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 1.0 INTRODUCTION                                                                                                                                                                                                               

In your previous work, especially in Elementary Mechanics, you learned that the motion of an 

object in space was not absolute but relative an observer. To a passenger in a moving car, a 

passerby who is at rest by the side of the road appears to be in motion. The question is “who is 

moving between the two?” This question can have an answer only if the frame of reference (a 

coordinate system) from which each observer is describing the motion is clearly defined. In the 

passerby’s frame of reference, he is at rest relative to the ground while the passenger in the car is 

in motion. On the other hand, in the frame of reference attached to the moving car, the passenger 

sees himself to be at rest relative to the car and the passerby in motion relative to him. Thus, both 

the passenger and the passerby see themselves in motion relative to each other.  

The theory of relativity is a study of the relationships between observations made in different 

frames of reference which are in relative motion to each other. The mathematical basis of 

comparing two descriptions is called transformation. The subject also deals with effects that are 

observed when objects are in relative motion to each other at speeds close to the speed of light in 

a vacuum (relativistic speeds). Such effects include length contraction, time dilation, mass increase 
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and others of electromagnetic and optical significance. You will be introduced to some of these in 

this course. Also in this course, we will be dealing with special relativity as against general relativity. 

While the former deals with physical laws expressible in equations having the same form 

(invariance) in reference frames which are in relative motion at constant velocity (inertial frames of 

reference), in the latter, equations expressing the laws of physics have the same form in all frames 

of reference regardless of their state of motion (accelerating and rotating frames).   

Relativity is one of the main pillars of Modern Physics as against what is known as Classical Physics. 

Classical physics comprises the Newtonian mechanics, sundry phenomena which can be explained 

in terms of Maxwell’s theory of electromagnetic interaction and its applications, thermodynamics 

and the kinetic theory of gases. Modern physics on the other hand comprises the theory of 

relativity and its effects, quantum theories and associated phenomena, and, in particular, the 

application of these theories to the study of the atom and the nucleus. 

We begin our study with a look at the description of position of an event in space at a given time. 

We will use the familiar Cartesian coordinate system to define our frame of reference for this 

purpose. 

1.1 OBJECTIVE                                                                                                                                              

At the end of this unit you will be able to                                                                                                         

a. Carry out simple Galilean transformations of some physical equations                                              

b. Demonstrate the invariance of equations of Newtonian mechanics under Galilean 

transformation  

c. Show that physical equations of electromagnetic phenomena are non-invariant under Galilean 

transformation.                                                                                                                                                    

d. Perform simple calculations involving Galilean transformations of physical equations                             

e. Discuss the idea of the universal frame of reference and the ether hypothesis                                          

f Describe the Michelson-Morley Experiment 

1.2 MAIN BODY 

1.2.1    Frames of Reference  

Every physical event occurs somewhere in space (a portion of the physical universe) in a definite 

time interval. In three-dimensional Euclidean space it is convenient to specify the position of such 

an event using a frame of reference which comprises a three-dimensional rectangular coordinate 

system. You already know that the position of a point in space in Cartesian coordinate system is 

specified by an ordered set, (x, y, z) called the Cartesian coordinates of the point. This, of course, is 

not the only type of coordinate system. You may possibly have done some work with polar, 
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cylindrical and spherical coordinates in other physics or mathematics courses. These will not be 

used in our analysis here. 

                            

Consider a particle of mass m at a point P acted upon by a force F at an instant of time t as shown 

in figure 1.1  The coordinates in space (spatial coordinates) of the event as measured by an 

observer at the origin of the coordinate system are (x, y, z, t). Notice that space and time are 

intricately intertwined. This is true because every event in nature has a definite location (space) as 

well as duration (time). As such, we speak of space-time rather than space and time separately. So, 

the set of four numbers (x, y, z, t) tells us that at time t, the coordinates of the particle at point P 

are x, y, z. 

Now, we can write Newton’s second law of motion for this event in terms of the components   ,    

and    of the force F as 

  

     
   

   
 

     
   

   
 

                                                                                                                                                                               

(1.1) 

    
    

   
 

   

It is important for you to note that these equations are valid only if the frame of reference 

described by the coordinates x, y, z is inertial. A frame of reference is said to be inertial if an object 

in it, which is not under the influence of a force, will remain at rest if it was initially at rest or 

continue in its motion with constant velocity, if it was initially in motion.    

 Z-axis 

Y-axis 

X-axis 

P 

x 

y 

z 

F 

Fig. 1.1: The coordinates of point P 
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We now proceed to examine the description of the same event as seen by two observers which are 

in motion relative to each other at constant velocity in a straight line.    

1.2.2    The Galilean Transformation 

Consider the two observers   and   at the origins of the frames of reference   and   respectively, 

which are in relative motion at constant velocity v as illustrated in figure 1.2. Frames of reference 

which are in translational motion at constant velocity relative to each other are called inertial 

frames of reference. Suppose also that the origins   and   as well as the axes of the coordinates of 

these frames are coincident at an initial time       . 

                         

   

         The two observers are equipped with measuring instruments to determine the coordinates of 

the event at P. Measurements made in the   frame are related to those made in the    by the 

Galilean transformation as follows: 

       

        

      

     

      

     

                                                                                                                                                                           

(1.2) 

Y-axis Y’-axis 

vt 

x 

X’ x-axis 

 

z-axis 

X’-axis 

 

Z’-axis 

v F 
P 

Fig. 1.2: Two frames of reference   and    in uniform translation. x and    are supposed to be collinear. 
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Let us write, for example, the equations of Newton’s second law of motion for this event using 

these transformations for each of   and    frames. The x, y, and z components of the force F   which 

acts on the particle at P for the S frame are 

To obtain the corresponding equations in the    frame, we first differentiate (1.1) twice to obtain 

the components of the acceleration as follows: 

                                

   

   
  
  

  
    

and                          

    

   
 
   

   
 

Also from (1.1)            

Thus, we can replace t by    in the above equation and write  

  

    

    
  
   

   
 

Obviously,             

    

    
  
   

   
 

  and    

    

    
  
   

   
 

Therefore, the components of the force in the    frame can be written in terms of the components 

of the acceleration as follows: 

                                           

      
       

    
 

                            

       
    

    
 

                                                                                   (1.3) 
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Comparing equations (1.2) and (1.3), you will find out that they have the same form. We say that 

the equations are invariant under Galilean transformation. Now, this is quite significant in the sense 

that Newton’s laws constitute the main platform on which the motions of objects are analyzed in 

classical physics and govern the behavior of mechanical systems. It follows that the laws that 

govern the behavior of mechanical systems will always have the same form in all inertial frames of 

reference. As an example of this generalization, consider two laboratory experiments conducted 

under the same conditions to determine the gravitational constant g. Let one laboratory be 

situated in a frame of reference at rest with respect to the surface of the earth and the other 

mounted on a train travelling at constant velocity on a straight horizontal track. If the windows of 

the moving laboratory are closed, the experimenter in the train will not be able to tell whether or 

not he is in motion. Interestingly, the two experimenters will obtain the same value for the 

gravitational constant g. 

Before we proceed, let us at the moment illustrate the concepts we have discussed by solving a few 

practical problems through a few self assessment questions SAQs. Work carefully through all of 

them and there after compare your answers with those given at of this section. 

SAQ 1: A man in a boat moving at constant speed of 60km/h relative to the shore throws an object 

in the forward direction with a speed of 30km/h. What is the speed of the object as measured by an 

observer at rest at the shore?  

SAQ 2: A passenger in a train moving at 35km/h looks out and sees a man standing on the platform 

of the station at       . Twenty seconds after, the man on the platform determines that a bird 

flying in the same direction as the train is 800m away. What is the average speed of the bird as 

determined by the passenger?   

SAQ 3: A swimmer can swim with a speed   in the still water of a lake. In a stream in which the 

speed of the current is   (which, we assume, is less than  ), the swimmer can also swim with a 

speed   relative to the water in the stream. Suppose the swimmer swims upstream a distance   and 

then returns downstream to the starting point. Find the time taken to make the round trip and 

compare it with the time taken to swim across the stream a distance   and return. 

SAQ 4: An observer at rest with respect to the ground observes a particle of mass        moving 

along the x-axis with a velocity         . It approaches a second particle of mass        

moving with velocity a           along the same axis. After head-on collision, he finds that the 

velocity of    is   
         along the x-axis. What are the momenta before and after the 

collision as seen by a moving observer walking with a velocity of 2 m/s relative to the ground along 

the x-axis?  

1.2.3   Non- Invariance of Electromagnetic Phenomena under Galilean Transformation 
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You saw in previous section that physical equations that describe the behavior of mechanical 

systems have the same form in frames of reference that are in uniform translational motion 

relative to each other (inertial frames). Now, we want to see whether the equations that govern 

the behavior of electromagnetic phenomena will have the same form under a similar 

transformation. The behavior of an electromagnetic phenomenon can, in general, be described in 

terms of Maxwell’s equations. It is from these equations that the differential equation of the 

electromagnetic wave in free space is obtained. Maxwell’s equations express the spatial variation 

with respect to time of time-dependent electric field intensity E and magnetic induction B. You can 

find the derivation of these equations in any standard textbook on electrodynamics. Here, we will 

simply write down the equation of electromagnetic wave in free space in terms of the coordinates 

of the electric field and then try to verify its invariance or otherwise under Galilean transformation.  

The equation is 

                             

          
    

   
 

,       (1.4) 

where            are the permittivity and permeability of free space respectively. In Cartesian 

coordinate system the electric field vector E can be written in terms of its components as  

  =                  , where         and    are the unit vectors in the x-, y-, and z-directions 

respectively. Equation (1.4) then separates into three equations obeyed by each of the components 

of E. Thus, for the x - component, we can write equation (1.4) as  

     
   

 
    
   

  
    
   

  
 

  
    
   

 

                                                                                                                           (1.5)         

where 

   
 

      
          ms-1, the speed of all electromagnetic waves in free space.  

Now we proceed to transform equation (1.5) to a new set of coordinates (           ) of a moving 

frame of reference at constant velocity v relative to those of the stationary frame (       ). The 

objective is to find out whether our transformation will give us our equation (1.5) written in terms 

of          and     If it does, then we can say that the equation is invariant (has the same form) 

under the transformation, otherwise it is invariant (has a different form from equation 1.5). 

  From (1.1), we have 
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 and    

   

  
 
   

  
 
   

  
 
   

  
 
   

  
 
   

  
 
   

  
 
   

  
 
   

  
   

 Next, we apply the chain rule and the above equations to obtain the second derivatives. We begin 

by obtaining the first derivative w.r.t.    as follows: 

          

   
  

 
   
   

 
   

  
 
   
   

 
   

  
 
   
   

 
   

  
 
   
   

 
   

  
 
   
   

 

Then, we differentiate again to obtain the second derivative w.r.t.     

    
   

 
    
    

 

Similarly, by differentiating with respect to   and    respectively we obtain 

    
   

 
    
    

 

 and   

    
   

 
    
   

 

Furthermore,              

   
  

 
   
   

   

   
 
   
   

 
  

  
      

   
   

 
   
   

 

and                                

    
   

 
    
    

   
    
      

   
    
    

 

   

We can now substitute these second derivatives in the wave equation (1.5) and obtain 

                              

    
    

 
    
    

 
    
    

 
 

  
    
    

 
 

  
   

    
      

   
    
    

  

                                                                                                                                                (1.6) 

Comparing equation 1.5 and 1.6, it is obvious that the electromagnetic wave equation (1.5) does 

not retain the same form (is not invariant) under Galilean transformation. 

Looking back the way we came, we can see that Maxwell’s equations, from which the 

electromagnetic wave equation was obtained, and all electromagnetic phenomena they describe, 

are also not invariant under Galilean transformation. By extension of the argument, the speed of 
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electromagnetic waves should also be seen to be dependent on the speed of its source, since the 

propagation speed depends on the form of the wave equation. For instance, if the source of light is 

moving with a speed v relative to a stationary observer in the direction of propagation of light 

wave, the resultant speed of light as measured by the observer will be c + v and c - v if the source 

moves in opposite direction. This clearly contradicts the experimental observation that the speed of 

light is constant and independent of the speed of the source. Take, for example, an elementary 

particle such an electron accelerated to a speed 0.97c in a linear accelerator. If it is caused to emit 

another particle such as a neutrino whose speed is 0.99c, then the speed of the neutrino will be 

1.96c, which is greater than the speed of light. The question then is “is there any particle in nature 

known to possess the speed greater than the speed of light in free space?” We will discuss this 

problem before we come to an end of this module.  

You will recall from your study of relative velocities in your Elementary Mechanics that the 

situation we are examining here is analogous to the motion of a boat in a river with a stream speed 

v. In this case, the speed of the boat relative to a stationary observer is the sum of the speed of the 

boat relative to the water of the river and the speed of the stream. In the case of light waves the 

speed is measured relative to what or light waves are waves in what medium? Physicists of the time 

when the theory of special relativity was in its formative stages were very mechanistic and believed 

that light wave, just like water wave, sound wave and other forms of mechanical waves required a 

material medium for its propagation. This is how the concept of the ether arose. We will now take a 

brief look at it. 

 

1.2.4 The Ether Hypothesis 

We mentioned in the last section that physicists of the time reasoned that light waves required 

material media for their propagation just like sound waves required air and water waves required 

water as their propagation media. It was therefore reasonable to assume that material medium 

called ether pervaded all space. But, unlike other mechanical waves, light waves can propagate 

through the vacuum. Thus, it was also reasonable for the hypothetical ether to be assumed to be 

massless, although it must possess elastic properties in order to allow the electromagnetic 

disturbance to propagate through it.  

With the assumption of the existence of ether, it was expected that electromagnetic phenomena in 

the form represented by Maxwell’s equations were valid in the frame of reference which was at 

rest with respect to ether – the so-called ether frame. A solution of the equations would yield a 

fixed propagation velocity of the electromagnetic disturbance through space. The outcome of this 

expectation was in perfect agreement with experimentally determined value of the velocity of light 

c by Fizeau in 1849.  
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However, in a new frame of reference which is in uniform translation with respect to the ether 

frame, Maxwell’s equations would have a different form and their solutions would yield a different 

value of the propagation velocity of the electromagnetic disturbance in ether-pervading space. In 

other words, a Galilean transformation of the equation would yield the non-invariance which we 

had earlier verified in section 3.2.  

Now, the interesting aspect of the ether hypothesis is that if ether exists, then all motions can be 

described relative to it. In other words, the ether frame could be taken to be the universal frame.  

Furthermore, objects in motion relative to ether should experience "ether wind” and therefore it 

would be possible to detect it. In the next sub-section, we will examine an experimental attempt at 

detecting ether, the famous Michelson-Morley experiment.  

1.2.5 Michelson-Morley Experiment 

The experiment was designed to detect the motion of the earth through the hypothetical ether. If 

ether exists, the Earth should move through it at, at least, the speed of 3          which is its 

orbital speed about the Sun. The ether frame was assumed to be at rest with respect to the centre 

of the solar system or the centre of the universe. If we take the motion of the solar system with 

respect to the centre of the universe into consideration, the speed of the Earth through ether will 

be even greater.   

  

                                          

                                           

                                              

 

                           

         

The idea of the experiment is to find the directional variation of the velocity of light as a result of 

the motion of the Earth through ether. 

The experiment therefore consists of the measurement of the velocity of light, as seen from the 

frame of reference fixed with respect to the earth, in two perpendicular directions. To achieve this, 

the experimenters designed a device called interferometer invented by Michelson and set up the 

experiment as shown schematically in figure 1.4.                   

Consider the interferometer at rest with respect to ether as shown in the figure 1.4. A ray of light 

from a collimated source S is incident at angle of 45o upon a half-silvered mirror M. The mirror 

S 
M’ 

Figure 1.5:  An interferometer moving against ether 

wind 

 l2  

vt 
M1  

M  

l1  

ct  

   M2 

   

M’2 

    v  

 

   

   

M 

T 

    
   

S 

Fig. 1.4 An interferometer 
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splits the ray into two rays such that half of the light is reflected while the remainder is transmitted. 

The reflected ray travels to M1 while the transmitted ray travels to M2. These rays are reflected 

back to M. Half of each of the rays returning to M is directed into the telescope and recombine to 

give rise to the light seen by the observer O. The intensity of the light seen by O depends on the 

phase relationship between the two recombining rays. Since the two rays were originally in phase 

before being split by M, their phase relationship upon recombination depends on the lengths of the 

two arms l1 and l2 of the interferometer as follows:    

if 

         
 

 
    

  

 
    

  

 
     

rays are in phase   

if 

      
 

 
    

  

 
    

  

 
    

 rays are out of phase 

where   is the wavelength of light. 

Now, consider the interferometer in motion with velocity v with respect to ether as shown in figure 

1.5.  Note that v is perpendicular to ray1 (which travels to M1) and parallel to ray2 (which travels to 

M2) respectively. We also assume that        . That is, the lengths of the arms are equal.         

   represents the position of   at the instant ray1 reflected from    meets it after travelling a 

distance    .   
  indicates the position of    at the instant it reflects ray2.  

