).
The field E and the polarisatio® are parallel to the faces ABCD,
EFGH. The field inside this slot can be found oytelvaluating the line
integral ofE around the curve C shown in Fig. 3.4(b). Sildel | has to

be zero for the closed cur@the field inside this slot has to be the same
as the field outside the slot. Therefore the figside a thin slot cut
parallel to the field is equal to the average field

Now consider a thin rectangular slot with facesppedicular to the
average fielce cut from the dielectric as shown in (c) AB'C'IFE'H'

of Fig. 3.4. To find the field inside this slot wese the Gauss' flux
theorem on a surface S with one face outside tieaad one face inside
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the slot. See Fig. 3.4(d). The flux of E throughkefa parallel tcE is
zero. Instead of the flux oE, let us consider the flux of electric
displacemenD. Let E_. be the field inside the slot, theb, inside the

slotis ¢, E,... TheD vector outside the slot ig, E+ P . Now, as the flux
of D through the closed surface S has to be zero @® dr external

charges inside the Gaussian surface), we must have

EE =EE+P

loc

0 E,, =E+Pleg, (3.4)

loc
The field inside the slot in this case is differ&oim the field outside by
P/ ¢, because of the surface polarisation charges aipgeamn A'B'C'D’

shown in Fig. 3.4(c).

Another possible slot is a spherical hole, whickthis most likely way an
atom finds itself in most liquids and solids. Weulbexpect that an atom
finds itself, on the average, surrounded by otlh@ma in what would be a
good approximation to a spherical hole. What is libeal field in a
spherical hole? Suppose we cut a spherical hode dfeezing” the state
of polarisation from a uniformly polarised materi#fi we call E,. the

field inside the spherical hole at its centre ahdthe field produced by

the uniformly polarised dielectric spherical plugies centre, then by
adding E,,, ande,, we should get the average fiel inside the

dielectric. See Fig. 3.5. This should be true bseanf the superposition
principle. Thus

loc

+E (3.5)

Fig. 3.5: The field at any point A in a dielectriccan be considered as
a sum of the field in a spherical hole plus the fid due to the
spherical plugand the required field

=E-E (3.6)
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One can calculateE ;(the field produced by the uniform polarised
dielectric) as follows:

The field E, arises from bound charges of densityotn= Pcosf.
Hence the field due to the charges over an dfs given as:

1 (cosH)dSr

dE 5
47, r

p

where,r is the unit vector from the surface to the cenfré¢he sphere
where the field is to be calculated.

Resolving dE , into components parallel and perpendiculaPtat is

clear from the symmetry of the situation that omhe components
parallel to the direction d? will contribute to the total fielde . Thus

E,= dEp[cosH

It should be noted that the direction Bf is parallel to that oP. We
then have

1 Pcosj&

E =
are, r

p

ds

Now, dS=r?sinfd8dg
and the limits of¢ are from 0 ton and that of¢ from 0O to 27.

Hence

E,= P dcos @%in6da

TE

P  cosé

(3.7)
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Then the field experienced by an atom in a sphiehicie is

:E—i

EIoc
3‘90

To determine the fieldE at an arbitrary point inside the dielectric

sphere, we consider the polarised sphere as apmgigon of slightly
displaced spheres of positive and negative chaRms.Fig. 3.6. Further
note that the field at point is entirely determined by the charge
contained in the sphere of radiysnterior to pointr.

‘,”@"‘0 "‘*\ r"‘@' Bvbeé-‘\
P00 00 ,§§§§§§°\
chPgh b B s A le6o® 60 s 66
P99@ 00000 : \
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' ieeeeesna0a
1“00000&Oq_ﬁ_-!_-_.__é.._aaegga
IEXEXETETSY veo CROICE Y
\ ; eeeeee8eO
NI EEEXXY 3 4
‘$eeseeq’ g

R P S.8008.”

{a) (b

Fig. 3.6 Superposition of slightly displaced spheref positive and
negative charges

The sphere of positive charge can be regarded msna charge at its
centre and ifP is the volume charge density then the positive ger
sphere is equivalent to chargeits centre equal télsﬁrg'. Similarly the

negative charged sphere is equivalent to a poiatgehat its centre. The

magnitude of this point charge is same‘—lé?as. If 'a' is the separation of

the positive and negative charges in an atom, then uniformly
polarised dielectric is equivalent to a dipole cdment%nﬁa. If there
are n dipoles per unit volumegq is the charge on each dipole then
o, =qn. [The number of positive or negative charges petr woiume is

also equal ton in the spheres considered above]. Then the dipole
moment of the sphere is given by

an , an ,
—r’nga=—r"P
3 * 3
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and the polarised sphere is equivalent to a dipbmoment4—:r3P kept
at its centre. The potential due to this dipoléhatpointr on the surface
is given by

4mr’Pcosd _ Prcosk
3 4m,r? 3¢,

where p, r, 8 are as shown in the Fig. 3.7.

Fig. 3.7 Field outside a uniformly polarised sphere

The polarisation is in the direction Bfand if we take this to be the-
direction with the origin at the centre then théembial at T is,

This shows that the potential at a point dependlg @mits z coordinate.
Hence the electric field is along the z directiowl & given by:

E =_%¢- _P

Pz 3,

This shows that the electric field inside the di&lie sphere is uniform
and in the direction of the polarisation vector. nele the field
experienced by an atom in a spherical hole is,

—E+ (3.8)

0

E

loc

The field in a spherical hole is greater than Werage field byP /3¢ .
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SELF ASSESSMENT EXERCISE 2

Show that the field inside a uniform sphericallyrsgetric charge

distribution with charge density is equaligégre- wherer is the position
0

vector of the point with origin at the centre.

3.3 The Clausius-Massotti Equation

In a liquid we would expect an individual atom ® folarised by a field
obtained in a spherical cavity rather than by therage (macroscopic)
field. Thus using Eq. 3.8 and Eq. 3.3 we have,

P=naE

loc

P=na'E+3£i (3.9)

0

This can be rewritten as:

p=—"9 g (3.10)

The susceptibilityy was defined in Unit 1 by the equation,
P =g xE
Hence,

nale,

= (3.11)
1-na/3s,

Eq. 3.11 gives the relation between susceptibditg atomic/molecular
polarisability. This is one form of the Clausius-84otti Equation.

3.3.1 Polarisation in a Gas

Unlike the atoms/molecules of a liquid or solidsitpossible to consider
the atoms/ molecules of a gas as far apart andoamtent. We can
neglect the field due to the dipoles on the immiedreeighbourhood of
an individual molecule. Hence the local field cagspolarisation is the
average or macroscopic field Therefore we can write,

P=g,YE=np
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where,n is the number of molecules per unit volume. Ifaoasider
only an individual atom/molecule and write the dgpmomentp as:

P=¢,0E (3.12)

where, a is known as the atomic polarisability. Therefarehas the
dimensions of volume and roughly equals the voloimen atom.

We can relater or y to the natural frequency of oscillation of eleaso

in the atom/molecule. If the atom is placed in aniltating fieldE the
centre of charge of electrons obeys the equation

2

X
+mw?x = qE

ITIt2

wherem is the mass of electron of charge ma?x is the restoring force
term andqE the force from outside field - this equation is same as

the equation of forced oscillation. If the electigld varies with angular
frequencya then,

m(w; — w*)

For our purposes in the electrostatic case 0 which means that

gE

X =
me?

and the dipole momemtis

P =gx = >
ma,

From Eq. (3.12) we can write the atomic polarisgbds

(3.13)

and

E =& =& (& - =gna
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2

nq
E,may

g —l=na=

For hydrogen gas we can get a rough estimate, offhe energy needed

to ionise the hydrogen atom is equal to 13.6 e\Wdfqqg this to hzc;zo

whereh isthePlanck's constant, we get

_136x16x10"°x277
6.62x1C7%

w, =2065x10"°

Substituting this in the equation 3.13 (a) we get

2
e =1+ =1.00020
£,M

The experimentally observed valuesis= 1.00026.
3.3.2 Relation between Polarisability and Relativ@ermittivity
In Unit 1, you have noted that one can whtas:
P=¢g,(¢ —1)E
whereg, is the relative permittivity.

Using Eqg. 3.14 in Eg. 3.8 we get

E,=E+ =(& +2E/3 (3.15)

L
359
Using Egs. 3.14 and 3.15 one can rewrite Eq. 3.9 as

(& +2)

P = &(s, ~DE=na~— E
which yields,
g =%(&) (3.16)
n (& +2)
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Eg. 3.16 gives us the relation between atomic/nubdecpolarisability
and the relative permittivity. EQ. (3.16) is amatliorm of the Clausius-
Mossoti equation.

SELF ASSESSMENT EXERCISE 3

Obtain Eq. 3.15 from Eq. 3.14.
3.4 Relation between the Polarisability and Refraose Index

For a dielectric, the refractive index defined as the ratio of the speed
of light in vacuum to the speed in the dielectriedium, can be shown

to be equal tq/e, .
K=,

Using Eg. 3.15 in Eq, 3.14 we get

N ) (3.17)
n (u°+2)

Eq. 3.17 gives the relation between polarisabgitg refractive index.
This relation is known as tHeorentz-Lorenz formula.

In all the equations discussed abaveepresents the number density of
atoms or molecules which is equal te,d/W where N, is the

Avogadro numberd the mass density and the molecular weight. For
gases, we have the gas equation relating presBunelume, V and
absolute temperatuiiegiven by

PV =RT= N,KT
whereq is the mole number

and P'=gN,KT/V = nKT
Therefore,n= p'/ KT

Thus if we determineg, at different pressures for a gas, we can

calculate the atomic/ molecular polarisability ojas. For this we write
Eq. 3.16 as

_ 35,KT (g, 1)
pt (& +2)
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or

&-H_ a ,,
6 +2) 3k (p'/T) (3.18)

Eq. 3.18 represents the linear relation betwgen-1)/(s, +2) and
(p'/T). If now a graph is drawn witlie, —1)/(¢, +2) on the y-axis and
(p'/T) on the x-axis, we get a straight line, the slope of whieheg
(al3e,k).

3.6 Behaviour of Dielectric in Changing or Alternatng
Fields

So far we have considered only electrostatic fiehdsnatter. Now we
would like to look at the effects of electric fisldhat vary with time,
like the field in the dielectric of a capacitor dga an alternating current
circuit.

Will the changes in polarisation keep up with timamges in the field?
Will the polarisability, the ratio oP to E, at any instant be the same as
in a static electric field?

For very slow changes or small frequencies we db expect any
difference. However, for high frequencies or fagigvcess we have to
look at the response time for the polarisation. Néwe to separately
consider two polarisation processes viz., inducelrgsation and the
orientation of permanent dipoles. We know thatitfuRiced polarisation
occurs by the distortion of the electronic struetun the distortion mass
involved is that of electron and the distortiorvésy small, which means
the structure is very stiff. From our knowledgeostillatory motion (see
the course on oscillations and waves), its nafoegluencies of vibration
are extremely high. Alternatively, the motions tdatrons in atoms and
molecules are characterised by periods of the aofiehe period of a
visible light wave (0™ seconds). Thus the readjustment of the
electronic structure i.e. the polarisation respaaseery rapid, occurring
at the time scale of0™*sec. For this reason we find that nonpolar
substances behave the same way from dc up to fiespseclose to
those of visible light.

