NAME	INDEX NO
SCHOOL	CANDIDATE'S SIGNATURE
	DATE

232/2 PHYSICS (THEORY) PAPER 2 NOVEMBER 2020 TIME: 2 HOURS

SUKELEMO JOINT EXAMINATION-2020

Kenya Certificate of Secondary Education

INSTRUCTIONS TO CANDIDATES:

- (a) Write your Name and Index Number in the spaces provided above.
- (b) **Sign** and write the **date** of examination in the spaces provided **above**.
- (c) This paper consists of **two** Sections; **A** and **B**.
- (d) Answer ALL the questions in sections A and B in the spaces provided.
- (e) All workings must be clearly shown.
- (f) Non-programmable silent electronic calculators and KNEC Mathematical tables **may be** used.

.

FOR EXAMINER'S USE ONLY:

Section	Question	Maximum Score	Candidate's Score
A	1-13	25	
	14	10	
	15	13	
В	16	12	
	17	08	
	18	12	
Total	Score	80	

SECTION A: (25 MARKS)

Answer **ALL** questions in this section in the spaces provided:

	question in the section in the spaces provided.
1.	State two conditions under which a pinhole camera may form an image on its screen which has the same size as the object. (2mks)
2.	The figure below shows a ray of light incident on the surface of one plane mirror.
	Mirror 1 60° Incident light ray
	Mirror 2
	Sketch the path of the ray on the diagram after striking mirror 2 indicating all the angles. (2 marks)
3.	A steel is to be magnetized by electrical method as shown below. Identify the pole $\bf P$ and $\bf Q$ of the resulting magnet. (1mk)
	Steel nail Office of the steel nail Office
	P:
	0.

Determine the velocity of the wave. (3mks)

6. An object O is placed in front of a concave mirror and on the principal axis, as shown in the figure **below**. Complete the light ray diagram to locate the position of the image. (3mks)

Arrange the following radiations in order of increasing wavelengths. (1mk)
 Infrared, blue light, ultraviolet, radiowaves, χ-rays.

The figure below shows a block diagram of a p-n junction diode.	
p n	
On the same diagram, show how a cell may be connected so that it is reverse biased.	(1mk)
A girl standing at a distance claps her hands and hears an echo from a tall building 2 self the speed of sound in air is 340m/s, determine how far the building is.	econds later. (3mks)
······································	
What do you understand by polarization as used in a simple cell?	(1mk)
A current-carrying conductor AB is in a magnetic field as shown in the figure below .	
direction of A current S	
B Conductor	
(a) Indicate the direction of force F acting on the conductor.	(1mk)

	State two factors that determine the direction of the force F.	(2mks)
	are given three resistors of values 5Ω , 8Ω and 12Ω . Show in a circuit diagratect them so as to give: an effective resistance of 9.8Ω .	am how you would
(b)	the least effective resistance.	(2mks)
-		
	SECTION B: (55 MARKS)	
Answ (a)	SECTION B: (55 MARKS) er ALL questions in this section in the spaces provided. Define refractive index.	(1mk)
	er ALL questions in this section in the spaces provided.	(1mk)
	er ALL questions in this section in the spaces provided.	

15.

(ii) A bar magnet is moved into a coil of insulated copper wire connected to a centre-zero galvanometer, as shown in the figure **below**.

(i) Show on the diagram the direction of induced current in the coil. (1mk)

(11)	State and explain clearly what is observed on the galvanometer w	
	of the magnet is moved into and then withdrawn from the coil.	(4mks)

(b) A transformer has 800 turns in the primary and 40 turns in the secondary winding. The alternating e.m.f connected to the primary is 240V and the current is 0.5A.

(i)	Deter I	mine the secondary e.m.f	(2mks)
	II	the power in the secondary if the transformer is 95% efficient.	(2mks)

--

	(1	ii) Ex I	a soft-iron core.	(2mks)
		II	a laminated core.	(1mk)
. (á	a) (i	i) Di 	istinguish between thermionic emission and photoelectric emission.	(2mks)
		_		
	(1		ate one factor which affects the rate of each of the above types of eminermionic emission.	ssion. (1mk)
		Ph	notoelectric emission.	(1mk)
(t	v	elocity o	as a work function of 2.3eV. Given that: Planck's constant $h = 6.63 \times 10^{10}$ flight in vacuum, $C = 3.0 \times 10^{10}$ m/s, 1 electron-volt (1eV) = 1.6×10^{10} m electron, $m_e = 9.1 \times 10^{-31}$ kg, calculate:	
	(j 	i) its 	threshold frequency.	(2mks)

	by l	maximum velocity of the photoelectrons produced when the sodium ight of wavelength 5.0×10^{-7} m.	is illuminated (4mks)
	(iii) the	stopping potential V, with the light of this wavelength.	(2mks)
(a)		dvantages of using a Cathode Ray Oscilloscope (C.R.O) as a voltme	
	the ordinary	y voltmeter. 	(2mks)
(b)		perates at 30000V and the current through it is 2mA. Given that the on is 1.6×10^{-19} C, $h = 6.63 \times 10^{-34}$ JS, speed of light, $C = 3.0 \times 10^{8}$ m	
	(i) the	maximum kinetic energy of the electrons when hitting the target.	(2mks)

	(iii)	the minimum wavelength of the X	X-rays emitted.	(2mks)
(a)	Λ πο ό	ionativa combon 14 decessa to nitroca	on hy hate menticles as shown held	
(a)		ioactive carbon-14 decays to nitroge $\chi_{N+0}^{2}e$	en by beta particles as shown belo	ow.
(a)	6	ioactive carbon-14 decays to nitroge $\chi = \chi_{N+0} e$ $\gamma = \gamma_{N+0} e$ mine the values of χ and γ .	en by beta particles as shown bel o	ow. (2mks)
(a)	6	7 y	en by beta particles as shown belo	
	6 Deter	7 y		

Use the graph to determine the:-

150

100

50

(i)	Fraction of the amount remaining after 16.2 days.	(2mks)

Sukelemo paper 2 Page 10

24 32 40

(iii)	Determine the half – life of iodine.	(2mks)
(iv)	Mass remaining after 17 days.	
		(1mk)

Sukelemo paper 2 Page 11

c) The figure **below** shows the cross-section of a diffusion cloud chamber used to detect radiation from radioactive sources.

(ii) Explain briefly how the diffusion cloud chamber can be used to detect and identify alpha particles. (3mks)

THE END

Sukelemo paper 2 Page 12