To evaluate the phase relationship between the two recombining rays, we calculate the time 

required for each ray to make a round trip in their respective paths. Notice that, as seen from the 

ether frame, ray1 travels in oblique path of length    in time  . During this time, the apparatus 

moves through a distance equal to    to the right. Thus, from the diagram, we have 
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Now,   is very small when compared with  , that is 
  

  
  . We can apply the binomial expansion 

obtain  

  
 

 
   

 

 

  

  
  

                                                                                                                                                       

Thus, the round trip time    for ray1 is  

      
  

 
   

 

 

  

  
  

.                                                                                                                                          1.7 

Calculating the round trip time for ray 2 is particularly simple. Take a closer look at figure 1.5. The 

situation is analogous to the swimmer which does a round trip by going downstream and then 

returning upstream to the starting point. The velocity of light as seen by an observer fixed with 

respect to the apparatus is     while going downstream (to the right) and     while going 

upstream (to the left). The round trip time for this ray is  

   
 

   
 

 

   
 
             

          
 

 
   

       
 
  

 
   

  

  
    

Applying the binomial expansion as before, we obtain 

   
  

 
   

  

  
   

                                                                                                                                                                     1.8 

Comparing    with    (i.e. equations 1.7 and 1.8) you will find out that they are clearly different. 

Thus, the recombining rays are out of phase. To find the phase difference of these recombining 

rays, we must find the difference in time    of the recombining rays.  We have 
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                                                                                                                                                                        1.9      

The corresponding path difference    of the recombining rays is  

       
   

  
 

                                                                                                                                                                       1.10         

The phase difference associated with this is 

  

 
 
   

 
 
 

 

  

  
 

                                                                                                                                         1.11         

where   is the wavelength of light used.  

This phase difference should give rise to a certain number of fringes which can be seen in the 

telescope when the apparatus is rotated through an angle. Thus, rotating the apparatus through 

90o, the phase difference in the new position is  

   

 
  

 

 

  

  
 

                                                                                                                                                    1.12 

The change in the phase difference, which corresponds to the number of fringes, ΔN arising from 

this is 

   
  

 
 
   

 
  

 

 

  

  
 

                                                                                                                                                       1.13 

In the actual experiment,         and           were used. Substituting these values in 

the above equation gives the value of    approximately as 0.5. Thus, when the apparatus is 

rotated the bright fringes are replaced by the dark ones and vice versa as seen by an observer 

looking through the telescope. 

To the surprise of everyone, the fringes were not observed. Despite the repetition of the 

experiment with increased accuracy at different locations, times of the day and seasons of the 

year, no effect was observed. So, how do we interpret this result? The classical theory (as 

contained in the Galilean transformation) predicts that the velocity of light is not constant but 

depends on the direction along which it is measured. The null result of the Michelson-Morley 

experiment therefore shows that the velocity of light is the same when measured along two 
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perpendicular directions in a frame of reference that is supposedly moving relative to the ether 

frame.  

Of course, scientist did not just quit the concept of the existence of ether. Spirited attempts were 

made to explain the null result. Here are some of the viewpoints advanced to retain the ether 

concept: 

1. The ether drag hypothesis: The concept explains that ether was attached to and dragged 

along by bodies of finite masses as they move. This would certainly validate the null result 

of the Michelson-Morley experiment. But evidence from the measurement of the velocity 

of light in rapidly flowing water earlier made by Fizeau and stellar aberration strongly 

contradicted the hypothesis. 

2. Lorentz contraction: The concept assumed that material objects in relative motion to ether 

contract by a factor of    
  

  
 
   

 in the direction of motion. Thus, the arm of the 

interferometer moving parallel to ether will contract and a null result would be obtained. 

This hypothesis was also ruled out by the results of appropriate experiment which showed 

that no such effects occurred. 

3. Emission theories: In this theory, Maxwell’s equations were modified in such a way that the 

velocity of lights was always dependent on the velocity of its source. This was in conflict 

with experimental evidence concerning binary stars.  

As there was no strong experimental evidence in support of the existence of ether, it was finally 

abandoned. Furthermore, there was sufficient experimental evidence to show that Maxwell’s 

equations were correct. Therefore the Galilean transformation needed to be replaced by another 

transformation which ensures the invariance of both the laws of mechanics and electromagnetic 

theory. 

SAQ 5 

 In a Michelson-Morley experiment, an interferometer with arms of 11m and sodium light of 

5900   was used. If the velocity of the earth through ether is 3          calculate the expected 

total fringe shift when the apparatus is rotated through 90 . 

SAQ 6 

In a Michelson-Morley experiment, an equal-arm interferometer with arms 10m and light of 

wavelength 600   was used. The expected number of fringes was 0.005. Calculate the velocity of 

the earth relative to ether. 

Summary  

We summarize all we have studied as follows: 
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 There is no absolute rest or motion in nature. For the purpose of describing the motion of 

an object in space, we require a frame of reference relative to which the motion must be 

ascribed. 

 Every event in nature occurs somewhere in space at a definite time interval, thus, the 

coordinates of an event in space are (x, y, z, t). We therefore speak of space-time and not 

space and time separately. 

 If two observers that are at rest with respect to each other observe the same event which 

occurs at a point in space at an instant of time, they will agree on the physical laws 

governing that event. In other words the two observers will write equations having the 

same form to represent the physical law that govern the event in their respective frames of 

reference. 

 Frames of reference in uniform translational motion relative to each other are called inertial 

frames of reference.  

 Galilean transformation provides a way of relating observations of physical phenomena 

made by observers in inertial frames of reference.  

 The laws that govern the behaviour of mechanical systems are invariant under Galilean 

transformation. 

  The laws that govern that govern electromagnetic phenomena are not invariant under 

Galilean transformation. 

 Initially, light waves were thought to propagate through elastic but massless medium called 

ether, which could be regarded as the universal frame of reference.  

 Michelson-Morley experiment failed to detect ether. 

  Conclusion 

We conclude this unit by observing that if ether truly exists, then the Galilean transformation 

should be valid for all physical phenomena, whether they are mechanical or electromagnetic. The 

ether frame should then become the universal frame relative to which all motions could be 

ascribed and the velocity of light in it is c. It would then be possible to talk about absolute motion. 

The null result of the Michelson-Morley experiment leaves us with the option of either modifying 

the Galilean transformation or Maxwell’s equations. Experiments show overwhelmingly that 

Maxwell’s equations are correct and do not need any modification. It implies that another 

transformation is required in which the laws of physics, whether mechanical or electromagnetic 

must be valid. 

Tutor Marked Assignments (TMA) 

TMA 1 

A 1-kg ball is constrained to move to the north at 3m/s. It makes a perfectly elastic collision with an 

identical second ball which is at rest, and both balls move in a north-south axis after the collision. 
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Calculate the total momentum before and after the collision as measured by an observer moving 

northwards at 1.5 m/s.  

TMA 2 

In an experiment similar to the Michelson-Morley experiment the distance d of either mirror from 

the half-silvered mirror is 25.9 m. The wavelength of the light used is 5890   and the apparatus is 

capable of detecting a time difference equal to one-hundredth of the period of this light. If the null 

effect is obtained when the apparatus is rotated through 90 , what is the maximum possible value 

of the apparatus through ether? 

 TMA 3 

In a Michelson-Morley experiment, the optical path of each beam is 11 m and wavelength of light 

used is 5500 . Assuming  
 

 
 to be        calculate the expected fringe shift if ether exists. 

TMA 4 

 Assume the orbital speed of the earth 3    m/s is the speed of the earth through ether. If it 

takes    seconds to travel through an equal-arm interferometer in a direction parallel to this 

motion, calculate how long it will take light to travel perpendicular to this motion. 

TMA 5 

A shift of one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip 

travel time along one arm of the interferometer by one period of light (about        ) when the 

apparatus is rotated by 90 . If the length of the arms of the interferometer is 11m, what velocity 

through ether would be deduced from a shift of one fringe. 

Solution to SAQ and TMA 

SOLUTIONS TO SAQ and TMAs 

SAQ1 

SOLUTION: Let    and    be the velocities of the boat and stream respectively. Then, the velocity of 

the observer   in terms of    and    is 

         

i.e.                      

The velocity of the object as seen by the observer at the shore is 90km/h 

SAQ 2 
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SOLUTION 

The coordinates of the bird as assigned by the man on the platform are 

                         

The distance of the bird as determined by the passenger is  

                        

The coordinates of the bird as determined by the passenger are 

(                              

Thus, the average speed     of the bird as determined by the passenger is 

   
    

   
        

SAQ 3 

SOLUTION 

              Stream bank                                                                          Steam bank  

                                                                                                                           

                                                                                                    

                                                                                                                                                                                                                                                         

               Stream bank                                                                          Stream bank 

Fig.1.3a: The swimmer’s speed    perpendicular to the banks                      Fig.1.3b. The swimmer's 

speed    parallel to the banks 

 Figure1.3. The motion of a swimmer as seen by an observer at rest with respect to the banks of the 

stream. 

Let the round trip time to cross the river be    and the round trip time downstream and upstream 

be   .  

We begin with the swim across the river. Notice that to swim across the river perpendicular to the 

banks; the swimmer must aim at an angle upstream so that the upstream component of his 

velocity compensates the stream speed downstream (Figure1.3a).  
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Thus, 

  
        

, 

 where    is the velocity of the swimmer perpendicular to the banks of the stream. 

       
  

  
 
 
  

The time    to cross the stream along the straight-across direction is 

   
 

  
 
 

 
   

  

  
  
 
  

So, 

   
  

 
   

  

  
  
 
  

Next, we consider the swim parallel to the banks of the stream. The velocity downstream is     

while the upstream velocity is     (Figure1.3b).  

The time for the round trip is simply 

   
 

   
 

 

   
 

 
             

     
 

 
  

 
   

  

  
     

Comparing    and    we find that the round trip times are different. 

SAQ4 

SOLUTION 

 For the observer at rest with respect to the ground, the   
  velocity of    after collision is obtained 

first. 
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Now, using the Galilean velocity transformations, 

  
                      

  
                        

  
     

                

  
     

                   

                        
      

                                   

                      
       

                                

We can see that under Galilean transformation, the observer in motion also determines that 

momentum is conserved though at different values to those of the observer at rest. 

SAQ5 

Solution 

Let l be the lengths of the arms of the interferometer, v the velocity of the earth through ether,   

the wavelength and c the velocity of light used. 

Then,                                          

  Let the expected total fringe shift be      

Then, 

    
 

 

  

  
 

             

                     
      

SAQ6 

Solution 

Let the number of fringes be    , l the length of the arms, v the velocity of the earth relative to 

ether,   the wavelength of light and c the velocity of light. 

Then,          ,      ,         and           .  
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2.0 Introduction                                                                                                                                                                                                               

In unit1, we saw how the null result of Michelson- Morley experiment led to the failure of the 

concept of the absolute space or universal frame of reference in which both the mechanical and 

electromagnetic phenomena are valid. Thus, instead of a constant velocity of electromagnetic 

waves c, an observer in a reference frame moving at a velocity v should measure     or     

depending on the direction of relative motion. The velocity of the electromagnetic waves, 

therefore, is not invariant under Galilean transformation and Maxwell’s equations will change their 

form on transformation from one system to another. This scenario places before us the following 

options:    

1. If electromagnetic theory is correct, then it must be invariant under Galilean transformation just 

like Newtonian mechanics. Since this is not the case, Maxwell’s equations which form the basis of 

electromagnetic phenomena are incorrect and need to be modified. 

2. Galilean transformation is applicable to mechanics but there is a preferred frame of reference in 

which the electromagnetic phenomena (Maxwell’s equations) are valid. In any other frame of 

reference, they must be suitably modified. 

3. Maxwell’s equations are valid and there is a transformation under which both the mechanical 

and electromagnetic phenomena are valid but it is not Galilean. This implies that Newton’s laws 

need to be modified. 
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Experimental evidence is overwhelmingly in support of the correctness of Maxwell’s equations. 

Therefore the first option is not tenable.  

The second option is ruled out by the null result of Michelson-Morley experiment. One of the 

important conclusions of this experiment is that the velocity of light is the same in all directions and 

is independent of the relative motion of the source and the observer.  

Albert Einstein was guided by the above considerations to formulate his theory of special relativity 

which we will deal with in this unit. He reasoned that the velocity of light was isotropic and is 

independent on the relative motion of the source and the observer. Furthermore, he saw the need 

to replace the Galilean transformation and modify the laws of mechanics and so he chose the third 

option.                                                                                                                                                                                                                                                                          

2.1 Objectives 

After completing this unit, you will be able to 

a. State the postulates of special relativity 

b.  Explain the concept of simultaneity.  

c. Carry out the process of the derivation of the Lorentz transformation relations 

d. Discuss and show proof of some of the properties of Lorentz transformation 

e. Discuss the problem of clock synchronization 

f. Demonstrate the invariance of Maxwell’s equations under the 

g. Solve simple problems involving Lorentz transformation Lorentz transformation 

2.2 Main Body 

2.2.1 Einstein’s Postulates 

Einstein’s special theory of relativity consist of two postulates namely, 

I. Physical laws are the same for all inertial frames of reference. Consequently, all inertial 

frames are equivalent. 

The postulate stresses that it is impossible by means of any physical measurement to find a state of 

absolute motion or universal frame of reference. 

II. The velocity of light in free space has the same value in all inertial frames of reference 

and is independent of the motion of the source. 

These postulates, as you can see, appear to be anything but radical. But, as we will soon see, they 

have far reaching physical consequences. The immediate consequence of the first postulate was 

the compelling need to modify the Galilean transformation.  
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The second postulate on the other hand has to do with finite velocity of interaction between 

particles. You already know that the interaction between two particles is described in terms of their 

potential energy. That is to say, interaction is a function of position. Thus, when one particle 

changes position (moves), the other particle is influenced to move relative to it instantaneously. 

This implies that the signal of interaction propagates at infinite velocity. This assumption is inherent 

in the Galilean transformation. In practice, a change in one body requires a finite time interval to 

begin to manifest in another body at a distance. Therefore, the signal of interaction propagates at a 

finite velocity and this velocity is the maximum. Clearly, there cannot be any motion with velocity 

greater than this in nature. This is exactly what the second postulate states. In other words, the 

velocity of propagation of the signal of interaction-the velocity of light in free space-is the same in 

all inertial frames of reference and is the limiting velocity. No material object can be accelerated to 

a velocity in excess of c, the velocity of light in free space. This assertion has been tested and found 

to agree with experiment. For example, the velocity of the radiation emitted in the decay of  -

meson moving at a velocity in excess of 0.99975c was measured by Farley et al to be         

           m/s. This answers the question we asked in sub-section 1.2.3. Recently (in October 

2011), a group of scientist working at a linear accelerator in Stanford University, England, claimed 

that they discovered neutrino which travels at speed in excess of c. This claim is still being 

investigated by scientists elsewhere to confirm its veracity or otherwise. Until an experimental 

confirmation proves otherwise, the speed of light c remains the limiting speed of all material 

particles. 

2.2.2 Simultaneity 

Before we turn our attention to the Lorentz transformation, let us briefly discuss the idea of the 

measurement of time. Consider the fourth of the Galilean transformation equations, namely 

      

The equation seems to say that time is absolute or universal for all inertial frames. Is this true? To 

answer this question, let us investigate the idea of measurement of time. The basic process 

involved in the measurement of time is the measurement of simultaneity. Thus, if we say that “the 

plane lands at 4 o’clock,” what this means is that the two events are simultaneous at the same 

location namely, 1.The plane landed and 2. The short hand of the clock is at 4 while the long hand is 

at 12. What happens if the two events occur at different locations (i.e. if the clock is far removed 

from the vicinity of the plane)? Of course this will involve the transmission of signal between the 

two physically separated locations. But, we have seen that interaction signals must have finite 

velocities. There must be a difference in time between the two events at different locations and so 

they are no longer simultaneous. This is the point where Galilean transformation is wrong by 

assuming that the time of occurrence of two events at different locations is the same. In other 

words, the equation      is not correct and must be modified. 
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A realistic method of determination of simultaneity requires the use of a real signal with the 

highest known velocity which is an electromagnetic wave such as light. This leads us to Einstein’s 

definition of simultaneity which states that two instants of time    and     observed at two points 

  and    in a particular frame of reference, are simultaneous if light signals simultaneously emitted 

from the geometrically measured midpoint between   and    arrive at   at    and at    at   . The 

converse is also true i.e.    and    are simultaneous if light signals emitted at    from    and    from 

   arrive at the mid-point simultaneously. The concept is illustrated in figure 2.1. Notice that these 

definitions intimately mix the times   ,    and spatial coordinates         In Einstein’s theory 

simultaneity does not have an absolute meaning, independent of spatial coordinates, as it does in 

the classical theory.                           