We shall examine the situation in the light of Bdl5, where we have
expressed the Clausius-Mossotti formula in termsthe refractive

index. We know that the refractive index is dependen the

wavelength or frequency. Thus, in a way 3.13 ingpliee variation of
the polarisability with frequency.
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Experimentally, d.c. values of, can be found. The refractive index of
the same substance can be determined by opticdlodt using a
spectrometer. A fairly good agreement is found leetwthe refractive
index and g, values for non-polar substances. However for polar
substances,, varies with frequency; it decreases with increase
frequency. The drop in the value gf at high frequencies is due to the
fact that the permanent dipoles are not able tdoviolthe rapid
alternation of the field. In other words the pdation response of polar
molecules is much slower. However, in the frequerasyge of visible
light the refractive index and, values show a fairly good agreement as

indicated by nonpolar substances.
3.7 The Role of Dielectric Capacitor in Our Practial Life

Dielectrics have several applications. Dielectaos used very widely in
capacitors. Although the actual requirements vagpethding on the
application, there are certain characteristics tiaiee desirable for their
use in capacitors. A capacitor should be smallghagh resistance, be
capable of being used at high temperatures and loagelife. From a

commercial point of view it should also be cheape&ally prepared

thin kraft paper, free from holes and conductingtipies, is used in

power capacitors where withstanding high voltagesses is more
important than incurring dielectric losses. In didadi, the kraft paper is
impregnated with a suitable liquid such as chldedadiphenyl. This

increases the dielectric constant and thus reddlcessize of the

capacitor. In addition the breakdown strength cseased.

In addition to paper capacitors for general purpasder types of
capacitors are used. In the film capacitors, tilim bf teflon, mylar or

polythene are used. These not only reduce theasiiee capacitor but
also have high resistivity. Teflon is used at hfgdguencies as it has
low loss. In electric capacitors, an electrolyte deposited on the
impregnating paper. The size of such a capacitemall as the film is
very thin. Polarity and the maximum operating vgétaare important
specifications for these capacitors.

Some ceramics can be used as temperature compsngsatectronic

circuits. High dielectric constant materials, wheraall variations in

dielectric constant with temperature can be todetatelp miniaturise
capacitors. Barium titanate and its modifications #the best examples
of such materials.
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4.0 CONCLUSION

In this unit, we have learnt about different typésields relative to their
polarisation. The Claussius-Massoti equation fquitls and gases has
been derived and the roles of dielectrics in difdyhave been highted.

5.0 SUMMARY

Inside a dielectric the average electric fieldessl than the electric field
which causes the polarisation.

In a dielectric material, the induced dipole momgmtis directly
proportional to the local field and mathematicajlyen by:
P=aE

loc

where the symbols have their usual meanings.
The field inside a spherical hole is given by:

E,. =E+P/3g,

loc

which shows that the field in a spherical holersager than the average
field.

The relation between susceptibility and atomic/roolar polarisability
IS given by:

nale,
1-na /3¢,

6.0 TUTOR-MARKED ASSIGNMENT

(1) A sphere of linear dielectric material isaggd in a uniform
electric field E, (see Fig. TQ1). Find the field inside the sphere

and polarisation in terms of external field

(2)  The electric field inside a polarised sphereimmiform and equal
to —P/3¢,. Prove this by superposing the internal fieldgved

spheres of charge whose centres are separated.
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Fig. TQ1 A linear dielectric material placed in a wniform magnetic

field

(3) Show thatg, times the force on a unit charge placed in a disc

shaped cavity will measure the electric displacdn{&®) in a
solid dielectric.

(4) A dielectric consists of a cubical array obras (or molecules)
with spacingd between each atom along the, (y, z) axis. Itis

influenced by a fieldg,. applied along the direction af-axis.
Evaluate the average field produced by all the ldgo
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1.0 INTRODUCTION

In Units 1 and 2, we learn how the magnetic fidlécs materials and
how some materials produce magnetic field. You nhaste learnt in
your school Physics Course that in equipment siclyemerator and
motor, iron or iron alloy is used in their struaufor the purpose of
enhancing the magnetic flux and for confining itaadesired region.
Therefore, we will study the magnetic propertiesron and a few other
materials called ferromagnets, which have simitapprties as iron. We
shall also learn that all the materials are affgétig the magnetic field to
some extent, though the effect in some cases ik.wea

When we speak of magnetism in everyday conversatia almost
certainly have in mind an image of a bar magnetu Yoay have
observed that a magnet can be used to lift naitkst safety pins, and
needles (Fig. 4.1a) while, on the other hand, yannot use a magnet to
pickup a piece of wood or paper (Fig. 4.1b).
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MATERIAL WOOD

Fig. 4.1 (a) Materials that are attracted to a magat are called
magnetic materials, (b) Materials that do not reactto a magnet are
called nonmagnetic materials

Materials such as nails, needles etc., which dleeinced by a magnet
are called magnetimaterials whereas other materials, like wood or
paper, are calledon-magneticmaterials. However, this does not mean
that there is no effect of magnetic field on nongmetic materials. The
difference between the behaviour of such materaisl iron like
magnetic materials is that the effect of magna@tdfon non-magnetic
material is very weak.

There are two types of non-magnetic materials: d@metic and
paramagnetic. Unit 4 deals with diamagnetic ancpagnetic effects.
The ideas, concepts and various terms that younbedamiliar with in
this Unit would help you in the study of ferromagsm in the next
Unit. In this unit, we present a simpbéassicalaccount of magnetism,
based on notion of classical physics. But you rkesp in mind thait
is not possibleto understand the magnetic effects of materials ftbe
point of view of classical physics. The magnetieets are a completely
guantum mechanical phenomena. Only modern quantbysigs is
capable of giving a detailed explanation of the n&ig properties of
matter because the study requires the introductioth utilization of
guantum mechanical properties of atoms. For a cet@mpxplanation,
one must take recourse to quantum mechanics; hoyneveat of, though
incomplete, information about matter can be exédby combining
classical and quantum concepts.

Basically, in this unit, we will try to understanih, a general way, the
atomic origin of the various magnetic effects. Thext unit is an

extension of this unit. There, we will try to despla treatment of
magnetised matter based on some observed relabetwseen the
magnetic field and the parameters which charaetetiee material.
Finally, we consider the analysis of the magneircuit, which is of

particular importance in the design of the electagnets.
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2.0 OBJECTIVES

After studying this unit you should be able to:

. understand and explain: gyro-magnetic ratio, pagareasm,
diamagnetism, Larmor frequency

. relate the magnetic dipole moment of an atomic reaguth its
angular momentum

. explain the phenomenon of diamagnetism in term$araday
induction and Lenz's principle

. explain paramagnetism in terms of the torque on negg
dipoles

. find the precessional frequency of an atomic dipola magnetic
field

. appreciate that a lot of information about magmetisf matter

can be obtained from the classical ideas of atonaignetism.
3.0 MAIN CONTENT
3.1 Response of Various Substances to a Magnetield

To show how the magnetic materials respond to anetag field,
consider a strong electromagnet, which has oneplhaointed pole
piece and one flat pole piece as shown in Fig. 4.2.

String
T s | S Wi Small piece of material

o

Zes s
e

Poles of a strong
Electromagnet

Fig. 4.2 A small cylinder of bismuth is weakly repked by the sharp
pole) a piece of aluminium is attracted

The magnetic field is much stronger in the regieamthe pointed pole
whereas near the flat pole the field is weakersTfibecause the lines
must concentrate on the pointed pole. When theenturis passed
through the electromagnet (i.e., when the magnduised on), the
hanging material is slightly displaced due to thels force acting on it.
Some materials get displaced in the direction afaasing field, i.e.,
towards the pointed pole. Such materials are pagagte materials.
Examples of such material are aluminium and ligoxygen. On the
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other hand, there are materials like bismuth, wlach attracted in the
direction of the decreasing field, i.e., it getpeked from the pointed
pole. Such materials are called diamagnetic. BindHlere is a small
class of materials which feel a considerable sworfgrce (10° - 10°
times) towards the pointed pole. Such substances ealled
ferromagnetic materials. Examples are iron and regign

How does a substance experience a force in a madisd? And why
does the force act in a particular direction fomsosubstance while in
opposite direction for other substance? If we a@mwer these questions,
we will understand the mechanisms of paramagnetdiamagnetism
and ferromagnetism. Magnetic fields are due to tetecharges in
motion. In fact, if you could examine a piece oftemal on an atomic
scale, you would visualize tiny current loops doi€i} electrons orbiting
around nuclei and (ii) electrons spinning on tledes. For macroscopic
purposes, these current loops are so small thgtareeregarded as the
magnetic dipoles having magnetic moment. It is th&gnetic moment,
via which the atoms at a substance interact wi¢ghetkternal field, and
give rise to diamagnetic and paramagnetic efféntghis unit, you will
understand the origin of paramagnetism and diamesgne
Ferromagnetism has been left to be explained innthe unit. Let us
first find out the value of the magnetic moment aed how it is related
to the angular momentum of the atom.

3.2 Magnetic Moment and Angular Momentum of an Aom

Electrons in an atom are in constant motion arotied nucleus. To
describe their motion, one needs quantum mechanasever, in this
unit we shall use only classical arguments to obtair results, though
we repeat here that our description of the physiaald is incomplete
as we shall be leaving out quantum mechanics.

We consider an electron in the atom to be moving,simplicity, in a
circular orbit around the nucleus under the infeeeiof a central force,
known as the electrostatic force, as shown in &ig(a). As a result of
this motion, the electron will have an angular maotnen L about the
nucleus.

71



PHY204 ELECTROMAGNETISM
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Fig.4.3 (a) Classical model of an atom in which aslectron moves at speed
v in a circular orbit (b) The average electric currert is the same as if the
charge - e were divided into small bits, forming aotating ring of charge,
(c) The orbital angular momentum vector and the magetic moment
vector both point in opposite directions.

The magnitude of this angular momentum is giverthgyproduct of the
massm of the electron, its speed v and the radia$ the circular path
(see Fig. 4.3), i.e.,

L =mvr 4.0

Its direction is perpendicular to the plane of trbit. The fact that
orbital motion of the electron constitutes an electcurrent will
immediately strike your mind. The average electucrent is the same
as if the charge on the electron were distributesinnall bits, forming a
rotating ring of charge, as shown in Fig. 4.3(bheTmagnitude of this
current is the charge times the frequency as tlosldvequal to the
charge per unit time passing through any point tnarbit. The
frequency of rotation is the reciprocal of the pdrof rotation2znr /v,

hence the frequency of rotation has the vali@sr . The current is then

ev
| =——— 4.2
27T ( )

The magnetic moment due to this current is the ycbdf the current
and the area of which the electron path is the 8agn that is,
4 =1mr?. Hence we have

H==— (4.3)

It is also directed perpendicular to the planehef drbit. Using Eq. (4.1)
in Eq. (4.3) we get as follows:

e
- =L 4-4
H== (4-4)
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The negative sign above indicates that and L are in opposite

directions, as shown in Fig. 4.3(c). Note thais theorbital angular
momentum of the electron. The ratio of the magnetic momert the
angular momentum is called tlygro-magnetic ratio. It is independent
of the velocity and the radius of the orbit.

According to quantum mechanick, =7,/ (I +1) wherel is a positive
integer andhzzi, h being Planck's constant. However, in some
T

physical cases the applicability of classical medsl close to reality,
therefore, we will go ahead with the classical gldaurther, the early
work on the nature of magnetic materials was basedlassical ideas,
which gave intelligent guesses at the behaviotine$e materials.

SELF ASSESSMENT EXERCISE 1

Q) Show that the magnetic dipole moment carexpressed in units
of JT™ (Joule per Tesla).

