

PHYSICS PRACTICAL MARKING GUIDE

Solution to question 1

PART (A)

 $B=19.0^{\circ}$

K=Sin30⁰/Sin19⁰

K=1.52

Refractive index

PART (B)

v=12.27cm³

Measure the diameter of the cylindrical mass

Measure the height of the mass

 $v=\pi r^2h$ Apply formula

(b) G= 49.5cm mark

(ii) y = 45mm

x cm	5	10	15	20	25	30
y cm	4.5	8.5	13	17.3	21.5	25.8

1. graph is a straight line

Labeling axis 1mk

Appropriate scale 1mk Plotting4-6pts 2mks Plotting 2-3pts. 1mk Straightline 1mk

26-5

(d) Slope=0.852

(e) F= 0.852× 100 = 8.52g upthrust is equal to the apparent loss in weight =100-8.52 =0.9148N

For more FREE KCSE Mocks, Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/

(f) Density= mass of liquid displaced Volume displaced

=<u>91.48</u> 12.27

 $= 7.456 g/cm^3$

QUESTION TWO: PART A

(a)
$$V_0 = 2.2 + \text{ or } -0.2 \text{ V}$$
 (1/2mk)

$$I_0=1.7+ \text{ or } -0.2\text{A}$$
 (1/2mk)

Hence calculate R given by $\mathbf{R_0} = \mathbf{V_0}$ = 2.2 (1/2mk)

(1/2mk)=12.94Ω

TABLE OF RESULTS. 2.0

1.7

V (volts)	1.0	1.2	1.4	1.6	1.8	1.9	
I(A)	0.35	0.31	0.28	0.24	0.20	0.18	+ or -0.05A 1/2mk x6
R = V (Ohms)	2.857	3.871	:he	6.667	9	10.56	5/6—1mk 3/41/2mk 0/2 0mk
I (A ⁻¹)	2.857	3.226	3.571	4.167	5	5.556	5/6—1mk 3/41/2mk 0/2 0mk

d)graph of $\underline{\mathbf{1}}_{(A}^{-1})$ against **R** (Ohms). (5mks)

AXES/UNITS......1mk

SCALE.....1mk

PLOTTING......1/2x4=2mks

LINE-Must has a positive slope....1mk

e) Determine the slope of the graph.

(2mks)

Students values—NB..NO LINE NO SLOPE

f) From the graph determine the e.m.f (E) of the battery, given that E=V+Ir.

EXPRESSING
$$1/E = \underline{1}R + r/E$$
 (1/2mk)

ACCURACY 2.8-3.2V (1/2mk)

g) From the graph determine the value of r.

(1mk)

EXPRESSION

r/E=y intercept..(1/2mk)

Student answer...(1/2mk)

PART B

(i) Using the micrometer screw gauge, measure the diameter of the resistor wire AB.

$$d = 0.30 + or -0.05mm 2dp A MUST 1/2mk$$

Radius=
$$0.0030 \text{ m}$$
 1/2mk

(ii) Determine the value of α , given by

 $\alpha = AR_0$ -where A is cross-sectional area of the resistor wire AB in m² L And L is the length of the wire AB=1m.

ACCURACY $0.8 - 1.2 \times 10^{-6} \Omega m (1/2 mk)$