 

A consequence of these definitions is that two events which are simultaneous in an inertial frame of 

reference are in general not simultaneous in another inertial frame of reference in relative motion 

to it. Consider a thought experiment in which we follow the progress of a light pulse as noted by 

two observers in inertial reference frames. Suppose a box car is travelling to the right at a very high 

constant velocity v as illustrated in figure 2.2. A high-speed flashbulb B is placed at the geometrical 

centre of the car where the observer    is located. The bulb is equipped with reflectors so that it 

can send light pulses in opposite directions when it is switched on. Photocells are fitted at opposite 

ends  

x 

y 
Fig. 2.1 Illustrating Einstein’s definition of simultaneity 

   
   

. . 
Mid-point 

z 
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  and   

  of the car to 

enable an observer detect when the light pulses strike the ends of the car. At the instant    is 

abreast of O, an observer at rest with respect to the earth, the flashbulb is switched on. Notice that 

the two observers are in inertial reference frames (one is the boxcar and the other is the earth), 

and so the speed of light must be constant to both of them. To the observer    the flashbulb is at 

rest relative to his reference frame. When the bulb is switched on, light pulses travel equal 

distances in equal times to the two ends   
  and   

  of the car. For him the experiment is the same 

whether or not the car is in motion. Notice that the pulses of light will also travel equal distances to 

   and     the ends of the boxcar as measured by    in equal times if the two observers are abreast 

and    is at rest relative to   .  So, the light pulses hit the two ends of the car simultaneously.  

 Now, to the stationary observer       
  approaches while   

  recedes from him. Thus, for him, the 

distance traveled by the light pulse to the left end of the car    
  is shorter than the distance to the 

right end of the car     
  . Light pulses to   

  arrive before those traveling to   
 . Notice that light 

pulses from    arrive    ahead of light pulses from    to   .  We conclude that the light pulses do 

not hit the two ends simultaneously. 

From this experiment we can conclude that time is not a universal quantity because: 

Events which are simultaneous in one inertial system may not be simultaneously in another.  

You must understand that this situation exists only if the two events occur at different locations. In 

our experiment, one event took place at one end of the car, and the other took place at the 

opposite end. However it must be pointed out that both observers are correct, even though their 

results differ as a result of their relative motion. 

 

 

 

   

v           

  
    

     

O 

v 

B 

B 
  
  

 

  
  

        

 

O    

Fig.2.2 For    the events at   
  and   

  occur simultaneously whereas for O the event at    occurs before the one at       
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2.2.3 Lorentz Transformation 

We now proceed to re-examine the concept of space and time in the light of Einstein’s postulates. 

This is of course what Einstein himself did. 

Consider two observers   and    in two inertial frames of reference   and   , who view the same 

event, with    moving in the  -direction relative to   at constant velocity   as in figure 1.2. Relative 

to their respective coordinate systems   assigns the location and time coordinates of the event as 

          while    assigns               as location and time coordinates for the same events. The 

desired coordinate transformation consists of a set of algebraic equations which connect the two 

set of coordinates, that is, a relation that allows us to calculate the primed set of coordinates in 

terms of the unprimed ones and vice versa. You will recall that Galilean relativity gave these 

relations as in equation 1.1, namely,     ,      ,        and          Of course, this 

conforms with common experience provided    , that is, the relative motion of the coordinate 

systems occurs at ordinary velocity. However, at relativistic velocity, that is, at velocity close to that 

of light (   ), these transformation relations contradict Einstein’s postulates and are incorrect as 

we will soon see. 

Let us assume that at the instant the origins of the two frames are coincident, a flash bulb explodes 

as shown in figure 2.3 a. A light sphere then expands in all directions at a velocity c. At an instant   

after the bulb had exploded, observer   in the   frame observes that the moving frame has 

travelled a distance      in the  -direction as shown in figure 2.3b, and that the radius of the 

expanding light sphere is     . You will recollect, from your study of coordinate geometry, 

that             .                                                                                                                                                                

Thus,                                                                                                                               2.1 

The observer    in the    frame observes a light sphere with radius       . 

Thus,                                                                                                                                 2.2 

Notice that the two equations have the same form and the velocity c is the same in both frames in 

compliance with Einstein’s postulates. 

Now, from Galilean transformation, we have     ,     ,      and        . Putting these 

in equation 2.2, we obtain,                                                                                                                                      

                 

or,                                                                                                                  2.3 

Of course, as you can see, equation 2.3 does not have the same form as equation 2.1. Therefore it 

is quite clear that Galilean transformation fails in the realms of relativistic velocity. We require a 

new set of transformation relations which will transform equation 2.2 into equation 2.3.                                     
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 It is reasonable to assume a linear relationship for the transformation equations for the fact that a 

single event in one inertial frame of reference must correspond to a single event in the other in the 

other inertial frame. Thus, the most general of such a set (relationship) may be expressed in the 

form                                                                                                                                                                               

                                                                                                                                                                             

                                                                                                                                                                                         

                                                                                                                                                                                            

                                                                                                                                              2.4 

A, B, C, D and E are constants.  

Since the motion is along the x-axis only, then       so that      and       as before. 

If our assumption is correct, then when we make the substitution of equation 2.4 in equation 2.2, 

we should obtain equation 2.1. Now, do these substitutions yourself and cross-check with the 

working given below:                                                                                                                                                                   

Putting the values of    and    from equation 2.4 into equation 2.2, we have                                                       

                                                                                                                                            

Expanding the brackets, we obtain                                                                                                              

                                                                                              

Rearranging the equation                                                                                                                                   

                                                                                                          

   

x 

y 

z’ 

x’ 

    

y’ 

Flashbulb 

z 

y’ 

x’ 

z’ 

    

b. t seconds later, radius 

of sphere is ct 

a. flashbulb is switched on at the instant 

O and O’ are coincident 

Spherical waves from 

flashbulb 

Fig. 2.3 The light sphere expands with velocity c.  

The relative velocity of the reference frames      

x 

y 

z 
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Collecting like terms,                                                                                                                                                                    

                                                

Now, comparing this last equation with equation 2.1 (i.e. equating corresponding coefficients), we 

find that                                                                                                                                                             

          

                 

                                                                                                                                           2.5 

Can you solve the set of simultaneous equations 2.5? Try it out. At the end of it all, you should 

obtain something similar to this:                                                                                                                                                                                                 

    
 

     
   

                                                                                                                                                                      and 

    
 

  
 

where   
 

 
 

Putting these values in equation 2.4 we obtain                                                                                                                 

           
      

     
 

                                                                                                                                                                                    

     

                                                                                                                                                                                      

     

                                                                                                                                                                                                     

and        
  

 
  

 
   

  
  

     
 

                                                                                      2.6 

The set of equations 2.6 are called the Lorentz- Einstein relations or the so-called Lorentz 

transformations. They tell us how the (primed) coordinates of an event               in the    

frame are related to the coordinates of the same event (         as measured in the   frame when 

both frames are in relative motion at constant velocity. 

The inverse Lorentz transformation equations are obtained simply by replacing   by    in the 

corresponding transformation equations 2.6. If we do this, we will get the following set of 
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equations:                                                                                                                                                                           

            

 
        

     
 

                                                                                                                                             

     

                                                                                                                                                                                               

     

 and 

       
   

 
  

 
    

   

  

     
 

                                                                                       2.7 

Equation 2.7 allows us to transform from the primed frame to unprimed frame. 

Now, examine these transformation equations (2.6 and 2.7) and you will quickly discover that at 

non-relativistic velocities (at ordinary velocities), i.e. when         
 

 
   and    , so 

that        . This justifies our common experience that at ordinary velocities, the Lorentz 

transformation reduces to the Galilean transformation.   

2.2.4 Properties of the Lorentz Transformation 

We will now proceed to take a closer look at the Lorentz-Einstein transformation relations with a 

view to finding out the physical contents in them. 

1. The Relativity of Simultaneity  

The most striking feature of the Lorentz – Einstein relations is the transformation of time, which 

exhibits the relativity of simultaneity. We have already studied this in section 2.2.2. Here, we want 

to show how the concept is the direct consequence of the Lorentz – Einstein transformation.  We 

will again put forward a similar argument as before. 
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Consider two frames inertial frames of reference   and    which are in relative motion in the 

common positive x - direction with constant velocity  . Consider two events, such as the explosion 

of a pair of flash bulbs that occur simultaneously at points B and C in the    frame as shown in 

figure 2.4. For an observer at the mid-point A of the distance between B and C in this frame, the 

times    and     of the occurrence of the said events at B and C are equal i.e.    
    

                                                 

or the time interval between the events   
    

   .  

However, for an observer in the   frame, the times for the events    and    are related to those in 

the    frame by the Lorentz equations. Of course this makes sense from the point of the discussions 

we have had.  

Thus,        
   

  
 

 
   

and 

        
   

  
 

 
  

.                                                                                                    

The time interval between the two events for this observer is                                                                                        

          
   

  
 

 
      

   
  
 

 
  

     
    

  
 

 
   

    
      

. 

   
  

     

A C 
B 

   

  Fig. 2.4: Relativity of Simultaneity  
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You can see how we have arrived at our earlier conclusion that events which are simultaneous in 

one frame of reference are not necessarily simultaneous in another frame of reference in relative 

motion to it. Simultaneity has only a relative and not an absolute meaning. 

 2. Symmetry of the Relations: 

Carefully, examine equations 2.6 (and of course 2.7). You will realize that they are symmetric not 

only in   but also in   . Let us attempt to verify this assertion. Simply replace   in equation 2.6 by 
 

 
 

and    by 
  

 
  and then divide the second equation by  , that is,                                                                                     

        
 

 
                                                                                                                                                               

 and 

  

 
   

 

 
  

 

 
  

                                                                                                                        2.8               

 Therefore 

           

                                                                                                                                                        

    

       
  

 
  

                                                                                                                            2.9 

By comparison, we can easily see that 2.8 and 2.9 are symmetric if      and       . 

3. Significance of the Lorentz factor   

For    , the Lorentz factor   is always greater than unity. Besides, as    ,    .  Also,     

leads to an imaginary value of   and for    , Lorentz transformation reduces to Galilean 

transformation. The physical meaning of all of this is that the relative velocity of the two inertial 

frames of reference must be less than c, since finite real coordinates in one frame must correspond 

to finite real coordinates in any other frame. 

4. The Relationship between the Coordinates and the Differentials 

Since the standard Lorentz transformation is linear and homogeneous, the coordinate differences 

as well as the differentials satisfy the same transformation equations as the coordinates 

themselves. In other words,  
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           2.10                                                                                                                                                             

and 

              

                                                                                                                                                              

       

                                                                                                                                                                                       

       

                                                                                                                                                                                                                                   

          
  

 
  

                                                                                                                                  2.11 

2.2.5 Simultaneity and Synchronization of clocks 

Let us proceed to apply our discussion of the simultaneity to an interesting problem; 

synchronization of clocks. Now try to reflect on the process of setting the time on your wrist watch 

or clock. How do you do that? Well, you will say that is very simple. You simply compare the time 

on your clock with the time, say of a radio station such the BBC or a nearby clock, and then adjust 

the hands of your clock as appropriate.  

2.2.6 Invariance of Maxwell’s Equation  

Among the successes of the Lorentz –Einstein transformation, it must be able to demonstrate the 

invariance of both the mechanical and electromagnetic laws of physics. At the beginning of this unit 

we pointed out that any transformation that must replace the Galilean transformation must satisfy 

this requirement. We now proceed to demonstrate the invariance of Maxwell’s equations in the 

light of special relativity and Lorentz –Einstein transformation.    

The electromagnetic wave equation which is derived from Maxwell’s equations is 

     
   

 
    
   

  
    
   

  
 

  
    
   

 

                                                                   

    where    
 

      
           ms-1, the speed of all electromagnetic waves in free space. As in 

unit one, we restrict our equation to the x-component of the electric field just for simplicity of the 

proof. 
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Our objective here is to show that the above wave equation retains the same form when it is 

expressed in terms of the primed coordinates              .  

First of all, find the first partial derivatives of   ,    ,    and     w.r.t. x, y, z and t from the Lorentz 

equations as follows:                                                                                                                                                                        

   

  
  

       

  
   

and 

   

  
  

       

  
 

     

                                                                                                                        

   

  
  

     
 
   

  
 

    
 

 
 

and 

   

  
  

     
 
 
  

  
   

Also, 

   

  
 
   

  
   

and 

   

  
 
   

  
 
   

  
 
   

  
 
   

  
 
   

  
     

Now use the chain rule to write first derivative of the electric field component of the wave 

equation as                                                                                                                                                                                              

   
  

 
   
   

   

  
 
   
   

   

  
 
   
   

   

  
 
   
   

   

  
 

  
   
   

   
 

 

   
   

 

Differentiating w.r.t. x we obtain                                                                                                                                     

    
   

   
    
    

 
  

  
    
    

  
  

     
    
      

 

Similarly, if we differentiate w.r.t. t, we obtain                                                                                                        
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and 

    
   

      
    
    

 
    
    

     
    
      

 

                                                                   

Also, 

    
   

 
    
    

 

and 

    
   

 
    
    

 

Now, substituting these values in the wave equation, we obtain                                                                  

     
   

 
    
   

  
    
   

  
 

  
    
   

 
     

    
 
    

    
  
    

    
  

 

  
    

    
 

Thus, the equation of electromagnetic waves and consequently Maxwell’s equations of 

electromagnetic phenomena are invariant (retain the same form) under Lorentz transformation. 

We have come to the end of this unit except for a few self assessment questions to reinforce the 

concepts you have studied. You are now ready and equipped with sufficient information to attempt 

the next set of SAQs. Be sure you do them entirely on your own. You will be glad you did. None of 

them is difficult or outside what we have been discussing in this unit. When you have finished, turn 

to the solutions on page… and compare your results.         

SAQ 7 

An observer    in a space ship moving at a speed of 0.7c along the positive x-axis relative to a 

stationary observer   on earth determines the coordinates of a lightning bolt                                                                      

                               . What are the coordinates of the bolt as determined by the 

observer ? 

SAQ 8 

Show that if               and               are the coordinates of an event in    and the 

corresponding event in    respectively, then the expression    
     

     
     

       
  is 

invariant under the Lorentz transformation of the coordinates. 

SAQ 9 

Show that (i)               (ii)            

SAQ 10 
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An observer   in an   frame determines that two events are separated in space and time by 800m 

and        . At what speed must an observer    in the    frame be moving relative to   in order 

that the events are simultaneous to   ? 

SAQ 11 

A particle moves with constant velocity of     in the x-y plane relative to an observer   in the                    

 - frame. The trajectory of the particle makes an angle of     with the x-axis. Write down the 

equations of motion of the particles as determined by an observer    in the   -frame which is 

moving at a speed of 0.7c relative to   along their common positive x-axis.     

 Summary 

Here is the summary of the salient points we have discussed in this unit: 

 Einstein’s special theory of relativity consist of two postulates namely, 

Physical laws are the same for all inertial frames of reference. Consequently, all inertial frames are 

equivalent. 

The postulate stresses that it is impossible by means of any physical measurement to find a state of 

absolute motion or universal frame of reference. 

The velocity of light in free space has the same value in all inertial frames of reference and is 

independent of the motion of the source.  

The postulate emphasizes the fact that the speed of light c remains the limiting speed of all 

material particles. 

 Galilean transformation is inconsistent with the special theory of relativity at speeds close 

to the speed of light c. 

 Lorentz transformation is consistent with the theory of special relativity and provides a 

means of relating the coordinates of an event as viewed by observers in inertial frames of 

reference in relative motion at relativistic speeds. 

 At ordinary speeds, Lorentz transformation reduces to the Galilean transformation. 

 Events which are simultaneous in one frame of reference are not necessarily simultaneous 

in another frame of reference in relative motion to it. Simultaneity has only a relative and 

not an absolute meaning. 

Conclusion 

 We conclude this unit by emphasizing that Lorentz transformation provides a means of ensuring 

the invariance of physical equations whether they are mechanical or electromagnetic. 
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Tutor Marked Assignments 

1. Evaluate the values of 
 

    
  

  
 

 

for (i)         (ii)           

2. Show that            with the symbols having the meaning as defined in this unit. 

3. As determined by   a lightning bolt strikes at                               has a 

velocity of      along the x-axis of  . What are the space-time coordinates of the strike as 

determined by  ?  
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UNIT3: KINEMATIC CONSEQUENCES OF LORENTZ TRANSFORMATION  
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Summary 
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Tutor Marked Assignment 

References and Further Reading  

3.0 Introduction 

In the previous unit, we saw how Einstein’s postulates required the modification of our 

consideration of the fundamental nature of space and time.   

In this unit you are going to learn about some of the kinematical consequences of the special theory 

of relativity. In other words, we are interested in the physical consequences of replacing the 

Galilean with the Lorentz – Einstein transformation when motions at relativistic speeds are 

involved. In particular, we will discuss how these transformations effect the measurements of 

length and time intervals by observers in different frames of reference.   

 The transformation equations you have studied in the previous unit will come handy here, so you 

will do well to take a brief look at them before proceeding with this discussion.     

3.1 Objectives 

At the end of this unit, you should be able to   

a. Discuss and perform simple calculations involving relativistic length contraction 

b. Discuss and perform simple calculations involving relativistic time dilation 

c. Derive the equations for the transformation of velocity 
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d. Perform simple calculations involving velocity transformation. 

e. Discuss the twin paradox 

f. Apply the concept of velocity of addition to discuss relativistic Doppler effect 

g. Perform simple calculations involving relativistic Doppler effect 

3.2 Main Body 

3.2.1 Length contraction 

You already know how to measure the length of a rod from your school practical physics. 

Remember that you simply had to take the metre scale readings against the two ends of the rod 

and find the difference. 