(2) In the Bohr hydrogen atom, the orbital @lag momentum of the
electron is quantized in units df, whereh = 6.626x10°*Js is
Planck's constant. Calculate the smallest allowedimtude of
the atomic dipole moment idT™. (This quantity is known as
Bohr magneton.) The mass of the electro®.i9x10%'kg .

In addition to its orbital motion, you know thaletelectron in an atom
behaves as if it were rotating around an axisbwn as shown in Fig.
4.4.

Angular momentum
] «———— Electron

Electron moment

Fig. 4.4 The spin and the associated magnetic montesf the
electron

This property is calledspin. Though strictly it is not possible to
visualise the spin of a point particle like eleatréor many purposes it
helps to regard the electron as a ball of negatinagge spinning around
its axis. Then you can say that it is a currenplo8pin is entirely a
guantum mechanical idea. Nevertheless, the spith@felectron has
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associated with it an angular momentum and a megneiment. For
purely quantum mechanical reasons with no classgplanation, we
have

e
=-=g 4.5
m=- (4.5)

where S is the spin angular momentum apdis the spin magnetic
moment. The gyromagnetic ratio in this case is awviltat in the orbital
case.

In general, an atom has several electrons. Theabidd spin angular
momenta of these electrons can be combined intaicavay, the rules
of which are given by quantum mechanics, to give tbtal angular
momentumJ and a resulting total magnetic moment. It so happbat

the direction of the magnetic moment is oppositéhtd of the angular
momentum in this case as well, so that we have

e
=—g—1J 4.6
m=-0- (4.6)

where g is a numerical factor known as Lande gefaethich is a
characteristic of the state of the atom. The rofegquantum mechanics
enable us to calculate the g-factor for any paldicatomic state, g = 1
for the pure orbital case and g = 2 for the puie spse.

The atom or molecules interacts with the externagynetic field due to
its magnetic moment. But there is another way inctvlatomic currents
and hence moments are affected by the field. & ¢hse the magnetic
moment is induced by the field. This effect leamlslitmagnetism which
we study in the next section. But before movinght® next section, try
the following SAQ.

SELF ASSESSMENT EXERCISE 2

(1) Compare Eq. (4.6) with (4.4) and (4.5)fital the value of g for
() pure orbital case and for (ii) pure spin case.

(2)  The experimentally measured electron spagmetic moment is
927x10* An?. Show that this value is consistent with the
formula given by Eq. 4.5.

(Hint: According to Bohr's theorS:%. Heren :21, h being Planck’s
T

constant.)
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3.3 Diamagnetism and Paramagnetism

In many substances, atoms have no permanent maglitie moments
because the magnetic moments of various electrotieiatoms of these
substances tend to cancel out, leaving no net niagm®ment in the

atom. The orbital and spin magnetic moments exalo#iance out.

These materials exhibit diamagnetism. If a materidhis type is placed
in a magnetic field, little extra currents are indd in their atoms,
according to the laws of electromagnetic inductionsuch a direction
as to oppose the magnetic field already presenhcéjein such a
substance, the magnetic moments (on account ot@waurrents) are
induced in a direction opposite to that of the mdé magnetic field.

This effect is diamagnetism. It is a weaker effetwever, this effect is
universal.

There are other substances of which the atoms pewveanent magnetic
dipole moments. This is due to the fact that thgmeic moments due
to orbital motion and spins of their electrons @b cancel out, but have
a net value. When such a substance is placed egaetic field, besides
possessing diamagnetism, which is always predemilipoles of such a
material tend to line up along the direction of thagnetic field. This is
paramagnetism and the material is called parama&gnéh a
paramagnetic substance, the paramagnetism usuabksnthe ever
present property of diamagnetism in every substance

Diamagnetism involves a change in the magnitudehef magnetic
moment of an atom whereas paramagnetism involvesigeh in the
orientation of the magnetic moment of an atom.usesee how.

3.3.1 Diamagnetism — Effect of Magnetic Field on Amic
Orbits

We consider an atom, which has no intrinsic magngipole moment,
and imagine that a magnetic field is slowly turnem in the space
occupied by the atom. The act of switching the netigrfield introduces
change in the magnetic field which, in turn, getesaan electric field
given by Faraday's law of induction. It states tthat line integral of E
around any closed path equals the rate of changeaghagnetic fluxd
through the surface enclosed by the path.

For simplicity, we choose a circular path along abhihe electron in the
atom is moving (see Fig. 4.5). The electric fieldumd this path is given
by Faraday's law as:

__do
jEml_ "
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or

Ex 271, =—%(B Grr?) 4.7)

Sy

Fig. 4.5 An electron moving in circular orbit m a wiform magnetic
Held that is normal to the Orbit

where, r, is the radius of the circular path perpendicularBtoThe
above equation gives the circulating electric fwlibse strength is,

r, dB
E=-2— 4.8
2 dt (4.8)

This electric field exerts a torque=-eEr, on the orbiting electron

which must be equal to the rate of change of itgibar momentumi—lt‘,

that is,
a =—-eEr,
dt
dL _ e( r dBj
or — =g -=—1r;
dt 2 dt
2
or a _ er—DE (4.9)
dt 2 dt

The change in angular momentud, , due to turning on the field is
obtained by integrating Eq. (4.9) with respectihoet from zero field as
follows:

2
AL = %AB (4.10)
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Thus Eq. (4.10) shows that a build up of a magniid B causes a
change in the angular momentum of the electrdh, and hence a
change in the magnetic moment governed by Eq. & 4pllows:

e
Au=—-——AL
H 2m

2
pru=- g (4.11)
4m

The direction of the induced magnetic moment isosp to that oB,
which produces it as can be seen from the negaiye in the Eq.
(4.11). In this equation, we have the terfmwhich is the square of the
radius of the particular electron orbit whose asialongB. If B is along
the z-axis, we putr?= x * + y °. Thus, the averager? > would be

2< x* >, since< x* >=< y? >=< z* >, due to spherical symmetry.
Further <x®>=<y®>=<7? >=% <x*+y?+7° >=% <r?> gives

g<r2>.
3

Hence the Eq. (4.11), which we shall write as

2< 2>
A'u:_e re 5
4m
becomes,
e’
ANi=——<r">B 4.12
M=o (4.12)

We find that the induced magnetic moment in a d@gmeéic atom is
proportional toB and opposes it. This is diamagnetism of mattezatth
molecule has electrons, each with an orbit of radius r, thendhange
in the magnetic moment of the atom is

eZ

A=-— > <r’>B

6m allelectrons

There is an alternative way of understanding thgiroof diamagnetism
which is based on the fact that an electron eiigreds up or slows
down depending on the orientation of the magne&tdf Let us see
how. As shown in Fig. 4.6, in the absence of thgmetic field, the

centripetal forcemr—v2 is balanced by the electrical force as follows:
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=mv. (4.13)

Let us find out what happens to one of the orbiteemvan external
magnetic field is applied as shown in Fig. 4.7.

e
-l-"'-.- —-'-‘ '
-

Fig. 4.6 There is no external magnetic field. Cenipetal force is
balanced by the electrical force

=%
Fig. 4.7 Magnetic field is perpendicular to the plae of the orbit

In the presence of the magnetic field there is ddit@mnal term
g(vxB)and under these conditions speed of the electrangds.

Suppose the new speedvjs then

1 €
Arre, r?

my;

r

evyB+
or

evB =Tm(V12 -Vv?) =Tm(V1 +V)(v, —V)
If we assume that the change =v, -v is small, we get

evyB= Tm (2v,)Av

or

nv=5"8 (4.14)
2m
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A change in orbital speed means a change in th@ledipoment given
by Eg. (4.3) as follows:

e2r2

1
Au=—-—e(Av)r = -
2 2e() am

B (4.15)

This shows that change ip is opposite to the direction &. In the
absence of an external magnetic field, the elecbrtaits are randomly
oriented and the orbital dipole moments cancel But.in the presence
of a magnetic field, the dipole moment of each attranges and all get
aligned antiparallel to the external field. This ike mechanism
responsible for diamagnetism. This property of netignmaterial is
observed in all atoms. But as it is much weaken fi@ramagnetism it is
observed only in those materials where paramagemsigbsent.

3.3.2 Paramagnetism — Torque on Magnetic Dipoles

Paramagnetism is exhibited by those atoms whichaidave magnetic
dipole moment. The magnetic moment of an atom étduhe moment
produced by the orbital currents of electrons dmadr t'unpaired spins”.
A current loop havingu as its magnetic dipole moment when placed in

a uniform field experiences a torqu&vhich is given by
T=pnxB

The torque tends to align the dipoles so that tlagmatic moment is
lined up parallel to the field (in the way the pament dipoles of
dielectric are lined up with electric field). It ighis torque which
accounts for paramagnetism. You might expect eveayerial to be
paramagnetic since every spinning electron consfitlta magnetic
dipole. But it is not so, as various electrons leg aitom are found in
pairs with opposing spins. The magnetic moment wfhsa pair of

electrons is cancelled out. Thus paramagnetisnxhigbiged by those
atoms or molecules in which the spin magnetic mdngenot cancelled.
That is why the word "unpaired spins” is writteroa®. Paramagnetism
is generally weak because the linings up forcesralaively small

compared with the forces from the thermal motionciwhry to destroy

the order. At low temperatures, there is more gnump and hence
stronger the effect of paramagnetism.

SELF ASSESSMENT EXERCISE 3

A. Of the following materials, which would you exgeto be
paramagnetic and which diamagnetic?

Copper, Bismuth, Aluminium, Sodium, Silver.

79



PHY204 ELECTROMAGNETISM

B. Would it be possible to prepare an alloy of,,saydiamagnetic
material like copper and a paramagnetic matekal aluminium
so that the alloy will neither be paramagnetic diamagnetic?

3.4 The Interaction of an Atom with Magnetic FieldLarmor

Precession

In the last subsection, while explaining paramagnetwe, considered
an atom as a magnet with the magnetic monpeniVhen placed in a
uniform magnetic fieldB, it is acted upon by a torque= p xB, which
tends to line it up along the direction of the matgnfield. But it is not
so for the atomic magnet, because it has an angudarentumJ like a
spinning top. We already know that a rapidly spmgnitop or a
gyroscope in the gravitational field is acted upgna torque, the result
of which is that it precesses about the directibthe field. Similarly,
instead of lining up with the direction of the magjn field, the atomic
magnet precesses about the field direction. Thelangnomentum and
with it the magnetic moment precess about the ntagheld, as shown
in Fig. 4.8a.

Due to the presence of the magnetic field, the atolifeel a torquer
whose magnitude is given by:
T = uBsing (4.16)

where @ is the angle whiclp makes withB. The direction of the torque

Is perpendicular to the direction of magnetic figldd also ofu, as
shown in Fig. 4.8b.

