

Kenya Certificate of Secondary Education

PHYSICS (PRACTICAL) Paper 3

TIME: 2 1/2 HOURS

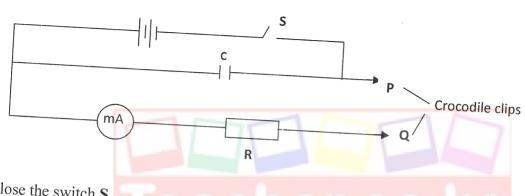
Instructions

- Write your name and index number in the spaces provided above.
- Sign and write the date of examination in the spaces provided above.
- Answer ALL questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of the 2 ½ hrs allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.
- This paper consists of 7 printed pages.
- Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

Question 1	С	d	g	h	i	(j)	(k)		TOTAL 20	
Maximum Score	1	1	8	5	2	2	1			
Candidate's Score										
		c	e	$\frac{1}{f}$	g	h	i	j	k	TOTAL
Question 2						1				
Maximum Score		1	*	6		5	3	3	2	20
Candidate's Score		4					agen aleksennessyn i gegepte van de vanienene van	Secretarion provide sistema some reseas posi-	a vir y . Et. e har, selectivité de 18.90, est	and an agreement of the contract of the contra

GRAND TOTAL	
•	


Question one

You are provided with the following:

- 2 new dry cells size D
- A cell holder
- A switch
- A millimeter of range 0 to 1 mA
- A capacitor labeled C
- 8 connecting wires; at least four with crocodile clips on one end
- A carbon resistor labeled **R**

Proceed as follows

a. Connect the circuit as shown in the figure 1 below, where $\bf P$ and $\bf Q$ are crocodile clips.

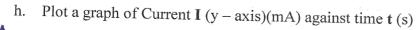
- b. Close the switch S
- c. Name the process which takes place when the switch S is closed

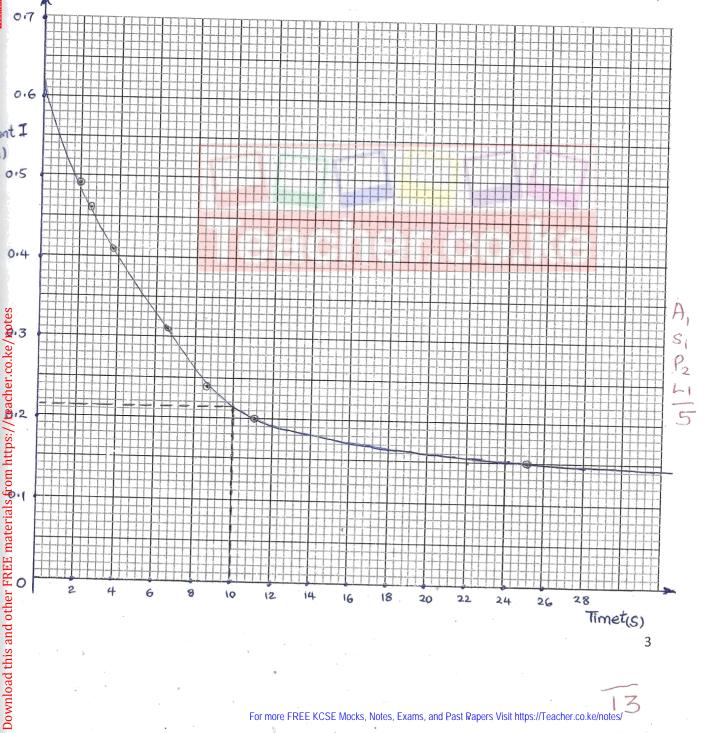
(1 mark)

d. Connect the crocodile clips P and Q. Observe and record the highest reading of the

(1 mark)

- Open the switch S and at the same time start the stopwatch to measure the time taken for the current to decrease to four fifth the value of I_0 i.e. $^4/_5$ I_0 . Record your value in the
- Close the switch S for a second time and observe the deflection in the millimeter. (the pointer should rise back to the same initial value I_{o}


2


g. Repeat part (b) for other values of current as shown in the table 1 below.

(8 marks)

Current I (mA)	⁴ / ₅ I _o	³ / ₄ I ₀	$^{2}/_{3} I_{o}$	$^{-1}/_{2} I_{o}$	$^2/_5 I_0$	¹ / ₃ I ₀	1/4 I ₀	
Your calculated fraction of I ₀ (mA)	0.49	0,46	0.41	0.31	0:24	0.20	0:15	+}/
Time t (s)	0.20	0.26	3·70	6.58	8-64	11.04	25:50	± 0.5

(5 marks)

i. From your graph, find W the value of I when t = 10s.

(2 marks)

j. Given that A = 10W, determine the value of A.