In practice, the length of an object which is at rest with respect to an observer   in the  - frame is 

simply the difference between the spatial coordinates of its end-points. This is illustrated in figure 

3.1   

  

The length               is called the rest length, since the body is at rest relative to the 

observer in the  -frame. 

To an observer   in the    - frame, which is in relative motion to  - frame at a relativistic velocity   

along the common positive  -direction, the coordinates the ends of the rod are measured as   
  

and   
 . Now the measurements in the two frames are related through the Lorentz transformation 

as                                                                                                                                                                                                          

       
       and        

         

S 

     

  

   
   

   

           

     

  

Figure 3.1:    is the difference between 
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So that, 

             
    

      
 

     
 

 

   
  

  

 

    

where   is the length of the object as measured by    

Thus, 

               
  

  
 

                                                                                                                                           3.1 

How do you interpret this equation? Well, notice that L is less than one, since the Lorentz factor is 

   
  

  
  is less than one. Why? This is because the Lorentz factor i.e.    

  

  
 decreases as   

increases. Thus, to the observer in motion, the object appears to be shortened in the direction of 

motion. You must note that the rod appears shortened only if the direction of motion is parallel to 

its length. This shortening of length is called Lorentz - FitzGerald contraction. This effect is 

reciprocal. In other words,    

                                                                                                                                           

              
  

  
 

Thus, objects appear to be longest when they are at rest relative to the observer. When it is in 

motion, it appears to be contracted in the direction of motion by the factor      .  However, 

because      and     are perpendicular to the motion, the apparent dimensions of the object 

remain unchanged in a direction perpendicular to its motion.  Let us make a generalized statement 

of the concept we have introduced here: 

The length of an object is a maximum in a frame of reference relative to which it is at rest and its 

length appears to be contracted in a frame of reference relative to which it is in motion.  

The length of the object measured in the frame of reference relative to which it is at rest is called 

the proper length. 

One more point and then we move to the next sub-section. Notice that we have been a bit 

economical with the use of terms here by saying that “the rod appears to be shortened.”In reality, 

nothing has happened to the rod. The rod appears shorter because, from velocity perspective, the 

eye of the observer can only see what, in the moving rod’s frame, could be described as later 
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events, from behind. The result is that the rear of the rod appears to be closer to its front. If the 

eye of the observer was able to move along with the rod at the same relativistic speed, the proper 

length of the rod would be restored.  So we see here that in relativity, there is a world of difference 

between what we see at an instance of time and what we know has actually taken place. What we 

see is a composite of events that occurred progressively earlier as they occurred farther and farther 

away. 

3.2.2 Time Dilation 

When we say that something is dilated, we mean that it is enlarged. With that in mind, let us 

consider the problem of measurement of the time interval of two events as measured in two 

reference frames which are in relative motion at a relativistic velocity. 

Suppose we have a clock at a fixed point   in the   - frame which is in relative motion to the  -

frame at a constant velocity   along the common positive x-axis. This clock is used to measure the 

interval between two events which occur at the same position    at different instants of time   
  

and   
 . The time interval between these events is   

    
     . 

Now to an observer in the  -frame, the two events appear to occur at a fixed position   at different 

instants of time    and   . The time interval is         . 

The relationship between the times of occurrence of the events in the two frames is given in terms 

of the Lorentz transformation as                                                                                                                               

       
   

  

 
  

and 

       
   

  

 
  

                                                                                                                                                                  

          
    

   

 i.e.  

        

 or  

   
   

     
 

                                                                                                                                                                                              

or 
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                                                                                                                                               3.2 

Equation 3.2 summarizes the fact that as   increases,   and therefore    increases. The time 

measured by observer   in the  -frame is longer. This is known as time dilation. Now, the observer 

   in the   -frame is at rest relative to the clock and the occurrences of the events at the same 

position. The time of the occurrence   of the events measured by him (   ) is known as the proper 

time. 

We shall generalize by saying that a clock measures longer time interval of events in a frame of 

reference relative to which it is in motion than a clock in a frame of reference relative to which it at 

rest or a clock moving with uniform velocity v through an inertial frame S runs slow relative to the 

standard clock at rest in S.   

The fastest rate (smallest time interval   ) is measured by the clock in the rest frame and is called 

the proper time. 

You have to note that that, like length contraction, time dilation is also a ‘velocity perspective” 

effect. In reality, nothing has happened to the clock in motion. If the eyes of the observer were able 

to move at the same velocity of the clock, everything would return to normal.  

But then, are there any physical manifestations of time dilation (and length contraction) in nature? 

Or is there any empirical evidence of these concepts? Well, yes. Have you heard of    mesons (mu 

mesons or muons)?  You will certainly discuss the properties of these particles in greater detail in 

your Modern Physics or Elementary Particle Physics course. They are unstable elementary particles 

with very short life span (about                      ). So, they decay shortly after they come 

into existence. Typical speeds of muons are in the neighbourhood of the speed of light (the speed 

of muon is about              ). Now, muons are created in the upper atmosphere at an 

altitude of about an earth radius by incoming cosmic rays, yet a profuse supply of them reaches the 

earth at sea level. How come? In a time of         a muon travelling at a speed of       

        can only cover       of the altitude. So, if they are found at sea level, then we have an 

issue to resolve here. Let us look at the problem from the reference frame of the muon. Its lifetime 

   in this frame is unaffected by the motion, right? In the frame of reference of an observer on the 

ground the time, we call    appears to be dilated by the factor                                                                                                                                        

   
  

   
  

  

 
       

   
         

  

 

             .  

                                                                                                                   In this time, the muon will travel a 
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distance                                                                                                                                                                                            

                                                      . 

Thus, despite its brief life span, the muon makes it to the earth from the altitude where it is 

created. 

Now, rework the problem from the perspective of length contraction and satisfy yourself that the 

results are the same. 

There is another striking evidence of time dilation called the relativistic focusing of electrically 

charged particles, which plays a role in operation of high-energy particle accelerators. This and 

others will be discussed in greater detail when we consider experimental evidences of the theory of 

special relativity elsewhere in this course.  

Now, try out the following SAQs. 

SAQ 12 

 Calculate the minimum speed required for muons produced at a height of 400 km to reach the 

surface of the surface of the Earth if their life time is 2.2μs 

SAQ 13 

Obtain the volume of a cube, the proper length of each edge of which is    when it is moving with a 

velocity   along its edges 

SAQ 14 

Calculate the percentage contraction of a rod moving with a velocity of       in a direction inclined 

at     to its own length. 

SAQ 15 

A pi-meson (pion) has a mean life time of         when measured at rest. How far does it go 

before decaying into another particle if its speed         ? 

Let us proceed to discuss yet another consequence of the Lorentz coordinate transformation. How 

can we obtain the velocity of an object in a frame of reference as measured by an observer in 

another frame of reference in relative motion at constant velocity to it? Turn to the next sub-

section for a discussion on this. 
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3.2.3 Velocity Addition 

 

 Now, consider the particle in the frame of reference    which is in uniform motion with a velocity   

relative to the reference   as shown in figure 3.2. The particle is in motion with velocity    as 

measured by observer    who is at rest in the   - frame. We want to find out the velocity of the 

particle as measured by observer   in the  -frame. Let us be more specific. Suppose the particle is 

a photon of light emitted in the   - frame in the   - direction. Then, as measured by   in the          

 -frame, the velocity of the particle will be    , which clearly contradicts the postulate of special 

relativity, namely that the speed of light in free space is independent of the speed of its source.   

Now, back to the problem at hand, we see that the observers   in the  -frame and    in the   - 

frame will measure the components of the velocity vector   of the particle as                                                  

   
  

  
 

,  

   
  

  
 

,  

   
  

  
 

and  

  
  

   

   
 

Particle 

S 

     

  

   
   

   

       

  

Figure 3.2: Particle’s velocity V has components in x, y and z - directions 
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respectively. 

To properly transform the velocity of the particle from one frame to another, we have to fall back 

on Lorentz coordinate transformation, namely 

           

 
      

     
 

                                                                                                                                                                                    

     

                                                                                                                                                                                      

     

                                                                                                                                                                                                     

and  

       
  

 
  

   
  
  

     
 

  

where 

   
 

 
 

and  

  
 

     
 

Differentiating these equations and noting that   is constant, we obtain                                              
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and 

    
   

   
  

     
 

                                                                                                                3.3 

  
  

      

   
   
  

 

 

  
    

  
 
  
  
  

 

 
    

  
 
  
  

 

                                            

Thus,  

  
  

    

  
 
  
  

 

                                                                                               3.4 

  
  

  

   
   
  

     

 

 

  
  

 

     
   

 
  
  
   

 

 
       

  
 
  
  

 

                                                                                                                                   

Thus, 

  
  

       

  
 
  
  

 

                                                                                                                              3.5 
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Thus, 

  
  

       

  
 
  
  

 

                                                                                                                                                    3.6                     

Equations 3.3 through 3.5 are the relativistic velocity transformation equations. The corresponding 

inverse velocity transformation equation are obtained if you simply replace   by    in the above 

set of equations, namely 

   
  
   

  
 
  
   

 

                                                                                                                    3.7     

   
  
      

  
 
  
   

 

                                                                                                                                3.8                                                                                           

   
  
      

  
 
  
   

 

                                                                                                                              3.9 

If you now let your   
   , i.e. if the particle emitted in the   -frame travels at the speed of light   

in the  -direction as measured by the observer    in the    frame, then the observer O in the  -

frame will measure the velocity as                                            
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Therefore, both observers measure the same value of the speed of light in agreement with the 

postulate of the special relativity. 

You must remember, in all of this discussion, that velocity addition formulae are applicable only 

when the two relative velocities are parallel to each other. 

One final note; if   is very small in comparison with  , i.e.    , we obtain back our classical, 

Galilean transformation, namely                                                                                                                                         

  
       

                                                                                                                                                                                                                                

  
     

 and 

  
     

The concept you have just studied will come in handy when we will be discussing the concept of 

relativistic Doppler Effect. So, be sure you are quite conversant with it. For now, we will make do 

with a few self assessment questions to test your understanding of all we have been discussing 

here. 

SAQ 16 

A spaceship moving away from the earth at speed of 0.80c fires a missile parallel to its direction of 

motion. The missile moves at a speed of 0.60c relative to the spaceship. What is the speed of the 

missile as measured by an observer on Earth? 

SAQ 17 

In an experiment, a radioactive nucleus moving at a velocity of 0.40c relative to the laboratory 

frame emits a β-particle with a velocity of 0.90c in the direction of and relative to the nucleus. 

What is the velocity of the β-particle as measured by an experiment in the laboratory?  

SAQ 18  

   Two spaceships approach the Earth from opposite directions. According to an observer on the 

Earth, ship A is moving at a speed of 0.753c and ship B at a speed of 0.851c. What is the speed of 

ship A as observed from ship B? 
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When you have finished turn to the answer page and follow through the suggested solutions to 

effect corrections where you have gone wrong. 

We want to discuss something you are going to find absolutely fascinating. It is called the twin 

paradox or the paradox of Langevin and is also the consequence of the transformations we have 

been discussing so far. So, move on to the next sub-section. 

3.2.4 Twin Paradox 

Consider two twin brothers, Taiwo and Kehinde, born at the same time. Later on in life when they 

are grown up, Kehinde decides to embark on a round trip to space, flying off at a constant 

relativistic velocity (a velocity close to that of light), leaving Taiwo behind on Earth. Now, based on 

their knowledge of relativity, Taiwo sees his brother’s clock as running slowly and expects him to be 

younger when he returns. Of course, Kehinde sees his own clock which has remained stationary 

relative to him in his moving frame of reference as running normally.  

On the other hand, Kehinde sees his brother Taiwo as moving relative to him in opposite direction 

with the same velocity, his clock also running slowly and therefore expects him to be younger on 

his return. Again, relative to Taiwo, his earth clock also runs normally. 

Yet, when Kehinde finally arrives, both brothers find and agree that Kehinde is younger. The 

paradox is that each twin expects the other to be younger and this arises from the fact that motion 

is considered to be relative and not absolute.  

So, how do we resolve the paradox? Well, the disagreement between the twins has to do with the 

fact that Kehinde considers his twin brother Taiwo to be in motion relative to him and by symmetry 

of the situation his brother should be younger. But, to achieve a constant velocity, Kehinde has to 

start out on his journey; he is momentarily accelerated and feels a sudden jerk backwards as he 

takes off. In his round trip, Kehinde also has to return; he is swerved to the sides of the ship as it 

makes a turn toward his brother or momentarily reverses its direction. Finally, Kehinde is 

decelerated to rest on his return to his brother and is jerked forward as he does so. All these effects 

of the stages of Kehinde’s motion are not felt  by Taiwo. While Taiwo has been observing his 

brother’s motion from a single inertial frame of reference, Kehinde has been jumping from one 

inertial frame to another. The asymmetry in their ages arises from this fact.  Even if the outward 

acceleration and final deceleration were seen to be symmetrical by the two observers, the 

acceleration or deceleration involve in returning is not. So, there is no doubt that it is Kehinde and 

not Taiwo that was in motion all along and so all observers agree to the fact that it is Kehinde’s 

clock that ran slowly and so he is younger.    

 3.2.5 Relativistic Doppler Effect 

At this point in your study of Physics, you are familiar with the concept of Doppler effect. You have 

experienced this phenomenon before. As a car or an airplane approaches you, the pitch 
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(frequency) of its sound rises and as it recedes (moves away from you) the pitch of its sound falls. 

So we can say that, for mechanical waves (waves that require elastic material media for their 

propagation), when the source of wave and an observer are in relative motion with respect to the 

material medium in which the wave propagates, the frequency of the waves observed is different 

from the frequency of the source. You will recall that the relationship between the frequencies   

observed by the observer and    emitted by source is given by the Doppler equation as                                 

     
    
    

  

                                                                                                       

or  

     
      

      
  

                                                                                                                                      3.10                                                                           

where   is the velocity of the wave relative to the medium,    the velocity of the source relative to 

the medium and    the velocity of the observer relative to the medium. Note here that the source 

and the observer are assumed to move along the same straight line. In the more general case 

where the source and the observer move at an angle θ relative to each other, it could be shown 

that the frequencies are related by the equation                                                                                          

     
           

      
  

                                                                                                                                    3.11 

where           is relative the velocity between the observer and the source. 

If       i.e. negative, then the observer is approaching the source and if      , i.e., then the 

observer is receding from the source.  

Armed with these reminders, you are ready to for the task at hand, namely Doppler effect in the 

case where the source or the observer is moving at relativistic speed. Doppler effect can be 

observed with all kinds of waves whether mechanical or electromagnetic. In classical Doppler 

effect, it makes the difference whether the source, the observer or neither were at rest relative to 

the material medium. In other words, the Doppler shift for the motion of the source is different 

from that of the motion of the observer.  For instance, suppose a source moving at a constant 

velocity of        toward and observer at rest emits sound waves having the frequency 

of          . The medium in this case is still air in which we assume the velocity of propagation 

of sound waves to be        . The frequency    of the sound detected by the observer will 

be        . If, on the other hand, the source is at rest and the observer is approaching it with a 

velocity of        the frequency     of the sound detected by the observer is        . Still, if the 

source and the observer approach each other with a velocity of        each, i.e. their relative 
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velocity of approach is       , then the frequency    of the sound detected by the observer is 

      . It is clear that it is not the relative velocity of the observer and the source that determines 

the Doppler shift; rather it is the velocity of each with respect to the medium.  

 In the case of electromagnetic waves, the points you must note are as follows: 

1. Electromagnetic waves (light in our discussion) do not consist of matter in motion, that is, they 

do not require any material media for their propagation. Therefore, the velocity of the source 

relative to the medium does not come into the discussion. 

2. The velocity of propagation c is constant and independent of the motion of the source or the 

observers as stipulated by the postulate of special relativity.  

3. Doppler effect for electromagnetic waves must be analyzed by means of the principle of 

relativity in which only he relative motion between the source and the observer is involved.  

Now, let us consider a plane harmonic electromagnetic wave emitted in an inertial frame of 

reference    which is in motion with a constant velocity   in the positive   direction relative to 

another inertial reference frame  . An observer    in    frame will describe the wave by 

               multiplied by suitable amplitude. Similarly, observer   in the   frame describes it 

by           . In compliance with the theory of relativity, the phase of the wave must of 

necessity be invariant. Thus, we write  

                                                                                                                                                                               

i.e. 

        
      

   
  

  

   
   

  
  
 

   
  

  

 
     

   
  

  

  
      

   
  

  

  

   
         

   
  

  

 

and   
      

   
  

  

                                                                                 3.12 

 Now,     .  

Can you show this? Try it out. Just remember that      ,      and   
  

 
     

Therefore, multiplying both sides of the first of equations 3.12 by  , we have 
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                                                                                                                                  3.13                 

Equation 3.13 is the formula for the relativistic Doppler shift in the case in which the waves are 

observed in a direction parallel to  . In the general case in which the waves are observed at an 

angle θ to  , we can modify the formula to read                                                                                                                                                    

   
         

         
 

                                                                                                                                  3.14           

Note: 

1.  The formula, unlike its classical counterpart, does not make any distinction between the source 

motion and the observer motion. Doppler effect depends only on the relative motion between the 

source and the observer. 