B B B
J sin@ 49 ,J sin®
Jele) 3. = x T
- - Pt i S -
| 4 - 4 4
__.__v‘ﬁ.l ~=q--v3 i
P E / e J
recession
circle I’ —\l-l
4 Fd The
s s precession
s I
s s
’ ’
; ’
r

(=)

®)

(c)

Fig. 4.8 (a) The angular momentum associated witht@mic magnet
processes about magnetic field (b) The presence wiagnetic field
results in the torque T. It is at right angles to the angular
momentum; (c) The torque changes the direction ofhie angular
momentum vector, causing precession
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Notice that the torque is perpendicular to the me&t Now according to
Newton's second law

dJ
= 4.17
T (4.17)
For small changes, we can write it as
AJ =T At (4.18)

In other words, the torque will produce a changethe angular
momentum with time. Suppose that is the change in the angular
momentum in an interval of timat. This AJ will be in the direction of

7. This will result in the tip ol moving in a circle abouB as the axis.
This is, in fact, a precession &f(so also ofa) about the direction oB.
The magnitude ofAJ can be written by using Eq. (4.16) in Eq. (4.18) as
follows:

AJ =71 At =(uBsing)At (4.19)
Although the torquer, being at right angles td, cannot change the

magnitude ofJ, it can change its direction. Fig. 4.8c shows hboe
vector AJ adds vectorially onto the vectdrto bring this about. It , is

the angular velocity of the precession akgl is angle of precession in
time At, then

w =B¢ (4.20)

From Fig. 4.8c we see that

Ag= A.J :(pBS|.n9)At
Jsin@ Jsind

Dividing above byAt, approaching the differential limit and putting

dg
=——, we get
“o dt g
wp=/"‘TB 4.21)

Substituting foru/J from the Eq. (4.6), we get

w, = g% B (4.22)

81



PHY204 ELECTROMAGNETISM

as the angular speed of precession of an atomicnehagbout the
direction of B. If in Eq. (4.22)g = 1, thenc, is called theLarmor

frequency, and is proportional t8. It should be borne in mind that this
is the classical picture.

Now you may wonder if the atomic magnets (dipolpsgcess about
magnetic field, how many of these dipoles get a®yralong the

direction of magnetic field. We know that the pdighenergy of a

dipole in the applied field is given byu+B =-xBcosf. Therefore, an

unaligned dipole has a greater potential energy draaligned one. If
the energy of the dipole is conserved then it cachange its direction
with respect to the field, i.e. the value of angleemains constant. So it
keeps precessing about the field. However, by tpsimergy the atomic
dipole gets aligned with the field. In a solid, tth@ole can lose energy
in various ways as its energy is transferred temotlegrees of freedom
and so it gets aligned with the field dependingrupiee temperature of
the solid. To change the orientation of the dipthe, maximum energy
required is2uB. If u is aboutl0®Am>*and a large field, say, 5T is

applied then the potential energy will be of thdesrof 10%*joules. This
is comparable to the thermal enerkjy at room temperature. Thus only
a small fraction of the dipoles will be aligned @&l to B. In the next
section it will be shown, using statistical mecltaniwhat fraction of
dipoles is aligned along.

In the presence of the magnetic field, when thg tragnetic dipoles
present in the material get aligned along a pddrcdirection we say
that material becomes magnetized or magneticallsrized. The state
of magnetic polarization of a material is describgdhe vector quantity
called magnetisation, denoted lly It is defined as the magnetic dipole
moment per unit volume. It plays a role analogauthée polarizatiorP

in electrostatics. In the next section we will afsa the expression of
magnetisation for paramagnets. But before procgedmthe following
SAE.

SELF ASSESSMENT EXERCISE 4

Water has all the electron spins exactly balancedhst their net
magnetic moment is zero, but the water moleculds hgtve a tiny
magnetic moment of the hydrogen nuclei. In the retigrfield of 1.0
Wb m™ protons (in the form of H- nuclei of water) hahe precession
frequency of 42 MHz. Calculate tlge- factor of the proton.
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According to Boltzmann's law the probability ofding
molecules in a given state varies exponentiallynwite
negative of the potential energy of that state cdi
bykT. In this case the enerdydepends upon the angle
6 that the moment makes with the magnetic field. Sq
probability is proportional t@xpU (6)/kT).

3.6 Magnetisation of Paramagnets

In the presence of an external magnetic field, riiegnetic moment
tends to align along the direction of the magngéldl. But the thermal
energy of the molecules in a macroscopic piece afmatic material
tends to randomise the direction of molecular dipaghoments.
Therefore, the degree of alignment depends bottherstrength of the
field and on the temperature. Let us derive thereke@f alignment of
the molecular dipoles, quantitatively, using statzd methods.

Suppose there arBl magnetic molecules per unit volume, each of
magnetic momenty, at a temperaturd. Classically, the magnetic
dipole can make any arbitrary angle with the figileéction (Fig. 4.9). In
the absence of an external field, the probabiligt the dipoles will be
between angleg and 8 +dé is proportional to2nsinddéd, which is the
solid angledQ subtended by this range of angle. This probabléads
to a zero average of the dipoles. When a magnetit B is applied in
the z- direction, the probability becomes also proportlota the
Boltzmann distributiorg™’“". Here U =-pIB= -uBcosd is the
magnetic energy of the dipole when it is makingaagle 6 with the
magnetic field,k is the Boltzmann constant anf is the absolute
temperature.

17T

Fig. 4.9 Calculation of the paramagnetic propertie®f materials in
an external magnetic field
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Hence, the number of atoms (or moleculdd) per unit volume for
which g makes angles betweéhand 8 + dé with B, is given by

dN = 27Ke"#®°?'\T 5ingdg (4.23)

whereK is a constant.

Calling ¢ B/KT asa, the total number of dipoles per unit volume of the
specimen is

N =j dN = janem"S" singdé
0
Puttingcosé = x, we have
+1
N = 27K Ie*axdx
-1

2nK

(e —e™) (4.24)

The magnetic dipole, making an anglewith B, makes a contribution
ucosf to the intensity of magnetizatiovl of the specimen. Hence, the

magnetization of the specimen obtained by summniegcontributions
of all the dipoles in the unit volume is given by:

M = j dNucosé
= 27Ke*B?T 1 cosfsinddé
+1
= 2nKJe+axxdx
-1

where, again, we have puosd =x anduB/kT =a. Evaluating the
above integral, we obtain

M = 277K,u{1 (e +e?) +i2(ea + e‘a)}
a a

Substituting for2n K from the Eq. (4.24), we get
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M :’UN(@_EJ
(e°-e?) a
O M = Ms(cotha—éj (4.25)

where M, = 4N is the saturation magnetization of the specimeenwh
all the dipoles align with the magnetic field. Tévepressiorr;otha—l IS
a

called theLangevin function which is denoted by (a).

We now consider two cases: (i) whéiq? is very large. This would

happen if the temperature were very low andorery large. For this
case,

e+e? 1 _1+e™

a _ n-a _n-2a =1
e’ —-e a 1-e

L(a) = cotha -

1
a

Q|-

Hence,M =M. These would be saturation.

(i)  When 'uk—_:_a is small which means that is large and / or B is

small. In this case cotha—1 :% andM =M _(uB/3kT) = 4’NB/3KT .
a

The complete dependence bfon B is shown in Fig. 4.10. For your
comparison, the dependenceMfon B based on quantum mechanical
calculation is also shown.

uB
'S

Fig 4.10 The Magnetisation of paramagnetic materiaplaced in a

_HB

magnetic field B as a function ofa (i) is based on classical

calculation with no restriction on the direction of dipole (ii) is based
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on quantum mechanical calculation with restrictionon the direction
of dipole

SELF ASSESSMENT EXERCISE 5
+1

Evaluate the integra e™xdx
1

SELF ASSESSMENT EXERCISE 6

Show that whera = 4 B/KT is small,M = Ms(cotha—lj = Mgsa
a

Let us now sum up what we have learnt in this unit.
4.0 CONCLUSION

In unit 4, we have explained gyromagnetic ratiorapsagnet-ism,
diamagnetism and Larmor frequency. In addition, lveee explained
how to obtain information about magnetism of maftem the classical
ideas of atomic magnetism.

5.0 SUMMARY

. All materials are, in some sense, magnetic andoresgo the
presence of a magnetic field. Materials can besidlad into
mainly three groups: diamagnetic, paramagnetic and
ferromagnetic. Diamagnetism is displayed by thosgenmls in
which the atoms have no permanent magnetic dipaments.
Paramagnetism and ferromagnetism occurs in thoseriada in
which the atoms have permanent magnetic dipoles.

. The orbital motion of the electron is associatethve magnetic
moment n, which is proportional to its orbital allgumomentum
J. We write this as

e
=—g — |
w=-g )

. wheree is the charge on electromthe mass of electron amds
Landeg - factor which has a valuel for orbital case and 2 for
spin case.

. The ratio of the magnetic dipole moment to the #nagu

momentum is called thgyromagnetic ratio.

. The magnetic dipoles in the magnetic materialsdaeeto atomic
currents of electrons in their orbits and due &artmtrinsic spins.
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6.0

7.0

Change in the magnitude of the magnetic momenttahs is
responsible for diamagnetism whereas change irotieatation
of the magnetic moment accounts for paramagnet ism.

Because the magnetic moment is associated with langu
momentum, in the presence of a magnetic fieldatben does not
simply turn along the magnetic field but precessesind it with

a frequency w, =g(e/2mB. This is called the Larmor

precession.

When a diamagnetic atom is placed in an externgineiic field
normal to its orbit, the field induces a magnetimment opposing
the field itself (Lenz's law) as

er?
Au=——-B
A 4m

wherer andm are the radius of the orbit and mass of the elactro

When atoms of magnetic momept are placed in a magnetic
field B, then the Magnetisation M is given by

M =M (cotha-1/a)

where, azﬁ—S and M_ =uN is the saturation magnetisation

when all the dipoles are aligned in the directibfiedd.
TUTOR-MARKED ASSIGNMENT

A uniformly charged disc having the chamgand radiusr is
rotating with constant angular velocity of magnéud. Show
that the magnetic dipole moment has the magnit%naqwrz).

(Hint: Divide the sphere into narrow rings of ratgtcharge; find
the current to which each ring is equivalent, igote moment
and then integrate over all rings.)

Compare the precession frequency and ttletcgn frequency of
the proton for the same value of the magnetic field
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1.0 INTRODUCTION

Earlier in this course you have studied the behaviof dielectric
materials in response to the external electrid$ielThis was done by
investigating their properties in terms of electtipoles, both natural
and induced, present in these materials and timanglup in the electric
field. The macroscopic properties of these matemare studied using
the so-called polarization vect®; the electric dipole moment per unit
volume.

The magnetic properties of materials have a sirkilad of explanation,
albeit in a more complicated form, due to the abseuf free magnetic
monopoles. The magnetic dipoles in these mateaig@sunderstood in
terms of the so-called Amperian current loops,t firdroduced by
Ampere.

All materials are, in some sense, magnetic and béxhmagnetic
properties of different kinds and of varying intities. As you know, all
materials, can be divided into three main categorie (i) Diamagnetic;
(i) Paramagnetic and (3) Ferromagnetic materialghis unit, we shall
study the macroscopic behaviour of these materials.

We understood the macroscopic properties of théecec materials
using the fact that the atoms and molecules ofetlsebstances contain
electrons, which are mobile and are responsibléherelectric dipoles,
natural and induced, in these substances. The igatian of these
substances is the gross effect of the alignmetitesfe dipoles. Similarly
we describe the magnetic properties of various nadsein terms of the
magnetic dipoles in these materials.
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In Unit 4, we have already explained diamagnetisich paramagnetism
in terms of magnetic dipoles. In this unit, firste will mention the
origin of ferromagnetism. Later, we will developdascription of the
macroscopic properties of magnetic materials

2.0

OBJECTIVES

After studying this unit you should be able to:

understand and explain the terms: ferromagnetismpeaan
current, magnetisation, magnetic intensitidi, magnetic
susceptibility, magnetic permeability, relative mpeability

relate magnetisatioM (which is experimentally measurable) and
the atomic currents (which is not measurable) withe material
derive and understand the differential and integlations for
M andH and apply these to calculate fields for simplaeatibns
interrelate B, H, M, no,Hand y_<

relate B & H for various magnetic and non-magnetaterials
derive an equation in analogy with Ohm's law fomagnetic
circuit.

e e e
“— — — — —
e b — — —

— b — — &

Fig. 5.1: Domain

Consider two electrons on atoms that are closacb ether. If
the electron spins are parallel, they stay awasnfeach other
due to Pauli’s principle, thereby reducing theiulconb energy
of repulsion. On the other hand, if these spinsaateparallel,

the electrons can come close to each other and cbelomb

energy is higher. Thus, by making their spins palrathe

electrons can reduce their energy.

