

FORM FOUR PHYSICS PRACTICAL MARKING SCHEME

Question 1

L (cm)	0.2	0.4	0.5	0.6	0.7	0.9	1.0	
p.d (V)	2.05	2.25	2.35	2.40	2.45	2.50	2.55	+ 0.01
I (A)	0.825	0.625	0.525	0.475	0.425	0.375	0.350	+ 0.001
$R(\Omega)$	2.485	3.600	4.476	5.053	5.765	6.667	7.286	
$^{1}/_{I}(A^{-1})$	1.212	1.600	1.905	2.105	2.353	2.667	2.857	

P.d (V) – each point $\frac{1}{2}$ mk max 4 points = 2mks

I(A) – each point $\frac{1}{2}$ mk max 4 points = 2mks

R Ω - All points correct = 2mks

 $^{1}/_{I}$ A⁻¹ – all points correct $= \frac{1 \text{mk}}{7 \text{mks}}$

(d)

Axis – labelled with units – 1mk

Scale – uniform and simple and should accommodate all points – 1mk

Plotting – at least 6 points – 2mks

Line – straight with positive gradient passing through 4 correctly plotted points 1mk

5mks

(e) Slope,
$$S \Delta = \frac{1}{I} / \Delta R$$

=\frac{(19 - 8.8)}{4.5 - 1.5} \times \frac{1}{4} \text{(1) (intervals)} \\
=\frac{1.02}{3.0} \sqrt{(1) (evaluation)} \\
\times S = 0.33 \div 0.01 \\
Range (0.32 - 0.34) \text{ 3mks}

2.

(f)
$$1 = \underline{1}.R + r$$

 $I \quad E \quad E$
 $Y = MX + C \sqrt{}$
 $\underline{I} = \text{slope}, S, = 0.34 \sqrt{}$
 E
 $E = \underline{L} = \underline{-1} = 2.94 \sqrt{V}$
Slope 0.34

3mks

$$\underline{r}$$
 = y − intercept
E
 r = y − intercept x E $\sqrt{}$
= 3.8 x 10⁻¹ x 2.94
= 1.117 Ω

2mks

Question 2

PART A

(a) $G = 50.0 \pm 2.0 \text{ cm} \text{ } \sqrt{}$

(b)

x (cm)	5.0	10.0	15.0	20.0	25.0	30.0
d (cm)	4.5	9.3	14.0	18.4	23.0	27.0

Each point $\frac{1}{2}$ mk + 0.1 (3mks)

(c)

(d) Slope S,
$$\Delta d = 16 - 0 \sqrt{=16}$$
 $16 - 0 \sqrt{=16}$ = 0.9143

2mks

(e) (i)
$$W = 100 \times 10 = 1 \text{ N} \sqrt{1000}$$

 $V = 1000 \times 10 = 1 \text{ N} \sqrt{1000}$

2mks

(ii)
$$U = W - F$$

= $1 - 0.9143 \sqrt{}$ = $0.0857 N \sqrt{}$

2mks

3.

4

Question 2 part A (c)

PART B

(a)
$$t = 28.53 \pm 0.02 \sqrt{1}$$

 $T = \frac{t}{20} = 1.4265 \sqrt{\frac{1}{2}}$

(b)
$$T^2 = \frac{4\pi^2 L}{g} \frac{\sqrt{1/2}}{g}$$

 $g = \frac{4\pi^2 \times 0.5}{(1.4265)^2} \frac{\sqrt{1/2}}{\sqrt{1/2}}$
 $= 9.700 \frac{\sqrt{1/2}}{10.5}$ (3mks)
NB $g = 10 \pm 1$

PART C

(a) $h = 20.0 + 2 \text{cm} \sqrt{}$ (b) $h = 20 = 10 \text{cm} \pm 1.0 \text{ }\sqrt{2}$