2. In equations 3.13 and 3.14, it is assumed that the source and the observer are receding from 

each other. In this case        and we can write the equation in the form                                                                      

   
         

     
   

     

     
   

   

   
 

3. If the source and the observer are approaching each other, then      and we use the equation 

in the form 
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4. If the wave is observed transverse to the direction of motion of the source, then       and we 

use the equation in the form               

With these hints at the back of your mind, attempt the following SAQs 

SAQ 1 

One of the strongest emission lines observed from distant galaxies comes from hydrogen and has a 

wavelength of 122 nm (in the ultraviolet region). 

a. How fast must a galaxy be moving away for us in order for the line to be observed in the visible 

region at 366 nm? 

 b. What would be the wavelength of the line if that galaxy were moving toward us at the same 

speed? 

SAQ 2 

A physics professor claims in court that the reason he went through the red light (          

was that, due to his motion, the red colour was Doppler shifted to green           . How fast 

was he going? 

SAQ 3 

FRSC speed trap radar operating at a frequency of             detects an oncoming car. The 

patrol officer observes a frequency shift of         . What is the speed of the car?  

We have come to the end of this unit. The TMAs are exactly of the kind you have just done in the 

SAQs. No tricks. Finish them off.  

Summary  

The summary of all we have learnt in this unit here. 

The kinematic consequences of the theory of special relatively are: 

 Length contraction: - To the observer in motion, objects appear to be shortened in the 

direction of motion. Objects appear shortened only if the direction of motion is parallel to 

its length. Objects appear to be longest when they are at rest relative to the observer. 

 Time dilation: - A clock measures longer time interval of events in a frame of reference 

relative to which it is in motion than a clock in a frame of reference relative to which it at 

rest. The fastest rate (smallest time interval) is measured by the clock in the rest frame and 

is called the proper time. 

 Velocity Addition: - Relativistic velocity addition relations are obtained by taking the 

differentials of the corresponding Lorentz coordinate transformation equations. 
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 Twin paradox is a consequence of time dilation or length contraction and is resolved by 

noting that that one of the twins that embarked on the space trip at relativistic velocity has 

to return to make comparison of clocks. 

  Relativistic Doppler effect:- Doppler effect for electromagnetic waves must be analyzed by 

means of the principle of relativity in which only he relative motion between the source and 

the observer is involved. 

 

Conclusion 

 Length contraction, time dilation velocity transformation and relativistic Doppler effect are the 

direct kinematical consequences and application of the Lorentz-FitzGerald coordinate 

transformation.  

 Tutor Marked Assignments 

1. Calculate the percentage contraction of a rod moving with a velocity      in a direction inclined 

at     to its own length.  

Ans.    

2. How fast would a rock ship have to go relative to an observer for its length to be contracted to 

    of its length when at rest?  

Ans.           

3. Determine the time (as measured by a clock at rest on the rocket) taken by a rocket to reach a 

distant star and return to the earth with constant velocity   equal to           if the distance of 

the star is 4 light years. 

Ans.      year 

4. How fast would a rocket ship have to go for each year on the ship to correspond to two years on 

the earth? 

Ans.            

5. A 40-year-old astronaut marries a 20-year-old girl just before setting out on a space voyage. 

When he returns to earth, she is 35 and he is 42. How long was he gone according to earth clocks 

and what was his average speed during the trip?  

6. According to an observer on the earth, a spaceship is going east with a speed        and is going 

to collide head on in     with a comet going west at        (a) How fast does the spacecraft see the 
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comet to be approaching? (b) According to their clocks, hoe much time do they have to get out of 

the way? 

Ans.(a)          (b) 4.    

7. A distant galaxy is moving away from Earth at such high speed that the blue hydrogen line at a 

wavelength of        is recorded at        in the red range of the spectrum. What is the speed 

of the galaxy relative to the Earth? 

Ans.             
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MODULE 2: CONSEQUENCES OF THE TRANSFORMATIONS OF MOMNETUM AND ENERGY 

UNIT 1: Relativity of Mass  

UNIT2: Relativistic Energy 

UNIT3: Experimental Verification of Special Relativity 

UNIT 1: Relativity of Mass  

CONTENTS  

1.0 Introduction. 

1.2 Objectives 

1.3.0 Variation of Mass with Velocity 

1.3.1 Momentum and Force in Relativistic Mechanics  

Summary 

Conclusion 

Tutor Marked Assignments 

References 

1.0 Introduction 

Up to this moment, you have studied only the kinematic consequences of the relativistic motion. In 

mechanics, a complete discussion of motion must include the description of the forces which bring 

about the observed change of states of motion.  Newton’s laws together with the laws of 

conservation of momentum and energy provide the platform on which classical mechanics rests.  

You will remember, from your study of elementary mechanics, that at ordinary speeds, it is 

assumed that the mass of an object in motion does vary with its speed. To that extent, Newton’s 

laws of motion are correct. In the realms of relativistic speeds, can we still depend on this 

assumption?  In this unit, we look into this matter.  You will discover that, in fact, at relativistic 

speeds the mass of an object in motion is a function of its speed. 

1.1 Objective 

At the end of this unit, you should be able to 

 Derive the formula for the variation of mass with velocity  

 Perform simple calculations involving the use of the formula for the variation of mass with velocity 

 Sketch the curve of mass as a function of relativistic speed 
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 Discuss the concept of force and Newton’s second law in relativistic mechanics. 

 

1.3.0 Variation of Mass with Velocity 

Our intention is to consider the effect of very high speeds on the mass and consequently 

momentum and force acting on an object. Talking about momentum, reminds you of Newton’s 

second law of motion. This law explains the relationship between the two quantities. Do you 

remember the statement of this law? It says the rate of change of momentum is directly 

proportional to the applied force. In mathematical terms we write this as    
       

  
.  For constant 

mass m, we obtain        or    
  

 
. But we know that        so that as    ,    . So, 

classically, if a constant force is applied on an object for a sufficiently long time, its velocity 

increases infinitely. This clearly contradicts the theory of special relativity as the velocity of an 

object is prevented from reaching or exceeding the velocity of light in relativistic mechanics. So at 

very high velocities, something is wrong with       . How do get around this difficulty? How 

about making mass a function of velocity? That is       , provided        as    . With 

this assumption, let us investigate one of the basic laws of Newtonian mechanics that we would 

like to preserve in the relativistic range, namely, the law of conservation of linear momentum.  

 

Consider an elastic collision of two identical balls    and    each of mass    measured in a frame 

of reference in which they were at rest. Two observers    and    are in motion at a very high 

(relativistic) velocity   in opposite direction parallel to the x-axis. The situation is illustrated in 

figure 1.1. Observer   carries with him ball   while observer   carries with him ball   . While  

   

   

   

  

   

  

D 

  

  

  

  

   

   

  

Figure 1.1 Glancing collision of    and 
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passing each other, each observer throws his ball perpendicular to his direction of motion with a 

velocity    (where     ) such that a glancing collision of the balls takes place at point D, which is 

mid-way between the two observers and rebounds with the same velocity and at equal angles to 

the x-axis (not shown). As seen by each observer, the path of motion of his ball is strictly   . Thus, 

as seen by an observer at rest at D in the xyz frame, the paths of the balls are as shown in the 

figure. For him,   

                                        

                                    .  

                        
                      

   

In the x-direction, he sees the balls approaching each other with equal velocity   before collision 

and recede from each other after collision. Thus he writes                                                              

                                                                                                                                    

                         

               =              

Therefore for this observer, momentum is conserved. 

Now, let us take a look at the collision from the view-point of observer   . He sees himself to be at 

rest in his frame of reference and observer   approaching with velocity  . Remember that   is very 

large. The collision as seen by observer    is shown in figure 1.3. For him, his ball moves strictly in 

the    direction with velocity    so that       and        ,     and     being the x and y 

   

   

    

  

D 

  

  

   

   

   

 

   

 

   

 

Figure 1.2: Glancing collision as seen by     
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components of the velocity    of the ball   . On the other hand, he sees ball    move with velocity 

   whose x and y components are     and     respectively, with     reversed after collision. He 

writes the law of conservation of the y- directed momentum as                                            

                      
                      

  

                            

  2           

    
    

   
 

Notice that although he started with equal masses    for both balls, he reasons that the mass of 

ball    may have changed and writes   for it since it is moving with relativistic velocity  . He 

however retains    for the ball    because it is moving slowly with velocity    so that its mass is 

essentially constant. Now, remember that observer    threw his ball perpendicular to his direction 

of motion with velocity    as measured by him. But observer    measures this as     because    is 

moving at relativistic speed relative to him. So, we will be justified to use the velocity 

transformation equation 3.8, namely,    
  
      

  
 

  
  
 . In this case,        ,    

     and 

  
       . Making these substitutions, we obtain 

     
      

 

  
 

  
   

          

i.e.                                                                         

Substituting this for  , we have,                                                                                                                                    

  
  

     
 

or 

   
  

        
 

                                                                                                                      2.1 

The mass   is called the relativistic mass.    is called the rest mass. Let us examine its physical 

significance of equation 2.1.   

1. First of all we note that by the symmetry of the problem, observer    see a similar situation 

and concludes that the mass of the ball    is also given by equation 2.1.  

2. Secondly, at very high (relativistic) velocity, an object’s mass as seen by an observer 

increases with increase in velocity. As    ,    . What this means is that the inertia of 

the object increases with increase in velocity at relativistic speeds. Because the velocity of 
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an object is prevented from reaching the velocity of light, the mass and therefore 

momentum of an object cannot increases infinitely. Also, as    ,     .  

It is instructive to examine the variation of      with     graphically as illustrated in 

figure 1.3.     

 

As you can see from the graph, the mass is constant at   when   is small. For a velocity        , 

the relativistic mass is only      greater than the rest mass   . However, as   increases the rest 

mass increases rapidly. At a velocity of      , the relativistic mass is over 100% greater than the rest 

mass. It is obvious that velocity of the object cannot be up to or exceed  . 

 

 1.3.1 Momentum and Force in Relativistic Mechanics 

We may ask. What is the correct way of representing momentum and force in the relativistic 

range? Well, first of all you will have to note carefully that at very high velocities force could no 

longer be represented by Newton’s second law as      since   is not constant but varies with 

velocity. We emphasize here that      is not correct in the relativistic range. The best we can 

do is to leave the relation in the form    
       

  
. This implies     

  

  
  

  

  
 and 

  

  
 does not 

vanish if the velocity of the body varies with time. The resultant force is always equal to the rate of 

change of momentum. 

 Then, provided   is given by our equation 2.1, momentum can be written as       . Thus, for 

very high (relativistic velocity), momentum is correctly represented by                                                                                                                                                                                                                      

   
     

        
                                                                                                                                             2.2 

     

    

1 

2 

3 

0.5 

4 

0 

1.0 

Figure 1.3: Variation of mass with velocity  
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In terms of components, we can write equation 2.2 in the form  

   
    

        
 ,    

    

        
 and    

    

        
                                                                          2.3   

where      
    

    
  

Here is another care you have to take. The velocity   that appears in the denominator of these 

expressions is always the velocity of the object as measured from an inertial frame of reference. It 

is not the velocity of an inertial frame itself. The velocity in the numerator can be any of the 

components of the velocity vector. 

Newton’s second law can then be written in the form 

    
   

  
 

 

  
 

     

        
  

 

  
      

As you can easily verify from our analysis so far, if the net force acting on a system of particles is 

zero, momentum in relativistic range is conserved provided the mass of a particle is given by 

equation 2.2. 

SAQ 1 

How fast must a particle be accelerated by a linear accelerator for its mass to be 50% larger than its 

rest mass? 

SAQ 2 

Calculate the momentum of a proton moving at a speed of 0.90c. 

Summary 

We summarize all we have studied in this unit as follows: 

 At ordinary speeds Newton’s second law in the form      is correct but at very high 

(relativistic) speeds this form is not correct.  

 The mass of a body moving at a speed   relative to an observer is larger than its mass when it 

is at rest relative to the observer (rest mass) by the factor            

 The phenomenon of the increase in mass with speed is reciprocal. Two observers in inertial 

frames of reference in relative motion at constant velocity will observe the same effect. 

 Relativistic mass increases are significant only at speeds close to the speed of light. 

 At relativistic speeds Newton’s second in the form    
 

  
      provided    

  

        
  

 The momentum of a particle in motion at relativistic velocity is given by    
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 In the relativistic range, momentum is conserved provided the mass of the object is given by 

the relativistic mass. 

Conclusion 

We conclude this unit by reiterating that at speed close to the speed of light, the mass of an object 

in motion is a function of its velocity and Newtonian mechanics in the relativistic range is correct 

only if we take into account the phenomenon of the relativistic mass.  

Tutor Marked Assignments 

1. How fast must an electron move if it mass must be equal to the rest mass of an alpha 

particle? 

2. A man whose mass at rest on the ground equals 100 kg is in flight in a rocket ship moving at 

a speed of            . Determine his mass while in flight as measured by an observer 

on earth. 

3. What is the momentum of an electron moving at a speed of      ?   
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2.0 Introduction 

In the previous unit we looked into the definition of momentum and force in the realms of 

relativistic velocity. We saw there that the mass of an object in motion at relativistic velocity was a 

function of the velocity. We spelt out the condition under which the principle of conservation of 

linear momentum could be preserved in the relativistic range. You know that work is done on an 

object when it is displaced in the direction of the force acting on it. This work is retained in the 

system as the capacity to do an equal amount of work by the body and this is what you refer to as 

the energy of the system. We now proceed in this unit to examine the concept of energy and the 

principle of conservation of energy for objects that are in motion at relativistic speeds. 

 2.2 Objectives 

At the end of this unit, you should be able to  

 Derive the equation for the relativistic work and kinetic energy 

 Discuss the mass-energy relationship 

 Carry out calculations involving the relativistic mass-energy conversion 

 Derive the relationship total energy, momentum and the rest energy of a particle 

 Carry out momentum and energy transformation 

2.3.0 Relativistic Work and Energy 
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You are familiar with the definition of energy as the capacity to work. Work is said to be done on an 

object when a forces displaces it in its (force’s) direction. Consider an element of work    done on 

a particle when a force    moves it through an element of displacement    . We can write this as  

                

In the relativistic range, the force is given as 

   
 

  
 

   

        
  

Using your product rule you can write this as                                                                                                                 

  
  

        

  

  
  

 

  
 

  

        
  

                                                                                                                                                 

 
  

        

  

  
    

    

            
  

  
 

 
  

            
           

  

  
 
  

  
 

                                                                                                                                          

 
  

            
  

  
 

  

Putting this result in the work equation, we obtain                                                                                                 

        
  

            
  

  
  

 

 

 

 

 

 Now, using the chain rule, you can write                                                                                                                             

  

  
   

  

  

  

  
    

  

  
       

   

   
   

            
  

 

 

 

Integrating by parts, we have                                                                                                                                                   
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                                                                                                                       2.1   

2.1 is the equation of relativistic work. It tells us that we cannot accelerate an object to speeds up 

to or greater than the speed of light. If    , then    . The amount of work required to attain 

this status becomes infinite and impossible to furnish.  

If, we ignore dissipative (frictional) forces and assume constant potential energy for the body, then 

the work-energy theorem (a form conservation of energy principle) tells us that the work done on 

the body appears as its kinetic energy. Thus, if we write T for the kinetic energy, we obtain  

         
  

                                                                                                                           2.2 

As always, you should demand that equation 2.2 be consistent with the definition of kinetic energy 

as we all know it at ordinary velocities. Thus, in the limit as      , we can use the series 

expansion formula                                                                                                                                                            
 

    
   

 

 
  

 

 
     

Here        . Our relativistic mass formula could then be approximated as                                                     

  
  

         
      

 

 
 
 

 
 
 

     
 

 
   

 

 
 
 

 

Putting this approximate value in equation 2.2, we obtain 

      
 

 
   

 

 
 
 

       
     

    
 

 
 
 

 
 
 

    
 

 
   

  

       for 

       

 Therefore, equation 2.2 correctly represents kinetic energy at all velocities. 

 

2.3.1 Mass-Energy Equivalence 

If we write equation 2.2 out in the form: 
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we easily observe that kinetic energy T is a function of velocity  . Also, since T is energy, the other 

two terms on the right hand side of the equation are also energy terms and we can write  

              , 

or                                                                                                                           2.3  

where      
   

 

        
     and         

  which the value of      for    .   

      is the total energy of the particle moving at a relativistic speed  ,      is the energy of the 

particle when it is at rest i.e.     . Further more if we consider each term individually, we write 

        
                                                                                                                                 2.4 

                                                                                                                                          2.5        

 These are the famous Einstein’s mass-energy equations. It is clear from these equations that mass 

and energy are related by the factor    and are equivalent. It implies that the principle of 

conservation of mass or energy no longer makes sense as the conservation of mass-energy does.  

Better still, if we subtract 2.4 from 2.5, we obtain  

                 
  

 or 

        

                                                                                                                             2.6                                                           

where           

Equation 2.6 states that a change in energy leads to a corresponding change in mass. More 

generally, it says that when mass is destroyed, it appears as energy and also if energy disappears, it 

emerges as mass.   