3.0

3.1

MAIN CONTENT

Ferromagnetism

Ferromagnetic materials are those materials, whespond very
strongly to the presence of magnetic fields. Inhsugaterials, the
magnetic dipole moment of the atoms arises dukdpins of unpaired
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electrons. These tend to line up parallel to eatlero Such a line-up
does not occur over the whole material, but it ogcover a small

volume, known as 'domain\ as shown in Fig. 12.1weicer, these

volumes are large compared to the atomic or madecdimensions.

Such line-ups take place even in the absence @xsrnal magnetic
field. You must be wondering about the nature otds that cause the
spin magnetic moments of different atoms to linepapallel to each

other. This can be explained only by using quantu@chanical idea of
"exchange forces". We will not go into the detaifsexchange forces.
About this, you will study in other courses of pitgs but we are giving
you some idea of exchange forces in the margin fema

Fig. 5.2 The domains in an unmagnetised bar of iranThe
arrows show the alignment direction of the magnetienoment
in each domain

In an unmagnetized ferromagnetic material, the raagmoments of
different domains are randomly oriented, and th&ultsng magnetic

moment of the material, as a whole is zero, as showFig. 5.2.

However, in the presence of an external magnegid,fithe magnetic
moments of the domains line-up in such a mannetoagive a net

magnetic moment to the material in the directiontlod field. The

mechanism by which this happens is that the domaitisthe magnetic
moments in the favoured directions increase in agizbe expense of the
other domains, as shown in Fig. 5.3a.

b \ Bnpplicd N / fnppliod
1=t A e b
s / 7 N
(a) (b)
Fig. 5.3 In a ferromagnetic material domain changesresulting in a
net magnetic moment, occur through (a) domain growt and (b)
domain realignment
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In addition, the magnetic moments of the entire diois) can rotate, as
shown in Fig. 5.3b. The material is thus magnetisedafter this, the

external magnetic field is reduced to zero, thetd semains a

considerable amount of magnetization in the mdtefiae material gets
permanently magnetized. The behaviour of ferromagn@aterials,

under the action of changing magnetic fields, igeguomplicated and
exhibits the phenomenon of hysteresis which litgrateans 'lagging

behind'. You will study more about this in Sec..5.5

Above a certain temperature, called tGerie Temperature', because
the forces of thermal agitation dominate 'exchafyees, the domains
lose their dipole moments. The ferromagnetic malttdéregins to behave
like a paramagnetic material. When cooled, it recsvts ferromagnetic
properties.

Finally, we briefly mention two other types of magsm, which are
closely related to ferromagnetism. These amg-ferromagnetism and

ferrimagnetism (also called ferrites). In this c®jrwe will not study the
physics of antiferro- and ferrimagnetism. The mai@ason for
mentioning these materials are that they are dinelogical importance,
being used in magnetic recording tapes, antenna iandomputer
memory.

In antiferromagnetic substances, the 'exchangeé$pras we mentioned
earlier, play the role of setting the adjacent aommto antiparallel
alignment of their equal magnetic moments, thatdacent magnetic
moments are set in opposite directions, as showgins.4 a.

Such substances exhibit little or no evidence ajmesism present in the
body. However, if these substances are heated athevéemperature
known asNeel temperature,the exchange force ceases to act and the
substance behaves like any other paramagneticialater

In ferrimagnetic substances, known generally astés; the exchange
coupling locks the magnetic moments of the atonthénmaterial into a
pattern, as shown in Fig. 5.4b. The external effe€tsuch an alignment
is intermediate between ferromagnetism and antifeagnetism. Again,
here the exchange coupling disappears above arcemaperature.

LHED LT

(a) (b)
Fig. 5.4 Relative orientation of electron spins ifa)
antiferromagnetic material and (b) ferrite.
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Thus, we find that the magnetization of the maleris due to
permanent (and induced) magnetic dipoles in thesgenmls. The
magnetic dipole moments in these materials aretdu®e circulating
electric currents, known as amperian currents & &tomic and
molecular levels. You are expected to understand torrect
relationship between magnetization in a materiadl dne amperian
currents, together with the basic difference (ammhetimes similarities)
between the behaviour of the magnetic materiafeagnetic fields, and
dielectrics (and conductors) in electric fields.

Though the physics of paramagnetic and ferromagmedterials have
analogues in the electric case, diamagnetism islipedo magnetism.
The student is advised to read the matter in timg$ and find the
analogies and appreciate the differences, if apyeferring back to the
units on dielectrics. In the next section, we \viilld out the relationship
between the macroscropic quantityl, which is experimentally
measurable and the atomic currents (a microscamatgy) within the
material which is not measurable. With the helphid relationship, we
can find out the magnetic field that magnetisedtenatself produces.

3.2 Magnetic Field Due to a Magnetised Material

In Unit 1, we have described the macroscopic ptagseof dielectric

materials in terms of the polarization vecRyrthe origin of which is in

the dipole moments of its natural or induced elealipoles. We shall

adopt a similar procedure in the study of magnaterials. You would

be tempted to say that we should carry over alethgations in the study
of dielectrics to magnetic materials. One way ahdahis would be to

replace the electric field vect& by B, then replac® by an analogous
quantity which we shall call magnetization vectdr which is the

magnetic dipole moment per unit volume. Further, reelace the

polarization charge densityo, by magnetic ‘charge’ density,

whatever that means, by writinglM =-p, just as we hadl(P = p,.

In fact, people did something like this, and the}idved that magnetic
charges or monopoles exist. They have built a whibleory of

electromagnetism on this assumption. However, wevkinat magnetic
‘charges' or monopoles have not yet been detectadyi experiment so
far, despite a long search for them. Now, we kndvat tthe

magnetization of matter is due to circulating caotsewithin the atoms of
the materials. This was originally suggested by Armep and we call
these circulating currents as 'amperian’ curreapsdo These currents
arise due to either the orbital motion of electramshe atoms or their
spins. These currents, obviously, do not involvegdascale charge
transport in the magnetic materials as in the chs®nduction currents.
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These currents are also known as magnetizatiorragtrand we shall
relate these currents to the magnetization vedtor

Let us consider a slab of uniformly magnetised mmateas shown in
Fig. 5.5a. It contains a large number of atomic medig dipoles (evenly
distributed throughout its volume) all pointing time same direction. If
u is the magnetic moment of each dipole, then thgnmsationM

will be the product ofyz and the number of oriented dipoles per unit
volume. You know that the dipoles can be indicabgdtiny current
loops. Suppose the slab consists of many tiny loapsshown in Fig.
5.5b. Let us consider any tiny loop of amaas shown in Fig. 5.5c. In
terms of magnetisatioll, the magnitude of dipole momept is written

as follows:
U =Madz (5.1)

wheredzis the thickness of the slab.

(<)

)
Fig. 5.5: (a) A thin slab of uniformly magnetized naterial, with the
dipoles indicated by (b) and (c) tiny current loopsis equivalent to
(d) a ribbon of current/ flowing around the boundary
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If the tiny loop has a circulating current, then the dipole moment of
the tiny loop is given by

U=la (5.2)
Equating (5.1) and (5.2) we get

M=— orl| =Mdz (5.3)

I
dz
Here we have assumed that the current loops camesmy to magnetic
dipoles are large enough so that magnetisation watgary appreciably
from one loop to the next, so Eq. 5.3 shows thatcilrrent is the same
in all current loops of Fig. 5.5b. Notice that withthe slab, currents
flowing in the various loops cancel, because eveng if there is one
going in one particular direction, then a continsi@ne is going in the
exactly opposite direction. At the boundary of tklab, there is no
adjacent loop to do the cancelling. Hence the whinlgy is equivalent
to the single loop of current flowing around the boundary, as shown
in Fig. 5.5d. Therefore, the thin slab of magnetiseterial is equivalent
to a single loop carrying the curreMidz, Hence, the magnetic field at
any point external to the slab, is the same asothidie currenMdz.

In case there is non-uniform magnetization in tretemal, the atomic
currents in the (amperian) circulating current ldp not have the same
magnitude at all points inside the material andiaisly, they do not
cancel each other out inside such a material. &#lwill find that
magnetised matter is equivalent to a current distionJ = curlM. Let
us see how we have arrived at this relation.

In the non-uniformly magnetised material consideo tittle blocks of
the volumeAxAyAz, cubical in shape adjacent to each other along-the
axis (see Fig. 5.6a). Let us call these blocksahtl '2 respectively. Let
the z-component ofM in these blocks beMz(y) and M,(y+Ay)

respectively.
Let the amperian currents circulating round thecblol' bel (1) and
round the block '2' bé (2).Using Eqg. (5.3) and referring to Fig. 5.6a we
write,

1@ =M, (y)Az

and

1, (2) =M, (y+Ay)Az
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; A :
1 M, (y + &y)
My (y) M: (v + &)

Ag
}A' Ml ()

v

(.) (b)

X x

Fig. 5.6: Two adjacent chunks of magnetised materiawith a larger

arrow on the one to the right in (a) and above ink), suggesting
greater magnetisation at that point. On the surfacevhere they join
there is a net current in the x-direction.

At the interface of the two blocks, there will lveotcontributions to the
total current:l (1) flowing in the negativex-direction, produced due to
block 1, andl (2) flowing in the positivex-direction produced due to
Block 2. The total current in the positiwedirection is the sum:

@) -1,@ =[M,(y+4y)-M,(y)]Az
or

oM

Al =+—2AyAz (5.4)
oy

X

Eqg. (5.4) gives the net magnetization current enrthaterial at a point in
the x-direction in terms of the z-componentMf. The current per unit
area, i.e., current density, flowing in the x-direction is given as
follows:

Al

J =
() AyAz

where AyAz is the area of cross-section of one such blockhercurrent
Al, . Hence

oM

oy (5.5)

(Jm)x =+

In these equations, we have put suffixedo the currents to indicate
that, at the interface of the blocks, the currerglong thex-axis.
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If the magnetisation in the first block is

M(X,Y,2)+ %—MAy + higher order terms.
y

Thez-component of magnetisation of the first block in
terms ofl, (1) is written asM,Az=1,(1).

Similarly, the z-component of magnetisation of the
second block neglecting high-order terms which stamm
the limit where each block becomes very small,iveny

by

(MZ+6MZJAZ:IX(Z)
oy

There is another way of obtaining the current flogvin x-direction by
considering these two tiny blocks, one above themtalong the z-axis,
as shown in Fig. 5.6b. We obtain the relation as

(3,), = =250 56)
y

By superimposition of these two situations, we get

oM, oM,
oy 0z

(Jp)x = =(0OxM), (5.7)

Eq. (5.7) is obviously thex-component of a vector equation relatihg
and the curl oM. Combining this withy andz components, we obtain

J, =0xM (5.8)

Eq. (5.8) is a more general expression represerthegrelationship
between the magnetisation and the equivalent durvée see from Eq.
(5.8) that inside a uniformly magnetized materialwhich caseM =
constant; we havé , =0. This is true. See Eg. (5.8), the current is only
at the surface of the material where the magnatizathas a
discontinuity (dropping from a finite M to zerondide a non-uniformly
magnetized material ,is nonzero.

