NAME:	INDEX NO:
SCHOOL:	ADM NO:
STREAM	DATE:

232/3
PHYSICS
PAPER 3
(PRACTICAL)
MARCH/ARIL - 2019
TIME: 2 ½ HOURS

TRIAL ONE EVALUATION TEST-2019

Kenya Certificate of Secondary Education (K.C.S.E)

232/3 PHYSICS PAPER 3 (PRACTICAL) MARCH/ARIL - 2019 TIME: 2 ½ HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, admission number, class and other details in the spaces provided above.
- 2. Answer ALL the questions in the spaces provided in question paper.
- 3. You are supposed to spend the first 15 minutes of the 2 ½ hours allowed for this paper reading the whole paper carefully before commencing your work.
- 4. Marks are given for a clear record of the observation actually made, their suitability, accuracy, and the use made of them.
- 5. Candidates are advised to record their observations as soon as they are made.
- 6. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

FOR EXAMINERS USE ONLY.

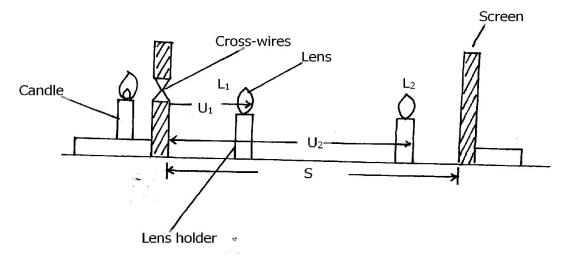
Question	b	ci	c ii	c iii
Maximum Score	10	5	3	2
Candidate's Score				

Total

This paper consists of 8 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and that no questions are missing.

Grand Total

Total


Page 1 of 8

Question one

- 1. You are provided with the following apparatus
 - A lens
 - Lens holder
 - Candle
 - Screen
 - A screen with a hole having cross-wire
 - Metre rule

Proceed as follows

(a) Set up the apparatus as in the figure below with distance S = 42cm

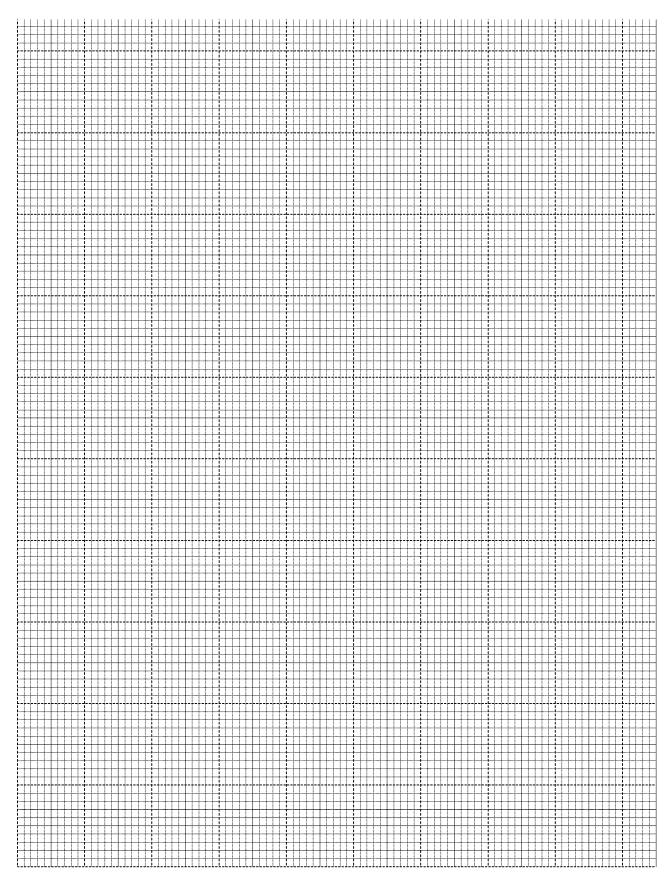
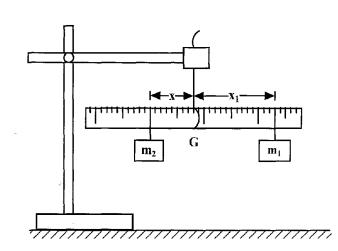

Without changing the distance S move the lens slowly away from cross-wires until a sharp enlarged inverted image is formed on screen position L_1 . Measure the distance U_1 from cross-wires to the lens and record this value in table 2. Keeping distance S, constant move the lens away from cross-wires to a new position L_2 where a small sharp inverted image is formed on the screen. Measure the new object distance U_2 and record in table 2. Determine the displacement d of the lens from L_1 to L_2 (i.e d = $L_2 - L_1$) (b)By setting the distance S to distances 44, 46, 48, 50 and 52cm as shown in table 2 repeat procedure (a). Measure and record the corresponding values of U1 and U2 in table 2