It is an irony of intellectual feat that Einstein, a pacifist, was the one who wrote the equation that 

was later to give an insight into the design of atomic and nuclear bombs, which are undoubtedly 

the world’s most potent weapons of mass destruction. What equation 2.6 suggests is that if a 

heavy particle splits into smaller parts, it will release a tremendous amount of energy. This is the 

basis of nuclear fission as a source of energy. On the other hand, when lighter particles fuse 

together to form a heavier one, energy is also released. This is the basis of fusion reaction that is 

responsible for the tremendous energy radiated by the sun. 

If the particle has potential energy V, we could write a more general equation of the form  

           
                                                                                                                2.7 
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Equation 2.7 emphasizes the fact that the relativistic mass is a direct measure of the total energy of 

the particle. 

 Another important information we could obtain from equation 2.2 is that momentum is 

conserved. As such it is useful to express the total energy in terms of momentum rather than 

energy. Recall that   

  
  

        
 

          

Squaring both sides of the equation, we have                             

   
  

 

         
 

              
  

        

Multiplying both sides by   , we obtain 

              
    

Now, we use that fact that      ,       
  and      write this equation as                                          

           
  

                                                                                                                                2.8 

Equation 2.8 is the relationship between the momentum and energy of a particle. It explains why, 

in relativistic theory, we must replace the conservation of total energy. We can then state that, as 

viewed from a specified frame of reference, the total relativistic energy of an isolated system 

remains constant.  

 2.3.2 Transformation of Momentum and Energy 

We want to conclude this unit with a look at the concepts of momentum and relativistic energy as 

described by two observers in relative motion at a relativistic velocity. As you may have observed, 

what we may be describing as the rest mass energy of a particle at rest in one frame of reference 

may turn out to be the energy due to the motion relative to an observer in another frame of 

reference. It is reasonable that we work out a way of transforming these quantities from one 

inertial frame to another. 

As before, consider two observers   and   in inertial frames of reference   and    which are in 

relative motion along the  -axis at a relativistic velocity  . For observer  , the components of the 
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momentum and the relativistic energy of a particle of rest    with velocity   along the positive  -

axis are                                                                                                                                                                                              

   
   

        
 

  

     

     

and 

  
   

 

        
 

                                                                  

Observer    assigns to this particle the components of the momentum and relativistic energy as 

  
  

   
 

         
 

 

  
    

 

  
    

and 

   
   

 

         
 

where    is the velocity of the particle along the positive  -axis as measured by this observer. 

Notice that    assigns to the particle the same rest mass   . Why?  

We have to find the primed quantities in terms of the unprimed ones. We have to first of all 

transform the velocity terms. That is, we must evaluate the quantities 

             and                

in terms of  using the velocity transformation equation,  

i.e.   
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You can begin by squaring both sides and then divide the result by    to obtain                                             

    
        

  
   
  

 
    

  

 

                                                                                                                                                                     

   

  
 

  

  
 
   
  

 
  

  

  
   
  

 
    

  

 

                                                                                                                                                                                       

  
   

  
   

  

  
 
   
  

 
  

  

  
   
  

 
    

  

 

   

  

  
   

  
 
  

   

  
 
    

  

  
   
  

 
    

  

 

  

Now, factorizing the numerator and the denominator of the right hand side 

  

  
   

  
 
                  

          
 

We can now take the reciprocal and then the square root of both sides. 

 

         
 

       

               
 
 

                                                                                         2.9 

We only need to multiply both sides of 2.9 by    
  in order to obtain our relativistic energy 

equation as assigned by observer   . Doing just that, we obtain                                                                                                
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                                                                                                       2.10 

Also, the momentum assigned by    is  

  
  

   
 

         
 

   
   

           
 
    

  
   

 

   
                          

        
 
   

       

  
 

  

   
  

    
     

     
  

  
   

  

  

 
   

     
   

       
       

   
  

  
   

  

  

 

      
       

 

        
 

  

   
  

       
 

        
 

                                                                                                  2.11 

Remember that we have agreed, while studying the glancing collision, that momentum in the 

directions which are perpendicular to the direction of motion is not changed. With this in mind, we 

collect our transformation equations for the relativistic energy and the components of the 

momentum together to obtain the following set:                                                                                                                                                               

  
  

       
 

        
 

                                                                                                                                                                                                

  
     

                                                                                                                             2.12                                                                                                                                                                     
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If we examine the equations 2.12, we recognize that the relativistic energy and the momentum 

equations we have obtained are of the same form as the Lorentz transformation equations 2.6. 

Thus, we conclude that momentum and energy transform exactly as the space-time quantities 

      and  .  

We have come to the end of this unit. You can now handle work out the following SAQs which are 

the direct application of the relations we have established in this unit. 

SAQ 1 

How much energy in joule and electron volt is required to give an electron a speed of 0.9 c starting 

from rest? 

SAQ 2 What is the change in mass of copper when the mass of 1 g from 0 to 100  ? The specific 

heat of copper is         . 

SAQ 3 

Find the kinetic energy of an electron moving at (a)               (b)              

SAQ 4 

Calculate the momentum of the a proton whose kinetic energy is         

SAQ 5 

Calculate the amount of energy required to accelerate an electron to a speed of 0.9c, starting from 

rest. 

Summary 

We summarize this unit as follows: 

 As observed from a given reference frame, the total relativistic energy of an isolated system 

remains constant. 

 A change in energy leads to a corresponding change in mass. 

 Total relativistic energy is the sum of the kinetic and the rest energy 

 Momentum and energy transform exactly as the space-time quantities       and  . 

 

Conclusion 
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We can conclude here that mass and energy are equivalent and that the a change one of these 

leads to a change in the other. 

Tutor Marked Assignments 

1. Calculate the mass and speed of an electron which has kinetic energy of                                                                                    

                     

Ans.             ,             

2. What is the minimum energy required to accelerate a rocket ship to a speed of      if its 

final payload rest mass is         ?  

Ans.        

3. How much mass does an electron gain when it is accelerated to a kinetic energy of 

       ?  

Ans.            . 

4. A particle with rest mass    and kinetic energy     
  makes a completely inelastic 

collision with a stationary particle of rest mass    . What are the velocity and the rest 

mass of the composite particle? Ans.             . 
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3.0 Introduction 

As you have seen from the discussion so far, the theory special relativity is a radical departure from 

classical physics. Most, if not all, of the conclusions were arrived at through thought experiments. A 

number of new phenomena such as time dilation, length contraction, relativistic mass increase and 

mass-energy equivalence were also predicted. Besides, the scientific community of the era of the 

advent of special relativity was hesitant and accepted the new theory rather slowly and with 

reservation. This is evidenced by the fact that Einstein, who together with Lorentz was jointly 

proposed for the 1912 Nobel Prize, was never awarded Nobel Prize for his work on relativity. How 

reliable is a theory with such an unenviable background? For any scientific theory to be taken 

seriously, empirical evidence must back it up. The Nobel Committee was cautious and waited for 

experimental confirmation of the theory.    

In this unit, we collect together experimental evidence and tests of the special theory of relativity, 

some of which have been mentioned in passing in previous units. These evidence and tests are 

necessary, not only to give a measure of confidence in the correctness of the theory but also to 

point out the points of departure from classical physics.  
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3.2 Objectives 

At the end of this unit you should be able to. 

 discuss experimental tests of special relativity 

 solve simple conceptual problems arising from experimental tests of special relativity 

 

3.3.1 Experimental Evidence of the Universality of the Velocity of Light 

The main ingredient of the special relativity is, undoubtedly, the one which has to do with the 

speed of light. Let us revisit it here. It states that the velocity of light in free space has the same 

value in all inertial frames of reference and is independent of the motion of the source. This 

statement calls for two types of investigation namely: 

 (1) is the velocity of light isotropic or does it change with direction of motion?  

(2) Does the velocity of light change with the relative motion of the source and the observer? 

As we saw in section 1.2.5 of unit 1, Michelson - Morley experiment provides the answer to the first 

question. The experiment compared the upstream-downstream with the cross-stream velocity of 

light. Within the limit of experimental error, it was shown that the velocity in both directions is the 

same. Therefore, the velocity of light is isotropic. This experiment also established the fact that 

there is no preferred frame of reference, the so-called the ether frame.  

Despite repetition of the experiment at different times and season, the result was always the same. 

In 1932, Kennedy and Thorndike repeated the experiment using an interferometer with different 

length of arms to test the hypothesis of Lorentz contraction of the arm of the interferometer 

parallel to the direction of motion. This also resulted in the same conclusion that that velocity in 

the two orthogonal directions was the same. 

In recent times, the experiment has been repeated with increasing precision using laser as the 

source. Yet the results to the best of experimental errors remain the same. 

The second question ‘does the velocity of light change with the relative motion of the source and 

the observer?’ can be tested by measuring the velocity of light emitted in the same direction as 

that of a moving source. If an observer at rest in the frame of the moving source assigns   as the 

velocity of light, then an observer relative to whom the source is moving with a velocity   measures 

the velocity of light as       . If   is close to the speed of light, then    is certainly greater 

than  . This is an obvious violation of special relativity. So, what special relativity is telling us here is 

that      i.e.    . We know that    . So, the value obtained for    is the consequence of 

relativistic velocity transformation which we have studied earlier. The assertion       has been 

tested and found to agree with experiment. For example, the velocity of gamma radiation (another 
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electromagnetic radiation propagating at the speed of light  ) emitted in the decay of  -meson 

moving at a velocity in excess of 0.99975c was measured in 1964 by Farley et al to be         

           m/s. Recently (in October 2011), a group of scientist working at a linear accelerator 

in Stanford University, England, claimed that they discovered neutrino which travels at speed in 

excess of c. This claim is still being investigated by scientists elsewhere to confirm its veracity or 

otherwise. At the moment, it accepted that no material object travels at a speed in excess of the 

speed of light  , which is the limiting speed. 

Another piece of evidence comes from the observation of binary stars. A binary star is a pair of 

stars which are rotating about their common centre of mass. At a given moment, one of the stars is 

moving toward the earth while the other is receding from it. In that case, the velocity of light with 

respect to the earth from one star would be larger than that of light from the other star. One 

experiment that could be performed based on this view is the study of X-rays emitted by a binary 

pulsar. A binary pulsar is a pair of binary stars in which of them acts as a rapidly pulsating source of 

X-rays as it revolves about the other star. The pulsar will then be eclipsed from view on the earth 

when it is in a straight line and above the other star. If the velocity of light (X-rays) were to change 

as the pulsar moves toward and later away from the earth on its orbit, then the beginning and the 

end of the eclipse would not be equally spaced in time from the mid-point of the eclipse. The result 

of this experiment was reported in 1977 by K. Brecher and no such effect was observed. From 

experiments like these, it is concluded that the velocity of light is independent of the velocity of its 

source in agreement with special relativity.   

3.3.2 Experimental Evidence of Time Dilation and Length Contraction 

Time dilation as well as length contraction is real and can be confirmed experimentally. The production 

of mu meson (muons) in the upper atmosphere by cosmic rays has already been discussed. For 

emphasis, we recapitulate the conclusion of the discussion here. Muons are unstable elementary 

particles with very short life span (about                      ). So, they decay shortly after they 

come into existence. With typical speeds of about              , muons which are created in the 

upper atmosphere at an altitude of about          by incoming cosmic rays reach the earth at sea 

level in such profuse supply that one wonders how they manage to achieve this feat.  In a time of 

        a muon travelling at a speed of               can only cover       of the altitude. You 

will recall that we had to rely on the concepts of time dilation and length contraction to explain this. 

Production of muons in the laboratory can be achieved through in high-energy accelerators. Their decay 

is observed by tracking the reaction products which are electrons. The muons can then be trapped and 

their decay is studied at rest or placed in the beam and their decay studied in motion. When muons are 

studied at rest their lifetime is            . This is the proper time. In a particular experiment 

published by J. Bailey et al in 1977, muons were trapped in a ring and circulated at very speed and 

momentum of about              and the lifetime came to about            . This confirms 

that time is dilated while muons were in flight.   
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Another striking experimental evidence of the time dilation is supplied by ‘electrostatic focusing’. In 

high energy particle accelerators, it is observed that a stationary cluster of electrons or protons 

expanding under electrostatic repulsion do so at a certain characteristic rate. When they are in fast 

moving beams, they expand at a much slower rate.  

3.3.3 Experimental Evidence of the Twin Paradox 

Direct experiment to test this phenomenon cannot be carried out but an equivalent experiment can be 

performed. Two atomic clocks are carefully synchronized. Then one of them is flown around the earth 

in an airplane. On return and comparison with the earth clock, it is found the clock that was in flight is a 

few seconds behind. Although due the rotation of the earth, the earth clock cannot be said to be in a 

inertial frame of reference, the observation is in agreement with the prediction of special relativity. 

Similar experiments involve cesium atomic clocks, one of which is placed in a space shuttle. Again 

results show that the clock in flight ran slower on comparison with the earth clock. 

3.3.4 Experimental Evidence of the Relativistic Doppler Effect 

The experiment of Ives and Stilwel performed in 1938 provides evidence of the agreement with 

theoretical prediction. 

A beam of hydrogen atom, generated in a gas discharge was made to travel down the tube at a 

relativistic speed. Light emitted by two atoms and in the direction parallel and opposite to the 

relativistic velocity was simultaneously observed. A spectrograph was used to photograph the 

characteristic spectral lines from the two atoms and also on the same photographic plate, from atoms 

at rest. If the classical Doppler formula were valid, the wavelengths of the lines from the two atoms 1 

and 2would be place at symmetric intervals             
  on either side of the line from the atoms 

at rest (wavelength   ). The relativistic formula gives a small additional symmetric shift     

 
 

 
       

 . 

3.3.5 Experimental Evidence of the Relativistic momentum and Energy 

Direct evidence of relativistic momentum and energy comes in handy from experiments involving 

high-energy accelerators in the study of high-energy and particle physics. The results are in 

excellent agreement with theoretical predictions. We have discussed this earlier on in section 1.3.0. 

Perhaps you have read about the atomic bomb dropped in Japan in 1945 during World War II. This 

came as a result of the realization of the mass-energy equivalence we have discussed earlier. 

Summary 

Experiments discussed in this unit are not exhaustive. But their results are in agreement with 

theoretical predictions. 
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Conclusion 

The phenomena of special relativity are so alien to common experience that there is the need to 

provide concrete experimental evidence of them. Within the limits of experimental errors, it is 

found that the practical observations are in excellent agreement with theoretical predictions. 

Tutor Marked Assignments 

Discuss any two experiments to  show evidence of special relativity. 
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Introduction 

From our discussion so far in special relativity, you have seen that there is no absolute or preferred 

frame of reference.  All inertial frames are equally valid and the laws of physics retain the same 

form in all of them. How can we test and ascertain that this is true? We have to have a way of 

finding out whether or not a physical law satisfies this requirement. One of the ways of doing this is 

somewhat familiar to you from your study of vectors. This is called orthogonal transformation. In 

this unit, we will briefly recapitulate this procedure and carry it a bit forward to learn something 

new.   

What we will do is simply to consider two fixed coordinate systems (reference frames if you like) 

which have the same origin but whose axes point in different directions (say by rotating one with 

respect to the other). A vector (say position vector of the a point in space) is then examined to see 
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whether or not it transforms properly, that is, whether or not it retains the same form in the two 

coordinate systems under the operation of rotation. A transformation which ensures invariance of 

such a vector is called an orthogonal transformation. Then we will proceed to show that Lorentz 

transformation (which is a linear transformation) is an orthogonal transformation using a similar 

argument. 

 It will be worthwhile for you to bear in mind that while in an Euclidean space a three – dimensional 

vector, such the position vector describes a position of a point in space; an event requires a four-

dimensional vector or four-vector in space-time (Minkowski space) to completely specify it. Our 

objective then will be to apply an analogous argument of the Euclidean geometry in three 

dimensions to obtain similar results for the more general space-time in four dimensions. 

1.2 Objectives 

At the end of the discussion in this unit you should be able to  

 carry out simple orthogonal transformation of the coordinates of a position vector, force, 

momentum etc. 

 demonstrate that Lorentz transformation is orthogonal 

 perform simple four-vector algebra 

 Discuss four-velocity, four-force, four-momentum etc 

 

1.3.0 Orthogonal Transformation 

The statement that the laws of physics have the same form in all inertial frames of reference is an 

expression of symmetry which is a characteristic property of nature. But what is symmetry? Or 

rather, when do we say that something is symmetrical? Well, we can illustrate the concept with 

something familiar to all of us. Suppose you rotate a playing card through angle of 180o i.e. turn it 

upside down, and after this operation the picture in the card looks the same as it was before it was 

rotated, then it is symmetrical. Thus, an entity is said to be symmetrical if after an operation on it, it 

remains the same as it was before the operation. A combination of transformation operations 

which leaves an entity the same as it was before the operations is called a group. An example of a 

group is rotation followed by reflection about an axis. Other examples include the Lorentz group 

which is the translational motion at constant velocity followed by rotation and the Poincaré group.  

A transformation which leaves a vector invariant after the rotation of the axes of the coordinate 

system is said to be orthogonal. Now, let us see how the vector quantities transform when a 

coordinate system changes. Our specific objective here is to find a specific geometrical 

transformation law for converting the components of a vector from one frame to another. 
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Consider two frames of reference (coordinate systems) S and S’ with a common origin O show in 

figure 1.1.  