We shall see in the next section thaf which is introduced to explain
the origin of magnetisation in a material, is maolenake its exit from
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the equation, and only the conduction current dgnsidicating the
actual charge transport and which is experimentabasurable remains.

3.3 The Auxiliary Field H (Magnetic Intensity)

So far we have been considering that magnetisasiatue to current
associated with atomic magnetic moments and spiheoélectron. Such
currents are known as bound currents or magnemsaiimperian
current. The current density_in Eq. (5.8) is the bound current set up

within the material. Suppose you have a piece ojrmatsed material.
What field does this object produce? The answeth& the field
produced by this object is just the field produbgdthe bound currents
established in it. Suppose we wind a coil arounsl tagnetic material
and send through this coil a certain currenthen the field produced
will be the sum of the field due to bound curreatsl the field due to
current] . The currentl is known as the free current because it is
flowing through the coil and we can measure it lmnreecting an
ammeter in series with the coil. (In case the magmeaterial happens
to be a conductor, the free current will be therentr flowing through
the material itself.) Remember that free curremts those caused by
external voltage sources, while the internal cuserise due to the
motion of the electrons in the atoms. The currentfree, because
someone has plugged a wire into a battery andnthsa started and
stopped with a switch. Therefore, the total currdatsityJ can be
written as:

J=J,+J, (5.9)
where,J, represents the free current density.

Let us use Ampere's law to find the field. In diffietial form, it is
written as:

OxB = uyJ (*)
Using Eqg. (5.9), Ampere's law would then take trenf as follows:
OxB=py(d, +J,)
As mentioned earlier, we have no way to measyrexperimentally,

but we have a way to express it in terms of a madédel quantity, the
magnetization vectdyl through the Eqg. (5.8). We then have
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OxB = ppd; + o (OxM)

or

Dx(i-mjuf (5.10)
Ho

Eq. (5.10) is the differential equation for thddi{E—Mj in terms of
My

its sourceJ,, the free current density. This vector is givemew
symbolH, i.e.,

B _M=H (5.11)
Mo

The vectoH is called the magnetic 'intensity' vector, a nana rightly
belongs tdB, but, for historical reasons, has been giveH tdJsing Eq.
(5.11), Eq. (5.10) becomes,

OxH=J, (5.12)

In other wordsH is related to the free current in the wBys related to
the total current, bound plus free. This surely magle you think over
the purpose of introducing the new vector fieldFor practical reasons
the vectoH is very useful as it can be calculated from thevikedge of
external current only, where&sis related to the total current, which is
not known. Eq. (5.12) can also be written in thegnal form as

[H@I=1, (5.13)

where |, is the conduction current through the surface bdedrby the

path of the line integral on the left. Here theelintegral ofH is around
the closed path, which may or may not pass thrabghmaterial. This
equation can be used to calculdte even in the presence of the
magnetic material.

SELF ASSESSMENT EXERCISE 1

Fig. 5.7 shows a piece of iron wound by a coil yiag a current of 5A.
Find the value ofj HIdl =1, around the path (1), (2) and (3). Also

state for which path($§ =H andB #H.
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From Eq. (5.3), we see that the unit in whihis measured is amperes
per meter. Eqg. (5.11) shows that the vettdnas the units asl, hence
H is also measured in amperes per metre. The elalcteingineers
working with electromagnets, transformers, etcl] dae unit of H
ampere turns per metre. Since 'turns’, which ipaesgd to imply the
number of turns in the coil carrying a currentdimensionless, it need
not confuse you.

Magnetic Properties of Substance

In paramagnetic and diamagnetic materials, the etégation is

maintained by the field. When the field is remov&t,disappears. In
fact, it is found thaM is proportional td, provided that the field is not
too strong. Thus

M OB (5.14)

It is conventional to express Eqg. (5.14) in terrhglanstead oB. Thus
we have

M=y, H (5.15)

The constant of proportionality,, is called the magnetic susceptibility
of the material. It is a dimensionless quantity,ickhvaries from one
substance to another. We can characterise the magmeperties of a
substance byy,,. It is negative for diamagnetic substances andtipes
for paramagnetic materials. Its magnitude is vanals compared to
unity, that is jy,,| < < 1. For vacuuny,, is zero, sincé/ can only exist
in magnetised matter. We give below a short tabling the values of
X, for diamagnetic and paramagnetic substances at temperature.
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Material X

ParamagnetitAluminium 2.1 x10°
ParamagnetiiSodium 0.84x10°
ParamagnetiTungsten 7 6x10°
ParamagnetiOxygen  190x10®
Diamagnetic Bismuth 1 g410s
Diamagnetic Copper - 0.98¢10°
D?amagnet?c Silver -2 Ax10°
Diamagnetic Gold 3.5x10°

We have not given a table for the susceptibilittésferromagnetic
substances ag,, depends not only oid but also on the previous

mangetic history of the material.

Using Eqg. (5.11) in the form

B =, (H+M)
we have,
B =y, L+ x,,)H (5.16)
= KUK H
0 B=uH (5.17)

where = K, = p, 1+ x)

0 K, =H (5.18)
Ho

u is called thepermeability of the medium and,, is called the
relative permeability. We see thatu has the same dimensions as
and K, is dimensionless. In vacuuny,= 0 and u=y,. Relative

permeabilityK,, differs from unity by a very small amount &s, for
para- and ferromagnetic materials are greater thaiy and for
diamagnetic material it is less than unity.

The magnetic properties of a material are complesekecified if any
one of the three quantities, magnetic susceptibiif, relative

permeabilityK,,, or permeabilityx is known.
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Example 1

A toroid of aluminium of, length 1 m, is closely wad by 100 turns of
wire carrying a steady current of 1 A. The magnggld B in the toroid
is found to bel.2567x10* Wb ni' 2 Find  (i)H, (i) x,., andKy, (i) M
in the toroid and (iv) equivalent surface magnéittracurrentl ..

Solution
0] According to Eq. (5.13)

fHOI =1,

To evaluateH produced by the current, we consider a circular
integration path along the toroitll is constant everywhere along this
path of length 1m. The number of current turnsatineg this integration
path is 10&1A. Since H is everywhere parallel to the circular
integration path, we get

Hx1m=1061A
or

_100x1A _

H =100 A/m
1m

(i)  From Eg. (5.16)

B =K, H
or
K, =B 212567407, 1 _y 45005
Mo H 471x10 100
and
@+ xm) =Ky

N X, =K,—-1=1.00005-1%5x10"°
(i) From Eq. (5.15)

M =x.H
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1 1

=5x10°x100A m~ "= 5x10° Am"~

(v) 1 =ML

=5x10° Am ix1 m=5mA

In this solution, we have assumBdH andM to be uniform over the
cross-section of the toroid and along the axisheftoroid.

Try to do the following SAE
SELF ASSESSMENT EXERCISE 2

An air-core solenoid wound with 20 turns per cesmtira carries a
current of 0.18 A. FindH andB at the centre of the solenoid. If an iron
core of absolute permeabilitgyx10°H mis inserted in the solenoid,
find the value oH andB?

3.4 Relationship between B and H for Magnetic Mateal

The specific dependence Mfon B will be taken up in this section. The
relationship betweel andB or equivalently a relationship betweBn
andH depend on the nature of the magnetic material aa@disually
obtained from experiment.

A convenient experimental arrangement is a toroitth \®@ny magnetic
material in its interior. Around the toroid, two ils (primary and
secondary) are wound, as shown in Fig. 5.8.

If we consider the radius of the cross-sectiorheftoroidal windings to
be small in comparison with the radius of the tdntself, the magnetic
field within the toroid can be considered to beragpnately uniform. A
current passing through the primary coil estabishEl. The
establishment of the current in the primary coduoes an electromotive
force (emf). By measuring the induced voltage, ves @etermine
changes in fluxd® and hence, in B inside the magnetic material. éf w
take H as the independent variable, and if we kibeptrack of the
changes in B starting from B = 0, we can alwaysvwkmhatB is for a
particular value ofH. In this way, we can obtain B-H curve for
different types of magnetic material.
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To galvanometer

Fig. 5.8 Arrangement for investigating the relationbetweenB and
M, or B and H, in a magnetic material

The experiment described above can be carriedooualidmagnetic and
paramagnetic materials by commencing with 0 and slowly

increasing the value df to obtain a series of values of B and H. A plot
of B against H for these substances is shown ifritpe5.9(a). We see
that the graph is a straight line as expected ftumrelation

B =@+ x,)H (5.16)

Paramagnetic

) ®)

Fig. 5.9 Internal magnetic field 8) versus applied magnetic field )
for different types of magnetic materials, (a) In damagnetic and
paramagnetic materials, the relationship is linear, (b) In
ferromagnetic materials, the relationship dependsmthe strength of
the applied field and on the past history of the mierial, in (b), the
field strengths along the vertical am are much greter than along
the horizontal axis. Arrows indicate the directionin which the fields
are changed.

where p, and y,, are constants. The slope of the graph is givery by
can be determined using the following relation:

_ slope

m 1
Ho
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For diamagnetic substances, slepe y, makingy, <0. For
paramagnetic materials slopeuz, so thaty,, >0.

If in the experiment given above we use ferromagnetaterials like
iron, we obtain a typical B — Hcurve as shown in Fig. 5.9(b).

(i) At1=0,i.e., wherH = 0,Bis zero. Whenl is increasedB and
H are determined for increasing valueslofAt first, B increases
with H along the curvea'. At some high value ofl, the curve
(shown by the dashed line in the figure) becomeeal,
indicating thatM ceases to increase, as the material has reached
saturation with all the domain dipole moments ire thame
direction.

(i) If, after reaching saturation, we decre#ise current in the coil to
bring H back to zero, thd&-H curve falls along the curvid'.
When | reaches zero, there is still some B left, implyihgt
even whenl = 0, there is still some magnetization Mf left in
the specimen. The material is permanently magreetizke value
of B for H = O is calledremanence.

(i) If the current is reversed in the primargil and made to increase
its value, theB-H curve runs along the curvg until B becomes
zero at a certain value bf. This value oH is called thecoercive
force. If we continue to increase the value of the auiria the
negative direction, the curve continues aldigntil saturation is
reached again.

(iv)  The current is now decreased until it beesnzero once again.
This corresponds tdH = 0, but B is not zero and have
magnetization in the opposite direction. Here weerse the
current again, so that the current in the coilnseomore along
the positive direction. With the increasing curremt this
direction, the curve continues along the cumwetd meet the
curve'b’ at saturation.

If we alternate the current between large posiénd negative values,
the B-H curve goes back and forth alotlg' and'c ' in a cycle. This
cycle curve is calledhysteresiscurve. It shows thaB is not a single
valued function ofH, but depends on the previous treatment of the
material.

The shape of the hysteresis loop varies very witteljn one substance
to another. Those substances, like steel, alnito, éom which

permanent magnets are made, have a very wide agstdoop with a
large value of the coercive force (see Fig. 5.19pwever, those
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substances, like soft iron, permalloy, etc., fromick electromagnets
(temporary magnet) are made, should have large memea but very
small coercive force. Those ferromagnetic materialsich are used in
the cores of transformers, like iron-silicon (0.89%) alloys, have very
narrow hysteresis loop.