Table 2

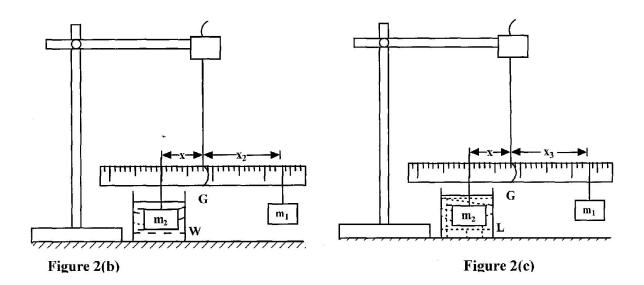
S (cm)	42	44	46	48	50	52
U_1 (cm)						
U ₂ (cm)						
$d (U_2 - U_1) (cm)$						
d^2 (cm ²)						
S^2 (cm ²)						
$S^2 - d^2 (cm^2)$						

(10mks)


Page 3 of 8

(ii)	Determine the slope of the graph	(3mks)
(iii)	Given that $S^2 - d^2 = 4fS$, use your graph to deter	mine the focal length of the lens (2mks)

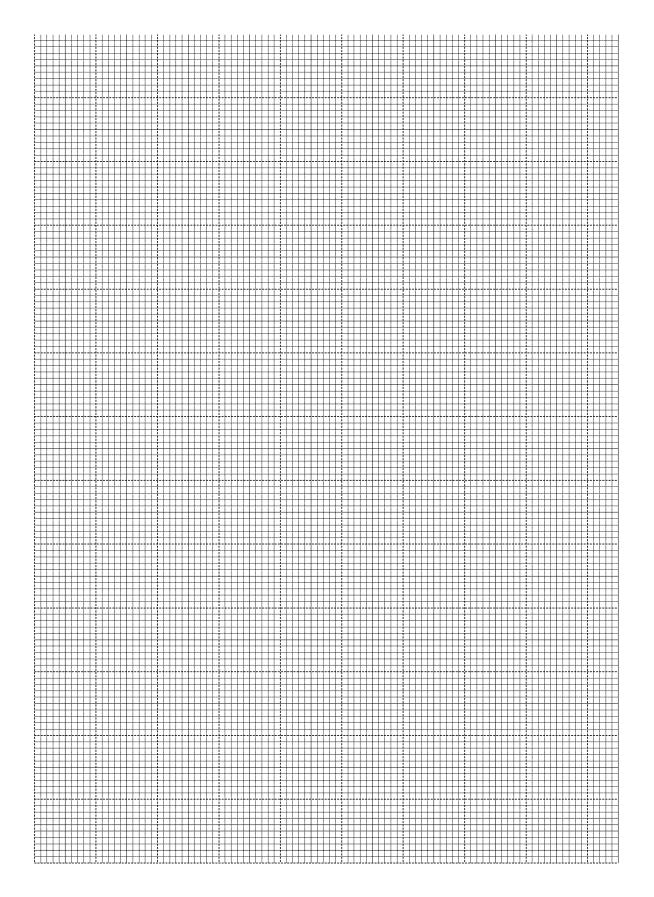
QUESTION TWO


- 2. You are provided with the following:
 - a metre rule;
 - a retort stand, a boss and clamp;
 - three pieces of thread;
 - 200m1 of a liquid in a 250ml beaker labelled W;
 - 200m1 of a liquid in a 250m1 beaker labelled L;
 - Two masses labelled m₁ and m₂.

Proceed as follows:

Figure 2(a)

- b) Position mass m_2 at a distance x = 5 cm from the centre of gravity G and adjust the position of m_1 so that the metre rule balance at G. Record the x_1 of m_1 from the point G in table 2.
- c) While maintaining the distance x = 5cm, immerse m₂ completely in water. Adjust the position of m₁ until the metre rule balances again (see figure 2(b)). Record the new distance x₂.



- d) Still maintaining the same distance x = 5cm, remove the beaker, W with water and replace it with the beaker L with the liquid. Immerse m₂ completely in the liquid. Adjust the position of m₁ until the metre rule balances again (see figure 2(c)). Record the new distance x₃.
- e) Remove mass m_2 from the liquid and dry it with a tissue paper.
- f) With the metre rule still suspended from its centre of gravity G, repeat the procedure in (b), (c), (d) and (e) for other values of x given in table 2. Complete the table.

Distance x ₁	Distance x ₂	Distance x ₃	$\mathbf{L}_0 = (\mathbf{x}_1 - \mathbf{x}_2)$	$\mathbf{L}_1 = (\mathbf{x}_1 \mathbf{-} \mathbf{x}_3)$
(cm)	(cm)	(cm)	(cm)	(cm)
			Distance x1 Distance x2 Distance x3 (cm) (cm) (cm) Image: Im	

TABLE 2

 $(9\frac{1}{2} \text{ mks})$

(h)	Find the slope S of the graph.	(3mks)
•••••		
(i)	Find the value of k given that $L_1 = \frac{25}{K}L_0$	(2mks)
•••••		