  

S’ is rotated through an angle φ in the counter clockwise direction. Let θ and θ’ be the angles which 

the position vector    of a point P in a three-dimensional Euclidean space makes with the x-axis and 

the x’-axis respectively. Note that the common z-axis (not shown) is perpendicular to the page and 

points toward you. From the figure we obtain                                                                             

                         

Also,   
                                                       

Similarly from the diagram, we have                                                                                                                           

  
                                                       

Let us summarize these results.                                                                                                                                                           

  
                        

  
                          1.1                                                                                                    

Equations 1 are the transformation equations of the components of   . 

Notice that the position P and its position vector    have not changed, but the coordinates of P and 

the components of    have. Thus, the transformation of the coordinates of P could also be written 

as                                                                                                                                                                                 

                                                                                                                                                                       

                                                                                                                                                             

                                                     1.2 

   

θ' 

θ φ 
x 

x’ 

y 

y’ 

Fig. 1.1: Axes of the frame of reference S are rotated 

through angle φ with respect to those of the S’ frame 

 

O 

P 
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Furthermore, it can easily be seen that the new coordinates (x, y, z) are linear combinations of the 

old ones (x’, y’, z’). A coordinate transformation is said to be linear if the coordinates are expressed 

as a linear combination of the old ones. 

In matrix notation, our linear transformation of the coordinates of P can be written as 

 
  

  
   

        
         

  
 
                                                                                                                 1. 3 

Generally, for a linear transformation of the coordinates due to rotation about an arbitrary axis in 

three dimensions, we can write  

  
                    

  
                    

  
                                  1.4 

And in matrix notation 

 

  
 

  
 

  
 

   

         
         
         

  

  
  
  
                                                                                             1.5 

More compactly, we can write 

  
        

 

   

 

The index 1 stands for x, 2 for y and 3 for z. 

      

         
         
         

  is the transformation matrix.  

Before we proceed further, we want to show that our coordinate transformation due to rotation 

from   - frame relative to S-frame is indeed orthogonal. This will be true if the length of the 

position vector of point P, which is        , is invariant under the coordinate transformation. Now,         in 

the S frame is given as  
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Thus,                      

Therefore, the coordinate transformation is orthogonal under rotation. 

We can write this conclusion in a more compact form as follows: 

    
   

 

   

      
 

 

   

 

                                                                                                  1.6  

 where the indexes            denote      respectively. 

Now, if you note that          is a scalar product, namely,                         , then you will 

realize that the invariance of the coordinate transformation under rotation as summarized in 

equation 6 could be written in a more general and compact form as follows: 

                   
 

    

 

subject to the condition that 

         
         
        

 

 

 

In terms of Dirac delta notation, we write this as 

           
 

 

                                                                                                                                                                   1. 7                                                                                            

where      
         
        

  

Therefore, if  

     

         
         
         

  is the matrix of the coordinate transformation under rotation, then for the 

transformation to be orthogonal, the elements of     must satisfy the condition given by equation 

1.7. 
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Three important points are worth noting in this analysis: 

1. The components of other vectors transform in exactly the same way as the displacement vector 

when axes of frames of reference are rotated with respect to each other. 

For instance, if       and    are components of the momentum vector    in the S-frame, then its 

components in the   -frame are 

  
                        

  
                        

  
     

If the   -frame is rotated through an angle   with respect the S-frame.  

2. The new coordinates are mixtures of the old ones. In other words, the primed quantities are 

mixtures or combinations of the unprimed ones. The length of an object in the primed coordinate 

system is a combination of length and width in the unprimed system. As an example of this, if we 

set       in equation 2, then      and        This is a result of the fact that we are able to 

move around and look objects at different angles. 

3. Since the transformation of the kind we are dealing with is linear, the sum of any two vectors will 

transform in the same way when the axes of the reference frames are rotated relative to each 

other. For example, the Lorentz force given as                  transforms in the same way as   . 

If the equation is true for a set of axes, it is also true for axes at any other orientation.   

1.3.1 Lorentz Transformation as Orthogonal Transformation 

We now proceed to apply the analysis of orthogonal transformation of a vector in a three 

dimensional Euclidean space to a four dimensional space-time, the so-called the Minkowski space. 

We have seen that in relativity, space and time are intricately intertwined. Besides, Lorentz 

transformation is a linear combination of space and time coordinates. An event in space-time is 

therefore completely specified by a vector in a four-dimensional space with coordinates (x, y, z, ict). 

This type of vector is called a four-vector. A point in the space-time is referred to as a world point. 

The distance from the origin to the world point is called an interval. 

In the previous section, we showed that the scalar product of the three-dimensional vector 

(displacement vector)    is invariant under the rotational transformation. That is,                

      retains the same form for all orientation of the axes. Similarly, the scalar product or the 

square of the length of the four-vector    is invariant under Lorentz transformation. That is 

                  is Lorentz invariant. Note here that    will not always be positive 

compared with to the corresponding    in three dimensions because of the term      . So, in 
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order that    might be analogous to    in a three-dimensional vector, we have to replace   by     in 

our four-vector analysis, where     must have the dimensions of length.  

SAQ 1 

Show that under Lorentz coordinates transformation, the expression                 is 

invariant. 

Now, let us formally show that the Lorentz transformation is an orthogonal transformation. We 

begin by writing down the coordinates as seen by an observer in the moving frame   , namely 

   
    

   
  

  

 

     

     

   
  

  
  

   
  

  

 

Replacing t by    , we obtain 

   
  

  
      

    
  
  

 
  

 

 
 

    
  
  

 

 

     
 
  
  

    
  
  

 
                 

     

     

     
     

  
   

    
  
  

 
    

 

 
 

    
  
  

 

 

   
 
  
  

    
  
  

 
                 

              1.8 

where,   
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and 

        
  

 
  

Comparing your equations      with equations 1.2 you can readily verify that they are analogous, 

with     replacing   in 1.8. Thus, the Lorentz coordinate transformation is orthogonal. You can go 

ahead and show that equations 1.8 satisfy the condition specified in equation 1.7. 

If we introduce the notation    for           such that     ,     ,      and       , 

then in terms of the transformation matrix we can write our Lorentz transformation equations 1.8 

in the form 

 

 

  
 

  
 

  
 

  
  

   

 
 
 

      

 
 
 
 

 
 
 
     

   
 
 
 

  

  
  
  
  

             1.9 

where, 

 
 

    
  
  

 
 

 

    
 
  

 
 

and 

  
 

 
 

1.3.2 Algebra of Four-Vector 

We will now proceed to give the formal definition of a four-vector. A four vector is, simply put, a 

vector in a four dimensional real space called the Minkowski’s space. By analogy to the three-

dimensional vector in the Euclidean space, a four-vector can be defined in terms of its components 

in four possible directions as a set of four quantities denoted by    for            where 1, 2, 3 

and 4 respectively refer to x, y, z and t. For instance, the momentum four-vector could be written in 

terms is components in four-dimensional space as   ,            or simply    where   has the 

values we have already defined and     is the energy. 

With this notation in mind, we can see that the coordinates of an event in a four-dimensional space 

could be represented by   . 
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Just like vectors in three dimensions, addition of four-vectors involves adding the corresponding 

components. Besides, a four-vector equation is also true for its components. 

The quantity   
    

    
    

  is invariant under the complete Lorentz group. A four-vector 

transforms under the complete Lorentz group, that is, for translational motion at constant velocity 

and rotation. Also, for two four-vectors    and   , their corresponding components transform in 

the same manner. So, 

                                     

is invariant under the complete Lorentz group, provided t is replaced by ict. 

Thus, we can write 

       
   

          1.10 

The above is just an example of a four-vector algebraic operation of the scalar product. 

The algebra of four-vectors is very much similar to that of the three-vector and are here tabulated 

for easy reference 

OPERATION THREE-VECTOR FOUR-VECTOR 

Vector                          

Scalar product                                       

Vector operator 
   

 

  
 
 

  
 
 

  
         

 

  
  

Gradient 
    

  

  
 
  

  
 
  

  
          

  

  
  

Divergence 
       

   
  

 
   

  
 
   
  
             

    

  
 

Laplacian and 
D’Alembertian     

  

   
 
  

   
 
  

   
       

  
 

  
  

   
    

Table 1: Comparison of the three-vector and four-vector algebra 

Notice that the four vectors are made up, in all cases, of the space-like and the time-like parts. The 

space-like is exactly the equivalent of the three-dimensional counterpart. 

1.3.3 Examples of four-vectors in relativistic mechanics 

Let us proceed to discuss specific examples of four-vectors. Subsequently, you will learn more as 

we proceed to discuss the application of this notation to the formulation of the electromagnetic 

theory. 

1.3.3.1 The Position Four-Vector 
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An event is represented by a point in a four-dimensional real vector space by a world point. A world 

point is the coordinates of a point taken from the origin of a four-dimensional real space. The 

distance from the origin to a world point or the between two world points is called the interval and 

is denoted by  . The quantity                   is invariant under the complete Lorentz 

group (rotation inversion and translation at constant velocity). We must note that the main 

difference between the three-vector and the four-vector is that while the three-vector transforms 

under rotation (orthogonal transformation), a four-vector transforms under the complete Lorentz 

group. 

The position four-vector or four-position is denoted by    for            

In terms matrix notation, we can represent the four-position as 

    

  
  
  
  

   

 
 
 
   

  

Transformation to the primed coordinates in terms of Lorentz transformation is given as 

  
   

  
 

  
 

  
 

  
 

   

 
 
 

    

 
 
 
 
 
  

 

 
 
 
  

     
 
 
 

  

  
  
  
  

  

      1.11 

or 

             

  
     

  
     

  
                   1.12 

1.3.3.2 The Velocity Four-Vector 

The components of the velocity four-vector are obtained by differentiating the components of the 

four-position with respect to proper time. We can denote four-velocity by     

Thus, we have 
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Accordingly, the components are as follows: 

   
   
  

 
   
  

  

  
  

   
  

         

   
   
  

 
   
  

  

  
  

   
  

         

   
   
  

 
   
  

  

  
  

   
  

          

   
   
  

 
   
  

  

  
  

   
  

  
      

  
     

      1.13 

In matrix notation we can write this as  

   
   
  

  

   
   
   
   

  

      1.14 

Transformation to the primed coordinates will give in matrix notation 

  
   

  
 

  
 

  
 

  
 

   

 
 
 

    

  
 
 
 
  

 

 
 
 
  

     
 
 
 

  

  
  
  
  

  

      1.15 

This implies that  

  
            

  
     

  
     

  
             

      1.16 

Notice the similarity of the transformation matrix of the four-velocity to that of the four-position.  
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1.3.3.3 The Momentum Four-Vector 

You already know how to find the momentum of a moving object, which is simply the product of 

mass and velocity.  

We define the momentum four-vector as product of the rest mass and velocity four-vector and 

denote it by the symbol   . So we write 

         

Obviously, this implies 

     

     
     
     
     

   

   
   
   
   

   

  
  
  
  

  

 

 
 

  
  
  
  

  

 
 

 

      1.17 

which we may write as 

        
  

 
  

where    is the spatial or space-like component and 
  

 
 is the time-like component. E is the total 

relativistic energy given as       

We see here that momentum and energy are four vector conjugates, that is, they are that spatial 

and temporal parts of a four-vector. Now, any four-vector must transform properly, that is, it 

transform in the same way as the position four-vector, so we can write 

  
        

 

 
  

  
     

  
     

             

     1.18 

as expected 

Also, the dot product of a four-momentum with itself must be invariant. Thus,  
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But,  

   
    

  

  
   

  

 

 

  
    

  

is Lorentz invariant, that is, it a Lorentz scalar. Thus we can write 

 
  

  
   

    
    

   
  

  
       

    

Multiplying both sides by   , we obtain 

          
     

      1.19 

which is the basic energy equation of special relativity.  

We can write this as 

        
          

where 

      
  

      1.20 

is the rest energy 

Finally in this section, we take a look at the force four-vector. 
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1.3.3.4 The Force Four-Vector 

Recall that from Newton’s second law, a force is the time rate of change of the momentum. So, to 

obtain the components of the force four vector or four-force, we simply differentiate the four-

momentum with respect to proper time. Thus, if we denote the four force by   , we have 

   
   
  

  
   
  

 

      1.21 

Thus, as before, we obtain the components as  

    
   
  

     

    
   
  

     

    
   
  

     

    
   
  

  
 

 

  

  
  

 

 
      

      1.22 

Therefore, we have 

   
   
  

  
   
  

   
   

  
 
 

 

  

  
  

We can write the above equations in matrix notation as 

    

   
   
   
   

  

 

 
 

   
   
   

 
 

 
     

 

 
 

 

        1.23 
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1.3.4 Space-Time and its Geometry 

1.3.4.1 Space-Time 

If you take a look at the equations of Lorentz coordinate transformation, you will find that the 

space and time coordinates are mixed. So, in relativity, we talk space-time as opposed to space 

only. Space-time is a four dimensional space. A point in the space-time is called the world point and 

defines an event. Of course, you can reason that an event occurs in space at some specified time. 

So, space-time is an imaginary concept of space which has four dimensions namely x, y, z and t. 

The distance between two world points is called an interval and is denoted by    , which is given as 

                                            

      1.24 

If the interval is infinitesimally close, then we represent it as 

                      

                  

      1.25 

where, 

                

and  

      

If you take a close look at equation 1.24, you will realize that an interval can be real or imaginary. 

For instance, if        , i.e., if the event took place at a time interval equal to zero, then the 

interval is imaginary and is referred to as space-like interval . The condition to satisfy here is that  

   
     

For any space-like interval, there is an inertial frame in which the two events are simultaneous, but 

it is impossible to find an inertial frame in which the two events occur at the same place. 

On the other hand, if  

                          

then, the two events took place at the same point. This implies that 
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The interval is real and is referred to as time-like interval 

 1.3.4.12 Space-Time Diagrams 

In space-time continuum, we plot the space coordinates on the horizontal axis while we plot the 

time coordinate on the vertical axis as shown in figure 1.2 

 

As you can see, the vertical line represents a particle at rest. A particle travelling at the speed of 

light (photon) is represented by a line inclined at an angle of     to the positive x-axis. A particle 

going at an ordinary speed (fraction of the speed of light) such as a rocket is represented by line 

whose slope   
 

 
 

The path or trajectory of a particle in a space-time continuum is called world line.  

Now, suppose a moving observer (an object, particle or signal) starts from the origin     at   

 . His world line must be restricted any point within the light cone bounded by     lines because 

no material object can travel at a speed greater than that of light. The situation is illustrated in 

figure 1.3. The forward light cone represents the observer’s future since this is the locus of all 

points accessible to him from the start, the origin, which represents his present. The backward light 

cone represents the observer’s past. Elsewhere, that is, outside the light cones, is inaccessible to 

the observer as he can not travel faster than a photon of light. 

ct 

x 

photon 
rocket 

Particle at rest 

Figure 1.2 Space-time diagrams 
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The implication of the above is that within the regions of the light cone, signals can be sent at 

speeds less than the speed of light from present to influence an event in the future. That, is the 

present can influence the future. Similarly, the past can influence the present  

Summary 

 A combination of transformation operations which leaves an entity the same as it was before 

the operations is called a group. 

 A transformation which leaves a vector invariant after the rotation of the axes of the 

coordinate system is said to be orthogonal. 

 Lorentz coordinate transformation is an orthogonal transformation. 

 An event in space-time is completely specified by a vector in a four-dimensional space with 

coordinates (x, y, z, ict). This type of vector is called a four-vector. A point in the space-time 

is referred to as a world point. The distance from the origin to the world point is called an 

interval. 

 An event is a point on the locus of a space time diagram 

Conclusion 

Space and time are interwoven to form space-time continuum. 

Observer’s world line 

Present elsewhere 

Past 

future 

(x) 

    space 

time (ct) 

Light cone 

Fig.ure 1.3 Light cones 
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1.0 Introduction 

We have seen that Newtonian mechanics is consistent with the Galilean transformation, but 

electrodynamics is not. We also saw that classical electrodynamics is consistent with special relativity.  That 

is, Maxwell’s equations and Lorentz force both of which constitute the basic formulation of electrodynamics, 

are Lorentz invariant 

You will also remember from your basic electromagnetism courses that magnetism arises from the motion 

of electric charges (in close loop). Thus, as far as relativity is concerned, what one observer sees as an 

electrical phenomenon in his frame of reference might appear as a magnetic phenomenon to another 

observer in a frame of reference in relative motion to his. 

In this unit we proceed to show how the electric and the magnetic fields arise as a result of relativistic 

motion as seen in different inertial frames. 

1.1 Objectives 

At the end of this unit, you will be able to 

 Show that net charge of any macroscopic body is invariant under Lorentz transformation. 

 Show that charge density is invariant 

 Show that given electrostatics and relativity, we obtain magnetism. 
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1.3 Electric Charges And Charge Density  As Seen In Different Frames of Reference      

1.3.2 Electric Charges As Seen By Different Observers In Different Frames of Reference 

You already know that the total charge of an isolated system is constant. This, of course, is the statement of 

the conservation of charge. It demands that the quantity of charge that flows into an isolated body must be 

exactly equal to the amount that flows out of it. 