Fig. 5.10 The hysteresis curves for a few material€urves (a) and
(b) are respectively for specimen of soft - iron ahsteel materials

3.5 Magnetic Circuits

A magnetic circuit is the closed path taken byrtiegnetic flux set up in
an electric machine or apparatus by a magnetisiogef (The
magnetising force may be due to a current coil pe@nanent magnet.)

In order to study the resemblance between a magogtuit and an
electric circuit, we will develop a relation corpesmiding to Ohm's law,
for a magnetic circuit. Let us consider the casaroiron ring (Fig. 5.11)
magnetised by a current flowing through a coil wabgfosely over it.

Suppose:

current flowing in the coll

zZ
1l

number of turns in the coil

| = length of the magnetic circuit (mean circurefeze of
the ring)

A =area of cross-section of the ring
4 = permeability of iron.
In this case, all the magnetic flux produced isfic@d to the iron ring

with very little leakage (we shall see the reasamtlfis later). We have
seen earlier thad inside the ring is given by
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Fig. 5.11 Magnetic circuit

I H @1 = NI (from Ampere's law)

where, the path of integration is along the axighef ring. As the line
integral of electric fielcE over a circuital path is the electromotive force
(e.m.f), by analogy, the line integral bf is termed as magnetomotive
force (M.M.F.)

0 M.M.F.:melle

At every point along this path in the ring, we writ

H=2

U

Further, if ® is the magnetic flux given by = BA,then H =®/ 1A,
hence

M.M.F. :j H [l :qaj ﬂd—'A:m (5.19)

where we have take outside the integral as it is constant at all cross
sections of the ring. Eq. (5.19) reminds us ofmailar equation for an
electric circuit containing a source of E.M.F., redyn

e.m.f. = currentk resistance :lj ,onI (5.20)

The Egs. (5.19) and (5.20) suggest that:

(1) The magnetomotive forcej'q—| (@) is analogous with e.m.f.

([ ECal).
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(i)  The magnetic fluxd is analogous with current in Ohm's law,

(i)  The magnetic resistance known as reluoﬂaarEcj d—L\j IS
U

analogous with electric resistan(cja 'onlj

0O M.M.F. = flux x reluctance

or
Total flux o= —M-M-F__ NI (5.21)
reluctance ji
HA
If we take uto be constant throughout the ring then
reluctance = da_t (5.22)
HA  UA

where L is the length of the ring. However, we must recsgrthe
significant difference between an electric cirantl a magnetic circuit:

0] Energy is continuously being dissipatedthe resistance of the
electric circuit, whereas no energy is lost in tékictance of the
magnetic circuit.

(i)  The electric current is a true flow ofetlelectrons but there is no
flow of such particle in a magnetic flux.

(i) At a given temperature, the resistivityp is independent of

current, while the corresponding quanti%[y in reluctance varies
with magnetic flux®P |

Reluctances in Series

Let us assume that the toroid is made of more trenferromagnetic

material, each of which is of the same cross-seatiareaA, but with
different permeabilitieg,, w4, , ...
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B - E
—————— ?———-—I—-}
.
{ |
q 01/7;: % A
|
| |
e . J
t A F

@) ()

Fig. 5.12 (a) A magnetic circuit composed of sevdranaterials:
Reluctances in series, (b) Magnetic circuit consisig of two loops:
Reluctances in parallel.

Then, (see Fig. 5.12a) as before, we have

NI :me

:LHM+LHW+m

where the integrals on the right are taken ovemlapaths in the
materials 1,2, .... Therefore,

P P

MM.F. = [ —di+[ ——dl+..
LA 2 A
= ¢ l+ i+
YA T2 LA

:q{i S }
WA WA

=@, +0,+..)=®0
so that the total reluctance of the given magr@tauit is given by
O=0,+0,+... (5.23)
Reluctances in Parallel

We shall next illustrate the case of a magneticutirin which the
reluctances are in parallel. Fig. 5.12b shows suctagnetic circuit. The
current carrying coils havl turns each, carrying a currehtamperes.
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The magnetic fluxd threading the coil splits into two paths with fésx
®, and @, as shown in the figure. Obviouslp, = ®, + d,. We assume

that the area of cross-sectidns constant everywhere in the circuit.

Let the lengths of the pat#BCD, DAand DEFA shown in the figure
belL, L, andL, respectively. For the pathBCDA we have

N = jidu @
ABCD/'[A DA/'IA

=P Py (5.24)

HAT AT

Similarly for the closed patADEFA, we have

o= di+ j L (5.25)

AD 'u DEFA

Notice that we have useg, and yp, for the pathsAD and DEFA.

Asd’s being different for these paths] would be different. This
makesu'’s different in these paths. Using =&, +®, and Eg. (5.25),

we write

o =o+0teb

lL2

=o {1+&ij
1
ML,

Substituting the value ob, from the above equation in the Eq. (5.24),
we have

Ll L2
N =P Lo A A
A L, DLz
H A A
or
NI =CD(D+D1D2J (5.26)
0,0,
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This shows that the reluctances of the pdii#s and DEFA are in
parallel as the magnetic fluk splits into®, and ®, along these paths
respectively. The combined reluctanCe of these paths is given, in
terms of the reluctances, and,of these paths, as follows

=+ (5.27)

Notice that the Eq. (5.24), (5.25) add= &, + ®, are the statements of
Kirchhoff's laws for magnetic circuits.

Now we see why the magnetic flux does not leakughothe air. Air
forms a parallel path for the flux, for aig, = 1, and for a ferromagnetic

materialy =10*; hence the air path is a very high reluctance path
compared to that through the ferromagnetic matefia¢ magnetic flux
will follow the path of least reluctance, a sitaatisimilar to that in the
electric circuit.

The magnetic circuit formulae are used by the at=dtengineers in
calculations relating to electromagnets, motors alythamos. The
problem is usually to find the number of turns ahd current in the
winding of a coil, which is required to produceextain flux density in
the air gap of an electromagnet. Knowing the ralnce of the circuit,
M.M.F. is calculated from the relation:

M.M.F. = flux x reluctance

Since M.M.F. is alsiI (see Eg. (5.19)), the magnitude of ampere turns
can be calculated. Let us illustrate it by studyting magnetic circuit of
an electromagnet.

Magnetic Circuit of an Electromagnet

The magnetic circuit of an electromagnet consistshe yoke which
forms the base of the magnet, the limbs on whiehctil is wound, the
pole pieces and the air gap. See Fig. 5.13.1Lbe the effective length

anda the area of cross-section of the yokeplfis the permeability of

its iron, then a is the reluctance of the yoke. Similarly the rédunce
&

of each limb isl—2
M3,
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. l .
and the reluctance of each pole piece+%—, while the reluctance of
3

. .
the air gap is—— (becauseyu,, =0). Hence the total reluctance of the
0%

magnetic circuit is

I 2 2 I
1 4 “2 4“3 4 s

Ha, e, a3,

POLE PIECES

et
Yoke
Fig. 5.13 Magnetic circuit of anelectromagnet.

If the magnetic circuit carries one and the sam& fb across all its
parts, then according to Eqg. (5.19), the numbemgbere turns is:

¢( PR P PR P j (5.28)
Hia,  Hpa,  Hid; M3,

Let us take another example of calculating the raagtield B in the air
gap of a toroid of Fig. 5.14. Here the toroid is afferromagnetic
material (soft iron) with a small air gap of widith ' which is small
compared to the length of the toroid. For this case, we have

(L-d), d

NI = ¢{
HA A

}, ® being the flux through this

magnetic circuit.

B

0

[ (L —d) + ud]
or

= Nk (5.29)
Hol +(,U—/Jo)d
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This is the value of the magnetic field in thegap. Read the following
example which shows how the air gap effectivelyeases the length of
the toroid.

e

Fig. 5.14: Magnetic field in the air gap
Example 2

Compare the examples of a complete toroid of lengttvound with a
coil of N turns each carrying a curremt amperes and of a toroid of
length (L - d) with an air gap of lengthi(d << L). Show that the air gap
effectively increases the length of the toroid (§;, —1)d, whereK, is

the relative permeability.

Solution

In the case of a complete toroid without the aimp,gave have
B =NI /(%J In the event of an air gap of length, we have from Eq.
(5.29):

__ Niug
Mol + (1= pp)d

Dividing both the numerator and the denominatondyy,, we get

B _ NI _ NI
L*(l-ljd 1{(L_d)+d}
H \Hy H H Ho
NI NI

:1{(L—d)+d} E[(L-d)+Kmd]
H | H
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so that

NI

B = 1
—[L+(K, -1)d]
u

If we compare this formula with that for the compket®id, we see that
L is effectively increased b{K , —1)d.

Before ending this unit solve the following SAQ.
SELF ASSESSMENT EXERCISE 3

A soft iron ring with a 1.0 cm air gap is wound kva coil of 500 turns
and carries a current of 2 A. The mean lengthai ning is 50 cm, its
cross-section is 6chits permeability is 2500,. Calculate the magnetic

induction in the air gap. Find al®andH in the iron ring.

Let us now sum up what we have learnt in this unit.
4.0 CONCLUSION

In this unit, we have explained the terms, ferronsigm, amperian
current, Magnetisation, M, Magnetic intensity, Huseeptibility,
permeability etc. An analogy has been derived fagnetic circuit from
Ohm’s law. In addition, we have learnt about théenmelationship
between, M, H and other quantities.

5.0 SUMMARY

The behaviour of the ferromagnetic materials is glcated on account
of the permanent magnetization and the phenomehbwysteresis. This
behaviour is explained by the presence of the dasnan these
materials. In each domain the dipole moments ackeld to remain
parallel due to ‘exchange' force. However, in theagnetised state, the
magnetisation directions of different domains anedom, resulting in a
zero net magnetisation. There also exist two olmets of magnetic
materials: antiferromagnetic and ferrimagnetic.

For non-uniform magnetisation, magnetised matteegsivalent to a
current distributiod =0xM , whereM is magnetisation or magnetic
moment per unit volume.

The magnetic field produced by the magnetised nadtisr obtained by
Ampere's law as follows:

UxB=J;+J,
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where J, is the free current density which flows througle thaterial
and J_is the bound current density which is associatedh wi
magnetisation. This gives

DX(E—M]:\L
Ho
where

H (: B _ M J is a new field vector.
Ho

For paramagnetism and diamagnetBpM andH are linearly related to
each other, but for ferromagnetic materials whighildt hysteresis, a
non-linear behaviour.

The study of the electromagnets, motors and dynameslves the
problem of current carrying coils containing feragnetic materials,
l.e., it involves the study of magnetic circuitseWpeak of the magnetic
circuits when all the magnetic flux present is aoed to a rather well-
defined path or paths.

The magnetic circuit formula is:
magnetomotive force (M.M.F.) = flux reluctance

M.M.F. is also equal taNI where N is the number of turns of the coill
wound over the magnetic material ahdthe current flowing through
each coll.

Reluctancel = i

ua

wherel, aand u are the length, area of cross-section and periitgabi

of the material. Additions of reluctances obey th@me rules as
additions of resistances.

6.0 TUTOR-MARKED ASSIGNMENT

1. Find the magnetizing field and the magnetic flux densig at
(a) a point 105 mm from a long straight wire cangya current of
15 A and (b) the centre of a 2000-turn solenoidciwhs 0.24m
long and bears a current of 1.6 A, (= 47x107 H/m).

