

PHYSICS PAPER 1 FORM 4

MARKING SCHEME

- 1. a) Negative error = 0.06 (-0.06 cm)
 - b) Reading = 2.15 + 0.06 = 2.21 cm
- 2. Total mass = m1 + m2

- 3. Due to constant bombardment of chalk and air particles.
- 4. a) Work done = $F \times d$ = Initial K.E.

$$F = 20000 N \sqrt{1}$$

- b) K.E. changes to heat and sound.
- 5. Lower the temperature
 - Remove impurities
- 6. Energy can neither be created nor destroyed but can be Converted/transformed from one form to another.
- 7. Gas Pressure = Atmospheric Pressure Pressure due to \mathbf{H}_{g} Volumn

$$P_g = 1.0 \times 10^5 - 0.4 \times 13600 \times 10$$

= 94560N/m²

8.
$$P_1V_1 = P_2V_2$$

26 x (a + 5) = 30(a - 5)
26a + 130 = 30a - 150
4a = 280
a = 70cmHg

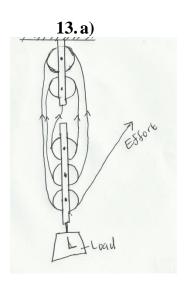
- 9. a)-Sum of clockwise moments must be equal to sum of anticlockwise moments about the same point
- -Sum of upward forces must be equal to sum of downward forces
- b) sum of clockwise moents = sum of anticlockwise moents

$$x(0.3) + 2.0 \times 0.1 = (30 \times 0.2) + 2 \times 0.1$$

 $0.3x = 6.2 - 2.0$
 $x = 14N$

- 10. To increase surface area of contact thus reducing pressure exerted on the road
- 11.(i) Archimedes Principle states that when a body is partially or completely immersed in a fluid it experiences an upthrust which is equal to weight of the fluid displaced.
 - (ii) Volume of solid in liquid $A = 1 \text{cm } \times 2 \text{cm}^2 = 2 \text{cm}^3$ $= 2 \times 10^{-6} \text{m}^3$ Mass = volume x density $= 2 \times 10^{-6} \times 8000$ $= 2 \times 10^{-3} \times 8$ $= 16 \times 10^{-3} \text{kg}$ $= 1.6 \times 10^{-2} \text{kg}$ $W = Mg = 1.6 \times 10^{-1} = 0.16N$ Volume of the block in liquid $B = 1.5 \text{cm} \times 2 \text{cm}^2 = 3.0 \text{cm}^3$ $= 3 \times 10^{-6} \text{m}^3$ $\mathbf{M} = \mathbf{\rho} \times \mathbf{V}$ $= 12000 \times 3 \times 10^{-6}$ $= 12 \times 3 \times 10^{-3}$ $= 36 \times 10^{-3}$ = 0.036kg $W = Mg = 0.036 \times 10 = 0.36N$
 - (iii) Mass of the block =
 Upthrust = 0.36 + 0.16
 = 0.52N = Weight of the block
 W = Mg
 0.52 = M x 10
 M = 0.052kg = 52g
 - (iv) **Density of the block** = $\frac{Mass}{Volume} = \frac{52}{2 \times 4}$

$$=\frac{52}{8}=6.5g/cm^3$$


- 12. (i) collision where only linear Momentum is conserved and bodies moves together after collision (coelesce).
- (ii) I Momentum before collision = Momentum after collision $(1600 \ x \ 20) + (800 \ x \ 0) = (1600 + 800) V$

$$V = \frac{32000}{2400} = 13.33 m/s$$

II
$$V = U + at$$

 $\Rightarrow 13.33 + 15a \Rightarrow pa = -0.89 \text{m/s}^2$
 $V^2 = U^2 + 2as \Rightarrow S = \frac{V^2 - U^2}{2a} = \frac{0 - (13.33)^2}{-2(0.89)}$

III Impulse tone =
$$\frac{\Delta P}{T} = \frac{1600(20 - 13.33)}{2}$$
 for minibus = 5336N

Or
$$\frac{800(13.33-0)}{2}$$
 for a car = 5336N

b) V.R = Number of the ropes supporting the load = 6_1

c)
$$V.R = \frac{1}{Sin\ 30} \frac{1}{\frac{1}{2}} = 2$$

 $\mathbf{M.A} = \mathbf{E} \times \mathbf{V.R}$
 $= \frac{80}{100} \times 2 = 1.6$
 $E = \frac{L}{M.A} = \frac{50 \times 10}{1.6} = 312.5N$

Work done against friction = Work input – Work output Mgh

Work output = 50 x 10 x 4 = 2000J

Work input = Effort x distance moved by effort = $312.5 \times \frac{4}{Sin \ 30}$

= 2500J

Work done against friction = 2500 – 2000 = 500J

d) Work = total area under the graph = (4000 x 20) + 6000 x 20) + (½ x 6000 x 10) + (½ x 600 x 20) = 80000 + 120000 + 30000 + 60000 = 290,000J

14.a) The direction is continuously changing. This implies change in velocity hence acceleration.

(b) (i)
$$\omega = 2\pi f = 2 \times 3.142 \times 6 = 37.704 rad/s$$

(ii)
$$a = \frac{v^2}{r} = r\omega^2 = 37.704 \times 37.704 \times 0.6 = 852.955 m/s^2$$

(iii)
$$T = F_c = mr\omega^2 = 0.045 \times 0.6 \times 37.704 \times 37.704 = 38.38N$$

(iv)
$$V = r\omega = 0.6 \times 37.704 = 22.62 m/s$$

(c)(i)
$$\frac{50-0}{2.5-0} \stackrel{\checkmark}{=} \stackrel{1}{2} 0.0 N/Kg$$

(ii)

$$\frac{p}{m} = slope$$

$$p = m \times slope = 20 \times 0^{1}.2 = 4.0N$$

(iii It represents centripetal force

- 15.a) Specific heat capacity is the quantity of heat required to raise the temp. of a unit mass of a substance by one Kelvin.
- b) i)Heat gained by calorimeter = $M_C C_C \Delta \theta$

= Heat capacity $x \Delta \theta$

 $=40 \times (34-25)$

 $= 40 \times 9 = 360 J$

Heat gained by water = N

 $= \mathbf{M}_{\mathbf{W}} \times \mathbf{C}_{\mathbf{W}} \times \Delta \mathbf{\theta}$

 $= 0.10 \times 4200 \times 9$

= 3780J

- (ii) Heat lost by metal block = 3780 + 360 = 4140J
- (iv) Heat lost by metal block = Heat gained by calorimeter + water

$$M_b \times C_b \times \Delta \theta = 4140$$

$$0.15 \times C_b \times (100 - 34) = 4140$$

$$(66 \times 0.15)C_b = 4140$$

$$C_b = \frac{4140}{66 \times 0.15} = 418.18 J k g^{-1} k^{-1}$$

c) I)Q = ML + Mc $\Delta\theta\sqrt{1}$

$$= \frac{200}{1000} \times 3.36 \times 10^5 + \frac{200}{1000} \times 4200 \times (X - 0)$$

$$= 6.72 \times 10^4 + 420X$$

$$67200 + 420x$$

ii) Heat lost = heat gained

$$67200 + 420x = 67840 - 1696x$$

$$(420 + 1696)x = 67840 - 67200$$

$$2116x = 640$$

$$x = 0.293$$
°C