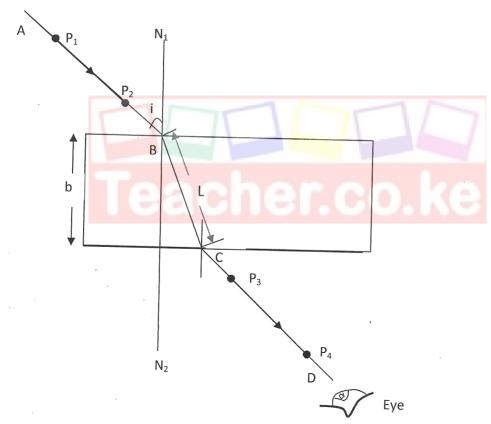
$$A = 10 \times 0.23 \times 10^{-3} /$$
= 2.3 × 10⁻³ c

k. Determine the voltage across R at t = 10s given that $R = 4.7k\Omega$

(1 mark)

$$V = IR$$
= 2.3x 10⁻⁴x 4.7x 10³
= 1.081 y

Teacher Co.ke


Question Two

You are provided with the following;

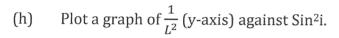
- a rectangular glass block
- 4 optical pins
- 2 thumb pins
- a soft board
- a plain paper

Proceed as follows:

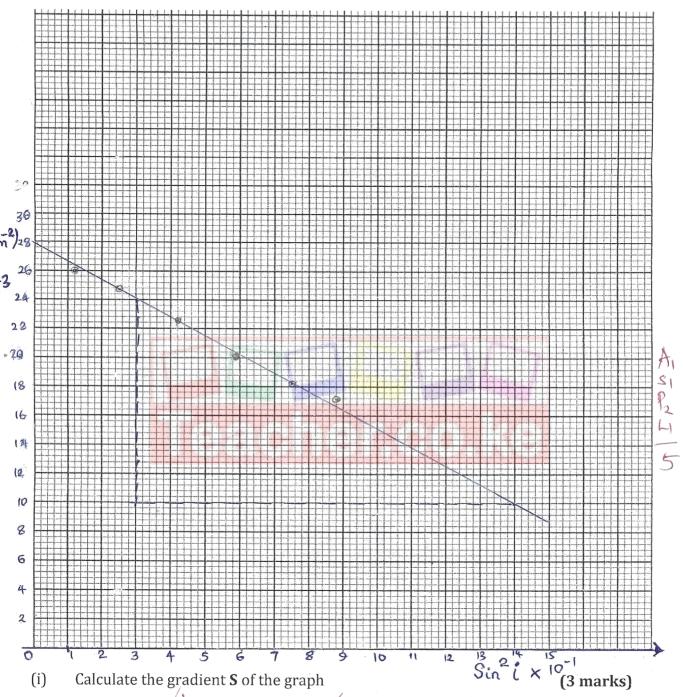
(a) Place the glass block on the plain paper with one of the largest face upper most. Trace round the glass block using a pencil as shown below.

- (b) Remove the glass block and construct a normal at B. Construct an incident ray AB of angle of incidence, $i = 20^{\circ}$.
- (c) Measure the breadth **b** of the glass block (1 mark) $6.0 \text{ cm} \pm 0.2$

T


- Replace the glass block and trace the ray ABCD using the optical pins. (c) (d)
- Remove the glass block and draw the path of the ray ABCD using a pencil. (e)
- Measure the length L and record it in the table below

Angle i ⁰	L (cm)	L ² (cm) ²	1		
20			$\frac{1}{L^2} (cm-2)$	Sin²i	
20 6.2		38.44	0:0260	0.000	
30	6.4 1/2	40.96	0.000	0.1170	
40	6.7 1/2	4	0.0244	0.25	
F.0.		44.89	0.0223	0.4132	
50	7.1 1/2	50.41	0.0198	V	
60	7.4 /2	54.76		0.5868	
70	V	04116	0.0183	0.75	
70	7.6 V2	57.76	0.0173	0.000	
		2316		0.8830	


(6 marks)

- (f) Repeat the procedure above for the angles of incidence given. Download this and other FREE materials from https://teacher.co.ke/notes
 - Calculate the values of $\frac{1}{L^2}$ and $\sin^2 I$; and record in the table above.

(5 marks)

Calculate the gradient S of the graph
$$Slope = \Delta \frac{1/2}{\Delta \sin^2 c} = \frac{(24 - 10) \times 10^{-3}}{(14 - 3) \times 10^{-1}} = \frac{0.14}{1.1}$$

$$= 0.0127272 \text{ cm}^2$$

Given that the equation of that graph is; $\frac{1}{L^2} = \left(\frac{1}{\mathbf{n}^2 b^2}\right) \sin^2 t + \frac{1}{b^2}$

(j) Determine the value of n

(3 marks)

Gradient = 0.0127272 =
$$\frac{1}{n^2b^2}$$

but $b = 6.0 \text{ cm}$
 $\therefore 0.0127272 = \frac{1}{n^2 \times 36}$
 $\frac{1}{n^2} = 0.0127272 \times 36$
 $\frac{1}{n^2} = 0.4581812$
 $n^2 = 2.18254$
 $n = \sqrt{2.18254} = 1.47734$

(k) Present your work sheet; attached to the exam paper

(2 mark)