2. A toroid of mean circumference 0.5 m has 50dureach
carrying a current of 0.15 A. (a) FitlandB if the toroid has an
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air core, (b) FindB and the magnetizatiod if the core is filled
with iron of relative permeability 5000.

3. A toroid with 1500 turns is wound on an irongiB60 mm in
cross-sectional area, of 0.75-m mean circumferamceof 1500
relative permeability. If the windings carry 0.24fnd (a) the
magnetizing fieldH (b) the m.m.f., (c) the magnetic inductiBn
(d) the magnetic flux, and (e) the reluctance efchcuit.

7.0 REFERENCES/FURTHER READING

IGNOU (2005).Electricity and Magnetism, Physi€&HE-07, New

Delhi, India.
SOLUTIONS AND ANSWERS
UNIT 1

SELF ASSESSMNET EXERCISES
(1) Please see text.
(2)  The dipole moment per molecule=
The number of molecules per unit volumen=
O The dipole moment per unit volumen$
By definition, the dipole moment per unit volumdslarisationP
U P=np

(3) The dielectric constamt is given by

without the dielectric the electric field would be

. q _ 10x107C
EO - - 12 ~2N| —Ln2 -4 2
£,A  (885x1072C?N™m?)(100x10™*m?)
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=113x10°vm™

. . _113x10°vm™
Dielectric constant =——————-
3.3x10°Vir

The surface charge density on the plate is

10x107C

o = Lox1otem?
m

q_
A
(4) From Eq. (1.12)
0D = p,
(i) we know that
D=¢gE+P
Putting the value dD in Eqg. (i)

D=¢g,E+P=p;

WhenP =0, the above equation becomes

UlegE = o
@iy oDE=L"
EO
Eq. (1.11) is

sUIEE=pf + o,

when p_ = 0, the above equation reduces to

gUlg,E = p;
or
O = &
80

(i)  Egq. (i) and Eq. (iii) are the same. Henceye the result.
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B) O The capacitance is

C=£?
Before, calculating the capacitance, we will catalthe permittivity of

the dielectric as follows:

£ = &€,

(6.0)(885) x10 *farad/m
531x10 ™ farad/m

Thus,

C=¢

Ié = (631x10*'farad/m)

=171x10™ farad

(i)  We know that
Q=CvV
= (L.71x10farad) (10 V)
=171x10"°C

(i)  The dielectric displacement is calculated as fodpw

-11
D= =g - (631107 farad/m)10v)
! 2x107°m

= 2.655x107 Cnri 2
(iv)  The polarisation is
P=D-¢gE= D—£0\|—/

=266x107'

cni? - (885x107** farad/ m)(10V)
2x107°m

(6) Let o be the charge density on the surface of the plates
Considering each plate as an infinite plane shéerge, the
intensity at a point between them due to positivaigrged plate
=ol2¢,.
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The intensity at the point due to the negativelgrgled plate is
also = g/2¢, acting in the same direction. Hence the resultant

intensity at the point is

N 0 = £,%x50=8.854x10" x50

=4427x102Cm~?2

Total charge on each plate
= ¢,ExArea of each plate

= 4427x10? x1
= 4.427x10"°C
(7) From Eg. (1.21) we have
fE@ =0
From vector analysis we have

§Eml = j(DxE)mdS: —j OqnxE)dS

Surface
=0
For j OnxE)dS to be zero, the integrarid((n xE) has to be to zero.

Again, in as much a8l[(nxE) represents a space derivative operation

we can seh xE to be either a constant or zero. If we sstE = 0 then
a trivial result follows. So it is better to choose

nxE= a constant

Applying this to Fig. 1.11, we get

11¢€
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NnxE, =nxE,
which is Eq. (1.23a).
(8) The integral from of Gauss' law in dielectriss

J D [@IS= total free charge enclosed

Surface

(Refer to the Fig. 1.10)

(nD,, -nlD,,)ds=0,ds

where g, is the surface charge density on the interfacevdsn the

dielectrics andh the unit vector along the outward drawn normathi
surfaceD,, and D,, are the normal components of the displacement

vector in media 2 and 1 respectively.

Wheno=0, we gem(D_, =n[D,

Now D, =¢E,, andD,, =&,E,

L D=¢E
0 ENLE, =&NnlE,,
or
nlE,., _&
nteE, &,

Thus we find that the normal componen&ois discontinuous.
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UNIT 2 SOLUTION & ANSWERS
SELF ASSESSMENT EXERCISE'S

(1) The potential difference (V) between the platesiot changed.
But the electric field between the platesMg(d /2) =2V /d)=

twice the value of the electric field E. The dounfliof the electric
field doubles the charge on each plate. ThereforeQ/V also

doubles. Thus if we halve the distance of separditween the
plates, the capacitance doubles.

(2) We know that

C=QI/V
C =1000u F
= 0.001F
and
V =24V
Q = CV =0.001x10*C = 0.024 C

(3) The energy stored in a capacitor is

Wi =

Cy’

N

It can be written
W= lCQXgp
2
() We know that

Q= C¢

(i)  Using Eq. (i) in EqQ. (i), we get

W =2Qg¢

Hence prove, the result.

N[

4) C=¢A/d

Here, &, = 8851072 F/m, A= 4x102m?, d=10°m
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Therefore,

_ 885x102x4x107

T = 354x107°F

C

Here C is the charge that raises the potential tiyy wr the charge
holding capacity.

(5) We have

_ Capacitwith dielectricbetweerplates
" Capacitwith freespacebetweerplates

Here ¢, = 3. Thus the capacitance of the capacitor willtgstled
when the dielectric{ = 3) is filled up in all the air space.

Now a dielectric material is introduced. Let iteckness bé. The
capacity of the capacitance is

EA

C. = ! =
dielectric (d‘t"‘t/fr)

air

A ¢
d

Cdielectric — [foA/(d -t- gr )] X d
C EA

. d
d-t+t/eg

Heret :gd ande¢, = 3.

Therefore,
d-t+t/e, =d-"d+ 3 =d
4 4x3 2
Therefore
Cdielectric - i =2
C d/2

That is, the capacitance will get doubled.
(6) C, =2r&,¢, 1In(10/8)

and
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C, =2r&,&, 1In(5/4)

C _InG/4) _,
C, In(10/8)

or
C,=C,

(7)  When the capacitor are connected in series, ejuivalent is
given by

1 1 1 1
— +—— +— 4+

1
C. 005 002 01 005

C,=0.01uF
Q =CV
=220x 001x10™°
=22x10"°C
-2
v = Qo 22407,
C, 005x10
—2
= Q_ 2.2><10_2 - 110V
C, 002x10
-2
v, = Q_ 2.2><10_2 — 220V
C, 001x10

(8) The arrangement is shown in Fig. 2.20. Cgtbe the effective
capacitance o€, andC, . Using series law of capacitors

1 1 1
_ 4 —
C, C C,
or
_ CGC,
Y C+C,
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This capacitancec, then adds taC, to give the total capacitance of

the combination i.e.,

C=C,+C,
or
C_ 3+ C1C2
C, +C,
Ca
1 1
| S |
Gy Ca
4‘ L L
I I
Fig. 2.20

123



PHY204

UNIT 3

SELF ASSESSMENT EXERCISE's

(1)

(2)

3)

124

We identify pairs of dipoles equidistant fraime centre, from
Unit 3, we know that the dipole field falls off witdistance as
1/r?. Since equidistant pairs have directionp afpposite to one
another, the overall field at the centre due topthie is zero. This
is the case for every other pair. Herige= 0.

According to integral form of Gauss's law

Ehds= -~ dV
gO
Therefore,
Edm?=12,s
80
or
E= ir
3¢,

in the vector form
E(r) =(r)r /3¢,

loc :E+1:E+M
3¢, 3¢,
_3E+(g, -)E
3¢,

=(e, +2)E/3

ELECTROMAGNETISM

SOLUTIONS/ANSWERS
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UNIT 4 SOLUTIONS AND ANSWERS

SELF ASSESSMENT EXERCISES

1(a) Potential energy of the magnetic dipole is given by the relation:
U =p(B wherep is the dipole moment anB is the magnetic

field.

SinceU is expressed in Joules aBdn Tesla, the above relation
gives the unit of magnetic dipole momentas™.

(b) From Eq. (11.4),>-L
2m

L= g_h (because angular momentum of electron is quantized)
T

wheren is an integer.

Hence minimum allowed magnitude of dipole momentgigen by
puttingn = 1, as follows:

1.602x107*°C x6.626><10'34Js
2m2m  2(9.109x107°'kg) 2

or

Uin= 927x107%'C Jskg™
=927x104JT™*
[ the Bohr magneton is given bfﬂ = 927x107JT™
7m
2. (a) g=1 (i) g=2
(b) Eq. (4.5) i :%s

hence

16x107*°C
X

927x107 A = ————
91x10 kg

so that
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_ 91x07'kgx 927x107* AnY
1.6x107°C

S

2
_91x 927, s Akgm
1.6 C

=5272x107**Js
=05272x10%Js

But the spin angular momentum Sgis therefore,

h

— =05272x10*Js
air

n
2

or
h=4x3.142x0.5272x103Js

=6.626x10%*Js
which is indeed the value of Planck’s constant.

(@) Copper is slightly diamagnetic. BismuBilyer-
diamagnetic, Aluminium & Sodium — paramagnetic

(b)  No. Since the diamagnetic material is charzsed by the
absence of intrinsic magnetic dipoles and parantagne
substances have magnetic dipoles, the alloy ofethes
materials will be the material with intrinsic magioe
dipoles. Such a material will exhibit the propery
paramagnetism which masks the diamagnetism of both
components of the alloy.

We have the formula

e
w,=g—B
P g2m
but
277fp:a)p
hence
g:2nfpx2_mxl
€
Now

27f ) = 2x 414x42x10°s™ = 26393x10°s™
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—-31
For proton,@ - 2x1860 9'%x10 gC™
1.6x107™

= 2115x10°kgC™

Given,é =1Wbm?

Using this above we obtag= 5.584, which is the protamp - factor.

5 (a) jxeaxdxzﬁax—j €

- dx integrated by parts

a

_ Xeax 1 eax _ Xeax eax

a aa a a

+1 ax 1 +1
-1 a -1 a

a

_1 a
ea +e—a
6. We havecotha=——— and also that
e’ -€
2 3 2 3
e =1+a+> +2 +  ande®=1-a+2> -2 4
A 2 2
Hence,

so that
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Therefore,

cotha -

|-

andM =M _a/3

wlo
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UNIT 5 SOLUTIONS AND ANSWERS
SELF ASSESSMENT EXERCISEs

1. Path (1) encloses =5 A

U [HmI=1=5A
For path (2) [H Il =71=35A

For path (3) [H 0l =21 =10 A
B = H for path (1)

B #H for paths (2) and (3) because these paths pasgthioon.
2. H =nl =(2000m™)(018A) = 360 Ani'
B = y,H = (4rx107" H /m)(360Am™) = 045mT

If an iron core of absolute permeabiliék 10 H/m is inserted in
the solenoid, theRl remains unchanged, i.e.,

H =360 Ani' (unchanged)

and
B=uH =6x10°H/m)(360Am™*) =2.16 T
3. The expression for the magnetic induction inaiegap is
S TR

Substituting the values given in the questionget

_ 500x 2x 2500 477 10”7
050+ (2500- 1001

_10°x10* xmx107 _ 7
0.5C+25 255

=0.123 Wb m?

B in the iron ring has the same value as in air}Hburt iron is given by
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or
H =0.123 /2508 477x107"

=39.1 Am'

13C



