1.

Question one

(a)

Table 1

Mass m (g)	100	200	300	
Time for 10 oscillations. (s)	4.75	6.74	8.02	
Periodic time T (s)	0.475	0.674	0.0802	

Award 2 mks 3 correct values for 10 oscillations to 2d.c

1mak for two correct values

Award 1mk for correct evaluation of T

c)
$$T = \pi \sqrt{\frac{m}{k}}$$
 (2 marks)

 $\{K_1 = 4.375, k_2 = 4.346, k_3 = 4.605\}$ award 1mk

K = 4.442 kg/m or 44.42 N/m award 1 mk

(d) $T_0 = 23.0$ °C (1 mark)

Table 2

Time, t (min)	2	4	6	8	10	12	14
Temperature (T) °C	61.0	57.0	53.0	51.0	49.0	47.0	45.0
$(T-T_o)$	38.0	34.0	30.0	28.0	26.0	24.0	22.0
Log (T-T _o)	1.580	1.531	1.477	1.447	1.415	1.380	1.342

Download this and other FREE materials from https://teacher.co.ke/notes

Award 1 mark for correct evaluation of log (T-To)

(5 marks)

(e) On the grid paper.

Plotting P = 2 marks

Scale S= 1mk

Labeling axes A = 1 mk

Line L = 1 mark with –ve gradient

(f) P = y-intercept

= 1.61 1 mk

Evidence from the graph

- (g) N =the antilog of P
 - = antilog 0f 1.61

 $= 40.74 \, ^{\circ}\text{C} \, 1 \, \text{mk}$

(h)
$$N = 65 - T_R$$

 $40.74 = 65 - T_R$

1mark

 $T_R = 24.26 \, {}^{\circ}C$

1 mark

2. (e) Table 2

(0) : 0::0:0 =						
x(cm)	100	95	90	85	80	
u ₁ (cm)	25.0	27.0	29.0	30.0	32.0	<u>+</u> 1.0cm
u ₂ (cm)	71.0	64.0	61.0	52.0	48.0	<u>+</u> 1.0cm
d=u2-u1(cm)	46.0	37.0	32.0	22.0	16.0	
$y = \underline{d}^2 \text{ (cm)}$	21.16	14.41	11.38	5.69	3.20	(8mks)
x (2dp)						

u₁ and u₂ values each ½ mk

d value a maximum of 1 mark

$$4-5 = 1mk$$

3 values = ½ mark

y value a maximum of 2 marks correct to 2d.p

$$4-5 = 2 \text{ marks}$$

 $3 = 1 \text{ mark}$

(f) Axes with units = 1 mark (each axis = $\frac{1}{2}$ mark) Simple and uniform scale = 1 mark (vertical axis only) Plotting within 1 small square = 2 marks (4 - 5 = 2 marks)(3 = 1 mark)

Straight line drawn with a ruler = 1mark

(Line should have positive gradient and passes at least 3 plotted points)

(g)
$$Xo = 80cm + 1cm$$

(h)
$$k = \frac{X_0}{4} = \frac{80}{4} = 20 \text{cm} \pm 0.5 \text{cm}$$

(i) Bo =
$$3.0v \pm 0.1v$$

(k)
$$v = 0.40 \text{ volts } \pm 0.05 v$$

(I)
$$\frac{1}{v} = \frac{35}{x} + \frac{1}{y}$$

$$= \frac{1}{0.40} = \frac{35}{30} + \frac{1}{y}$$

$$y = 0.75v$$

(m) k =
$$\frac{8}{35\text{Eo}}$$
 = $\frac{8}{35\text{x}3}$ = 0.07619 or 0.0762 v-1

