Download this and other FREE materials from https://teacher.co.ke/notes

PHYSICS 232/3 marking scheme

1. a) i) $10\pm0.2 \text{ mm}\sqrt{\frac{1}{2}}$

Value in(i) expressed in $m\sqrt{\frac{1}{2}}$

ii) 1.0 ± 0.2 cm $\sqrt{\frac{1}{2}}$

Value in (ii) expressed in $m\sqrt{\frac{1}{2}}$

- b) iii) Completing column t_1 with decreasing value in seconds $\sqrt{\frac{1}{2}}$
 - Completing column t_2 with decreasing values in seconds $\sqrt{\frac{1}{2}}$
 - Correct mean(column) $\sqrt{2}$, subtract $\frac{1}{2}$ mk for every wrong value.
 - Correct period T (column) $\sqrt{2}$, less $\frac{1}{2}$ mk for each wrong value.
 - Correct \sqrt{T} (column) $\sqrt{2}$ less $\frac{1}{2}$ mk for each wrong value.
- iv) Scale √ 1

Plotting 5 pts $\sqrt{2}$ (less $\frac{1}{2}$ mk for each wrong plotting)

Axes √1

v) Slope expression $\sqrt{1}$

Answer with units i.e $(Sm^{-1/2}) \sqrt{1}$

vi) Correct substitution $\sqrt{1}$

Answer $\sqrt{1}$

- vii) Units ms $^{-2}$ $\sqrt{\frac{1}{2}}$
 - Acceleration due to gravity $\sqrt{\frac{1}{2}}$
- 2. A) c) Table.

Length (cm)	100	80	60	40	20	0
Voltage V(v)	0.2	0.3	0.4	0.6	1.0	1.6
Current I(A)	0.08	0.10	0.12	0.14	0.16	0.20

All values of V correct $\sqrt{2 \frac{1}{2}}$ mks each wrong value, less $\frac{1}{2}$ mark.

- All values of I correct $\sqrt{2}$ ½ each wrong value less ½ mk.
- All the values of V^2 correct $\sqrt{1}$ 1mk less $\frac{1}{2}$ mark for each wrong value to max of 1 mark.
- All values of R correct $\sqrt{1}$ mk less $\frac{1}{2}$ for each wrong value to a max of 1 mk.
- d) Correct scale √ 1

Labeling both axes $\sqrt{1}$

Plotting $\sqrt{2}$

Smooth curve $\sqrt{1}$

Curve.

e) Read values from the graph (must be shown) correct substitution $\sqrt{1}$ Answer with correct units $\sqrt{1}$

- f) Power of the bulb as resistance increases $\sqrt{1}$
- g) a) Resistance R= $10\Omega\sqrt{1}$
 - b) Correct circuit

with V in parallel

A in series. $/\sqrt{1}$

Value of A $\sqrt{1}$

Value of V $\sqrt{1}$

V/I ratio with units $\sqrt{1}$