You will also remember that for a neutral atom, the number of protons in the nucleus equals the number of 

electrons in the electron cloud. Now, in an atom, these protons and electrons are in motion, yet their 

charges are exactly balanced out. So, the atom strictly maintains its electrical neutrality. The basic charge of 

a proton and an electron is the electronic charge;     The net charge on a macroscopic object is an integral 

multiple of the electronic charge. Thus, different observers in different frames of reference will count the 

same number of electronic charges in any macroscopic object. In other words, if   electronic charges,   , 

constitute the net charge   on an object as seen by an observer in the   frame, the observer in the    frame 

will also see   electronic charges and the net charge    of magnitude     Therefore , the net charge of any 

macroscopic body is invariant under Lorentz transformation. The magnitude of an electric charge is the same 

irrespective of how fast it is moving. 

1.3.2 Linear Charge Density As Seen By Different Observers In Different Frames of Reference 

You just learned in the last sub-section that the net charge on a body is Lorentz invariant. How about charge 

density? Of course, we do not expect it to be. Why? Well, remember that charge density depends on the 

dimensions of the object on which there is a charge distribution. For example, linear charge distribution is 

the charge per unit length. And you have seen that the lengths of objects appear shortened relative to an 

observer in a frame of reference in which it is in motion (length contraction). So, linear charge density varies 

with the variation of the length of the charge distribution. 

Consider a string of equally spaced charges at rest in the S frame as shown in figure 1.1 

 

We will assume that the charges are close enough to form a continuous string of charge of length  . If the 

charge of the system is     , where          , then, the linear charge density   is given as 

  
 

 
 

l 

  
  

Fig.1.1a String s seen by 

an observer at rest in S 

l’ 

   

   

Fig.1.1b String as 

seen by an observer 

in motion in    
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 in coulomb/metre (C/m) 

or 

      

in coulomb (C). 

If      , then       C/m. 

Now, as seen in the    frame which is in motion to the right along the +x-axis at constant velocity   relative 

to    the length   of the charge string is shortened by the factor           . That is              , 

where    is the contracted length as seen in the    frame. The linear charge density    in the    frame is 

therefore 

   
 

  
 

 

         
 

1.1 

Thus, for a unit length, i.e.      , we have 

   
  

        
     

                                                       

1.2 

Thus, The N charges appear squashed into a contracted length 
 

 
            as depicted in equation 

1.2. We therefore conclude that linear charge density is not Lorentz invariant. Of course, by extension, 

surface as well as volume charge density is also not Lorentz invariant. 

1.3.3 Electric and Magnetic Forces 

You could remember that parallel conductors carrying current in the same direction exert an attractive 

magnetic force on each other. Now, in a current-carrying conductor, electrons are in motion relative to the 

apparently stationary positive “ionic cores” or the protons. Conventionally, the direction of the electric 

current in the conductor is taken as the direction of the motion of these positive cores. With these 

reminders at the back of your mind, let us proceed to show how magnetism arises, given electrostatics and 

relativity. We want to calculate the force between a current- carrying conductor and a moving charge 

without recourse to the laws of magnetism. 
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Consider, once again, a string of equally spaced positive charges, this time moving steadily to the right with a 

constant drift speed    We, again assume that the charges are close enough to form a continuous string of 

positive charges of linear charge density   . Of course, you also have a string of negative charges with linear 

charge density   , moving in the opposite direction with the same speed    Since the string has no net 

charge, it is electrically neutral. The situation is illustrated in figure 1.2a. The net current to the right is 

      

Now, consider a charge q at a distance r perpendicular to the conductor and moving to the right with a 

velocity, which we will assume to be   . You know that electron drift speeds are very small compared with 

the relativistic speed of q. But, never mind, the procedure we will adopt here will give similar results. There 

is no electrical force on q. Why? Well, this is because the string, we have already agreed, is neutral as seen in 

the   frame. 

In the    frame, q is at rest but    is moving at a speed    relative to  . The velocity of the positive charges 

as seen in    frame is  

   
    

        
 

1.3 

And the velocity of the negative charges as seen in the    frame is 

   
    

        
 

1.4 

As you can see,    is greater than   , the squashing up of negative charges is more severe than the positive 

charges in the    frame. The wire will then carry a ne t negative charge. Thus, we have 

         

And  

         

Here, 

v 

v 

   

   

r 

q v 

   

   

r 

q 

Fig.1.2a Charge distribution as seen in S frame Fig.1.2b Charge distribution as seen in S’ frame 
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1.5 

and 

   
 

     
    

 

1.6 

Now,    is the charge density of the positive line in its rest frame, so 

      

1.7 

  
 

        
 

1.8 

Therefore we write 

   
 

   
 
  
          

   
  
 
  

 

     
      

         
          

 
 

     
      

              
  
  

        
  

     
    

 

Likewise 

    
        

  

     
    

 

Therefore, the net line charge as seen in the   is 

                     
     

       
    

 

1.9 
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Now, what is the conclusion of this analysis? Well, as can you see, the consequence of the unequal Lorentz 

contraction of the positive and the negative lines, an otherwise neutral current-carrying wire in one frame of 

reference becomes charged in another reference frame.  

To calculate the electric field due to this resultant charge, as seen in the    frame, we have 

  
    
     

 

The electrical force due to this resultant charge is 

     
  

    
  

   

     
    

 

 

 1.1

0 

Now, from Newton’s third law of motion, forces exist in pairs. Thus, if there is a force of electrical origin in 

the    frame, there must also a force in the   frame. But, what type of force is it? To answer this question, 

we calculate this force by applying the transformation rules, namely, 

         
  
 

  
    

  

    
 

   
 

 

1.1

1 

Noting that     , the current and          
  in equation 1.11, we write 

    
   

   
        

1.1

2 

Where   
   

   
 is the magnetic field as you can recognize. 

So, the force as seen in the   frame is a magnetic force. 

Thus, we can conclude that given electrostatics and relativity, we obtain magnetism. 

Summary 

 Different observers in different frames of reference will count the same number of electronic charges 

in any macroscopic object. Therefore, the net charge of any macroscopic body is invariant under 

Lorentz transformation. 
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 Linear charge density varies with the variation of the length of the charge distribution. Therefore 

conclude that linear charge density is not Lorentz invariant. Of course, by extension, surface as well 

as volume charge density is also not Lorentz invariant. 

 Given electrostatics and relativity, we obtain magnetism. 

Conclusion 

Magnetism results from a combination electrostatics and relativity. 

Tutor Marked Assignments 

Explain, with suitable diagrams how magnetism arises given electrostatics and special relativity. 
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Introduction 

We have pointed out earlier on in this course that all of electrodynamics is contained in Maxwell’s 

equations together with the Lorentz force equation. Now, we want to investigate how these 

equations behave under relativistic transformation from one inertial frame to another. In order to 

do this, we need to know the transformation properties of the differential operators with which 

these field equations are written. In other words, we must express the field equations in the 

invariant four-vector form. So, let us get around to doing just that. 

1.3.0 Transformation Properties of the Differential Operator 

To establish the invariant forms of the differential operators, what we are going to do is to apply 

the rules of partial differentiation to differentiate the four-dimensional space-time coordinates. 

First of all, the rule of partial differentiation is as follows: 
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Recall your Lorentz coordinate transformation. 

   
  
      

 

     
 

     
  

     
  

   
  
      

 

     
 

Now,  

   
   

  
 

   
  
  
      

 

     
 
 

   
         

 

     

 

   
 

   
   

    

   
   

    

   
   

  
 

     
 
 

   
   

 

   
  

And now, if you compare our result with Lorentz transformation coordinate transformation 

equations, you will easily discover that they the same in form, except that    is replaced by 
 

   
 for 

           

We leave it as an exercise for you to write the corresponding equations for the other components, 

namely 
 

   
 
 

   
 
 

   
 . You will also find out that they too transform just in the same way as the 

Lorentz coordinate transformation. Thus, we conclude that 
 

   
 is a four-vector. Just like we did 

for   , we can obtain the invariant scalar product of 
 

    
. This gives 
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You have seen this in connection with the wave equation propagating at the speed of light   

through the free space. This four-dimensional operator is known as d’Alembertian and is denoted 

by   . 

1.3.1 The Four-vector Form of the Continuity Equation 

Having studied the invariant form of the differential operator, we now proceed to show that charge 

density and current density are four-vectors and then write the equation of continuity in the 

invariant form. 

Recall that charge is invariant and does not depend on the relative motion of the reference frame. 

Also, you know that charge is conserved. The statement of conservation of charge is expressed 

quantitatively as 

      
  

  
 

or  

      
  

  
        

where     is the current density and   the volume charge density. 

This equation takes on the invariant form if the current density is expressed in its four-vector,   , 

which is made of the current density as the space-like part and the charge density as the time-like 

part. 

Thus, if   is the charge density in the    frame    in which the charges are at rest, then the current 

density four-vector    may be defined as the product of   and the four-velocity      That is 

    

    
    
    
    

        

 

 

    
    
    
     

         

  
  
  
   

  

Here,      , which shows that the charge density has increased as a result of the change in 

volume element (Lorentz contraction). 

As you can see,    can be written as               

where               represents the spatial components or space-like part and        and 

represents the time-like part of the four-vector. But still, we could use the notation introduced for 

four-vectors, namely, 
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where    for         represent          and         

We can now write the continuity equation in terms of    as follows: 

     
  

  
 
   
   

 
   
   

 
   
   

 
   
   

   

Or simply, 

   
   

   

It is quite clear that in this form, the equation of continuity is, without doubt, invariant. Also, you 

can see that in the    frame translating at constant speed   along the common x-axis relative to the 

  frame, our    should be expressed as  

       
   
  
  

Thus, in the   frame in which we assume the charges to be at rest, we have      and therefore 

      as before. 

1.3.2 The Four-vector Form of Maxwell’s Equations 

We have seen that for two observers in relative motion, what one sees as an electric field might be 

seen by the other as a magnetic field. We will now take a look at a general rule for transforming 

between the two fields. We may ask, “Given a field in   frame, what is the field in    frame in 

relative motion at constant velocity along the common x-axis?” Perhaps you want to guess that     is 

one spatial part of a four-vector while     is the time-like part. If so, we afraid, your guess is not 

correct. Electric and magnetic fields are not the space-like and time-like parts of a four-vector. 

Rather, they form some of the components of a quantity called the four-tensor. We are not going 

to bother you with tensors as the fields and therefore Maxwell’s equations can be put in the 

Lorentz invariant form by expressing them in terms of potentials and formulate the equations in 

the four-vector form.  

First of all, let us write down the Maxwell’s the equations in rationalized mks system of units. 

      
 

  
 

                                                                                                                          1 

        

                                                                                                                          2 
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                                                                                                               3 

           
 

  
    

  
 

              

              

               4 

You are familiar with these equations from your course in electromagnetism. And, now, the electric 

and magnetic fields can be expressed in terms of the scalar and vector potentials as follows: 

        
   

  
 

                  5 

         

                 6 

Let us first deal with equations 2 and 3. If we use the vector identities 

           

and 

          

equation 2 becomes  

                 

and equation 3 becomes 

             
   

  
  

                        
   

  
  

                  
   

  
  



PHY303 Special Relativity 

 

111 
 

             
       

  
 

               
    

  
 

Thus, equations 2 and 3 are automatically satisfied. 

Now, let us turn our attention to the remaining equations, namely, equations 1 and 4. 

Equation 1 becomes, 

             
   

  
  

            
       

  
     

            
 

  
 

We, then use the Lorentz condition 

     
 

  
  

  
   

             7 

or 

      
 

  
  

  
 

to write the above equation as 

     
 

  
   

   
 
 

  
 

             8 

On the other hand, equation 4 can be written as   
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Applying Lorentz condition the above becomes 

 

      
 

  
    

  
          

 

  
  

  
  

 

  
 

  
     

 

  
    

   
 

                                    
 

  
    

   
 

                                  

Thus,  

      
 

  
    

   
      

             9 

Let us write equations 8 and 9 together 

 

Take a close look at these equations. You can easily see that, apart from the constant factors,  the 

right hand side of both equations are components of a four-vector 

             

Besides, the operator on the left hand side is a four-vector of the form 

    
 

  
  

   
 
  

    
  

which is Lorentz invariant. 

Both sides of the equation transform the same way, provided we note that    is a four-vector, i.e., 
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Now, let us make the substitution    
  

 
 and       . We obtain,  

 

 
      

 

  
   

   
       

     
 

  
   

   
     

  

     
 

  
   

   
 
 

  
  

             10 

where use has been made of the fact that 

  
 

     
 

Notice that the resultant equation 10 which we have obtained is Gauss’ law. 

So, we can write Ampere’s and Gauss’ law together using a single four-vector equation, namely, 

 
    
    

      

             11 

Notice also that the Lorentz condition is invariant and can be written in terms of a four-vector as 

     
 

  
  

  
   

or 

   
   

   

             12 

We have shown that Maxwell’s equations are Lorentz invariant as required by the theory of special 

relativity. Besides, they are also in agreement with the second postulate of special relativity which 

requires that all observers measure the same speed of light  .  We nave also found that    and    

are four-vectors, so that if have their values one frame of reference  , we can work out the 
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corresponding values in another reference frame    in uniform motion translation relative to   

using he Lorentz transformation. For instance, 

       
   
  
  

  
     

  
     

  
       

  

  
  

13 

The inverse of the above transformation can be obtained in the usual way. 

To make our four-vector formulation of electrodynamics complete, we have to show that the 

Lorentz force is Lorentz invariant. To do this, we have to first of all learn how to transform the     

and     fields. 

1.3.3 Transformation of the Fields 

Having learnt to transform the four potential    and the differential operator 
 

    
, we now in a 

position to learn how to transform the fields. 

Recall that  

   

        
   

  
 

So that, 

  
  

   

   
 
   

 

   
 

Now, 

       
  

 
  

and  

 

   
    

 

  
   



PHY303 Special Relativity 

 

115 
 

Thus, 

  
     

   
 

   
  

   
 

   
  

Since,    and  
 

   
 Lorentz invariant, we can write 

  
             

  
             

 

   
    

 

   
   

 

   
  

Therefore, 

  
       

 

   
   

 

   
               

          
   

 

   
   

    
   

   
   
   

   
   
   

 
   
   

   
   
   

   
   
   

  

                
   
   

 
   
   

  

       
   
   

 
   
   

  

        

Similarly, we can derive the other components of    and   . They here given below 
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Of course, the inverse transformation can similarly be written but with   replaced by   . 

 

 

SAQ 1 

Show that   
            

1.3.4 Electric Field of a Point Charge in Uniform Motion 

Consider a point charge q at the origin of a reference frame    in uniform translation along the 

common x-axis relative to the   frame. The electric field due to this point charge as measured in    

is 

    
 

    

   

   
 

In terms of its components, we have 

     
  

   

      
              

 

      
  

       

                          
 

      
  

   

      
                    

 

     

    
    

 

  
  

   
  

 

    
    

 

  
  

   
  

 

or equivalently, 

    
 

  
       

The field lines are still straight and radiate from the charge but in the direction of motion, the field 

pattern is squashed up. This is shown in figure 1.1. 
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1.3.5 Transformation of the Forces 

To complete our four-vector formulation of electrodynamics we now investigate the Lorentz 

invariance force, 

                  

You have to remember that         and that the transformation of the     field is given by equation 

14, namely, 

  
                                             

     
      

  
                                         

      
              

  
                                 

     
                 15 

On the other hand, the components of    in the   frame are 

         
  

                 
  
 

 
 

                 
  
 

 
 

v 

    

Figure 1.1: Electric field of a point charge at rest fig.(a) compared to a point charge in 

motion at relativistic speed v ,fig. (b). 

(a) 

(b) 
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             16 

This completes our task of the four-vector or, if you like, the covariant formulation of 

electrodynamics. The term covariant implies the existence of the relativistic principle for a physical 

phenomenon. 

Summary 

 All of electrodynamics is contained in Maxwell’s equations together with the Lorentz force 

equations. 

 The differential operators, with which the field equations are written, are expressible in four-

vector form and are Lorentz invariant. 

 The equation of continuity is expressible in four-vector notation and is also Lorentz invariant. 

 The electric and the magnetic fields can be written in terms of vector and scalar potentials 

which are respectively the space-like and the time-like parts of a four-vector. 

 Maxwell’s equations are Lorentz invariant as required by the theory of special relativity. 

Besides, they are also in agreement with the second postulate of special relativity which 

requires that all observers measure the same speed of light  . 

 When transformed from one inertial frame to another, what is observed as a pure electric 

field in one frame might appear as a magnetic field or a combination of both in another 

frame. Also, what is observed as a pure magnetic field in one frame might appear as an 

electric field or a combination of both in another frame. 

 The field lines of a point charge are straight and radiate from the charge but in the direction 

of motion, the field pattern is squashed up. 

Conclusion 

Under the transformation from one inertial frame to another, what is one observer’s electric field 

might be another’s magnetic field. 

Tutor Marked Assignments 

1. Show that           is relativistically invariant. 

2. Show that           is relativistically invariant. 
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