232/3 PHYSICS PAPER 3 - MARKING SCHEME

Teacher.co.k

PART A

1.

You are provided with the following apparatus.

- Two optical pins mounted on corks.
- Candle.
- Metre rule.
- Screen
- White sheet of paper.
- Lens
- Lens holder.
- Plane mirror.
- Clamp stand.
- Boss and a clamp
- Piece of cellotape.
- (a) Set up your apparatus as in figure 2 such that the time of the cork is vertically above the centre of the lens.

- (a) Place pin P1 and pin P2 3cm apart and at right angle to the principal axis of the convex lens.
- (b) Place the candle behind P1 to illuminate it.
- (c) Fix the white sheet of paper on the screen using a cellotape.
- (d) Place the screen in front of the lens and move it until a sharp image of pin appear on the screen.
- (e) Draw a line against image of P1.
- (f) Without moving the screen, move the candle behind P_2 so that a sharp image of P2 appears on the screen.
- (g) Draw a line against the image of P2 and measure the distance d1 between the two images.

$$M = \frac{d_1}{d_p}$$

(h) Calculate the magnification from

(i) Complete the table using other values of the objects distances (U) in the table.

	Object distance U(cm)	d ₁ (cm)	Magnification (M)	1
				\overline{M}
1	23.5	6.0	2.0	0.5
2	26.5	4.0	1.33	0.75
3	30.0	3.5	1.17	0.85
4	35.0	2.5	0.83	1.20
5	40.0	2.0	0.67	1.49
6	45.5	1.5	0.50	2.0
7	50.0	1.4	0.47	2.1
	1			

(j) Plot a graph of U(cm) against M

(k) Determine the gradient of the graph. Consider (0.15) and (1.2, 35) $\frac{rise}{run} \frac{35 - 15}{1.2 - 0} = \frac{20}{1.2} = 16.67 \text{ cm}$

3mks

2mks

(1) Uses the graph to determine the focal length of the lens given that $\frac{U}{f} = \frac{1}{M} + 1$

$$U = \frac{f}{m} + f$$

Gradient = f = vertical intercept.. $f = \frac{16.67 + 15}{2} = \frac{31.67}{2} = 15.8cm$

(m) Calculate the average value of focal length use result in part A and part B. 1mk $\frac{17.0 + 15.8}{2} = \frac{32.8}{2} = 16.4cm$

2.

(i) Ammeter, I = 0.25 A
(ii) Voltmeter, V = 1.35 V

$$\frac{V}{I} \Rightarrow K = \frac{1.35}{0.25}$$
(iii) K = $\frac{V}{I} \Rightarrow K = \frac{1.35}{0.25}$
For more FREE KCSE Mocks, Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/

Physics Paper 3

(a)

(b) (iii) Table 2.0

L(cm)	10	20	30	40	50	60	70
V(V)	1.20	1.15	1.05	0.95	0.90	0.85	0.80
I(A)	0.23	0.22	0.20	0.18	0.17	0.16	0.15

(iv)

(v) Slope
$$\frac{\Delta V}{\Delta I} = \frac{0.85 - 0.55}{0.16 - 0.10} = \frac{0.30V}{0.06A} = 5.0\Omega$$

(b)
$$t = 28.445$$

$$\frac{4\pi^{2}L}{g}$$

$$T^{2} = \frac{g}{g}$$
20 oscillations = 28.44S
1 oscillation =?

$$= \left(\frac{1 \times 28.44}{20}\right)$$
= 1.422S
Period = T = 1.422S

$$\frac{4\pi^{2}L}{g}$$
(1.422)2 = r = $\frac{g}{g}$
L = 50 cm = 0.5 m

$$\frac{4\pi^{2} \times 0.5}{(1.422)^{2}}$$
g = 4\pi 2x 0.5
(1.422)2 = 9.76/kg \square{1}

Physics Paper 3

For more FREE KCSE Mocks, Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/

3

Teacher.co.ke